Home | History | Annotate | Line # | Download | only in linux
linux_work.c revision 1.22
      1 /*	$NetBSD: linux_work.c,v 1.22 2018/08/27 15:01:47 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: linux_work.c,v 1.22 2018/08/27 15:01:47 riastradh Exp $");
     34 
     35 #include <sys/types.h>
     36 #include <sys/atomic.h>
     37 #include <sys/callout.h>
     38 #include <sys/condvar.h>
     39 #include <sys/errno.h>
     40 #include <sys/kmem.h>
     41 #include <sys/kthread.h>
     42 #include <sys/lwp.h>
     43 #include <sys/mutex.h>
     44 #include <sys/queue.h>
     45 
     46 #include <linux/workqueue.h>
     47 
     48 struct workqueue_struct {
     49 	kmutex_t			wq_lock;
     50 	kcondvar_t			wq_cv;
     51 	TAILQ_HEAD(, delayed_work)	wq_delayed;
     52 	TAILQ_HEAD(, work_struct)	wq_queue;
     53 	struct work_struct		*wq_current_work;
     54 	int				wq_flags;
     55 	struct lwp			*wq_lwp;
     56 	uint64_t			wq_gen;
     57 	bool				wq_requeued:1;
     58 	bool				wq_dying:1;
     59 };
     60 
     61 static void __dead	linux_workqueue_thread(void *);
     62 static void		linux_workqueue_timeout(void *);
     63 static struct workqueue_struct *
     64 			acquire_work(struct work_struct *,
     65 			    struct workqueue_struct *);
     66 static void		release_work(struct work_struct *,
     67 			    struct workqueue_struct *);
     68 static void		queue_delayed_work_anew(struct workqueue_struct *,
     69 			    struct delayed_work *, unsigned long);
     70 
     71 static specificdata_key_t workqueue_key __read_mostly;
     72 
     73 struct workqueue_struct	*system_wq __read_mostly;
     74 struct workqueue_struct	*system_long_wq __read_mostly;
     75 struct workqueue_struct	*system_power_efficient_wq __read_mostly;
     76 
     77 int
     78 linux_workqueue_init(void)
     79 {
     80 	int error;
     81 
     82 	error = lwp_specific_key_create(&workqueue_key, NULL);
     83 	if (error)
     84 		goto fail0;
     85 
     86 	system_wq = alloc_ordered_workqueue("lnxsyswq", 0);
     87 	if (system_wq == NULL) {
     88 		error = ENOMEM;
     89 		goto fail1;
     90 	}
     91 
     92 	system_long_wq = alloc_ordered_workqueue("lnxlngwq", 0);
     93 	if (system_long_wq == NULL) {
     94 		error = ENOMEM;
     95 		goto fail2;
     96 	}
     97 
     98 	system_power_efficient_wq = alloc_ordered_workqueue("lnxpwrwq", 0);
     99 	if (system_long_wq == NULL) {
    100 		error = ENOMEM;
    101 		goto fail3;
    102 	}
    103 
    104 	return 0;
    105 
    106 fail4: __unused
    107 	destroy_workqueue(system_power_efficient_wq);
    108 fail3:	destroy_workqueue(system_long_wq);
    109 fail2:	destroy_workqueue(system_wq);
    110 fail1:	lwp_specific_key_delete(workqueue_key);
    111 fail0:	KASSERT(error);
    112 	return error;
    113 }
    114 
    115 void
    116 linux_workqueue_fini(void)
    117 {
    118 
    119 	destroy_workqueue(system_power_efficient_wq);
    120 	destroy_workqueue(system_long_wq);
    121 	destroy_workqueue(system_wq);
