linux_work.c revision 1.1.26.1 1 /* $NetBSD: linux_work.c,v 1.1.26.1 2019/06/10 22:07:45 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: linux_work.c,v 1.1.26.1 2019/06/10 22:07:45 christos Exp $");
34
35 #include <sys/types.h>
36 #include <sys/atomic.h>
37 #include <sys/callout.h>
38 #include <sys/condvar.h>
39 #include <sys/errno.h>
40 #include <sys/kmem.h>
41 #include <sys/kthread.h>
42 #include <sys/lwp.h>
43 #include <sys/mutex.h>
44 #ifndef _MODULE
45 #include <sys/once.h>
46 #endif
47 #include <sys/queue.h>
48 #include <sys/sdt.h>
49
50 #include <linux/workqueue.h>
51
52 TAILQ_HEAD(work_head, work_struct);
53 TAILQ_HEAD(dwork_head, delayed_work);
54
55 struct workqueue_struct {
56 kmutex_t wq_lock;
57 kcondvar_t wq_cv;
58 struct dwork_head wq_delayed; /* delayed work scheduled */
59 struct work_head wq_queue; /* work to run */
60 struct work_head wq_dqueue; /* delayed work to run now */
61 struct work_struct *wq_current_work;
62 int wq_flags;
63 bool wq_dying;
64 uint64_t wq_gen;
65 struct lwp *wq_lwp;
66 };
67
68 static void __dead linux_workqueue_thread(void *);
69 static void linux_workqueue_timeout(void *);
70 static bool work_claimed(struct work_struct *,
71 struct workqueue_struct *);
72 static struct workqueue_struct *
73 work_queue(struct work_struct *);
74 static bool acquire_work(struct work_struct *,
75 struct workqueue_struct *);
76 static void release_work(struct work_struct *,
77 struct workqueue_struct *);
78 static void wait_for_current_work(struct work_struct *,
79 struct workqueue_struct *);
80 static void dw_callout_init(struct workqueue_struct *,
81 struct delayed_work *);
82 static void dw_callout_destroy(struct workqueue_struct *,
83 struct delayed_work *);
84 static void cancel_delayed_work_done(struct workqueue_struct *,
85 struct delayed_work *);
86
87 SDT_PROBE_DEFINE2(sdt, linux, work, acquire,
88 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
89 SDT_PROBE_DEFINE2(sdt, linux, work, release,
90 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
91 SDT_PROBE_DEFINE2(sdt, linux, work, queue,
92 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
93 SDT_PROBE_DEFINE2(sdt, linux, work, cancel,
94 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
95 SDT_PROBE_DEFINE3(sdt, linux, work, schedule,
96 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/,
97 "unsigned long"/*ticks*/);
98 SDT_PROBE_DEFINE2(sdt, linux, work, timer,
99 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/);
100 SDT_PROBE_DEFINE2(sdt, linux, work, wait__start,
101 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/);
102 SDT_PROBE_DEFINE2(sdt, linux, work, wait__done,
103 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/);
104 SDT_PROBE_DEFINE2(sdt, linux, work, run,
105 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
106 SDT_PROBE_DEFINE2(sdt, linux, work, done,
107 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
108 SDT_PROBE_DEFINE1(sdt, linux, work, batch__start,
109 "struct workqueue_struct *"/*wq*/);
110 SDT_PROBE_DEFINE1(sdt, linux, work, batch__done,
111 "struct workqueue_struct *"/*wq*/);
112 SDT_PROBE_DEFINE1(sdt, linux, work, flush__start,
113 "struct workqueue_struct *"/*wq*/);
114 SDT_PROBE_DEFINE1(sdt, linux, work, flush__done,
115 "struct workqueue_struct *"/*wq*/);
116
117 static specificdata_key_t workqueue_key __read_mostly;
118
119 struct workqueue_struct *system_wq __read_mostly;
120 struct workqueue_struct *system_long_wq __read_mostly;
121 struct workqueue_struct *system_power_efficient_wq __read_mostly;
122
123 static inline uintptr_t
124 atomic_cas_uintptr(volatile uintptr_t *p, uintptr_t old, uintptr_t new)
125 {
126
127 return (uintptr_t)atomic_cas_ptr(p, (void *)old, (void *)new);
128 }
129
130 /*
131 * linux_workqueue_init()
132 *
133 * Initialize the Linux workqueue subsystem. Return 0 on success,
134 * NetBSD error on failure.
135 */
136 static int
137 linux_workqueue_init0(void)
138 {
139 int error;
140
141 error = lwp_specific_key_create(&workqueue_key, NULL);
142 if (error)
143 goto fail0;
144
145 system_wq = alloc_ordered_workqueue("lnxsyswq", 0);
146 if (system_wq == NULL) {
147 error = ENOMEM;
148 goto fail1;
149 }
150
151 system_long_wq = alloc_ordered_workqueue("lnxlngwq", 0);
152 if (system_long_wq == NULL) {
153 error = ENOMEM;
154 goto fail2;
155 }
156
157 system_power_efficient_wq = alloc_ordered_workqueue("lnxpwrwq", 0);
158 if (system_long_wq == NULL) {
159 error = ENOMEM;
160 goto fail3;
161 }
162
163 return 0;
164
165 fail4: __unused
166 destroy_workqueue(system_power_efficient_wq);
167 fail3: destroy_workqueue(system_long_wq);
168 fail2: destroy_workqueue(system_wq);
169 fail1: lwp_specific_key_delete(workqueue_key);
170 fail0: KASSERT(error);
171 return error;
172 }
173
174 /*
175 * linux_workqueue_fini()
176 *
177 * Destroy the Linux workqueue subsystem. Never fails.
178 */
179 static void
180 linux_workqueue_fini0(void)
181 {
182
183 destroy_workqueue(system_power_efficient_wq);
184 destroy_workqueue(system_long_wq);
185 destroy_workqueue(system_wq);
186 lwp_specific_key_delete(workqueue_key);
187 }
188
189 #ifndef _MODULE
190 static ONCE_DECL(linux_workqueue_init_once);
191 #endif
192
193 int
194 linux_workqueue_init(void)
195 {
196 #ifdef _MODULE
197 return linux_workqueue_init0();
198 #else
199 return INIT_ONCE(&linux_workqueue_init_once, &linux_workqueue_init0);
200 #endif
201 }
202
203 void
204 linux_workqueue_fini(void)
205 {
206 #ifdef _MODULE
207 return linux_workqueue_fini0();
208 #else
209 return FINI_ONCE(&linux_workqueue_init_once, &linux_workqueue_fini0);
210 #endif
211 }
212
213 /*
215 * Workqueues
216 */
217
218 /*
219 * alloc_ordered_workqueue(name, flags)
220 *
221 * Create a workqueue of the given name. No flags are currently
222 * defined. Return NULL on failure, pointer to struct
223 * workqueue_struct object on success.
