exmisc.c revision 1.1.1.7 1 1.1 jruoho /******************************************************************************
2 1.1 jruoho *
3 1.1 jruoho * Module Name: exmisc - ACPI AML (p-code) execution - specific opcodes
4 1.1 jruoho *
5 1.1 jruoho *****************************************************************************/
6 1.1 jruoho
7 1.1.1.2 jruoho /*
8 1.1.1.7 christos * Copyright (C) 2000 - 2016, Intel Corp.
9 1.1 jruoho * All rights reserved.
10 1.1 jruoho *
11 1.1.1.2 jruoho * Redistribution and use in source and binary forms, with or without
12 1.1.1.2 jruoho * modification, are permitted provided that the following conditions
13 1.1.1.2 jruoho * are met:
14 1.1.1.2 jruoho * 1. Redistributions of source code must retain the above copyright
15 1.1.1.2 jruoho * notice, this list of conditions, and the following disclaimer,
16 1.1.1.2 jruoho * without modification.
17 1.1.1.2 jruoho * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 1.1.1.2 jruoho * substantially similar to the "NO WARRANTY" disclaimer below
19 1.1.1.2 jruoho * ("Disclaimer") and any redistribution must be conditioned upon
20 1.1.1.2 jruoho * including a substantially similar Disclaimer requirement for further
21 1.1.1.2 jruoho * binary redistribution.
22 1.1.1.2 jruoho * 3. Neither the names of the above-listed copyright holders nor the names
23 1.1.1.2 jruoho * of any contributors may be used to endorse or promote products derived
24 1.1.1.2 jruoho * from this software without specific prior written permission.
25 1.1.1.2 jruoho *
26 1.1.1.2 jruoho * Alternatively, this software may be distributed under the terms of the
27 1.1.1.2 jruoho * GNU General Public License ("GPL") version 2 as published by the Free
28 1.1.1.2 jruoho * Software Foundation.
29 1.1.1.2 jruoho *
30 1.1.1.2 jruoho * NO WARRANTY
31 1.1.1.2 jruoho * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 1.1.1.2 jruoho * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 1.1.1.2 jruoho * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 1.1.1.2 jruoho * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 1.1.1.2 jruoho * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 1.1.1.2 jruoho * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 1.1.1.2 jruoho * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 1.1.1.2 jruoho * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 1.1.1.2 jruoho * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 1.1.1.2 jruoho * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 1.1.1.2 jruoho * POSSIBILITY OF SUCH DAMAGES.
42 1.1.1.2 jruoho */
43 1.1 jruoho
44 1.1 jruoho #include "acpi.h"
45 1.1 jruoho #include "accommon.h"
46 1.1 jruoho #include "acinterp.h"
47 1.1 jruoho #include "amlcode.h"
48 1.1 jruoho #include "amlresrc.h"
49 1.1 jruoho
50 1.1 jruoho
51 1.1 jruoho #define _COMPONENT ACPI_EXECUTER
52 1.1 jruoho ACPI_MODULE_NAME ("exmisc")
53 1.1 jruoho
54 1.1 jruoho
55 1.1 jruoho /*******************************************************************************
56 1.1 jruoho *
57 1.1 jruoho * FUNCTION: AcpiExGetObjectReference
58 1.1 jruoho *
59 1.1 jruoho * PARAMETERS: ObjDesc - Create a reference to this object
60 1.1 jruoho * ReturnDesc - Where to store the reference
61 1.1 jruoho * WalkState - Current state
62 1.1 jruoho *
63 1.1 jruoho * RETURN: Status
64 1.1 jruoho *
65 1.1 jruoho * DESCRIPTION: Obtain and return a "reference" to the target object
66 1.1 jruoho * Common code for the RefOfOp and the CondRefOfOp.
67 1.1 jruoho *
68 1.1 jruoho ******************************************************************************/
69 1.1 jruoho
70 1.1 jruoho ACPI_STATUS
71 1.1 jruoho AcpiExGetObjectReference (
72 1.1 jruoho ACPI_OPERAND_OBJECT *ObjDesc,
73 1.1 jruoho ACPI_OPERAND_OBJECT **ReturnDesc,
74 1.1 jruoho ACPI_WALK_STATE *WalkState)
75 1.1 jruoho {
76 1.1 jruoho ACPI_OPERAND_OBJECT *ReferenceObj;
77 1.1 jruoho ACPI_OPERAND_OBJECT *ReferencedObj;
78 1.1 jruoho
79 1.1 jruoho
