Home | History | Annotate | Line # | Download | only in utilities
utmath.c revision 1.1.1.4
      1 /*******************************************************************************
      2  *
      3  * Module Name: utmath - Integer math support routines
      4  *
      5  ******************************************************************************/
      6 
      7 /*
      8  * Copyright (C) 2000 - 2014, Intel Corp.
      9  * All rights reserved.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions, and the following disclaimer,
     16  *    without modification.
     17  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     18  *    substantially similar to the "NO WARRANTY" disclaimer below
     19  *    ("Disclaimer") and any redistribution must be conditioned upon
     20  *    including a substantially similar Disclaimer requirement for further
     21  *    binary redistribution.
     22  * 3. Neither the names of the above-listed copyright holders nor the names
     23  *    of any contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * Alternatively, this software may be distributed under the terms of the
     27  * GNU General Public License ("GPL") version 2 as published by the Free
     28  * Software Foundation.
     29  *
     30  * NO WARRANTY
     31  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     32  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     33  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
     34  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     35  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     39  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     40  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     41  * POSSIBILITY OF SUCH DAMAGES.
     42  */
     43 
     44 #define __UTMATH_C__
     45 
     46 #include "acpi.h"
     47 #include "accommon.h"
     48 
     49 
     50 #define _COMPONENT          ACPI_UTILITIES
     51         ACPI_MODULE_NAME    ("utmath")
     52 
     53 /*
     54  * Optional support for 64-bit double-precision integer divide. This code
     55  * is configurable and is implemented in order to support 32-bit kernel
     56  * environments where a 64-bit double-precision math library is not available.
     57  *
     58  * Support for a more normal 64-bit divide/modulo (with check for a divide-
     59  * by-zero) appears after this optional section of code.
     60  */
     61 #ifndef ACPI_USE_NATIVE_DIVIDE
     62 
     63 /* Structures used only for 64-bit divide */
     64 
     65 typedef struct uint64_struct
     66 {
     67     UINT32                          Lo;
     68     UINT32                          Hi;
     69 
     70 } UINT64_STRUCT;
     71 
     72 typedef union uint64_overlay
     73 {
     74     UINT64                          Full;
     75     UINT64_STRUCT                   Part;
     76 
     77 } UINT64_OVERLAY;
     78 
     79 
     80 /*******************************************************************************
     81  *
     82  * FUNCTION:    AcpiUtShortDivide
     83  *
     84  * PARAMETERS:  Dividend            - 64-bit dividend
     85  *              Divisor             - 32-bit divisor
     86  *              OutQuotient         - Pointer to where the quotient is returned
     87  *              OutRemainder        - Pointer to where the remainder is returned
     88  *
     89  * RETURN:      Status (Checks for divide-by-zero)
     90  *
     91  * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
     92  *              divide and modulo. The result is a 64-bit quotient and a
     93  *              32-bit remainder.
     94  *
     95  ******************************************************************************/
     96 
     97 ACPI_STATUS
     98 AcpiUtShortDivide (
     99     UINT64                  Dividend,
    100     UINT32                  Divisor,
    101     UINT64                  *OutQuotient,
    102     UINT32                  *OutRemainder)
    103 {
    104     UINT64_OVERLAY          DividendOvl;
    105     UINT64_OVERLAY          Quotient;
    106     UINT32                  Remainder32;
    107 
    108 
    109     ACPI_FUNCTION_TRACE (UtShortDivide);
    110 
    111 
    112     /* Always check for a zero divisor */
    113 
    114     if (Divisor == 0)
    115     {
    116         ACPI_ERROR ((AE_INFO, "Divide by zero"));
    117         return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
    118     }
    119 
    120     DividendOvl.Full = Dividend;
    121 
    122     /*
    123      * The quotient is 64 bits, the remainder is always 32 bits,
    124      * and is generated by the second divide.