224 */
225 struct workqueue_struct *
226 alloc_ordered_workqueue(const char *name, int flags)
227 {
228 struct workqueue_struct *wq;
229 int error;
230
231 KASSERT(flags == 0);
232
233 wq = kmem_zalloc(sizeof(*wq), KM_SLEEP);
234
235 mutex_init(&wq->wq_lock, MUTEX_DEFAULT, IPL_VM);
236 cv_init(&wq->wq_cv, name);
237 TAILQ_INIT(&wq->wq_delayed);
238 TAILQ_INIT(&wq->wq_queue);
239 TAILQ_INIT(&wq->wq_dqueue);
240 wq->wq_current_work = NULL;
241 wq->wq_flags = 0;
242 wq->wq_dying = false;
243 wq->wq_gen = 0;
244 wq->wq_lwp = NULL;
245
246 error = kthread_create(PRI_NONE,
247 KTHREAD_MPSAFE|KTHREAD_TS|KTHREAD_MUSTJOIN, NULL,
248 &linux_workqueue_thread, wq, &wq->wq_lwp, "%s", name);
249 if (error)
250 goto fail0;
251
252 return wq;
253
254 fail0: KASSERT(TAILQ_EMPTY(&wq->wq_dqueue));
255 KASSERT(TAILQ_EMPTY(&wq->wq_queue));
256 KASSERT(TAILQ_EMPTY(&wq->wq_delayed));
257 cv_destroy(&wq->wq_cv);
258 mutex_destroy(&wq->wq_lock);
259 kmem_free(wq, sizeof(*wq));
260 return NULL;
261 }
262
263 /*
264 * destroy_workqueue(wq)
265 *
266 * Destroy a workqueue created with wq. Cancel any pending
267 * delayed work. Wait for all queued work to complete.
268 *
269 * May sleep.
270 */
271 void
272 destroy_workqueue(struct workqueue_struct *wq)
273 {
274
275 /*
276 * Cancel all delayed work. We do this first because any
277 * delayed work that that has already timed out, which we can't
278 * cancel, may have queued new work.
279 */
280 mutex_enter(&wq->wq_lock);
281 while (!TAILQ_EMPTY(&wq->wq_delayed)) {
282 struct delayed_work *const dw = TAILQ_FIRST(&wq->wq_delayed);
283
284 KASSERT(work_queue(&dw->work) == wq);
285 KASSERTMSG((dw->dw_state == DELAYED_WORK_SCHEDULED ||
286 dw->dw_state == DELAYED_WORK_RESCHEDULED ||
287 dw->dw_state == DELAYED_WORK_CANCELLED),
288 "delayed work %p in bad state: %d",
289 dw, dw->dw_state);
290
291 /*
292 * Mark it cancelled and try to stop the callout before
293 * it starts.
294 *
295 * If it's too late and the callout has already begun
296 * to execute, then it will notice that we asked to
297 * cancel it and remove itself from the queue before
298 * returning.
299 *
300 * If we stopped the callout before it started,
301 * however, then we can safely destroy the callout and
302 * dissociate it from the workqueue ourselves.
303 */
304 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
305 dw->dw_state = DELAYED_WORK_CANCELLED;
306 if (!callout_halt(&dw->dw_callout, &wq->wq_lock))
307 cancel_delayed_work_done(wq, dw);
308 }
309 mutex_exit(&wq->wq_lock);
310
311 /*
312 * At this point, no new work can be put on the queue.
313 */
314
315 /* Tell the thread to exit. */
316 mutex_enter(&wq->wq_lock);
317 wq->wq_dying = true;
318 cv_broadcast(&wq->wq_cv);
319 mutex_exit(&wq->wq_lock);
320
321 /* Wait for it to exit. */
322 (void)kthread_join(wq->wq_lwp);
323
324 KASSERT(wq->wq_dying);
325 KASSERT(wq->wq_flags == 0);
326 KASSERT(wq->wq_current_work == NULL);
327 KASSERT(TAILQ_EMPTY(&wq->wq_dqueue));
328 KASSERT(TAILQ_EMPTY(&wq->wq_queue));
329 KASSERT(TAILQ_EMPTY(&wq->wq_delayed));
330 cv_destroy(&wq->wq_cv);
331 mutex_destroy(&wq->wq_lock);
332
333 kmem_free(wq, sizeof(*wq));
334 }
335
336 /*
338 * Work thread and callout
339 */
340
341 /*
342 * linux_workqueue_thread(cookie)
343 *
344 * Main function for a workqueue's worker thread. Waits until
345 * there is work queued, grabs a batch of work off the queue,
346 * executes it all, bumps the generation number, and repeats,
347 * until dying.
348 */
349 static void __dead
350 linux_workqueue_thread(void *cookie)
351 {
352 struct workqueue_struct *const wq = cookie;
353 struct work_head queue, dqueue;
354 struct work_head *const q[2] = { &queue, &dqueue };
355 unsigned i;
356
357 lwp_setspecific(workqueue_key, wq);
358
359 mutex_enter(&wq->wq_lock);
360 for (;;) {
361 /*
362 * Wait until there's activity. If there's no work and
363 * we're dying, stop here.
