linux_work.c revision 1.2 1 /* $NetBSD: linux_work.c,v 1.2 2018/08/27 06:55:23 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2013 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: linux_work.c,v 1.2 2018/08/27 06:55:23 riastradh Exp $");
34
35 #include <sys/types.h>
36 #include <sys/param.h>
37 #include <sys/atomic.h>
38 #include <sys/callout.h>
39 #include <sys/condvar.h>
40 #include <sys/errno.h>
41 #include <sys/intr.h>
42 #include <sys/kmem.h>
43 #include <sys/mutex.h>
44 #include <sys/queue.h>
45 #include <sys/systm.h>
46 #include <sys/workqueue.h>
47 #include <sys/cpu.h>
48
49 #include <machine/lock.h>
50
51 #include <linux/workqueue.h>
52
53 /* XXX Kludge until we sync with HEAD. */
54 #if DIAGNOSTIC
55 #define __diagused
56 #else
57 #define __diagused __unused
58 #endif
59
60 struct workqueue_struct {
61 struct workqueue *wq_workqueue;
62
63 /* XXX The following should all be per-CPU. */
64 kmutex_t wq_lock;
65
66 /*
67 * Condvar for when any state related to this workqueue
68 * changes. XXX Could split this into multiple condvars for
69 * different purposes, but whatever...
70 */
71 kcondvar_t wq_cv;
72
73 TAILQ_HEAD(, delayed_work) wq_delayed;
74 struct work_struct *wq_current_work;
75 };
76
77 static void linux_work_lock_init(struct work_struct *);
78 static void linux_work_lock(struct work_struct *);
79 static void linux_work_unlock(struct work_struct *);
80 static bool linux_work_locked(struct work_struct *) __diagused;
81
82 static void linux_wq_barrier(struct work_struct *);
83
84 static void linux_wait_for_cancelled_work(struct work_struct *);
85 static void linux_wait_for_invoked_work(struct work_struct *);
86 static void linux_worker(struct work *, void *);
87
88 static void linux_cancel_delayed_work_callout(struct delayed_work *, bool);
89 static void linux_wait_for_delayed_cancelled_work(struct delayed_work *);
90 static void linux_worker_intr(void *);
91
92 struct workqueue_struct *system_wq;
93 struct workqueue_struct *system_long_wq;
94
95 int
96 linux_workqueue_init(void)
97 {
98 int error;
99
100 system_wq = alloc_ordered_workqueue("lnxsyswq", 0);
101 if (system_wq == NULL)
102 goto fail0;
103
104 system_long_wq = alloc_ordered_workqueue("lnxlngwq", 0);
105 if (system_long_wq == NULL)
106 goto fail1;
107
108 return 0;
109
110 fail2: __unused
111 destroy_workqueue(system_long_wq);
112 fail1: destroy_workqueue(system_wq);
113 fail0: return ENOMEM;
114 }
115
116 void
117 linux_workqueue_fini(void)
118 {
119
120 destroy_workqueue(system_long_wq);
121 system_long_wq = NULL;
122 destroy_workqueue(system_wq);
123 system_wq = NULL;
124 }
125
126 /*
128 * Workqueues
129 */
130
131 struct workqueue_struct *
132 alloc_ordered_workqueue(const char *name, int linux_flags)
133 {
134 struct workqueue_struct *wq;
135 int flags = WQ_MPSAFE;
136 int error;
137
138 KASSERT(linux_flags == 0);
139
140 wq = kmem_alloc(sizeof(*wq), KM_SLEEP);
141 error = workqueue_create(&wq->wq_workqueue, name, &linux_worker,
142 wq, PRI_NONE, IPL_VM, flags);
143 if (error) {
144 kmem_free(wq, sizeof(*wq));
145 return NULL;
146 }
147
148 mutex_init(&wq->wq_lock, MUTEX_DEFAULT, IPL_VM);
149 cv_init(&wq->wq_cv, name);
150 TAILQ_INIT(&wq->wq_delayed);
151 wq->wq_current_work = NULL;
152
153 return wq;
154 }
155
156 void
157 destroy_workqueue(struct workqueue_struct *wq)
158 {
159
160 /*
161 * Cancel all delayed work.