    122 	lwp_specific_key_delete(workqueue_key);
    123 }
    124 
    125 /*
    127  * Workqueues
    128  */
    129 
    130 struct workqueue_struct *
    131 alloc_ordered_workqueue(const char *name, int flags)
    132 {
    133 	struct workqueue_struct *wq;
    134 	int error;
    135 
    136 	KASSERT(flags == 0);
    137 
    138 	wq = kmem_alloc(sizeof(*wq), KM_SLEEP);
    139 
    140 	mutex_init(&wq->wq_lock, MUTEX_DEFAULT, IPL_NONE);
    141 	cv_init(&wq->wq_cv, name);
    142 	TAILQ_INIT(&wq->wq_delayed);
    143 	TAILQ_INIT(&wq->wq_queue);
    144 	wq->wq_current_work = NULL;
    145 
    146 	error = kthread_create(PRI_NONE,
    147 	    KTHREAD_MPSAFE|KTHREAD_TS|KTHREAD_MUSTJOIN, NULL,
    148 	    &linux_workqueue_thread, wq, &wq->wq_lwp, "%s", name);
    149 	if (error)
    150 		goto fail0;
    151 
    152 	return wq;
    153 
    154 fail0:	KASSERT(TAILQ_EMPTY(&wq->wq_queue));
    155 	KASSERT(TAILQ_EMPTY(&wq->wq_delayed));
    156 	cv_destroy(&wq->wq_cv);
    157 	mutex_destroy(&wq->wq_lock);
    158 	kmem_free(wq, sizeof(*wq));
    159 	return NULL;
    160 }
    161 
    162 void
    163 destroy_workqueue(struct workqueue_struct *wq)
    164 {
    165 
    166 	/*
    167 	 * Cancel all delayed work.  We do this first because any
    168 	 * delayed work that that has already timed out, which we can't
    169 	 * cancel, may have queued new work.
    170 	 */
    171 	for (;;) {
    172 		struct delayed_work *dw = NULL;
    173 
    174 		mutex_enter(&wq->wq_lock);
    175 		if (!TAILQ_EMPTY(&wq->wq_delayed)) {
    176 			dw = TAILQ_FIRST(&wq->wq_delayed);
    177 			if (!callout_halt(&dw->dw_callout, &wq->wq_lock))
    178 				TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
    179 		}
    180 		mutex_exit(&wq->wq_lock);
    181 
    182 		if (dw == NULL)
    183 			break;
    184 		cancel_delayed_work_sync(dw);
    185 	}
    186 
    187 	/* Tell the thread to exit.  */
    188 	mutex_enter(&wq->wq_lock);
    189 	wq->wq_dying = true;
    190 	cv_broadcast(&wq->wq_cv);
    191 	mutex_exit(&wq->wq_lock);
    192 
    193 	/* Wait for it to exit.  */
    194 	(void)kthread_join(wq->wq_lwp);
    195 
    196 	KASSERT(wq->wq_current_work == NULL);
    197 	KASSERT(TAILQ_EMPTY(&wq->wq_queue));
    198 	KASSERT(TAILQ_EMPTY(&wq->wq_delayed));
    199 	cv_destroy(&wq->wq_cv);
    200 	mutex_destroy(&wq->wq_lock);
    201 
    202 	kmem_free(wq, sizeof(*wq));
    203 }
    204 
    205 /*
    207  * Work thread and callout
    208  */
    209 
    210 static void __dead
    211 linux_workqueue_thread(void *cookie)
    212 {
    213 	struct workqueue_struct *const wq = cookie;
    214 	TAILQ_HEAD(, work_struct) tmp;
    215 
    216 	lwp_setspecific(workqueue_key, wq);
    217 
    218 	mutex_enter(&wq->wq_lock);
    219 	for (;;) {
    220 		/* Wait until there's activity.  If we're dying, stop.  */
    221 		while (TAILQ_EMPTY(&wq->wq_queue) && !wq->wq_dying)
    222 			cv_wait(&wq->wq_cv, &wq->wq_lock);
    223 		if (wq->wq_dying)
    224 			break;
