slab.h revision 1.5 1 1.5 riastrad /* $NetBSD: slab.h,v 1.5 2021/12/19 11:58:02 riastradh Exp $ */
2 1.1 riastrad
3 1.1 riastrad /*-
4 1.1 riastrad * Copyright (c) 2013 The NetBSD Foundation, Inc.
5 1.1 riastrad * All rights reserved.
6 1.1 riastrad *
7 1.1 riastrad * This code is derived from software contributed to The NetBSD Foundation
8 1.1 riastrad * by Taylor R. Campbell.
9 1.1 riastrad *
10 1.1 riastrad * Redistribution and use in source and binary forms, with or without
11 1.1 riastrad * modification, are permitted provided that the following conditions
12 1.1 riastrad * are met:
13 1.1 riastrad * 1. Redistributions of source code must retain the above copyright
14 1.1 riastrad * notice, this list of conditions and the following disclaimer.
15 1.1 riastrad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 riastrad * notice, this list of conditions and the following disclaimer in the
17 1.1 riastrad * documentation and/or other materials provided with the distribution.
18 1.1 riastrad *
19 1.1 riastrad * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 riastrad * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 riastrad * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 riastrad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 riastrad * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 riastrad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 riastrad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 riastrad * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 riastrad * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 riastrad * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 riastrad * POSSIBILITY OF SUCH DAMAGE.
30 1.1 riastrad */
31 1.1 riastrad
32 1.1 riastrad #ifndef _LINUX_SLAB_H_
33 1.1 riastrad #define _LINUX_SLAB_H_
34 1.1 riastrad
35 1.1 riastrad #include <sys/kmem.h>
36 1.1 riastrad #include <sys/malloc.h>
37 1.1 riastrad
38 1.1 riastrad #include <machine/limits.h>
39 1.1 riastrad
40 1.1 riastrad #include <uvm/uvm_extern.h> /* For PAGE_SIZE. */
41 1.1 riastrad
42 1.1 riastrad #include <linux/gfp.h>
43 1.3 riastrad #include <linux/rcupdate.h>
44 1.1 riastrad
45 1.4 riastrad #define ARCH_KMALLOC_MINALIGN 4 /* XXX ??? */
46 1.4 riastrad
47 1.1 riastrad /* XXX Should use kmem, but Linux kfree doesn't take the size. */
48 1.1 riastrad
49 1.1 riastrad static inline int
50 1.1 riastrad linux_gfp_to_malloc(gfp_t gfp)
51 1.1 riastrad {
52 1.1 riastrad int flags = 0;
53 1.1 riastrad
54 1.1 riastrad /* This has no meaning to us. */
55 1.1 riastrad gfp &= ~__GFP_NOWARN;
56 1.1 riastrad gfp &= ~__GFP_RECLAIMABLE;
57 1.1 riastrad
58 1.1 riastrad /* Pretend this was the same as not passing __GFP_WAIT. */
59 1.1 riastrad if (ISSET(gfp, __GFP_NORETRY)) {
60 1.1 riastrad gfp &= ~__GFP_NORETRY;
61 1.1 riastrad gfp &= ~__GFP_WAIT;
62 1.1 riastrad }
63 1.1 riastrad
64 1.1 riastrad if (ISSET(gfp, __GFP_ZERO)) {
65 1.1 riastrad flags |= M_ZERO;
66 1.1 riastrad gfp &= ~__GFP_ZERO;
67 1.1 riastrad }
68 1.1 riastrad
69 1.1 riastrad /*
70 1.1 riastrad * XXX Handle other cases as they arise -- prefer to fail early
71 1.1 riastrad * rather than allocate memory without respecting parameters we
72 1.1 riastrad * don't understand.
73 1.1 riastrad */
74 1.1 riastrad KASSERT((gfp == GFP_ATOMIC) ||
75 1.1 riastrad ((gfp & ~__GFP_WAIT) == (GFP_KERNEL & ~__GFP_WAIT)));
76 1.1 riastrad
77 1.1 riastrad if (ISSET(gfp, __GFP_WAIT)) {
78 1.1 riastrad flags |= M_WAITOK;
79 1.1 riastrad gfp &= ~__GFP_WAIT;
80 1.1 riastrad } else {
81 1.1 riastrad flags |= M_NOWAIT;
82 1.1 riastrad }
83 1.1 riastrad
84 1.1 riastrad return flags;
85 1.1 riastrad }
86 1.1 riastrad
87 1.1 riastrad /*
88 1.1 riastrad * XXX vmalloc and kmalloc both use malloc(9). If you change this, be
89 1.1 riastrad * sure to update vmalloc in <linux/vmalloc.h> and kvfree in
90 1.1 riastrad * <linux/mm.h>.