    125      */
    126     ACPI_DIV_64_BY_32 (0, DividendOvl.Part.Hi, Divisor,
    127                        Quotient.Part.Hi, Remainder32);
    128     ACPI_DIV_64_BY_32 (Remainder32, DividendOvl.Part.Lo, Divisor,
    129                        Quotient.Part.Lo, Remainder32);
    130 
    131     /* Return only what was requested */
    132 
    133     if (OutQuotient)
    134     {
    135         *OutQuotient = Quotient.Full;
    136     }
    137     if (OutRemainder)
    138     {
    139         *OutRemainder = Remainder32;
    140     }
    141 
    142     return_ACPI_STATUS (AE_OK);
    143 }
    144 
    145 
    146 /*******************************************************************************
    147  *
    148  * FUNCTION:    AcpiUtDivide
    149  *
    150  * PARAMETERS:  InDividend          - Dividend
    151  *              InDivisor           - Divisor
    152  *              OutQuotient         - Pointer to where the quotient is returned
    153  *              OutRemainder        - Pointer to where the remainder is returned
    154  *
    155  * RETURN:      Status (Checks for divide-by-zero)
    156  *
    157  * DESCRIPTION: Perform a divide and modulo.
    158  *
    159  ******************************************************************************/
    160 
    161 ACPI_STATUS
    162 AcpiUtDivide (
    163     UINT64                  InDividend,
    164     UINT64                  InDivisor,
    165     UINT64                  *OutQuotient,
    166     UINT64                  *OutRemainder)
    167 {
    168     UINT64_OVERLAY          Dividend;
    169     UINT64_OVERLAY          Divisor;
    170     UINT64_OVERLAY          Quotient;
    171     UINT64_OVERLAY          Remainder;
    172     UINT64_OVERLAY          NormalizedDividend;
    173     UINT64_OVERLAY          NormalizedDivisor;
    174     UINT32                  Partial1;
    175     UINT64_OVERLAY          Partial2;
    176     UINT64_OVERLAY          Partial3;
    177 
    178 
    179     ACPI_FUNCTION_TRACE (UtDivide);
    180 
    181 
    182     /* Always check for a zero divisor */
    183 
    184     if (InDivisor == 0)
    185     {
    186         ACPI_ERROR ((AE_INFO, "Divide by zero"));
    187         return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
    188     }
    189 
    190     Divisor.Full  = InDivisor;
    191     Dividend.Full = InDividend;
    192     if (Divisor.Part.Hi == 0)
    193     {
    194         /*
    195          * 1) Simplest case is where the divisor is 32 bits, we can
    196          * just do two divides
    197          */
    198         Remainder.Part.Hi = 0;
    199 
    200         /*
    201          * The quotient is 64 bits, the remainder is always 32 bits,
    202          * and is generated by the second divide.
    203          */
    204         ACPI_DIV_64_BY_32 (0, Dividend.Part.Hi, Divisor.Part.Lo,
    205                            Quotient.Part.Hi, Partial1);
    206         ACPI_DIV_64_BY_32 (Partial1, Dividend.Part.Lo, Divisor.Part.Lo,
    207                            Quotient.Part.Lo, Remainder.Part.Lo);
    208     }
    209 
    210     else
    211     {
    212         /*
    213          * 2) The general case where the divisor is a full 64 bits
    214          * is more difficult
    215          */
    216         Quotient.Part.Hi   = 0;
    217         NormalizedDividend = Dividend;
    218         NormalizedDivisor  = Divisor;
    219 
    220         /* Normalize the operands (shift until the divisor is < 32 bits) */
    221 
    222         do
    223         {
    224             ACPI_SHIFT_RIGHT_64 (NormalizedDivisor.Part.Hi,
    225                                  NormalizedDivisor.Part.Lo);
    226             ACPI_SHIFT_RIGHT_64 (NormalizedDividend.Part.Hi,
    227                                  NormalizedDividend.Part.Lo);
    228 
    229         } while (NormalizedDivisor.Part.Hi != 0);
    230 
    231         /* Partial divide */
    232 
    233         ACPI_DIV_64_BY_32 (NormalizedDividend.Part.Hi,
    234                            NormalizedDividend.Part.Lo,
    235                            NormalizedDivisor.Part.Lo,
    236                            Quotient.Part.Lo, Partial1);
    237 
    238         /*
    239          * The quotient is always 32 bits, and simply requires adjustment.
    240          * The 64-bit remainder must be generated.