    225 
    226 		/* Grab a batch of work off the queue.  */
    227 		KASSERT(!TAILQ_EMPTY(&wq->wq_queue));
    228 		TAILQ_INIT(&tmp);
    229 		TAILQ_CONCAT(&tmp, &wq->wq_queue, work_entry);
    230 
    231 		/* Process each work item in the batch.  */
    232 		while (!TAILQ_EMPTY(&tmp)) {
    233 			struct work_struct *const work = TAILQ_FIRST(&tmp);
    234 
    235 			KASSERT(work->work_queue == wq);
    236 			TAILQ_REMOVE(&tmp, work, work_entry);
    237 			KASSERT(wq->wq_current_work == NULL);
    238 			wq->wq_current_work = work;
    239 
    240 			mutex_exit(&wq->wq_lock);
    241 			(*work->func)(work);
    242 			mutex_enter(&wq->wq_lock);
    243 
    244 			KASSERT(wq->wq_current_work == work);
    245 			KASSERT(work->work_queue == wq);
    246 			if (wq->wq_requeued)
    247 				wq->wq_requeued = false;
    248 			else
    249 				release_work(work, wq);
    250 			wq->wq_current_work = NULL;
    251 			cv_broadcast(&wq->wq_cv);
    252 		}
    253 
    254 		/* Notify flush that we've completed a batch of work.  */
    255 		wq->wq_gen++;
    256 		cv_broadcast(&wq->wq_cv);
    257 	}
    258 	mutex_exit(&wq->wq_lock);
    259 
    260 	kthread_exit(0);
    261 }
    262 
    263 static void
    264 linux_workqueue_timeout(void *cookie)
    265 {
    266 	struct delayed_work *const dw = cookie;
    267 	struct workqueue_struct *const wq = dw->work.work_queue;
    268 
    269 	KASSERT(wq != NULL);
    270 
    271 	mutex_enter(&wq->wq_lock);
    272 	KASSERT(dw->work.work_queue == wq);
    273 	switch (dw->dw_state) {
    274 	case DELAYED_WORK_IDLE:
    275 		panic("delayed work callout uninitialized: %p", dw);
    276 	case DELAYED_WORK_SCHEDULED:
    277 		dw->dw_state = DELAYED_WORK_IDLE;
    278 		callout_destroy(&dw->dw_callout);
    279 		TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
    280 		TAILQ_INSERT_TAIL(&wq->wq_queue, &dw->work, work_entry);
    281 		cv_broadcast(&wq->wq_cv);
    282 		break;
    283 	case DELAYED_WORK_RESCHEDULED:
    284 		dw->dw_state = DELAYED_WORK_SCHEDULED;
    285 		break;
    286 	case DELAYED_WORK_CANCELLED:
    287 		dw->dw_state = DELAYED_WORK_IDLE;
    288 		callout_destroy(&dw->dw_callout);
    289 		TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
    290 		release_work(&dw->work, wq);
    291 		/* Can't touch dw any more.  */
    292 		goto out;
    293 	default:
    294 		panic("delayed work callout in bad state: %p", dw);
    295 	}
    296 	KASSERT(dw->dw_state == DELAYED_WORK_IDLE ||
    297 	    dw->dw_state == DELAYED_WORK_SCHEDULED);
    298 out:	mutex_exit(&wq->wq_lock);
    299 }
    300 
    301 struct work_struct *
    302 current_work(void)
    303 {
    304 	struct workqueue_struct *wq = lwp_getspecific(workqueue_key);
    305 
    306 	/* If we're not a workqueue thread, then there's no work.  */
    307 	if (wq == NULL)
    308 		return NULL;
    309 
    310 	/*
    311 	 * Otherwise, this should be possible only while work is in
    312 	 * progress.  Return the current work item.