91 1.1 riastrad */
92 1.1 riastrad
93 1.1 riastrad static inline void *
94 1.1 riastrad kmalloc(size_t size, gfp_t gfp)
95 1.1 riastrad {
96 1.1 riastrad return malloc(size, M_TEMP, linux_gfp_to_malloc(gfp));
97 1.1 riastrad }
98 1.1 riastrad
99 1.1 riastrad static inline void *
100 1.1 riastrad kzalloc(size_t size, gfp_t gfp)
101 1.1 riastrad {
102 1.1 riastrad return malloc(size, M_TEMP, (linux_gfp_to_malloc(gfp) | M_ZERO));
103 1.1 riastrad }
104 1.1 riastrad
105 1.1 riastrad static inline void *
106 1.1 riastrad kmalloc_array(size_t n, size_t size, gfp_t gfp)
107 1.1 riastrad {
108 1.1 riastrad if ((size != 0) && (n > (SIZE_MAX / size)))
109 1.1 riastrad return NULL;
110 1.1 riastrad return malloc((n * size), M_TEMP, linux_gfp_to_malloc(gfp));
111 1.1 riastrad }
112 1.1 riastrad
113 1.1 riastrad static inline void *
114 1.1 riastrad kcalloc(size_t n, size_t size, gfp_t gfp)
115 1.1 riastrad {
116 1.1 riastrad return kmalloc_array(n, size, (gfp | __GFP_ZERO));
117 1.1 riastrad }
118 1.1 riastrad
119 1.1 riastrad static inline void *
120 1.1 riastrad krealloc(void *ptr, size_t size, gfp_t gfp)
121 1.1 riastrad {
122 1.1 riastrad return realloc(ptr, size, M_TEMP, linux_gfp_to_malloc(gfp));
123 1.1 riastrad }
124 1.1 riastrad
125 1.1 riastrad static inline void
126 1.1 riastrad kfree(void *ptr)
127 1.1 riastrad {
128 1.1 riastrad if (ptr != NULL)
129 1.1 riastrad free(ptr, M_TEMP);
130 1.1 riastrad }
131 1.1 riastrad
132 1.3 riastrad #define SLAB_HWCACHE_ALIGN __BIT(0)
133 1.3 riastrad #define SLAB_RECLAIM_ACCOUNT __BIT(1)
134 1.3 riastrad #define SLAB_TYPESAFE_BY_RCU __BIT(2)
135 1.1 riastrad
136 1.1 riastrad struct kmem_cache {
137 1.1 riastrad pool_cache_t kc_pool_cache;
138 1.1 riastrad size_t kc_size;
139 1.1 riastrad void (*kc_ctor)(void *);
140 1.1 riastrad };
141 1.1 riastrad
142 1.3 riastrad /* XXX These should be in <sys/pool.h>. */
143 1.3 riastrad void * pool_page_alloc(struct pool *, int);
144 1.3 riastrad void pool_page_free(struct pool *, void *);
145 1.3 riastrad
146 1.3 riastrad static void
147 1.3 riastrad pool_page_free_rcu(struct pool *pp, void *v)
148 1.3 riastrad {
149 1.3 riastrad
150 1.3 riastrad synchronize_rcu();
151 1.3 riastrad pool_page_free(pp, v);
152 1.3 riastrad }
153 1.3 riastrad
154 1.3 riastrad static struct pool_allocator pool_allocator_kmem_rcu = {
155 1.3 riastrad .pa_alloc = pool_page_alloc,
156 1.3 riastrad .pa_free = pool_page_free_rcu,
157 1.3 riastrad .pa_pagesz = 0,
158 1.3 riastrad };
159 1.3 riastrad
160 1.1 riastrad static int
161 1.1 riastrad kmem_cache_ctor(void *cookie, void *ptr, int flags __unused)
162 1.1 riastrad {
163 1.1 riastrad struct kmem_cache *const kc = cookie;
164 1.1 riastrad
165 1.1 riastrad if (kc->kc_ctor)
166 1.1 riastrad (*kc->kc_ctor)(ptr);
167 1.1 riastrad
168 1.1 riastrad return 0;
169 1.1 riastrad }