    241          */
    242         Partial1      = Quotient.Part.Lo * Divisor.Part.Hi;
    243         Partial2.Full = (UINT64) Quotient.Part.Lo * Divisor.Part.Lo;
    244         Partial3.Full = (UINT64) Partial2.Part.Hi + Partial1;
    245 
    246         Remainder.Part.Hi = Partial3.Part.Lo;
    247         Remainder.Part.Lo = Partial2.Part.Lo;
    248 
    249         if (Partial3.Part.Hi == 0)
    250         {
    251             if (Partial3.Part.Lo >= Dividend.Part.Hi)
    252             {
    253                 if (Partial3.Part.Lo == Dividend.Part.Hi)
    254                 {
    255                     if (Partial2.Part.Lo > Dividend.Part.Lo)
    256                     {
    257                         Quotient.Part.Lo--;
    258                         Remainder.Full -= Divisor.Full;
    259                     }
    260                 }
    261                 else
    262                 {
    263                     Quotient.Part.Lo--;
    264                     Remainder.Full -= Divisor.Full;
    265                 }
    266             }
    267 
    268             Remainder.Full    = Remainder.Full - Dividend.Full;
    269             Remainder.Part.Hi = (UINT32) -((INT32) Remainder.Part.Hi);
    270             Remainder.Part.Lo = (UINT32) -((INT32) Remainder.Part.Lo);
    271 
    272             if (Remainder.Part.Lo)
    273             {
    274                 Remainder.Part.Hi--;
    275             }
    276         }
    277     }
    278 
    279     /* Return only what was requested */
    280 
    281     if (OutQuotient)
    282     {
    283         *OutQuotient = Quotient.Full;
    284     }
    285     if (OutRemainder)
    286     {
    287         *OutRemainder = Remainder.Full;
    288     }
    289 
    290     return_ACPI_STATUS (AE_OK);
    291 }
    292 
    293 #else
    294 
    295 /*******************************************************************************
    296  *
    297  * FUNCTION:    AcpiUtShortDivide, AcpiUtDivide
    298  *
    299  * PARAMETERS:  See function headers above
    300  *
    301  * DESCRIPTION: Native versions of the UtDivide functions. Use these if either
    302  *              1) The target is a 64-bit platform and therefore 64-bit
    303  *                 integer math is supported directly by the machine.
    304  *              2) The target is a 32-bit or 16-bit platform, and the
    305  *                 double-precision integer math library is available to
    306  *                 perform the divide.
    307  *
    308  ******************************************************************************/
    309 
    310 ACPI_STATUS
    311 AcpiUtShortDivide (
    312     UINT64                  InDividend,
    313     UINT32                  Divisor,
    314     UINT64                  *OutQuotient,
    315     UINT32                  *OutRemainder)
    316 {
    317 
    318     ACPI_FUNCTION_TRACE (UtShortDivide);
    319 
    320 
    321     /* Always check for a zero divisor */
    322 
    323     if (Divisor == 0)
    324     {
    325         ACPI_ERROR ((AE_INFO, "Divide by zero"));
    326         return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
    327     }
    328 
    329     /* Return only what was requested */
    330 
    331     if (OutQuotient)
    332     {
    333         *OutQuotient = InDividend / Divisor;
    334     }
    335     if (OutRemainder)
    336     {
    337         *OutRemainder = (UINT32) (InDividend % Divisor);
    338     }
    339 
    340     return_ACPI_STATUS (AE_OK);
    341 }
    342 
    343 ACPI_STATUS
    344 AcpiUtDivide (
    345     UINT64                  InDividend,
    346     UINT64                  InDivisor,
    347     UINT64                  *OutQuotient,
    348     UINT64                  *OutRemainder)
    349 {
    350     ACPI_FUNCTION_TRACE (UtDivide);
    351 
    352 
    353     /* Always check for a zero divisor */
    354 
    355     if (InDivisor == 0)
    356     {
    357         ACPI_ERROR ((AE_INFO, "Divide by zero"));
    358         return_ACPI_STATUS (AE_AML_DIVIDE_BY_ZERO);
    359     }
    360 
    361 
    362     /* Return only what was requested */
    363 
    364     if (OutQuotient)
    365     {
    366         *OutQuotient = InDividend / InDivisor;
    367     }
    368     if (OutRemainder)
    369     {
    370         *OutRemainder = InDividend % InDivisor;
    371     }
    372 
    373     return_ACPI_STATUS (AE_OK);
    374 }
    375 
    376 #endif
    377