162 */
163 for (;;) {
164 struct delayed_work *dw;
165
166 mutex_enter(&wq->wq_lock);
167 if (TAILQ_EMPTY(&wq->wq_delayed)) {
168 dw = NULL;
169 } else {
170 dw = TAILQ_FIRST(&wq->wq_delayed);
171 TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
172 }
173 mutex_exit(&wq->wq_lock);
174
175 if (dw == NULL)
176 break;
177
178 cancel_delayed_work_sync(dw);
179 }
180
181 /*
182 * workqueue_destroy empties the queue; we need not wait for
183 * completion explicitly. However, we can't destroy the
184 * condvar or mutex until this is done.
185 */
186 workqueue_destroy(wq->wq_workqueue);
187 KASSERT(wq->wq_current_work == NULL);
188 wq->wq_workqueue = NULL;
189
190 cv_destroy(&wq->wq_cv);
191 mutex_destroy(&wq->wq_lock);
192
193 kmem_free(wq, sizeof(*wq));
194 }
195
196 /*
198 * Flush
199 *
200 * Note: This doesn't cancel or wait for delayed work. This seems to
201 * match what Linux does (or, doesn't do).
202 */
203
204 void
205 flush_scheduled_work(void)
206 {
207 flush_workqueue(system_wq);
208 }
209
210 struct wq_flush_work {
211 struct work_struct wqfw_work;
212 struct wq_flush *wqfw_flush;
213 };
214
215 struct wq_flush {
216 kmutex_t wqf_lock;
217 kcondvar_t wqf_cv;
218 unsigned int wqf_n;
219 };
220
221 void
222 flush_work(struct work_struct *work)
223 {
224 struct workqueue_struct *const wq = work->w_wq;
225
226 if (wq != NULL)
227 flush_workqueue(wq);
228 }
229
230 void
231 flush_workqueue(struct workqueue_struct *wq)
232 {
233 static const struct wq_flush zero_wqf;
234 struct wq_flush wqf = zero_wqf;
235
236 mutex_init(&wqf.wqf_lock, MUTEX_DEFAULT, IPL_NONE);
237 cv_init(&wqf.wqf_cv, "lnxwflsh");
238
239 if (1) {
240 struct wq_flush_work *const wqfw = kmem_zalloc(sizeof(*wqfw),
241 KM_SLEEP);
242
243 wqf.wqf_n = 1;
244 wqfw->wqfw_flush = &wqf;
245 INIT_WORK(&wqfw->wqfw_work, &linux_wq_barrier);
246 wqfw->wqfw_work.w_wq = wq;
247 wqfw->wqfw_work.w_state = WORK_PENDING;
248 workqueue_enqueue(wq->wq_workqueue, &wqfw->wqfw_work.w_wk,
249 NULL);
250 } else {
251 struct cpu_info *ci;
252 CPU_INFO_ITERATOR cii;
253 struct wq_flush_work *wqfw;
254
255 panic("per-CPU Linux workqueues don't work yet!");
256
257 wqf.wqf_n = 0;
258 for (CPU_INFO_FOREACH(cii, ci)) {
259 wqfw = kmem_zalloc(sizeof(*wqfw), KM_SLEEP);
260 mutex_enter(&wqf.wqf_lock);
261 wqf.wqf_n++;
262 mutex_exit(&wqf.wqf_lock);
263 wqfw->wqfw_flush = &wqf;
264 INIT_WORK(&wqfw->wqfw_work, &linux_wq_barrier);
265 wqfw->wqfw_work.w_state = WORK_PENDING;
266 wqfw->wqfw_work.w_wq = wq;
267 workqueue_enqueue(wq->wq_workqueue,
268 &wqfw->wqfw_work.w_wk, ci);
269 }
270 }
271
272 mutex_enter(&wqf.wqf_lock);
273 while (0 < wqf.wqf_n)
274 cv_wait(&wqf.wqf_cv, &wqf.wqf_lock);
275 mutex_exit(&wqf.wqf_lock);
276
277 cv_destroy(&wqf.wqf_cv);
278 mutex_destroy(&wqf.wqf_lock);
279 }
280
281 static void
282 linux_wq_barrier(struct work_struct *work)
283 {
284 struct wq_flush_work *const wqfw = container_of(work,
285 struct wq_flush_work, wqfw_work);
286 struct wq_flush *const wqf = wqfw->wqfw_flush;
287
288 mutex_enter(&wqf->wqf_lock);
289 if (--wqf->wqf_n == 0)
290 cv_broadcast(&wqf->wqf_cv);
291 mutex_exit(&wqf->wqf_lock);
292
293 kmem_free(wqfw, sizeof(*wqfw));
294 }
295
296 /*
298 * Work locking
299 *
300 * We use __cpu_simple_lock(9) rather than mutex(9) because Linux code
301 * does not destroy work, so there is nowhere to call mutex_destroy.