170 1.1 riastrad
171 1.1 riastrad static inline struct kmem_cache *
172 1.1 riastrad kmem_cache_create(const char *name, size_t size, size_t align,
173 1.1 riastrad unsigned long flags, void (*ctor)(void *))
174 1.1 riastrad {
175 1.3 riastrad struct pool_allocator *palloc = NULL;
176 1.1 riastrad struct kmem_cache *kc;
177 1.1 riastrad
178 1.1 riastrad if (ISSET(flags, SLAB_HWCACHE_ALIGN))
179 1.1 riastrad align = roundup(MAX(1, align), CACHE_LINE_SIZE);
180 1.3 riastrad if (ISSET(flags, SLAB_TYPESAFE_BY_RCU))
181 1.3 riastrad palloc = &pool_allocator_kmem_rcu;
182 1.1 riastrad
183 1.1 riastrad kc = kmem_alloc(sizeof(*kc), KM_SLEEP);
184 1.3 riastrad kc->kc_pool_cache = pool_cache_init(size, align, 0, 0, name, palloc,
185 1.1 riastrad IPL_NONE, &kmem_cache_ctor, NULL, kc);
186 1.1 riastrad kc->kc_size = size;
187 1.1 riastrad kc->kc_ctor = ctor;
188 1.1 riastrad
189 1.1 riastrad return kc;
190 1.1 riastrad }
191 1.1 riastrad
192 1.3 riastrad #define KMEM_CACHE(T, F) \
193 1.3 riastrad kmem_cache_create(#T, sizeof(struct T), __alignof__(struct T), \
194 1.3 riastrad (F), NULL)
195 1.3 riastrad
196 1.1 riastrad static inline void
197 1.1 riastrad kmem_cache_destroy(struct kmem_cache *kc)
198 1.1 riastrad {
199 1.1 riastrad
200 1.1 riastrad pool_cache_destroy(kc->kc_pool_cache);
201 1.1 riastrad kmem_free(kc, sizeof(*kc));
202 1.1 riastrad }
203 1.1 riastrad
204 1.1 riastrad static inline void *
205 1.1 riastrad kmem_cache_alloc(struct kmem_cache *kc, gfp_t gfp)
206 1.1 riastrad {
207 1.1 riastrad int flags = 0;
208 1.1 riastrad void *ptr;
209 1.1 riastrad
210 1.1 riastrad if (gfp & __GFP_WAIT)
211 1.5 riastrad flags |= PR_WAITOK;
212 1.5 riastrad else
213 1.1 riastrad flags |= PR_NOWAIT;
214 1.1 riastrad
215 1.1 riastrad ptr = pool_cache_get(kc->kc_pool_cache, flags);
216 1.1 riastrad if (ptr == NULL)
217 1.1 riastrad return NULL;
218 1.1 riastrad
219 1.1 riastrad if (ISSET(gfp, __GFP_ZERO))
220 1.1 riastrad (void)memset(ptr, 0, kc->kc_size);
221 1.1 riastrad
222 1.1 riastrad return ptr;
223 1.1 riastrad }
224 1.1 riastrad
225 1.1 riastrad static inline void *
226 1.1 riastrad kmem_cache_zalloc(struct kmem_cache *kc, gfp_t gfp)
227 1.1 riastrad {
228 1.1 riastrad
229 1.1 riastrad return kmem_cache_alloc(kc, (gfp | __GFP_ZERO));
230 1.1 riastrad }
231 1.1 riastrad
232 1.1 riastrad static inline void
233 1.1 riastrad kmem_cache_free(struct kmem_cache *kc, void *ptr)
234 1.1 riastrad {
235 1.1 riastrad
236 1.1 riastrad pool_cache_put(kc->kc_pool_cache, ptr);
237 1.1 riastrad }
238 1.1 riastrad
239 1.2 riastrad static inline void
240 1.2 riastrad kmem_cache_shrink(struct kmem_cache *kc)
241 1.2 riastrad {
242 1.2 riastrad
243 1.2 riastrad pool_cache_reclaim(kc->kc_pool_cache);
244 1.2 riastrad }
245 1.2 riastrad
246 1.1 riastrad #endif /* _LINUX_SLAB_H_ */
247