364 */
365 if (TAILQ_EMPTY(&wq->wq_queue) &&
366 TAILQ_EMPTY(&wq->wq_dqueue)) {
367 if (wq->wq_dying)
368 break;
369 cv_wait(&wq->wq_cv, &wq->wq_lock);
370 continue;
371 }
372
373 /* Grab a batch of work off the queue. */
374 SDT_PROBE1(sdt, linux, work, batch__start, wq);
375 TAILQ_INIT(&queue);
376 TAILQ_INIT(&dqueue);
377 TAILQ_CONCAT(&queue, &wq->wq_queue, work_entry);
378 TAILQ_CONCAT(&dqueue, &wq->wq_dqueue, work_entry);
379
380 /* Process each work item in the batch. */
381 for (i = 0; i < 2; i++) {
382 while (!TAILQ_EMPTY(q[i])) {
383 struct work_struct *work = TAILQ_FIRST(q[i]);
384 void (*func)(struct work_struct *);
385
386 KASSERT(work_queue(work) == wq);
387 KASSERT(work_claimed(work, wq));
388 KASSERTMSG((q[i] != &dqueue ||
389 container_of(work, struct delayed_work,
390 work)->dw_state ==
391 DELAYED_WORK_IDLE),
392 "delayed work %p queued and scheduled",
393 work);
394
395 TAILQ_REMOVE(q[i], work, work_entry);
396 KASSERT(wq->wq_current_work == NULL);
397 wq->wq_current_work = work;
398 func = work->func;
399 release_work(work, wq);
400 /* Can't dereference work after this point. */
401
402 mutex_exit(&wq->wq_lock);
403 SDT_PROBE2(sdt, linux, work, run, work, wq);
404 (*func)(work);
405 SDT_PROBE2(sdt, linux, work, done, work, wq);
406 mutex_enter(&wq->wq_lock);
407
408 KASSERT(wq->wq_current_work == work);
409 wq->wq_current_work = NULL;
410 cv_broadcast(&wq->wq_cv);
411 }
412 }
413
414 /* Notify flush that we've completed a batch of work. */
415 wq->wq_gen++;
416 cv_broadcast(&wq->wq_cv);
417 SDT_PROBE1(sdt, linux, work, batch__done, wq);
418 }
419 mutex_exit(&wq->wq_lock);
420
421 kthread_exit(0);
422 }
423
424 /*
425 * linux_workqueue_timeout(cookie)
426 *
427 * Delayed work timeout callback.
428 *
429 * - If scheduled, queue it.
430 * - If rescheduled, callout_schedule ourselves again.
431 * - If cancelled, destroy the callout and release the work from
432 * the workqueue.
433 */
434 static void
435 linux_workqueue_timeout(void *cookie)
436 {
437 struct delayed_work *const dw = cookie;
438 struct workqueue_struct *const wq = work_queue(&dw->work);
439
440 KASSERTMSG(wq != NULL,
441 "delayed work %p state %d resched %d",
442 dw, dw->dw_state, dw->dw_resched);
443
444 SDT_PROBE2(sdt, linux, work, timer, dw, wq);
445
446 mutex_enter(&wq->wq_lock);
447 KASSERT(work_queue(&dw->work) == wq);
448 switch (dw->dw_state) {
449 case DELAYED_WORK_IDLE:
450 panic("delayed work callout uninitialized: %p", dw);
451 case DELAYED_WORK_SCHEDULED:
452 dw_callout_destroy(wq, dw);
453 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work, work_entry);
454 cv_broadcast(&wq->wq_cv);
455 SDT_PROBE2(sdt, linux, work, queue, &dw->work, wq);
456 break;
457 case DELAYED_WORK_RESCHEDULED:
458 KASSERT(dw->dw_resched >= 0);
459 callout_schedule(&dw->dw_callout, dw->dw_resched);
460 dw->dw_state = DELAYED_WORK_SCHEDULED;
461 dw->dw_resched = -1;
462 break;
463 case DELAYED_WORK_CANCELLED:
464 cancel_delayed_work_done(wq, dw);
465 /* Can't dereference dw after this point. */
466 goto out;
467 default:
468 panic("delayed work callout in bad state: %p", dw);
469 }
470 KASSERT(dw->dw_state == DELAYED_WORK_IDLE ||
471 dw->dw_state == DELAYED_WORK_SCHEDULED);
472 out: mutex_exit(&wq->wq_lock);
473 }
474
475 /*
476 * current_work()
477 *
478 * If in a workqueue worker thread, return the work it is
479 * currently executing. Otherwise return NULL.
480 */
481 struct work_struct *
482 current_work(void)
483 {
484 struct workqueue_struct *wq = lwp_getspecific(workqueue_key);
485
486 /* If we're not a workqueue thread, then there's no work. */
487 if (wq == NULL)
488 return NULL;
489
490 /*
491 * Otherwise, this should be possible only while work is in
492 * progress. Return the current work item.
493 */
494 KASSERT(wq->wq_current_work != NULL);
495 return wq->wq_current_work;
496 }
497
498 /*
500 * Work
501 */
502
503 /*
504 * INIT_WORK(work, fn)
505 *
506 * Initialize work for use with a workqueue to call fn in a worker
507 * thread. There is no corresponding destruction operation.
508 */
509 void
510 INIT_WORK(struct work_struct *work, void (*fn)(struct work_struct *))
511 {
512
513 work->work_owner = 0;
514 work->func = fn;
515 }
516
517 /*
518 * work_claimed(work, wq)
519 *
520 * True if work is currently claimed by a workqueue, meaning it is
521 * either on the queue or scheduled in a callout. The workqueue
522 * must be wq, and caller must hold wq's lock.
523 */
524 static bool
525 work_claimed(struct work_struct *work, struct workqueue_struct *wq)
526 {
527
528 KASSERT(work_queue(work) == wq);
529 KASSERT(mutex_owned(&wq->wq_lock));
530
531 return work->work_owner & 1;
532 }
533
534 /*
535 * work_queue(work)
536 *
537 * Return the last queue that work was queued on, or NULL if it
538 * was never queued.
539 */
540 static struct workqueue_struct *
541 work_queue(struct work_struct *work)
542 {
543
544 return (struct workqueue_struct *)(work->work_owner & ~(uintptr_t)1);
545 }
546
547 /*
548 * acquire_work(work, wq)
549 *
550 * Try to claim work for wq. If work is already claimed, it must
551 * be claimed by wq; return false. If work is not already
552 * claimed, claim it, issue a memory barrier to match any prior
553 * release_work, and return true.
554 *
555 * Caller must hold wq's lock.
556 */
557 static bool
558 acquire_work(struct work_struct *work, struct workqueue_struct *wq)
559 {
560 uintptr_t owner0, owner;
561
562 KASSERT(mutex_owned(&wq->wq_lock));
563 KASSERT(((uintptr_t)wq & 1) == 0);
564
565 owner = (uintptr_t)wq | 1;
566 do {
567 owner0 = work->work_owner;
568 if (owner0 & 1) {
569 KASSERT((owner0 & ~(uintptr_t)1) == (uintptr_t)wq);
570 return false;
571 }
572 KASSERT(owner0 == (uintptr_t)NULL || owner0 == (uintptr_t)wq);
573 } while (atomic_cas_uintptr(&work->work_owner, owner0, owner) !=
574 owner0);
575
576 KASSERT(work_queue(work) == wq);
577 membar_enter();
578 SDT_PROBE2(sdt, linux, work, acquire, work, wq);
579 return true;
580 }
581
582 /*
583 * release_work(work, wq)
584 *
585 * Issue a memory barrier to match any subsequent acquire_work and
586 * dissociate work from wq.