    313 	 */
    314 	KASSERT(wq->wq_current_work != NULL);
    315 	return wq->wq_current_work;
    316 }
    317 
    318 /*
    320  * Work
    321  */
    322 
    323 void
    324 INIT_WORK(struct work_struct *work, void (*fn)(struct work_struct *))
    325 {
    326 
    327 	work->work_queue = NULL;
    328 	work->func = fn;
    329 }
    330 
    331 static struct workqueue_struct *
    332 acquire_work(struct work_struct *work, struct workqueue_struct *wq)
    333 {
    334 	struct workqueue_struct *wq0;
    335 
    336 	KASSERT(mutex_owned(&wq->wq_lock));
    337 
    338 	wq0 = atomic_cas_ptr(&work->work_queue, NULL, wq);
    339 	if (wq0 == NULL) {
    340 		membar_enter();
    341 		KASSERT(work->work_queue == wq);
    342 	}
    343 
    344 	return wq0;
    345 }
    346 
    347 static void
    348 release_work(struct work_struct *work, struct workqueue_struct *wq)
    349 {
    350 
    351 	KASSERT(work->work_queue == wq);
    352 	KASSERT(mutex_owned(&wq->wq_lock));
    353 
    354 	membar_exit();
    355 	work->work_queue = NULL;
    356 }
    357 
    358 bool
    359 schedule_work(struct work_struct *work)
    360 {
    361 
    362 	return queue_work(system_wq, work);
    363 }
    364 
    365 bool
    366 queue_work(struct workqueue_struct *wq, struct work_struct *work)
    367 {
    368 	struct workqueue_struct *wq0;
    369 	bool newly_queued;
    370 
    371 	KASSERT(wq != NULL);
    372 
    373 	mutex_enter(&wq->wq_lock);
    374 	if (__predict_true((wq0 = acquire_work(work, wq)) == NULL)) {
    375 		TAILQ_INSERT_TAIL(&wq->wq_queue, work, work_entry);
    376 		newly_queued = true;
    377 	} else {
    378 		KASSERT(wq0 == wq);
    379 		newly_queued = false;
    380 	}
    381 	mutex_exit(&wq->wq_lock);
    382 
    383 	return newly_queued;
    384 }
    385 
    386 bool
    387 cancel_work(struct work_struct *work)
    388 {
    389 	struct workqueue_struct *wq;
    390 	bool cancelled_p = false;
    391 
    392 	/* If there's no workqueue, nothing to cancel.   */
    393 	if ((wq = work->work_queue) == NULL)
    394 		goto out;
    395 
    396 	mutex_enter(&wq->wq_lock);
    397 	if (__predict_false(work->work_queue != wq)) {
    398 		cancelled_p = false;
    399 	} else if (wq->wq_current_work == work) {
    400 		cancelled_p = false;
    401 	} else {
    402 		TAILQ_REMOVE(&wq->wq_queue, work, work_entry);
    403 		cancelled_p = true;
    404 	}
    405 	mutex_exit(&wq->wq_lock);
    406 
    407 out:	return cancelled_p;
    408 }
    409 
    410 bool
    411 cancel_work_sync(struct work_struct *work)
    412 {
    413 	struct workqueue_struct *wq;
    414 	bool cancelled_p = false;
    415 
    416 	/* If there's no workqueue, nothing to cancel.   */
    417 	if ((wq = work->work_queue) == NULL)
    418 		goto out;
    419 
    420 	mutex_enter(&wq->wq_lock);
    421 	if (__predict_false(work->work_queue != wq)) {
    422 		cancelled_p = false;
    423 	} else if (wq->wq_current_work == work) {
    424 		do {
    425 			cv_wait(&wq->wq_cv, &wq->wq_lock);
    426 		} while (wq->wq_current_work == work);
    427 		cancelled_p = false;
    428 	} else {
    429 		TAILQ_REMOVE(&wq->wq_queue, work, work_entry);
    430 		cancelled_p = true;
    431 	}
    432 	mutex_exit(&wq->wq_lock);
    433 
    434 out:	return cancelled_p;
    435 }
    436 
    437 /*
    439  * Delayed work
    440  */
    441 
    442 void
    443 INIT_DELAYED_WORK(struct delayed_work *dw, void (*fn)(struct work_struct *))
    444 {
    445 
    446 	INIT_WORK(&dw->work, fn);
    447 	dw->dw_state = DELAYED_WORK_IDLE;
    448 
    449 	/*
    450 	 * Defer callout_init until we are going to schedule the
    451 	 * callout, which can then callout_destroy it, because
    452 	 * otherwise since there's no DESTROY_DELAYED_WORK or anything
    453 	 * we have no opportunity to call callout_destroy.