80 1.1 jruoho ACPI_FUNCTION_TRACE_PTR (ExGetObjectReference, ObjDesc);
81 1.1 jruoho
82 1.1 jruoho
83 1.1 jruoho *ReturnDesc = NULL;
84 1.1 jruoho
85 1.1 jruoho switch (ACPI_GET_DESCRIPTOR_TYPE (ObjDesc))
86 1.1 jruoho {
87 1.1 jruoho case ACPI_DESC_TYPE_OPERAND:
88 1.1 jruoho
89 1.1 jruoho if (ObjDesc->Common.Type != ACPI_TYPE_LOCAL_REFERENCE)
90 1.1 jruoho {
91 1.1 jruoho return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
92 1.1 jruoho }
93 1.1 jruoho
94 1.1 jruoho /*
95 1.1 jruoho * Must be a reference to a Local or Arg
96 1.1 jruoho */
97 1.1 jruoho switch (ObjDesc->Reference.Class)
98 1.1 jruoho {
99 1.1 jruoho case ACPI_REFCLASS_LOCAL:
100 1.1 jruoho case ACPI_REFCLASS_ARG:
101 1.1 jruoho case ACPI_REFCLASS_DEBUG:
102 1.1 jruoho
103 1.1 jruoho /* The referenced object is the pseudo-node for the local/arg */
104 1.1 jruoho
105 1.1 jruoho ReferencedObj = ObjDesc->Reference.Object;
106 1.1 jruoho break;
107 1.1 jruoho
108 1.1 jruoho default:
109 1.1 jruoho
110 1.1.1.7 christos ACPI_ERROR ((AE_INFO, "Invalid Reference Class 0x%2.2X",
111 1.1 jruoho ObjDesc->Reference.Class));
112 1.1.1.7 christos return_ACPI_STATUS (AE_AML_OPERAND_TYPE);
113 1.1 jruoho }
114 1.1 jruoho break;
115 1.1 jruoho
116 1.1 jruoho case ACPI_DESC_TYPE_NAMED:
117 1.1 jruoho /*
118 1.1 jruoho * A named reference that has already been resolved to a Node
119 1.1 jruoho */
120 1.1 jruoho ReferencedObj = ObjDesc;
121 1.1 jruoho break;
122 1.1 jruoho
123 1.1 jruoho default:
124 1.1 jruoho
125 1.1 jruoho ACPI_ERROR ((AE_INFO, "Invalid descriptor type 0x%X",
126 1.1 jruoho ACPI_GET_DESCRIPTOR_TYPE (ObjDesc)));
127 1.1 jruoho return_ACPI_STATUS (AE_TYPE);
128 1.1 jruoho }
129 1.1 jruoho
130 1.1 jruoho
131 1.1 jruoho /* Create a new reference object */
132 1.1 jruoho
133 1.1 jruoho ReferenceObj = AcpiUtCreateInternalObject (ACPI_TYPE_LOCAL_REFERENCE);
134 1.1 jruoho if (!ReferenceObj)
135 1.1 jruoho {
136 1.1 jruoho return_ACPI_STATUS (AE_NO_MEMORY);
137 1.1 jruoho }
138 1.1 jruoho
139 1.1 jruoho ReferenceObj->Reference.Class = ACPI_REFCLASS_REFOF;
140 1.1 jruoho ReferenceObj->Reference.Object = ReferencedObj;
141 1.1 jruoho *ReturnDesc = ReferenceObj;
142 1.1 jruoho
143 1.1 jruoho ACPI_DEBUG_PRINT ((ACPI_DB_EXEC,
144 1.1 jruoho "Object %p Type [%s], returning Reference %p\n",
145 1.1 jruoho ObjDesc, AcpiUtGetObjectTypeName (ObjDesc), *ReturnDesc));
146 1.1 jruoho
147 1.1 jruoho return_ACPI_STATUS (AE_OK);
148 1.1 jruoho }
149 1.1 jruoho
150 1.1 jruoho
151 1.1 jruoho /*******************************************************************************
152 1.1 jruoho *
153 1.1 jruoho * FUNCTION: AcpiExConcatTemplate
154 1.1 jruoho *
155 1.1 jruoho * PARAMETERS: Operand0 - First source object
156 1.1 jruoho * Operand1 - Second source object
157 1.1 jruoho * ActualReturnDesc - Where to place the return object
158 1.1 jruoho * WalkState - Current walk state
159 1.1 jruoho *
160 1.1 jruoho * RETURN: Status
161 1.1 jruoho *
162 1.1 jruoho * DESCRIPTION: Concatenate two resource templates
163 1.1 jruoho *
164 1.1 jruoho ******************************************************************************/
165 1.1 jruoho
166 1.1 jruoho ACPI_STATUS
167 1.1 jruoho AcpiExConcatTemplate (
168 1.1 jruoho ACPI_OPERAND_OBJECT *Operand0,
169 1.1 jruoho ACPI_OPERAND_OBJECT *Operand1,
170 1.1 jruoho ACPI_OPERAND_OBJECT **ActualReturnDesc,
171 1.1 jruoho ACPI_WALK_STATE *WalkState)
172 1.1 jruoho {
173 1.1 jruoho ACPI_STATUS Status;
174 1.1 jruoho ACPI_OPERAND_OBJECT *ReturnDesc;
175 1.1 jruoho UINT8 *NewBuf;
176 1.1 jruoho UINT8 *EndTag;
177 1.1 jruoho ACPI_SIZE Length0;
178 1.1 jruoho ACPI_SIZE Length1;
179 1.1 jruoho ACPI_SIZE NewLength;
180 1.1 jruoho
181 1.1 jruoho
182 1.1 jruoho ACPI_FUNCTION_TRACE (ExConcatTemplate);
183 1.1 jruoho
184 1.1 jruoho
185 1.1 jruoho /*
186 1.1 jruoho * Find the EndTag descriptor in each resource template.
187 1.1 jruoho * Note1: returned pointers point TO the EndTag, not past it.