302 *
303 * XXX This is getting out of hand... Really, work items shouldn't
304 * have locks in them at all; instead the workqueues should.
305 */
306
307 static void
308 linux_work_lock_init(struct work_struct *work)
309 {
310
311 __cpu_simple_lock_init(&work->w_lock);
312 }
313
314 static void
315 linux_work_lock(struct work_struct *work)
316 {
317 struct cpu_info *ci;
318 int cnt, s;
319
320 /* XXX Copypasta of MUTEX_SPIN_SPLRAISE. */
321 s = splvm();
322 ci = curcpu();
323 cnt = ci->ci_mtx_count--;
324 __insn_barrier();
325 if (cnt == 0)
326 ci->ci_mtx_oldspl = s;
327
328 __cpu_simple_lock(&work->w_lock);
329 }
330
331 static void
332 linux_work_unlock(struct work_struct *work)
333 {
334 struct cpu_info *ci;
335 int s;
336
337 __cpu_simple_unlock(&work->w_lock);
338
339 /* XXX Copypasta of MUTEX_SPIN_SPLRESTORE. */
340 ci = curcpu();
341 s = ci->ci_mtx_oldspl;
342 __insn_barrier();
343 if (++ci->ci_mtx_count == 0)
344 splx(s);
345 }
346
347 static bool __diagused
348 linux_work_locked(struct work_struct *work)
349 {
350 return __SIMPLELOCK_LOCKED_P(&work->w_lock);
351 }
352
353 /*
355 * Work
356 */
357
358 void
359 INIT_WORK(struct work_struct *work, void (*fn)(struct work_struct *))
360 {
361
362 linux_work_lock_init(work);
363 work->w_state = WORK_IDLE;
364 work->w_wq = NULL;
365 work->w_fn = fn;
366 }
367
368 bool
369 schedule_work(struct work_struct *work)
370 {
371 return queue_work(system_wq, work);
372 }
373
374 bool
375 queue_work(struct workqueue_struct *wq, struct work_struct *work)
376 {
377 /* True if we put it on the queue, false if it was already there. */
378 bool newly_queued;
379
380 KASSERT(wq != NULL);
381
382 linux_work_lock(work);
383 switch (work->w_state) {
384 case WORK_IDLE:
385 case WORK_INVOKED:
386 work->w_state = WORK_PENDING;
387 work->w_wq = wq;
388 workqueue_enqueue(wq->wq_workqueue, &work->w_wk, NULL);
389 newly_queued = true;
390 break;
391
392 case WORK_DELAYED:
393 panic("queue_work(delayed work %p)", work);
394 break;
395
396 case WORK_PENDING:
397 KASSERT(work->w_wq == wq);
398 newly_queued = false;
399 break;
400
401 case WORK_CANCELLED:
402 newly_queued = false;
403 break;
404
405 case WORK_DELAYED_CANCELLED:
406 panic("queue_work(delayed work %p)", work);
407 break;
408
409 default:
410 panic("work %p in bad state: %d", work, (int)work->w_state);
411 break;
412 }
413 linux_work_unlock(work);
414
415 return newly_queued;
416 }
417
418 bool
419 cancel_work_sync(struct work_struct *work)
420 {
421 bool cancelled_p = false;
422
423 linux_work_lock(work);
424 switch (work->w_state) {
425 case WORK_IDLE: /* Nothing to do. */
426 break;
427
428 case WORK_DELAYED:
429 panic("cancel_work_sync(delayed work %p)", work);
430 break;
431
432 case WORK_PENDING:
433 work->w_state = WORK_CANCELLED;
434 linux_wait_for_cancelled_work(work);
435 cancelled_p = true;
436 break;
437
438 case WORK_INVOKED:
439 linux_wait_for_invoked_work(work);
440 break;
441
442 case WORK_CANCELLED: /* Already done. */
443 break;
444
445 case WORK_DELAYED_CANCELLED:
446 panic("cancel_work_sync(delayed work %p)", work);
447 break;
448
449 default:
450 panic("work %p in bad state: %d", work, (int)work->w_state);
451 break;
452 }
453 linux_work_unlock(work);
454
455 return cancelled_p;
456 }
457
458 static void
459 linux_wait_for_cancelled_work(struct work_struct *work)
460 {
461 struct workqueue_struct *wq;
462
463 KASSERT(linux_work_locked(work));
464 KASSERT(work->w_state == WORK_CANCELLED);
465
466 wq = work->w_wq;
467 do {
468 mutex_enter(&wq->wq_lock);
469 linux_work_unlock(work);
470 cv_wait(&wq->wq_cv, &wq->wq_lock);