    454 	 */
    455 }
    456 
    457 bool
    458 schedule_delayed_work(struct delayed_work *dw, unsigned long ticks)
    459 {
    460 
    461 	return queue_delayed_work(system_wq, dw, ticks);
    462 }
    463 
    464 static void
    465 queue_delayed_work_anew(struct workqueue_struct *wq, struct delayed_work *dw,
    466     unsigned long ticks)
    467 {
    468 
    469 	KASSERT(mutex_owned(&wq->wq_lock));
    470 	KASSERT(dw->work.work_queue == wq);
    471 	KASSERT((dw->dw_state == DELAYED_WORK_IDLE) ||
    472 	    (dw->dw_state == DELAYED_WORK_SCHEDULED));
    473 
    474 	if (ticks == 0) {
    475 		if (dw->dw_state == DELAYED_WORK_SCHEDULED) {
    476 			callout_destroy(&dw->dw_callout);
    477 			TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
    478 		} else {
    479 			KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
    480 		}
    481 		TAILQ_INSERT_TAIL(&wq->wq_queue, &dw->work, work_entry);
    482 		dw->dw_state = DELAYED_WORK_IDLE;
    483 	} else {
    484 		if (dw->dw_state == DELAYED_WORK_IDLE) {
    485 			callout_init(&dw->dw_callout, CALLOUT_MPSAFE);
    486 			callout_reset(&dw->dw_callout, MIN(INT_MAX, ticks),
    487 			    &linux_workqueue_timeout, dw);
    488 			TAILQ_INSERT_HEAD(&wq->wq_delayed, dw, dw_entry);
    489 		} else {
    490 			KASSERT(dw->dw_state == DELAYED_WORK_SCHEDULED);
    491 		}
    492 		dw->dw_state = DELAYED_WORK_SCHEDULED;
    493 	}
    494 }
    495 
    496 bool
    497 queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
    498     unsigned long ticks)
    499 {
    500 	struct workqueue_struct *wq0;
    501 	bool newly_queued;
    502 
    503 	mutex_enter(&wq->wq_lock);
    504 	if (__predict_true((wq0 = acquire_work(&dw->work, wq)) == NULL)) {
    505 		KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
    506 		queue_delayed_work_anew(wq, dw, ticks);
    507 		newly_queued = true;
    508 	} else {
    509 		KASSERT(wq0 == wq);
    510 		newly_queued = false;
    511 	}
    512 	mutex_exit(&wq->wq_lock);
    513 
    514 	return newly_queued;
    515 }
    516 
    517 bool
    518 mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
    519     unsigned long ticks)
    520 {
    521 	struct workqueue_struct *wq0;
    522 	bool timer_modified;
    523 
    524 	mutex_enter(&wq->wq_lock);
    525 	if ((wq0 = acquire_work(&dw->work, wq)) == NULL) {
    526 		KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
    527 		queue_delayed_work_anew(wq, dw, ticks);
    528 		timer_modified = false;
    529 	} else {
    530 		KASSERT(wq0 == wq);
    531 		switch (dw->dw_state) {
    532 		case DELAYED_WORK_IDLE:
    533 			if (wq->wq_current_work != &dw->work) {
    534 				/* Work is queued, but hasn't started yet.  */
    535 				TAILQ_REMOVE(&wq->wq_queue, &dw->work,
    536 				    work_entry);
    537 				queue_delayed_work_anew(wq, dw, ticks);
    538 				timer_modified = true;
    539 			} else {
    540 				/*
    541 				 * Too late.  Queue it anew.  If that
    542 				 * would skip the callout because it's
    543 				 * immediate, notify the workqueue.
    544 				 */
    545 				wq->wq_requeued = ticks == 0;
    546 				queue_delayed_work_anew(wq, dw, ticks);
    547 				timer_modified = false;
    548 			}
    549 			break;
    550 		case DELAYED_WORK_SCHEDULED:
    551 			if (callout_stop(&dw->dw_callout)) {
    552 				/*
    553 				 * Too late to stop, but we got in
    554 				 * before the callout acquired the
    555 				 * lock.  Reschedule it and tell it
    556 				 * we've done so.