188 1.1 jruoho * Note2: zero-length buffers are allowed; treated like one EndTag
189 1.1 jruoho */
190 1.1 jruoho
191 1.1 jruoho /* Get the length of the first resource template */
192 1.1 jruoho
193 1.1 jruoho Status = AcpiUtGetResourceEndTag (Operand0, &EndTag);
194 1.1 jruoho if (ACPI_FAILURE (Status))
195 1.1 jruoho {
196 1.1 jruoho return_ACPI_STATUS (Status);
197 1.1 jruoho }
198 1.1 jruoho
199 1.1 jruoho Length0 = ACPI_PTR_DIFF (EndTag, Operand0->Buffer.Pointer);
200 1.1 jruoho
201 1.1 jruoho /* Get the length of the second resource template */
202 1.1 jruoho
203 1.1 jruoho Status = AcpiUtGetResourceEndTag (Operand1, &EndTag);
204 1.1 jruoho if (ACPI_FAILURE (Status))
205 1.1 jruoho {
206 1.1 jruoho return_ACPI_STATUS (Status);
207 1.1 jruoho }
208 1.1 jruoho
209 1.1 jruoho Length1 = ACPI_PTR_DIFF (EndTag, Operand1->Buffer.Pointer);
210 1.1 jruoho
211 1.1 jruoho /* Combine both lengths, minimum size will be 2 for EndTag */
212 1.1 jruoho
213 1.1 jruoho NewLength = Length0 + Length1 + sizeof (AML_RESOURCE_END_TAG);
214 1.1 jruoho
215 1.1 jruoho /* Create a new buffer object for the result (with one EndTag) */
216 1.1 jruoho
217 1.1 jruoho ReturnDesc = AcpiUtCreateBufferObject (NewLength);
218 1.1 jruoho if (!ReturnDesc)
219 1.1 jruoho {
220 1.1 jruoho return_ACPI_STATUS (AE_NO_MEMORY);
221 1.1 jruoho }
222 1.1 jruoho
223 1.1 jruoho /*
224 1.1 jruoho * Copy the templates to the new buffer, 0 first, then 1 follows. One
225 1.1 jruoho * EndTag descriptor is copied from Operand1.
226 1.1 jruoho */
227 1.1 jruoho NewBuf = ReturnDesc->Buffer.Pointer;
228 1.1.1.6 christos memcpy (NewBuf, Operand0->Buffer.Pointer, Length0);
229 1.1.1.6 christos memcpy (NewBuf + Length0, Operand1->Buffer.Pointer, Length1);
230 1.1 jruoho
231 1.1 jruoho /* Insert EndTag and set the checksum to zero, means "ignore checksum" */
232 1.1 jruoho
233 1.1 jruoho NewBuf[NewLength - 1] = 0;
234 1.1 jruoho NewBuf[NewLength - 2] = ACPI_RESOURCE_NAME_END_TAG | 1;
235 1.1 jruoho
236 1.1 jruoho /* Return the completed resource template */
237 1.1 jruoho
238 1.1 jruoho *ActualReturnDesc = ReturnDesc;
239 1.1 jruoho return_ACPI_STATUS (AE_OK);
240 1.1 jruoho }
241 1.1 jruoho
242 1.1 jruoho
243 1.1 jruoho /*******************************************************************************
244 1.1 jruoho *
245 1.1 jruoho * FUNCTION: AcpiExDoConcatenate
246 1.1 jruoho *
247 1.1 jruoho * PARAMETERS: Operand0 - First source object
248 1.1 jruoho * Operand1 - Second source object
249 1.1 jruoho * ActualReturnDesc - Where to place the return object
250 1.1 jruoho * WalkState - Current walk state
251 1.1 jruoho *
252 1.1 jruoho * RETURN: Status
253 1.1 jruoho *
254 1.1 jruoho * DESCRIPTION: Concatenate two objects OF THE SAME TYPE.
255 1.1 jruoho *
256 1.1 jruoho ******************************************************************************/
257 1.1 jruoho
258 1.1 jruoho ACPI_STATUS
259 1.1 jruoho AcpiExDoConcatenate (
260 1.1 jruoho ACPI_OPERAND_OBJECT *Operand0,
261 1.1 jruoho ACPI_OPERAND_OBJECT *Operand1,
262 1.1 jruoho ACPI_OPERAND_OBJECT **ActualReturnDesc,
263 1.1 jruoho ACPI_WALK_STATE *WalkState)
264 1.1 jruoho {
265 1.1 jruoho ACPI_OPERAND_OBJECT *LocalOperand1 = Operand1;
266 1.1 jruoho ACPI_OPERAND_OBJECT *ReturnDesc;
267 1.1 jruoho char *NewBuf;
268 1.1.1.7 christos const char *TypeString;
269 1.1 jruoho ACPI_STATUS Status;
270 1.1 jruoho
271 1.1 jruoho
272 1.1 jruoho ACPI_FUNCTION_TRACE (ExDoConcatenate);
273 1.1 jruoho
274 1.1 jruoho
275 1.1 jruoho /*
276 1.1.1.3 christos * Convert the second operand if necessary. The first operand
277 1.1 jruoho * determines the type of the second operand, (See the Data Types
278 1.1 jruoho * section of the ACPI specification.) Both object types are
279 1.1 jruoho * guaranteed to be either Integer/String/Buffer by the operand
280 1.1 jruoho * resolution mechanism.
281 1.1 jruoho */
282 1.1 jruoho switch (Operand0->Common.Type)
283 1.1 jruoho {
284 1.1 jruoho case ACPI_TYPE_INTEGER:
285 1.1.1.3 christos
286 1.1 jruoho Status = AcpiExConvertToInteger (Operand1, &LocalOperand1, 16);
287 1.1 jruoho break;
288 1.1 jruoho
289 1.1 jruoho case ACPI_TYPE_STRING:
290 1.1.1.7 christos /*
291 1.1.1.7 christos * Per the ACPI spec, Concatenate only supports int/str/buf.