587 *
588 * Caller must hold wq's lock and work must be associated with wq.
589 */
590 static void
591 release_work(struct work_struct *work, struct workqueue_struct *wq)
592 {
593
594 KASSERT(work_queue(work) == wq);
595 KASSERT(mutex_owned(&wq->wq_lock));
596
597 SDT_PROBE2(sdt, linux, work, release, work, wq);
598 membar_exit();
599
600 /*
601 * Non-interlocked r/m/w is safe here because nobody else can
602 * write to this while the claimed bit is setand the workqueue
603 * lock is held.
604 */
605 work->work_owner &= ~(uintptr_t)1;
606 }
607
608 /*
609 * schedule_work(work)
610 *
611 * If work is not already queued on system_wq, queue it to be run
612 * by system_wq's worker thread when it next can. True if it was
613 * newly queued, false if it was already queued. If the work was
614 * already running, queue it to run again.
615 *
616 * Caller must ensure work is not queued to run on a different
617 * workqueue.
618 */
619 bool
620 schedule_work(struct work_struct *work)
621 {
622
623 return queue_work(system_wq, work);
624 }
625
626 /*
627 * queue_work(wq, work)
628 *
629 * If work is not already queued on wq, queue it to be run by wq's
630 * worker thread when it next can. True if it was newly queued,
631 * false if it was already queued. If the work was already
632 * running, queue it to run again.
633 *
634 * Caller must ensure work is not queued to run on a different
635 * workqueue.
636 */
637 bool
638 queue_work(struct workqueue_struct *wq, struct work_struct *work)
639 {
640 bool newly_queued;
641
642 KASSERT(wq != NULL);
643
644 mutex_enter(&wq->wq_lock);
645 if (__predict_true(acquire_work(work, wq))) {
646 /*
647 * It wasn't on any workqueue at all. Put it on this
648 * one, and signal the worker thread that there is work
649 * to do.
650 */
651 TAILQ_INSERT_TAIL(&wq->wq_queue, work, work_entry);
652 cv_broadcast(&wq->wq_cv);
653 SDT_PROBE2(sdt, linux, work, queue, work, wq);
654 newly_queued = true;
655 } else {
656 /*
657 * It was already on this workqueue. Nothing to do
658 * since it is already queued.
659 */
660 newly_queued = false;
661 }
662 mutex_exit(&wq->wq_lock);
663
664 return newly_queued;
665 }
666
667 /*
668 * cancel_work(work)
669 *
670 * If work was queued, remove it from the queue and return true.
671 * If work was not queued, return false. Work may still be
672 * running when this returns.
673 */
674 bool
675 cancel_work(struct work_struct *work)
676 {
677 struct workqueue_struct *wq;
678 bool cancelled_p = false;
679
680 /* If there's no workqueue, nothing to cancel. */
681 if ((wq = work_queue(work)) == NULL)
682 goto out;
683
684 mutex_enter(&wq->wq_lock);
685 if (__predict_false(work_queue(work) != wq)) {
686 /*
687 * It has finished execution or been cancelled by
688 * another thread, and has been moved off the
689 * workqueue, so it's too to cancel.
690 */
691 cancelled_p = false;
692 } else {
693 /* Check whether it's on the queue. */
694 if (work_claimed(work, wq)) {
695 /*
696 * It is still on the queue. Take it off the
697 * queue and report successful cancellation.
698 */
699 TAILQ_REMOVE(&wq->wq_queue, work, work_entry);
700 SDT_PROBE2(sdt, linux, work, cancel, work, wq);
701 release_work(work, wq);
702 /* Can't dereference work after this point. */
703 cancelled_p = true;
704 } else {
705 /* Not on the queue. Couldn't cancel it. */
706 cancelled_p = false;
707 }
708 }
709 mutex_exit(&wq->wq_lock);
710
711 out: return cancelled_p;
712 }
713
714 /*
715 * cancel_work_sync(work)
716 *
717 * If work was queued, remove it from the queue and return true.
718 * If work was not queued, return false. Either way, if work is
719 * currently running, wait for it to complete.
720 *
721 * May sleep.
722 */
723 bool
724 cancel_work_sync(struct work_struct *work)
725 {
726 struct workqueue_struct *wq;
727 bool cancelled_p = false;
728
729 /* If there's no workqueue, nothing to cancel. */
730 if ((wq = work_queue(work)) == NULL)
731 goto out;
732
733 mutex_enter(&wq->wq_lock);
734 if (__predict_false(work_queue(work) != wq)) {
735 /*
736 * It has finished execution or been cancelled by
737 * another thread, and has been moved off the
738 * workqueue, so it's too late to cancel.
739 */
740 cancelled_p = false;
741 } else {
742 /* Check whether it's on the queue. */
743 if (work_claimed(work, wq)) {
744 /*
745 * It is still on the queue. Take it off the
746 * queue and report successful cancellation.
747 */
748 TAILQ_REMOVE(&wq->wq_queue, work, work_entry);
749 SDT_PROBE2(sdt, linux, work, cancel, work, wq);
750 release_work(work, wq);
751 /* Can't dereference work after this point. */
752 cancelled_p = true;
753 } else {
754 /* Not on the queue. Couldn't cancel it. */
755 cancelled_p = false;
756 }
757 /* If it's still running, wait for it to complete. */
758 if (wq->wq_current_work == work)
759 wait_for_current_work(work, wq);
760 }
761 mutex_exit(&wq->wq_lock);
762
763 out: return cancelled_p;
764 }
765
766 /*
767 * wait_for_current_work(work, wq)
768 *
769 * wq must be currently executing work. Wait for it to finish.
770 *
771 * Does not dereference work.