471 mutex_exit(&wq->wq_lock);
472 linux_work_lock(work);
473 } while ((work->w_state == WORK_CANCELLED) && (work->w_wq == wq));
474 }
475
476 static void
477 linux_wait_for_invoked_work(struct work_struct *work)
478 {
479 struct workqueue_struct *wq;
480
481 KASSERT(linux_work_locked(work));
482 KASSERT(work->w_state == WORK_INVOKED);
483
484 wq = work->w_wq;
485 mutex_enter(&wq->wq_lock);
486 linux_work_unlock(work);
487 while (wq->wq_current_work == work)
488 cv_wait(&wq->wq_cv, &wq->wq_lock);
489 mutex_exit(&wq->wq_lock);
490
491 linux_work_lock(work); /* XXX needless relock */
492 }
493
494 static void
495 linux_worker(struct work *wk, void *arg)
496 {
497 struct work_struct *const work = container_of(wk, struct work_struct,
498 w_wk);
499 struct workqueue_struct *const wq = arg;
500
501 linux_work_lock(work);
502 switch (work->w_state) {
503 case WORK_IDLE:
504 panic("idle work %p got queued: %p", work, wq);
505 break;
506
507 case WORK_DELAYED:
508 panic("delayed work %p got queued: %p", work, wq);
509 break;
510
511 case WORK_PENDING:
512 KASSERT(work->w_wq == wq);
513
514 /* Get ready to invoke this one. */
515 mutex_enter(&wq->wq_lock);
516 work->w_state = WORK_INVOKED;
517 KASSERT(wq->wq_current_work == NULL);
518 wq->wq_current_work = work;
519 mutex_exit(&wq->wq_lock);
520
521 /* Unlock it and do it. Can't use work after this. */
522 linux_work_unlock(work);
523 (*work->w_fn)(work);
524
525 /* All done. Notify anyone waiting for completion. */
526 mutex_enter(&wq->wq_lock);
527 KASSERT(wq->wq_current_work == work);
528 wq->wq_current_work = NULL;
529 cv_broadcast(&wq->wq_cv);
530 mutex_exit(&wq->wq_lock);
531 return;
532
533 case WORK_INVOKED:
534 panic("invoked work %p got requeued: %p", work, wq);
535 break;
536
537 case WORK_CANCELLED:
538 KASSERT(work->w_wq == wq);
539
540 /* Return to idle; notify anyone waiting for cancellation. */
541 mutex_enter(&wq->wq_lock);
542 work->w_state = WORK_IDLE;
543 work->w_wq = NULL;
544 cv_broadcast(&wq->wq_cv);
545 mutex_exit(&wq->wq_lock);
546 break;
547
548 case WORK_DELAYED_CANCELLED:
549 panic("cancelled delayed work %p got uqeued: %p", work, wq);
550 break;
551
552 default:
553 panic("work %p in bad state: %d", work, (int)work->w_state);
554 break;
555 }
556 linux_work_unlock(work);
557 }
558
559 /*
561 * Delayed work
562 */
563
564 void
565 INIT_DELAYED_WORK(struct delayed_work *dw, void (*fn)(struct work_struct *))
566 {
567 INIT_WORK(&dw->work, fn);
568 }
569
570 bool
571 schedule_delayed_work(struct delayed_work *dw, unsigned long ticks)
572 {
573 return queue_delayed_work(system_wq, dw, ticks);
574 }
575
576 bool
577 queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
578 unsigned long ticks)
579 {
580 bool newly_queued;
581
582 KASSERT(wq != NULL);
583
584 linux_work_lock(&dw->work);
585 switch (dw->work.w_state) {
586 case WORK_IDLE:
587 case WORK_INVOKED:
588 if (ticks == 0) {
589 /* Skip the delay and queue it now. */
590 dw->work.w_state = WORK_PENDING;
591 dw->work.w_wq = wq;
592 workqueue_enqueue(wq->wq_workqueue, &dw->work.w_wk,
593 NULL);
594 } else {
595 callout_init(&dw->dw_callout, CALLOUT_MPSAFE);
596 callout_reset(&dw->dw_callout, ticks,
597 &linux_worker_intr, dw);
598 dw->work.w_state = WORK_DELAYED;
599 dw->work.w_wq = wq;
600 mutex_enter(&wq->wq_lock);
601 TAILQ_INSERT_HEAD(&wq->wq_delayed, dw, dw_entry);
602 mutex_exit(&wq->wq_lock);
603 }
604 newly_queued = true;
605 break;
606
607 case WORK_DELAYED:
608 /*
609 * Timer is already ticking. Leave it to time out
610 * whenever it was going to time out, as Linux does --
611 * neither speed it up nor postpone it.