292 1.1.1.7 christos * However, we support all objects here as an extension.
293 1.1.1.7 christos * This improves the usefulness of the Printf() macro.
294 1.1.1.7 christos * 12/2015.
295 1.1.1.7 christos */
296 1.1.1.7 christos switch (Operand1->Common.Type)
297 1.1.1.7 christos {
298 1.1.1.7 christos case ACPI_TYPE_INTEGER:
299 1.1.1.7 christos case ACPI_TYPE_STRING:
300 1.1.1.7 christos case ACPI_TYPE_BUFFER:
301 1.1.1.3 christos
302 1.1.1.7 christos Status = AcpiExConvertToString (
303 1.1.1.7 christos Operand1, &LocalOperand1, ACPI_IMPLICIT_CONVERT_HEX);
304 1.1.1.7 christos break;
305 1.1.1.7 christos
306 1.1.1.7 christos default:
307 1.1.1.7 christos /*
308 1.1.1.7 christos * Just emit a string containing the object type.
309 1.1.1.7 christos */
310 1.1.1.7 christos TypeString = AcpiUtGetTypeName (Operand1->Common.Type);
311 1.1.1.7 christos
312 1.1.1.7 christos LocalOperand1 = AcpiUtCreateStringObject (
313 1.1.1.7 christos ((ACPI_SIZE) strlen (TypeString) + 9)); /* 9 For "[Object]" */
314 1.1.1.7 christos if (!LocalOperand1)
315 1.1.1.7 christos {
316 1.1.1.7 christos Status = AE_NO_MEMORY;
317 1.1.1.7 christos goto Cleanup;
318 1.1.1.7 christos }
319 1.1.1.7 christos
320 1.1.1.7 christos strcpy (LocalOperand1->String.Pointer, "[");
321 1.1.1.7 christos strcat (LocalOperand1->String.Pointer, TypeString);
322 1.1.1.7 christos strcat (LocalOperand1->String.Pointer, " Object]");
323 1.1.1.7 christos Status = AE_OK;
324 1.1.1.7 christos break;
325 1.1.1.7 christos }
326 1.1 jruoho break;
327 1.1 jruoho
328 1.1 jruoho case ACPI_TYPE_BUFFER:
329 1.1.1.3 christos
330 1.1 jruoho Status = AcpiExConvertToBuffer (Operand1, &LocalOperand1);
331 1.1 jruoho break;
332 1.1 jruoho
333 1.1 jruoho default:
334 1.1.1.3 christos
335 1.1 jruoho ACPI_ERROR ((AE_INFO, "Invalid object type: 0x%X",
336 1.1 jruoho Operand0->Common.Type));
337 1.1 jruoho Status = AE_AML_INTERNAL;
338 1.1 jruoho }
339 1.1 jruoho
340 1.1 jruoho if (ACPI_FAILURE (Status))
341 1.1 jruoho {
342 1.1 jruoho goto Cleanup;
343 1.1 jruoho }
344 1.1 jruoho
345 1.1 jruoho /*
346 1.1 jruoho * Both operands are now known to be the same object type
347 1.1 jruoho * (Both are Integer, String, or Buffer), and we can now perform the
348 1.1 jruoho * concatenation.
349 1.1 jruoho */
350 1.1 jruoho
351 1.1 jruoho /*
352 1.1 jruoho * There are three cases to handle:
353 1.1 jruoho *
354 1.1 jruoho * 1) Two Integers concatenated to produce a new Buffer
355 1.1 jruoho * 2) Two Strings concatenated to produce a new String
356 1.1 jruoho * 3) Two Buffers concatenated to produce a new Buffer
357 1.1 jruoho */
358 1.1 jruoho switch (Operand0->Common.Type)
359 1.1 jruoho {
360 1.1 jruoho case ACPI_TYPE_INTEGER:
361 1.1 jruoho
362 1.1 jruoho /* Result of two Integers is a Buffer */
363 1.1 jruoho /* Need enough buffer space for two integers */
364 1.1 jruoho
365 1.1.1.7 christos ReturnDesc = AcpiUtCreateBufferObject (
366 1.1.1.7 christos (ACPI_SIZE) ACPI_MUL_2 (AcpiGbl_IntegerByteWidth));
367 1.1 jruoho if (!ReturnDesc)
368 1.1 jruoho {
369 1.1 jruoho Status = AE_NO_MEMORY;
370 1.1 jruoho goto Cleanup;
371 1.1 jruoho }
372 1.1 jruoho
373 1.1 jruoho NewBuf = (char *) ReturnDesc->Buffer.Pointer;
374 1.1 jruoho
375 1.1 jruoho /* Copy the first integer, LSB first */
376 1.1 jruoho
377 1.1.1.6 christos memcpy (NewBuf, &Operand0->Integer.Value,
378 1.1.1.7 christos AcpiGbl_IntegerByteWidth);
379 1.1 jruoho
380 1.1 jruoho /* Copy the second integer (LSB first) after the first */
381 1.1 jruoho
382 1.1.1.6 christos memcpy (NewBuf + AcpiGbl_IntegerByteWidth,
383 1.1.1.7 christos &LocalOperand1->Integer.Value, AcpiGbl_IntegerByteWidth);
384 1.1 jruoho break;
385 1.1 jruoho
386 1.1 jruoho case ACPI_TYPE_STRING:
387 1.1 jruoho
388 1.1 jruoho /* Result of two Strings is a String */
389 1.1 jruoho
390 1.1 jruoho ReturnDesc = AcpiUtCreateStringObject (
391 1.1.1.7 christos ((ACPI_SIZE) Operand0->String.Length +
392 1.1.1.7 christos LocalOperand1->String.Length));
393 1.1 jruoho if (!ReturnDesc)
394 1.1 jruoho {
395 1.1 jruoho Status = AE_NO_MEMORY;
396 1.1 jruoho goto Cleanup;
397 1.1 jruoho }
398 1.1 jruoho
399 1.1 jruoho NewBuf = ReturnDesc->String.Pointer;