772 */
773 static void
774 wait_for_current_work(struct work_struct *work, struct workqueue_struct *wq)
775 {
776 uint64_t gen;
777
778 KASSERT(mutex_owned(&wq->wq_lock));
779 KASSERT(wq->wq_current_work == work);
780
781 /* Wait only one generation in case it gets requeued quickly. */
782 SDT_PROBE2(sdt, linux, work, wait__start, work, wq);
783 gen = wq->wq_gen;
784 do {
785 cv_wait(&wq->wq_cv, &wq->wq_lock);
786 } while (wq->wq_current_work == work && wq->wq_gen == gen);
787 SDT_PROBE2(sdt, linux, work, wait__done, work, wq);
788 }
789
790 /*
792 * Delayed work
793 */
794
795 /*
796 * INIT_DELAYED_WORK(dw, fn)
797 *
798 * Initialize dw for use with a workqueue to call fn in a worker
799 * thread after a delay. There is no corresponding destruction
800 * operation.
801 */
802 void
803 INIT_DELAYED_WORK(struct delayed_work *dw, void (*fn)(struct work_struct *))
804 {
805
806 INIT_WORK(&dw->work, fn);
807 dw->dw_state = DELAYED_WORK_IDLE;
808 dw->dw_resched = -1;
809
810 /*
811 * Defer callout_init until we are going to schedule the
812 * callout, which can then callout_destroy it, because
813 * otherwise since there's no DESTROY_DELAYED_WORK or anything
814 * we have no opportunity to call callout_destroy.
815 */
816 }
817
818 /*
819 * schedule_delayed_work(dw, ticks)
820 *
821 * If it is not currently scheduled, schedule dw to run after
822 * ticks on system_wq. If currently executing and not already
823 * rescheduled, reschedule it. True if it was newly scheduled,
824 * false if it was already scheduled.
825 *
826 * If ticks == 0, queue it to run as soon as the worker can,
827 * without waiting for the next callout tick to run.
828 */
829 bool
830 schedule_delayed_work(struct delayed_work *dw, unsigned long ticks)
831 {
832
833 return queue_delayed_work(system_wq, dw, ticks);
834 }
835
836 /*
837 * dw_callout_init(wq, dw)
838 *
839 * Initialize the callout of dw and transition to
840 * DELAYED_WORK_SCHEDULED. Caller must use callout_schedule.
841 */
842 static void
843 dw_callout_init(struct workqueue_struct *wq, struct delayed_work *dw)
844 {
845
846 KASSERT(mutex_owned(&wq->wq_lock));
847 KASSERT(work_queue(&dw->work) == wq);
848 KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
849
850 callout_init(&dw->dw_callout, CALLOUT_MPSAFE);
851 callout_setfunc(&dw->dw_callout, &linux_workqueue_timeout, dw);
852 TAILQ_INSERT_HEAD(&wq->wq_delayed, dw, dw_entry);
853 dw->dw_state = DELAYED_WORK_SCHEDULED;
854 }
855
856 /*
857 * dw_callout_destroy(wq, dw)
858 *
859 * Destroy the callout of dw and transition to DELAYED_WORK_IDLE.
860 */
861 static void
862 dw_callout_destroy(struct workqueue_struct *wq, struct delayed_work *dw)
863 {
864
865 KASSERT(mutex_owned(&wq->wq_lock));
866 KASSERT(work_queue(&dw->work) == wq);
867 KASSERT(dw->dw_state == DELAYED_WORK_SCHEDULED ||
868 dw->dw_state == DELAYED_WORK_RESCHEDULED ||
869 dw->dw_state == DELAYED_WORK_CANCELLED);
870
871 TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
872 callout_destroy(&dw->dw_callout);
873 dw->dw_resched = -1;
874 dw->dw_state = DELAYED_WORK_IDLE;
875 }
876
877 /*
878 * cancel_delayed_work_done(wq, dw)
879 *
880 * Complete cancellation of a delayed work: transition from
881 * DELAYED_WORK_CANCELLED to DELAYED_WORK_IDLE and off the
882 * workqueue. Caller must not dereference dw after this returns.
883 */
884 static void
885 cancel_delayed_work_done(struct workqueue_struct *wq, struct delayed_work *dw)
886 {
887
888 KASSERT(mutex_owned(&wq->wq_lock));
889 KASSERT(work_queue(&dw->work) == wq);
890 KASSERT(dw->dw_state == DELAYED_WORK_CANCELLED);
891
892 dw_callout_destroy(wq, dw);
893 release_work(&dw->work, wq);
894 /* Can't dereference dw after this point. */
895 }
896
897 /*
898 * queue_delayed_work(wq, dw, ticks)
899 *
900 * If it is not currently scheduled, schedule dw to run after
901 * ticks on wq. If currently queued, remove it from the queue
902 * first.
903 *
904 * If ticks == 0, queue it to run as soon as the worker can,
905 * without waiting for the next callout tick to run.
906 */
907 bool
908 queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
909 unsigned long ticks)
910 {
911 bool newly_queued;
912
913 mutex_enter(&wq->wq_lock);
914 if (__predict_true(acquire_work(&dw->work, wq))) {
915 /*
916 * It wasn't on any workqueue at all. Schedule it to
917 * run on this one.
918 */
919 KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
920 if (ticks == 0) {
921 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work,
922 work_entry);
923 cv_broadcast(&wq->wq_cv);
924 SDT_PROBE2(sdt, linux, work, queue, &dw->work, wq);
925 } else {
926 /*
927 * Initialize a callout and schedule to run
928 * after a delay.
929 */
930 dw_callout_init(wq, dw);
931 callout_schedule(&dw->dw_callout, MIN(INT_MAX, ticks));
932 SDT_PROBE3(sdt, linux, work, schedule, dw, wq, ticks);
933 }
934 newly_queued = true;
935 } else {
936 /* It was already on this workqueue. */
937 switch (dw->dw_state) {
938 case DELAYED_WORK_IDLE:
939 case DELAYED_WORK_SCHEDULED:
940 case DELAYED_WORK_RESCHEDULED:
941 /* On the queue or already scheduled. Leave it. */
942 newly_queued = false;
943 break;
944 case DELAYED_WORK_CANCELLED:
945 /*
946 * Scheduled and the callout began, but it was
947 * cancelled. Reschedule it.
948 */
949 if (ticks == 0) {
950 dw->dw_state = DELAYED_WORK_SCHEDULED;
951 SDT_PROBE2(sdt, linux, work, queue,
952 &dw->work, wq);
953 } else {
954 dw->dw_state = DELAYED_WORK_RESCHEDULED;
955 dw->dw_resched = MIN(INT_MAX, ticks);
956 SDT_PROBE3(sdt, linux, work, schedule,
957 dw, wq, ticks);
958 }
959 newly_queued = true;
960 break;
961 default:
962 panic("invalid delayed work state: %d",
963 dw->dw_state);
964 }
965 }
966 mutex_exit(&wq->wq_lock);
967
968 return newly_queued;
969 }
970
971 /*
972 * mod_delayed_work(wq, dw, ticks)
973 *
974 * Schedule dw to run after ticks. If scheduled or queued,
975 * reschedule. If ticks == 0, run without delay.