612 */
613 newly_queued = false;
614 break;
615
616 case WORK_PENDING:
617 KASSERT(dw->work.w_wq == wq);
618 newly_queued = false;
619 break;
620
621 case WORK_CANCELLED:
622 case WORK_DELAYED_CANCELLED:
623 /* XXX Wait for cancellation and then queue? */
624 newly_queued = false;
625 break;
626
627 default:
628 panic("delayed work %p in bad state: %d", dw,
629 (int)dw->work.w_state);
630 break;
631 }
632 linux_work_unlock(&dw->work);
633
634 return newly_queued;
635 }
636
637 bool
638 mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
639 unsigned long ticks)
640 {
641 bool timer_modified;
642
643 KASSERT(wq != NULL);
644
645 linux_work_lock(&dw->work);
646 switch (dw->work.w_state) {
647 case WORK_IDLE:
648 case WORK_INVOKED:
649 if (ticks == 0) {
650 /* Skip the delay and queue it now. */
651 dw->work.w_state = WORK_PENDING;
652 dw->work.w_wq = wq;
653 workqueue_enqueue(wq->wq_workqueue, &dw->work.w_wk,
654 NULL);
655 } else {
656 callout_init(&dw->dw_callout, CALLOUT_MPSAFE);
657 callout_reset(&dw->dw_callout, ticks,
658 &linux_worker_intr, dw);
659 dw->work.w_state = WORK_DELAYED;
660 dw->work.w_wq = wq;
661 mutex_enter(&wq->wq_lock);
662 TAILQ_INSERT_HEAD(&wq->wq_delayed, dw, dw_entry);
663 mutex_exit(&wq->wq_lock);
664 }
665 timer_modified = false;
666 break;
667
668 case WORK_DELAYED:
669 /*
670 * Timer is already ticking. Reschedule it.
671 */
672 callout_schedule(&dw->dw_callout, ticks);
673 timer_modified = true;
674 break;
675
676 case WORK_PENDING:
677 KASSERT(dw->work.w_wq == wq);
678 timer_modified = false;
679 break;
680
681 case WORK_CANCELLED:
682 case WORK_DELAYED_CANCELLED:
683 /* XXX Wait for cancellation and then queue? */
684 timer_modified = false;
685 break;
686
687 default:
688 panic("delayed work %p in bad state: %d", dw,
689 (int)dw->work.w_state);
690 break;
691 }
692 linux_work_unlock(&dw->work);
693
694 return timer_modified;
695 }
696
697 bool
698 cancel_delayed_work(struct delayed_work *dw)
699 {
700 bool cancelled_p = false;
701
702 linux_work_lock(&dw->work);
703 switch (dw->work.w_state) {
704 case WORK_IDLE: /* Nothing to do. */
705 break;
706
707 case WORK_DELAYED:
708 dw->work.w_state = WORK_DELAYED_CANCELLED;
709 linux_cancel_delayed_work_callout(dw, false);
710 cancelled_p = true;
711 break;
712
713 case WORK_PENDING:
714 dw->work.w_state = WORK_CANCELLED;
715 cancelled_p = true;
716 break;
717
718 case WORK_INVOKED: /* Don't wait! */
719 break;
720
721 case WORK_CANCELLED: /* Already done. */
722 case WORK_DELAYED_CANCELLED:
723 break;
724
725 default:
726 panic("delayed work %p in bad state: %d", dw,
727 (int)dw->work.w_state);
728 break;
729 }
730 linux_work_unlock(&dw->work);
731
732 return cancelled_p;
733 }
734
735 bool
736 cancel_delayed_work_sync(struct delayed_work *dw)
737 {
738 bool cancelled_p = false;
739
740 linux_work_lock(&dw->work);
741 switch (dw->work.w_state) {
742 case WORK_IDLE: /* Nothing to do. */
743 break;
744
745 case WORK_DELAYED:
746 dw->work.w_state = WORK_DELAYED_CANCELLED;
747 linux_cancel_delayed_work_callout(dw, true);
748 cancelled_p = true;
749 break;
750
751 case WORK_PENDING:
752 dw->work.w_state = WORK_CANCELLED;
753 linux_wait_for_cancelled_work(&dw->work);
754 cancelled_p = true;
755 break;
756
757 case WORK_INVOKED:
758 linux_wait_for_invoked_work(&dw->work);
759 break;
760
761 case WORK_CANCELLED: /* Already done. */
762 break;
763
764 case WORK_DELAYED_CANCELLED:
765 linux_wait_for_delayed_cancelled_work(dw);
766 break;
767
768 default:
769 panic("delayed work %p in bad state: %d", dw,
770 (int)dw->work.w_state);
771 break;
772 }
773 linux_work_unlock(&dw->work);
774
775 return cancelled_p;
776 }
777
778 static void
779 linux_cancel_delayed_work_callout(struct delayed_work *dw, bool wait)
780 {
781 bool fired_p;
782
783 KASSERT(linux_work_locked(&dw->work));
784 KASSERT(dw->work.w_state == WORK_DELAYED_CANCELLED);
785
786 if (wait) {
787 /*
788 * We unlock, halt, and then relock, rather than
789 * passing an interlock to callout_halt, for two
790 * reasons:
791 *
792 * (1) The work lock is not a mutex(9), so we can't use it.