400 1.1 jruoho
401 1.1 jruoho /* Concatenate the strings */
402 1.1 jruoho
403 1.1.1.6 christos strcpy (NewBuf, Operand0->String.Pointer);
404 1.1.1.7 christos strcat (NewBuf, LocalOperand1->String.Pointer);
405 1.1 jruoho break;
406 1.1 jruoho
407 1.1 jruoho case ACPI_TYPE_BUFFER:
408 1.1 jruoho
409 1.1 jruoho /* Result of two Buffers is a Buffer */
410 1.1 jruoho
411 1.1 jruoho ReturnDesc = AcpiUtCreateBufferObject (
412 1.1.1.7 christos ((ACPI_SIZE) Operand0->Buffer.Length +
413 1.1.1.7 christos LocalOperand1->Buffer.Length));
414 1.1 jruoho if (!ReturnDesc)
415 1.1 jruoho {
416 1.1 jruoho Status = AE_NO_MEMORY;
417 1.1 jruoho goto Cleanup;
418 1.1 jruoho }
419 1.1 jruoho
420 1.1 jruoho NewBuf = (char *) ReturnDesc->Buffer.Pointer;
421 1.1 jruoho
422 1.1 jruoho /* Concatenate the buffers */
423 1.1 jruoho
424 1.1.1.6 christos memcpy (NewBuf, Operand0->Buffer.Pointer,
425 1.1.1.7 christos Operand0->Buffer.Length);
426 1.1.1.6 christos memcpy (NewBuf + Operand0->Buffer.Length,
427 1.1.1.7 christos LocalOperand1->Buffer.Pointer,
428 1.1.1.7 christos LocalOperand1->Buffer.Length);
429 1.1 jruoho break;
430 1.1 jruoho
431 1.1 jruoho default:
432 1.1 jruoho
433 1.1 jruoho /* Invalid object type, should not happen here */
434 1.1 jruoho
435 1.1 jruoho ACPI_ERROR ((AE_INFO, "Invalid object type: 0x%X",
436 1.1 jruoho Operand0->Common.Type));
437 1.1 jruoho Status =AE_AML_INTERNAL;
438 1.1 jruoho goto Cleanup;
439 1.1 jruoho }
440 1.1 jruoho
441 1.1 jruoho *ActualReturnDesc = ReturnDesc;
442 1.1 jruoho
443 1.1 jruoho Cleanup:
444 1.1 jruoho if (LocalOperand1 != Operand1)
445 1.1 jruoho {
446 1.1 jruoho AcpiUtRemoveReference (LocalOperand1);
447 1.1 jruoho }
448 1.1 jruoho return_ACPI_STATUS (Status);
449 1.1 jruoho }
450 1.1 jruoho
451 1.1 jruoho
452 1.1 jruoho /*******************************************************************************
453 1.1 jruoho *
454 1.1 jruoho * FUNCTION: AcpiExDoMathOp
455 1.1 jruoho *
456 1.1 jruoho * PARAMETERS: Opcode - AML opcode
457 1.1 jruoho * Integer0 - Integer operand #0
458 1.1 jruoho * Integer1 - Integer operand #1
459 1.1 jruoho *
460 1.1 jruoho * RETURN: Integer result of the operation
461 1.1 jruoho *
462 1.1 jruoho * DESCRIPTION: Execute a math AML opcode. The purpose of having all of the
463 1.1 jruoho * math functions here is to prevent a lot of pointer dereferencing
464 1.1 jruoho * to obtain the operands.
465 1.1 jruoho *
466 1.1 jruoho ******************************************************************************/
467 1.1 jruoho
468 1.1 jruoho UINT64
469 1.1 jruoho AcpiExDoMathOp (
470 1.1 jruoho UINT16 Opcode,
471 1.1 jruoho UINT64 Integer0,
472 1.1 jruoho UINT64 Integer1)
473 1.1 jruoho {
474 1.1 jruoho
475 1.1 jruoho ACPI_FUNCTION_ENTRY ();
476 1.1 jruoho
477 1.1 jruoho
478 1.1 jruoho switch (Opcode)
479 1.1 jruoho {
480 1.1 jruoho case AML_ADD_OP: /* Add (Integer0, Integer1, Result) */
481 1.1 jruoho
482 1.1 jruoho return (Integer0 + Integer1);
483 1.1 jruoho
484 1.1 jruoho case AML_BIT_AND_OP: /* And (Integer0, Integer1, Result) */
485 1.1 jruoho
486 1.1 jruoho return (Integer0 & Integer1);
487 1.1 jruoho
488 1.1 jruoho case AML_BIT_NAND_OP: /* NAnd (Integer0, Integer1, Result) */
489 1.1 jruoho
490 1.1 jruoho return (~(Integer0 & Integer1));
491 1.1 jruoho
492 1.1 jruoho case AML_BIT_OR_OP: /* Or (Integer0, Integer1, Result) */
493 1.1 jruoho
494 1.1 jruoho return (Integer0 | Integer1);
495 1.1 jruoho
496 1.1 jruoho case AML_BIT_NOR_OP: /* NOr (Integer0, Integer1, Result) */
497 1.1 jruoho
498 1.1 jruoho return (~(Integer0 | Integer1));
499 1.1 jruoho
500 1.1 jruoho case AML_BIT_XOR_OP: /* XOr (Integer0, Integer1, Result) */
501 1.1 jruoho
502 1.1 jruoho return (Integer0 ^ Integer1);
503 1.1 jruoho
504 1.1 jruoho case AML_MULTIPLY_OP: /* Multiply (Integer0, Integer1, Result) */
505 1.1 jruoho
506 1.1 jruoho return (Integer0 * Integer1);
507 1.1 jruoho
508 1.1 jruoho case AML_SHIFT_LEFT_OP: /* ShiftLeft (Operand, ShiftCount, Result)*/
509 1.1 jruoho
510 1.1 jruoho /*
511 1.1 jruoho * We need to check if the shiftcount is larger than the integer bit
512 1.1 jruoho * width since the behavior of this is not well-defined in the C language.