976 *
977 * True if it modified the timer of an already scheduled work,
978 * false if it newly scheduled the work.
979 */
980 bool
981 mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
982 unsigned long ticks)
983 {
984 bool timer_modified;
985
986 mutex_enter(&wq->wq_lock);
987 if (acquire_work(&dw->work, wq)) {
988 /*
989 * It wasn't on any workqueue at all. Schedule it to
990 * run on this one.
991 */
992 KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
993 if (ticks == 0) {
994 /*
995 * Run immediately: put it on the queue and
996 * signal the worker thread.
997 */
998 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work,
999 work_entry);
1000 cv_broadcast(&wq->wq_cv);
1001 SDT_PROBE2(sdt, linux, work, queue, &dw->work, wq);
1002 } else {
1003 /*
1004 * Initialize a callout and schedule to run
1005 * after a delay.
1006 */
1007 dw_callout_init(wq, dw);
1008 callout_schedule(&dw->dw_callout, MIN(INT_MAX, ticks));
1009 SDT_PROBE3(sdt, linux, work, schedule, dw, wq, ticks);
1010 }
1011 timer_modified = false;
1012 } else {
1013 /* It was already on this workqueue. */
1014 switch (dw->dw_state) {
1015 case DELAYED_WORK_IDLE:
1016 /* On the queue. */
1017 if (ticks == 0) {
1018 /* Leave it be. */
1019 SDT_PROBE2(sdt, linux, work, cancel,
1020 &dw->work, wq);
1021 SDT_PROBE2(sdt, linux, work, queue,
1022 &dw->work, wq);
1023 } else {
1024 /* Remove from the queue and schedule. */
1025 TAILQ_REMOVE(&wq->wq_dqueue, &dw->work,
1026 work_entry);
1027 dw_callout_init(wq, dw);
1028 callout_schedule(&dw->dw_callout,
1029 MIN(INT_MAX, ticks));
1030 SDT_PROBE2(sdt, linux, work, cancel,
1031 &dw->work, wq);
1032 SDT_PROBE3(sdt, linux, work, schedule,
1033 dw, wq, ticks);
1034 }
1035 timer_modified = true;
1036 break;
1037 case DELAYED_WORK_SCHEDULED:
1038 /*
1039 * It is scheduled to run after a delay. Try
1040 * to stop it and reschedule it; if we can't,
1041 * either reschedule it or cancel it to put it
1042 * on the queue, and inform the callout.
1043 */
1044 if (callout_stop(&dw->dw_callout)) {
1045 /* Can't stop, callout has begun. */
1046 if (ticks == 0) {
1047 /*
1048 * We don't actually need to do
1049 * anything. The callout will
1050 * queue it as soon as it gets
1051 * the lock.
1052 */
1053 SDT_PROBE2(sdt, linux, work, cancel,
1054 &dw->work, wq);
1055 SDT_PROBE2(sdt, linux, work, queue,
1056 &dw->work, wq);
1057 } else {
1058 /* Ask the callout to reschedule. */
1059 dw->dw_state = DELAYED_WORK_RESCHEDULED;
1060 dw->dw_resched = MIN(INT_MAX, ticks);
1061 SDT_PROBE2(sdt, linux, work, cancel,
1062 &dw->work, wq);
1063 SDT_PROBE3(sdt, linux, work, schedule,
1064 dw, wq, ticks);
1065 }
1066 } else {
1067 /* We stopped the callout before it began. */
1068 if (ticks == 0) {
1069 /*
1070 * Run immediately: destroy the
1071 * callout, put it on the
1072 * queue, and signal the worker
1073 * thread.
1074 */
1075 dw_callout_destroy(wq, dw);
1076 TAILQ_INSERT_TAIL(&wq->wq_dqueue,
1077 &dw->work, work_entry);
1078 cv_broadcast(&wq->wq_cv);
1079 SDT_PROBE2(sdt, linux, work, cancel,
1080 &dw->work, wq);
1081 SDT_PROBE2(sdt, linux, work, queue,
1082 &dw->work, wq);
1083 } else {
1084 /*
1085 * Reschedule the callout. No
1086 * state change.
1087 */
1088 callout_schedule(&dw->dw_callout,
1089 MIN(INT_MAX, ticks));
1090 SDT_PROBE2(sdt, linux, work, cancel,
1091 &dw->work, wq);
1092 SDT_PROBE3(sdt, linux, work, schedule,
1093 dw, wq, ticks);
1094 }
1095 }
1096 timer_modified = true;
1097 break;
1098 case DELAYED_WORK_RESCHEDULED:
1099 /*
1100 * Someone rescheduled it after the callout
1101 * started but before the poor thing even had a
1102 * chance to acquire the lock.
1103 */
1104 if (ticks == 0) {
1105 /*
1106 * We can just switch back to
1107 * DELAYED_WORK_SCHEDULED so that the
1108 * callout will queue the work as soon
1109 * as it gets the lock.
1110 */
1111 dw->dw_state = DELAYED_WORK_SCHEDULED;
1112 dw->dw_resched = -1;
1113 SDT_PROBE2(sdt, linux, work, cancel,
1114 &dw->work, wq);
1115 SDT_PROBE2(sdt, linux, work, queue,
1116 &dw->work, wq);
1117 } else {
1118 /* Change the rescheduled time. */
1119 dw->dw_resched = ticks;
1120 SDT_PROBE2(sdt, linux, work, cancel,
1121 &dw->work, wq);
1122 SDT_PROBE3(sdt, linux, work, schedule,
1123 dw, wq, ticks);
1124 }
1125 timer_modified = true;
1126 break;
1127 case DELAYED_WORK_CANCELLED:
1128 /*
1129 * Someone cancelled it after the callout
1130 * started but before the poor thing even had a
1131 * chance to acquire the lock.
1132 */
1133 if (ticks == 0) {
1134 /*
1135 * We can just switch back to
1136 * DELAYED_WORK_SCHEDULED so that the
1137 * callout will queue the work as soon
1138 * as it gets the lock.