793 * (2) The WORK_DELAYED_CANCELLED state serves as an interlock.
794 */
795 linux_work_unlock(&dw->work);
796 fired_p = callout_halt(&dw->dw_callout, NULL);
797 linux_work_lock(&dw->work);
798 } else {
799 fired_p = callout_stop(&dw->dw_callout);
800 }
801
802 /*
803 * fired_p means we didn't cancel the callout, so it must have
804 * already begun and will clean up after itself.
805 *
806 * !fired_p means we cancelled it so we have to clean up after
807 * it. Nobody else should have changed the state in that case.
808 */
809 if (!fired_p) {
810 struct workqueue_struct *wq;
811
812 KASSERT(linux_work_locked(&dw->work));
813 KASSERT(dw->work.w_state == WORK_DELAYED_CANCELLED);
814
815 wq = dw->work.w_wq;
816 mutex_enter(&wq->wq_lock);
817 TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
818 callout_destroy(&dw->dw_callout);
819 dw->work.w_state = WORK_IDLE;
820 dw->work.w_wq = NULL;
821 cv_broadcast(&wq->wq_cv);
822 mutex_exit(&wq->wq_lock);
823 }
824 }
825
826 static void
827 linux_wait_for_delayed_cancelled_work(struct delayed_work *dw)
828 {
829 struct workqueue_struct *wq;
830
831 KASSERT(linux_work_locked(&dw->work));
832 KASSERT(dw->work.w_state == WORK_DELAYED_CANCELLED);
833
834 wq = dw->work.w_wq;
835 do {
836 mutex_enter(&wq->wq_lock);
837 linux_work_unlock(&dw->work);
838 cv_wait(&wq->wq_cv, &wq->wq_lock);
839 mutex_exit(&wq->wq_lock);
840 linux_work_lock(&dw->work);
841 } while ((dw->work.w_state == WORK_DELAYED_CANCELLED) &&
842 (dw->work.w_wq == wq));
843 }
844
845 static void
846 linux_worker_intr(void *arg)
847 {
848 struct delayed_work *dw = arg;
849 struct workqueue_struct *wq;
850
851 linux_work_lock(&dw->work);
852
853 KASSERT((dw->work.w_state == WORK_DELAYED) ||
854 (dw->work.w_state == WORK_DELAYED_CANCELLED));
855
856 wq = dw->work.w_wq;
857 mutex_enter(&wq->wq_lock);
858
859 /* Queue the work, or return it to idle and alert any cancellers. */
860 if (__predict_true(dw->work.w_state == WORK_DELAYED)) {
861 dw->work.w_state = WORK_PENDING;
862 workqueue_enqueue(dw->work.w_wq->wq_workqueue, &dw->work.w_wk,
863 NULL);
864 } else {
865 KASSERT(dw->work.w_state == WORK_DELAYED_CANCELLED);
866 dw->work.w_state = WORK_IDLE;
867 dw->work.w_wq = NULL;
868 cv_broadcast(&wq->wq_cv);
869 }
870
871 /* Either way, the callout is done. */
872 TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
873 callout_destroy(&dw->dw_callout);
874
875 mutex_exit(&wq->wq_lock);
876 linux_work_unlock(&dw->work);
877 }
878