513 1.1 jruoho */
514 1.1 jruoho if (Integer1 >= AcpiGbl_IntegerBitWidth)
515 1.1 jruoho {
516 1.1 jruoho return (0);
517 1.1 jruoho }
518 1.1 jruoho return (Integer0 << Integer1);
519 1.1 jruoho
520 1.1 jruoho case AML_SHIFT_RIGHT_OP: /* ShiftRight (Operand, ShiftCount, Result) */
521 1.1 jruoho
522 1.1 jruoho /*
523 1.1 jruoho * We need to check if the shiftcount is larger than the integer bit
524 1.1 jruoho * width since the behavior of this is not well-defined in the C language.
525 1.1 jruoho */
526 1.1 jruoho if (Integer1 >= AcpiGbl_IntegerBitWidth)
527 1.1 jruoho {
528 1.1 jruoho return (0);
529 1.1 jruoho }
530 1.1 jruoho return (Integer0 >> Integer1);
531 1.1 jruoho
532 1.1 jruoho case AML_SUBTRACT_OP: /* Subtract (Integer0, Integer1, Result) */
533 1.1 jruoho
534 1.1 jruoho return (Integer0 - Integer1);
535 1.1 jruoho
536 1.1 jruoho default:
537 1.1 jruoho
538 1.1 jruoho return (0);
539 1.1 jruoho }
540 1.1 jruoho }
541 1.1 jruoho
542 1.1 jruoho
543 1.1 jruoho /*******************************************************************************
544 1.1 jruoho *
545 1.1 jruoho * FUNCTION: AcpiExDoLogicalNumericOp
546 1.1 jruoho *
547 1.1 jruoho * PARAMETERS: Opcode - AML opcode
548 1.1 jruoho * Integer0 - Integer operand #0
549 1.1 jruoho * Integer1 - Integer operand #1
550 1.1 jruoho * LogicalResult - TRUE/FALSE result of the operation
551 1.1 jruoho *
552 1.1 jruoho * RETURN: Status
553 1.1 jruoho *
554 1.1 jruoho * DESCRIPTION: Execute a logical "Numeric" AML opcode. For these Numeric
555 1.1 jruoho * operators (LAnd and LOr), both operands must be integers.
556 1.1 jruoho *
557 1.1 jruoho * Note: cleanest machine code seems to be produced by the code
558 1.1 jruoho * below, rather than using statements of the form:
559 1.1 jruoho * Result = (Integer0 && Integer1);
560 1.1 jruoho *
561 1.1 jruoho ******************************************************************************/
562 1.1 jruoho
563 1.1 jruoho ACPI_STATUS
564 1.1 jruoho AcpiExDoLogicalNumericOp (
565 1.1 jruoho UINT16 Opcode,
566 1.1 jruoho UINT64 Integer0,
567 1.1 jruoho UINT64 Integer1,
568 1.1 jruoho BOOLEAN *LogicalResult)
569 1.1 jruoho {
570 1.1 jruoho ACPI_STATUS Status = AE_OK;
571 1.1 jruoho BOOLEAN LocalResult = FALSE;
572 1.1 jruoho
573 1.1 jruoho
574 1.1 jruoho ACPI_FUNCTION_TRACE (ExDoLogicalNumericOp);
575 1.1 jruoho
576 1.1 jruoho
577 1.1 jruoho switch (Opcode)
578 1.1 jruoho {
579 1.1 jruoho case AML_LAND_OP: /* LAnd (Integer0, Integer1) */
580 1.1 jruoho
581 1.1 jruoho if (Integer0 && Integer1)
582 1.1 jruoho {
583 1.1 jruoho LocalResult = TRUE;
584 1.1 jruoho }
585 1.1 jruoho break;
586 1.1 jruoho
587 1.1 jruoho case AML_LOR_OP: /* LOr (Integer0, Integer1) */
588 1.1 jruoho
589 1.1 jruoho if (Integer0 || Integer1)
590 1.1 jruoho {
591 1.1 jruoho LocalResult = TRUE;
592 1.1 jruoho }
593 1.1 jruoho break;
594 1.1 jruoho
595 1.1 jruoho default:
596 1.1.1.3 christos
597 1.1 jruoho Status = AE_AML_INTERNAL;
598 1.1 jruoho break;
599 1.1 jruoho }
600 1.1 jruoho
601 1.1 jruoho /* Return the logical result and status */
602 1.1 jruoho
603 1.1 jruoho *LogicalResult = LocalResult;
604 1.1 jruoho return_ACPI_STATUS (Status);
605 1.1 jruoho }
606 1.1 jruoho
607 1.1 jruoho
608 1.1 jruoho /*******************************************************************************
609 1.1 jruoho *
610 1.1 jruoho * FUNCTION: AcpiExDoLogicalOp
611 1.1 jruoho *
612 1.1 jruoho * PARAMETERS: Opcode - AML opcode
613 1.1 jruoho * Operand0 - operand #0
614 1.1 jruoho * Operand1 - operand #1
615 1.1 jruoho * LogicalResult - TRUE/FALSE result of the operation
616 1.1 jruoho *
617 1.1 jruoho * RETURN: Status
618 1.1 jruoho *
619 1.1 jruoho * DESCRIPTION: Execute a logical AML opcode. The purpose of having all of the
620 1.1 jruoho * functions here is to prevent a lot of pointer dereferencing
621 1.1 jruoho * to obtain the operands and to simplify the generation of the
622 1.1 jruoho * logical value. For the Numeric operators (LAnd and LOr), both
623 1.1 jruoho * operands must be integers. For the other logical operators,
624 1.1 jruoho * operands can be any combination of Integer/String/Buffer. The
625 1.1 jruoho * first operand determines the type to which the second operand
626 1.1 jruoho * will be converted.