1139 */
1140 dw->dw_state = DELAYED_WORK_SCHEDULED;
1141 SDT_PROBE2(sdt, linux, work, queue,
1142 &dw->work, wq);
1143 } else {
1144 /* Ask it to reschedule. */
1145 dw->dw_state = DELAYED_WORK_RESCHEDULED;
1146 dw->dw_resched = MIN(INT_MAX, ticks);
1147 SDT_PROBE3(sdt, linux, work, schedule,
1148 dw, wq, ticks);
1149 }
1150 timer_modified = false;
1151 break;
1152 default:
1153 panic("invalid delayed work state: %d", dw->dw_state);
1154 }
1155 }
1156 mutex_exit(&wq->wq_lock);
1157
1158 return timer_modified;
1159 }
1160
1161 /*
1162 * cancel_delayed_work(dw)
1163 *
1164 * If work was scheduled or queued, remove it from the schedule or
1165 * queue and return true. If work was not scheduled or queued,
1166 * return false. Note that work may already be running; if it
1167 * hasn't been rescheduled or requeued, then cancel_delayed_work
1168 * will return false, and either way, cancel_delayed_work will NOT
1169 * wait for the work to complete.
1170 */
1171 bool
1172 cancel_delayed_work(struct delayed_work *dw)
1173 {
1174 struct workqueue_struct *wq;
1175 bool cancelled_p;
1176
1177 /* If there's no workqueue, nothing to cancel. */
1178 if ((wq = work_queue(&dw->work)) == NULL)
1179 return false;
1180
1181 mutex_enter(&wq->wq_lock);
1182 if (__predict_false(work_queue(&dw->work) != wq)) {
1183 cancelled_p = false;
1184 } else {
1185 switch (dw->dw_state) {
1186 case DELAYED_WORK_IDLE:
1187 /*
1188 * It is either on the queue or already running
1189 * or both.
1190 */
1191 if (work_claimed(&dw->work, wq)) {
1192 /* On the queue. Remove and release. */
1193 TAILQ_REMOVE(&wq->wq_dqueue, &dw->work,
1194 work_entry);
1195 SDT_PROBE2(sdt, linux, work, cancel,
1196 &dw->work, wq);
1197 release_work(&dw->work, wq);
1198 /* Can't dereference dw after this point. */
1199 cancelled_p = true;
1200 } else {
1201 /* Not on the queue, so didn't cancel. */
1202 cancelled_p = false;
1203 }
1204 break;
1205 case DELAYED_WORK_SCHEDULED:
1206 /*
1207 * If it is scheduled, mark it cancelled and
1208 * try to stop the callout before it starts.
1209 *
1210 * If it's too late and the callout has already
1211 * begun to execute, tough.
1212 *
1213 * If we stopped the callout before it started,
1214 * however, then destroy the callout and
1215 * dissociate it from the workqueue ourselves.
1216 */
1217 dw->dw_state = DELAYED_WORK_CANCELLED;
1218 cancelled_p = true;
1219 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1220 if (!callout_stop(&dw->dw_callout))
1221 cancel_delayed_work_done(wq, dw);
1222 break;
1223 case DELAYED_WORK_RESCHEDULED:
1224 /*
1225 * If it is being rescheduled, the callout has
1226 * already fired. We must ask it to cancel.
1227 */
1228 dw->dw_state = DELAYED_WORK_CANCELLED;
1229 dw->dw_resched = -1;
1230 cancelled_p = true;
1231 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1232 break;
1233 case DELAYED_WORK_CANCELLED:
1234 /*
1235 * If it is being cancelled, the callout has
1236 * already fired. There is nothing more for us
1237 * to do. Someone else claims credit for
1238 * cancelling it.
1239 */
1240 cancelled_p = false;
1241 break;
1242 default:
1243 panic("invalid delayed work state: %d",
1244 dw->dw_state);
1245 }
1246 }
1247 mutex_exit(&wq->wq_lock);
1248
1249 return cancelled_p;
1250 }
1251
1252 /*
1253 * cancel_delayed_work_sync(dw)
1254 *
1255 * If work was scheduled or queued, remove it from the schedule or
1256 * queue and return true. If work was not scheduled or queued,
1257 * return false. Note that work may already be running; if it
1258 * hasn't been rescheduled or requeued, then cancel_delayed_work
1259 * will return false; either way, wait for it to complete.
1260 */
1261 bool
1262 cancel_delayed_work_sync(struct delayed_work *dw)
1263 {
1264 struct workqueue_struct *wq;
1265 bool cancelled_p;
1266
1267 /* If there's no workqueue, nothing to cancel. */
1268 if ((wq = work_queue(&dw->work)) == NULL)
1269 return false;
1270
1271 mutex_enter(&wq->wq_lock);
1272 if (__predict_false(work_queue(&dw->work) != wq)) {
1273 cancelled_p = false;
1274 } else {
1275 switch (dw->dw_state) {
1276 case DELAYED_WORK_IDLE:
1277 /*
1278 * It is either on the queue or already running
1279 * or both.
1280 */
1281 if (work_claimed(&dw->work, wq)) {
1282 /* On the queue. Remove and release. */
1283 TAILQ_REMOVE(&wq->wq_dqueue, &dw->work,
1284 work_entry);
1285 SDT_PROBE2(sdt, linux, work, cancel,
1286 &dw->work, wq);
1287 release_work(&dw->work, wq);
1288 /* Can't dereference dw after this point. */
1289 cancelled_p = true;
1290 } else {
1291 /* Not on the queue, so didn't cancel. */
1292 cancelled_p = false;
1293 }
1294 /* If it's still running, wait for it to complete. */
1295 if (wq->wq_current_work == &dw->work)
1296 wait_for_current_work(&dw->work, wq);
1297 break;
1298 case DELAYED_WORK_SCHEDULED:
1299 /*
1300 * If it is scheduled, mark it cancelled and
1301 * try to stop the callout before it starts.
1302 *
1303 * If it's too late and the callout has already
1304 * begun to execute, we must wait for it to
1305 * complete. But we got in soon enough to ask
1306 * the callout not to run, so we successfully
1307 * cancelled it in that case.
1308 *
1309 * If we stopped the callout before it started,
1310 * then we must destroy the callout and
1311 * dissociate it from the workqueue ourselves.
1312 */
1313 dw->dw_state = DELAYED_WORK_CANCELLED;
1314 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1315 if (!callout_halt(&dw->dw_callout, &wq->wq_lock))
1316 cancel_delayed_work_done(wq, dw);
1317 cancelled_p = true;
1318 break;
1319 case DELAYED_WORK_RESCHEDULED:
1320 /*
1321 * If it is being rescheduled, the callout has
1322 * already fired. We must ask it to cancel and
1323 * wait for it to complete.
1324 */
1325 dw->dw_state = DELAYED_WORK_CANCELLED;
1326 dw->dw_resched = -1;
1327 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1328 (void)callout_halt(&dw->dw_callout, &wq->wq_lock);
1329 cancelled_p = true;
1330 break;
1331 case DELAYED_WORK_CANCELLED:
1332 /*
1333 * If it is being cancelled, the callout has
1334 * already fired. We need only wait for it to
1335 * complete. Someone else, however, claims
1336 * credit for cancelling it.
1337 */
1338 (void)callout_halt(&dw->dw_callout, &wq->wq_lock);
1339 cancelled_p = false;
1340 break;
1341 default:
1342 panic("invalid delayed work state: %d",
1343 dw->dw_state);
1344 }
1345 }
1346 mutex_exit(&wq->wq_lock);
1347
1348 return cancelled_p;
1349 }
1350
1351 /*
1353 * Flush
1354 */
1355
1356 /*
1357 * flush_scheduled_work()
1358 *
1359 * Wait for all work queued on system_wq to complete. This does
1360 * not include delayed work.
1361 */
1362 void
1363 flush_scheduled_work(void)
1364 {
1365
1366 flush_workqueue(system_wq);
1367 }
1368
1369 /*
1370 * flush_workqueue_locked(wq)
1371 *
1372 * Wait for all work queued on wq to complete. This does not
1373 * include delayed work.
1374 *
1375 * Caller must hold wq's lock.
1376 */
1377 static void
1378 flush_workqueue_locked(struct workqueue_struct *wq)
1379 {
1380 uint64_t gen;
1381
1382 KASSERT(mutex_owned(&wq->wq_lock));
1383
1384 /* Get the current generation number. */
1385 gen = wq->wq_gen;
1386
1387 /*
1388 * If there's a batch of work in progress, we must wait for the
1389 * worker thread to finish that batch.
1390 */
1391 if (wq->wq_current_work != NULL)
1392 gen++;
1393
1394 /*
1395 * If there's any work yet to be claimed from the queue by the
1396 * worker thread, we must wait for it to finish one more batch
1397 * too.
1398 */
1399 if (!TAILQ_EMPTY(&wq->wq_queue) || !TAILQ_EMPTY(&wq->wq_dqueue))
1400 gen++;
1401
1402 /* Wait until the generation number has caught up. */
1403 SDT_PROBE1(sdt, linux, work, flush__start, wq);
1404 while (wq->wq_gen < gen)
1405 cv_wait(&wq->wq_cv, &wq->wq_lock);
1406 SDT_PROBE1(sdt, linux, work, flush__done, wq);
1407 }
1408
1409 /*
1410 * flush_workqueue(wq)
1411 *
1412 * Wait for all work queued on wq to complete. This does not
1413 * include delayed work.
1414 */
1415 void
1416 flush_workqueue(struct workqueue_struct *wq)
1417 {
1418
1419 mutex_enter(&wq->wq_lock);
1420 flush_workqueue_locked(wq);
1421 mutex_exit(&wq->wq_lock);
1422 }
1423
1424 /*
1425 * flush_work(work)
1426 *
1427 * If work is queued or currently executing, wait for it to
1428 * complete.
1429 */
1430 void
1431 flush_work(struct work_struct *work)
1432 {
1433 struct workqueue_struct *wq;
1434
1435 /* If there's no workqueue, nothing to flush. */
1436 if ((wq = work_queue(work)) == NULL)
1437 return;
1438
1439 flush_workqueue(wq);
1440 }
1441
1442 /*
1443 * flush_delayed_work(dw)
1444 *
1445 * If dw is scheduled to run after a delay, queue it immediately
1446 * instead. Then, if dw is queued or currently executing, wait
1447 * for it to complete.
1448 */
1449 void
1450 flush_delayed_work(struct delayed_work *dw)
1451 {
1452 struct workqueue_struct *wq;
1453
1454 /* If there's no workqueue, nothing to flush. */
1455 if ((wq = work_queue(&dw->work)) == NULL)
1456 return;
1457
1458 mutex_enter(&wq->wq_lock);
1459 if (__predict_false(work_queue(&dw->work) != wq)) {
1460 /*
1461 * Moved off the queue already (and possibly to another
1462 * queue, though that would be ill-advised), so it must
1463 * have completed, and we have nothing more to do.
1464 */
1465 } else {
1466 switch (dw->dw_state) {
1467 case DELAYED_WORK_IDLE:
1468 /*
1469 * It has a workqueue assigned and the callout
1470 * is idle, so it must be in progress or on the
1471 * queue. In that case, we'll wait for it to
1472 * complete.
1473 */
1474 break;
1475 case DELAYED_WORK_SCHEDULED:
1476 case DELAYED_WORK_RESCHEDULED:
1477 case DELAYED_WORK_CANCELLED:
1478 /*
1479 * The callout is scheduled, and may have even
1480 * started. Mark it as scheduled so that if
1481 * the callout has fired it will queue the work
1482 * itself. Try to stop the callout -- if we
1483 * can, queue the work now; if we can't, wait
1484 * for the callout to complete, which entails
1485 * queueing it.
1486 */
1487 dw->dw_state = DELAYED_WORK_SCHEDULED;
1488 if (!callout_halt(&dw->dw_callout, &wq->wq_lock)) {
1489 /*
1490 * We stopped it before it ran. No
1491 * state change in the interim is
1492 * possible. Destroy the callout and
1493 * queue it ourselves.
1494 */
1495 KASSERT(dw->dw_state ==
1496 DELAYED_WORK_SCHEDULED);
1497 dw_callout_destroy(wq, dw);
1498 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work,
1499 work_entry);
1500 cv_broadcast(&wq->wq_cv);
1501 SDT_PROBE2(sdt, linux, work, queue,
1502 &dw->work, wq);
1503 }
1504 break;
1505 default:
1506 panic("invalid delayed work state: %d", dw->dw_state);
1507 }
1508 /*
1509 * Waiting for the whole queue to flush is overkill,
1510 * but doesn't hurt.
1511 */
1512 flush_workqueue_locked(wq);
1513 }
1514 mutex_exit(&wq->wq_lock);
1515 }
1516