627 1.1 jruoho *
628 1.1 jruoho * Note: cleanest machine code seems to be produced by the code
629 1.1 jruoho * below, rather than using statements of the form:
630 1.1 jruoho * Result = (Operand0 == Operand1);
631 1.1 jruoho *
632 1.1 jruoho ******************************************************************************/
633 1.1 jruoho
634 1.1 jruoho ACPI_STATUS
635 1.1 jruoho AcpiExDoLogicalOp (
636 1.1 jruoho UINT16 Opcode,
637 1.1 jruoho ACPI_OPERAND_OBJECT *Operand0,
638 1.1 jruoho ACPI_OPERAND_OBJECT *Operand1,
639 1.1 jruoho BOOLEAN *LogicalResult)
640 1.1 jruoho {
641 1.1 jruoho ACPI_OPERAND_OBJECT *LocalOperand1 = Operand1;
642 1.1 jruoho UINT64 Integer0;
643 1.1 jruoho UINT64 Integer1;
644 1.1 jruoho UINT32 Length0;
645 1.1 jruoho UINT32 Length1;
646 1.1 jruoho ACPI_STATUS Status = AE_OK;
647 1.1 jruoho BOOLEAN LocalResult = FALSE;
648 1.1 jruoho int Compare;
649 1.1 jruoho
650 1.1 jruoho
651 1.1 jruoho ACPI_FUNCTION_TRACE (ExDoLogicalOp);
652 1.1 jruoho
653 1.1 jruoho
654 1.1 jruoho /*
655 1.1.1.3 christos * Convert the second operand if necessary. The first operand
656 1.1 jruoho * determines the type of the second operand, (See the Data Types
657 1.1 jruoho * section of the ACPI 3.0+ specification.) Both object types are
658 1.1 jruoho * guaranteed to be either Integer/String/Buffer by the operand
659 1.1 jruoho * resolution mechanism.
660 1.1 jruoho */
661 1.1 jruoho switch (Operand0->Common.Type)
662 1.1 jruoho {
663 1.1 jruoho case ACPI_TYPE_INTEGER:
664 1.1.1.3 christos
665 1.1 jruoho Status = AcpiExConvertToInteger (Operand1, &LocalOperand1, 16);
666 1.1 jruoho break;
667 1.1 jruoho
668 1.1 jruoho case ACPI_TYPE_STRING:
669 1.1.1.3 christos
670 1.1.1.7 christos Status = AcpiExConvertToString (
671 1.1.1.7 christos Operand1, &LocalOperand1, ACPI_IMPLICIT_CONVERT_HEX);
672 1.1 jruoho break;
673 1.1 jruoho
674 1.1 jruoho case ACPI_TYPE_BUFFER:
675 1.1.1.3 christos
676 1.1 jruoho Status = AcpiExConvertToBuffer (Operand1, &LocalOperand1);
677 1.1 jruoho break;
678 1.1 jruoho
679 1.1 jruoho default:
680 1.1.1.3 christos
681 1.1 jruoho Status = AE_AML_INTERNAL;
682 1.1 jruoho break;
683 1.1 jruoho }
684 1.1 jruoho
685 1.1 jruoho if (ACPI_FAILURE (Status))
686 1.1 jruoho {
687 1.1 jruoho goto Cleanup;
688 1.1 jruoho }
689 1.1 jruoho
690 1.1 jruoho /*
691 1.1 jruoho * Two cases: 1) Both Integers, 2) Both Strings or Buffers
692 1.1 jruoho */
693 1.1 jruoho if (Operand0->Common.Type == ACPI_TYPE_INTEGER)
694 1.1 jruoho {
695 1.1 jruoho /*
696 1.1 jruoho * 1) Both operands are of type integer
697 1.1 jruoho * Note: LocalOperand1 may have changed above
698 1.1 jruoho */
699 1.1 jruoho Integer0 = Operand0->Integer.Value;
700 1.1 jruoho Integer1 = LocalOperand1->Integer.Value;
701 1.1 jruoho
702 1.1 jruoho switch (Opcode)
703 1.1 jruoho {
704 1.1 jruoho case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */
705 1.1 jruoho
706 1.1 jruoho if (Integer0 == Integer1)
707 1.1 jruoho {
708 1.1 jruoho LocalResult = TRUE;
709 1.1 jruoho }
710 1.1 jruoho break;
711 1.1 jruoho
712 1.1 jruoho case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */
713 1.1 jruoho
714 1.1 jruoho if (Integer0 > Integer1)
715 1.1 jruoho {
716 1.1 jruoho LocalResult = TRUE;
717 1.1 jruoho }
718 1.1 jruoho break;
719 1.1 jruoho
720 1.1 jruoho case AML_LLESS_OP: /* LLess (Operand0, Operand1) */
721 1.1 jruoho
722 1.1 jruoho if (Integer0 < Integer1)
723 1.1 jruoho {
724 1.1 jruoho LocalResult = TRUE;
725 1.1 jruoho }
726 1.1 jruoho break;
727 1.1 jruoho
728 1.1 jruoho default:
729 1.1.1.3 christos
730 1.1 jruoho Status = AE_AML_INTERNAL;
731 1.1 jruoho break;
732 1.1 jruoho }
733 1.1 jruoho }
734 1.1 jruoho else
735 1.1 jruoho {
736 1.1 jruoho /*
737 1.1 jruoho * 2) Both operands are Strings or both are Buffers
738 1.1 jruoho * Note: Code below takes advantage of common Buffer/String
739 1.1 jruoho * object fields. LocalOperand1 may have changed above. Use
740 1.1 jruoho * memcmp to handle nulls in buffers.
741 1.1 jruoho */
742 1.1 jruoho Length0 = Operand0->Buffer.Length;
743 1.1 jruoho Length1 = LocalOperand1->Buffer.Length;
744 1.1 jruoho
745 1.1 jruoho /* Lexicographic compare: compare the data bytes */
746 1.1 jruoho
747 1.1.1.6 christos Compare = memcmp (Operand0->Buffer.Pointer,
748 1.1.1.7 christos LocalOperand1->Buffer.Pointer,
749 1.1.1.7 christos (Length0 > Length1) ? Length1 : Length0);
750 1.1 jruoho
751 1.1 jruoho switch (Opcode)
752 1.1 jruoho {
753 1.1 jruoho case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */
754 1.1 jruoho
755 1.1 jruoho /* Length and all bytes must be equal */
756 1.1 jruoho
757 1.1 jruoho if ((Length0 == Length1) &&
758 1.1 jruoho (Compare == 0))
759 1.1 jruoho {
760 1.1 jruoho /* Length and all bytes match ==> TRUE */
761 1.1 jruoho
762 1.1 jruoho LocalResult = TRUE;
763 1.1 jruoho }
764 1.1 jruoho break;
765 1.1 jruoho
766 1.1 jruoho case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */
767 1.1 jruoho
768 1.1 jruoho if (Compare > 0)
769 1.1 jruoho {
770 1.1 jruoho LocalResult = TRUE;
771 1.1 jruoho goto Cleanup; /* TRUE */
772 1.1 jruoho }
773 1.1 jruoho if (Compare < 0)
774 1.1 jruoho {
775 1.1 jruoho goto Cleanup; /* FALSE */
776 1.1 jruoho }
777 1.1 jruoho
778 1.1 jruoho /* Bytes match (to shortest length), compare lengths */
779 1.1 jruoho
780 1.1 jruoho if (Length0 > Length1)
781 1.1 jruoho {
782 1.1 jruoho LocalResult = TRUE;
783 1.1 jruoho }
784 1.1 jruoho break;
785 1.1 jruoho
786 1.1 jruoho case AML_LLESS_OP: /* LLess (Operand0, Operand1) */
787 1.1 jruoho
788 1.1 jruoho if (Compare > 0)
789 1.1 jruoho {
790 1.1 jruoho goto Cleanup; /* FALSE */
791 1.1 jruoho }
792 1.1 jruoho if (Compare < 0)
793 1.1 jruoho {
794 1.1 jruoho LocalResult = TRUE;
795 1.1 jruoho goto Cleanup; /* TRUE */
796 1.1 jruoho }
797 1.1 jruoho
798 1.1 jruoho /* Bytes match (to shortest length), compare lengths */
799 1.1 jruoho
800 1.1 jruoho if (Length0 < Length1)
801 1.1 jruoho {
802 1.1 jruoho LocalResult = TRUE;
803 1.1 jruoho }
804 1.1 jruoho break;
805 1.1 jruoho
806 1.1 jruoho default:
807 1.1.1.3 christos
808 1.1 jruoho Status = AE_AML_INTERNAL;
809 1.1 jruoho break;
810 1.1 jruoho }
811 1.1 jruoho }
812 1.1 jruoho
813 1.1 jruoho Cleanup:
814 1.1 jruoho
815 1.1 jruoho /* New object was created if implicit conversion performed - delete */
816 1.1 jruoho
817 1.1 jruoho if (LocalOperand1 != Operand1)
818 1.1 jruoho {
819 1.1 jruoho AcpiUtRemoveReference (LocalOperand1);
820 1.1 jruoho }
821 1.1 jruoho
822 1.1 jruoho /* Return the logical result and status */
823 1.1 jruoho
824 1.1 jruoho *LogicalResult = LocalResult;
825 1.1 jruoho return_ACPI_STATUS (Status);
826 1.1 jruoho }
827