    557 				 */
    558 				dw->dw_state = DELAYED_WORK_RESCHEDULED;
    559 				callout_schedule(&dw->dw_callout,
    560 				    MIN(INT_MAX, ticks));
    561 			} else {
    562 				/* Stopped it.  Queue it anew.  */
    563 				queue_delayed_work_anew(wq, dw, ticks);
    564 			}
    565 			timer_modified = true;
    566 			break;
    567 		case DELAYED_WORK_RESCHEDULED:
    568 		case DELAYED_WORK_CANCELLED:
    569 			/*
    570 			 * Someone modified the timer _again_, or
    571 			 * cancelled it, after the callout started but
    572 			 * before the poor thing even had a chance to
    573 			 * acquire the lock.  Just reschedule it once
    574 			 * more.
    575 			 */
    576 			callout_schedule(&dw->dw_callout, MIN(INT_MAX, ticks));
    577 			dw->dw_state = DELAYED_WORK_RESCHEDULED;
    578 			timer_modified = true;
    579 			break;
    580 		default:
    581 			panic("invalid delayed work state: %d",
    582 			    dw->dw_state);
    583 		}
    584 	}
    585 	mutex_exit(&wq->wq_lock);
    586 
    587 	return timer_modified;
    588 }
    589 
    590 bool
    591 cancel_delayed_work(struct delayed_work *dw)
    592 {
    593 	struct workqueue_struct *wq;
    594 	bool cancelled_p;
    595 
    596 	/* If there's no workqueue, nothing to cancel.   */
    597 	if ((wq = dw->work.work_queue) == NULL)
    598 		return false;
    599 
    600 	mutex_enter(&wq->wq_lock);
    601 	if (__predict_false(dw->work.work_queue != wq)) {
    602 		cancelled_p = false;
    603 	} else {
    604 		switch (dw->dw_state) {
    605 		case DELAYED_WORK_IDLE:
    606 			if (wq->wq_current_work == &dw->work) {
    607 				/* Too late, it's already running.  */
    608 				cancelled_p = false;
    609 			} else {
    610 				/* Got in before it started.  Remove it.  */
    611 				TAILQ_REMOVE(&wq->wq_queue, &dw->work,
    612 				    work_entry);
    613 				cancelled_p = true;
    614 			}
    615 			break;
    616 		case DELAYED_WORK_SCHEDULED:
    617 		case DELAYED_WORK_RESCHEDULED:
    618 		case DELAYED_WORK_CANCELLED:
    619 			/*
    620 			 * If it is scheduled, mark it cancelled and
    621 			 * try to stop the callout before it starts.
    622 			 *
    623 			 * If it's too late and the callout has already
    624 			 * begun to execute, tough.
    625 			 *
    626 			 * If we stopped the callout before it started,
    627 			 * however, then destroy the callout and
    628 			 * dissociate it from the workqueue ourselves.
    629 			 *
    630 			 * XXX This logic is duplicated in the
    631 			 * DELAYED_WORK_CANCELLED case of
    632 			 * linux_workqueue_timeout.
    633 			 */
    634 			dw->dw_state = DELAYED_WORK_CANCELLED;
    635 			cancelled_p = true;
    636 			if (callout_stop(&dw->dw_callout))
    637 				break;
    638 			KASSERT(dw->dw_state == DELAYED_WORK_CANCELLED);
    639 			dw->dw_state = DELAYED_WORK_IDLE;
    640 			callout_destroy(&dw->dw_callout);
    641 			TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
    642 			release_work(&dw->work, wq);
    643 			break;
    644 		default:
    645 			panic("invalid delayed work state: %d",
    646 			    dw->dw_state);
    647 		}
    648 	}
    649 	mutex_exit(&wq->wq_lock);
    650 
    651 	return cancelled_p;
    652 }
    653 
    654 bool
    655 cancel_delayed_work_sync(struct delayed_work *dw)
    656 {
    657 	struct workqueue_struct *wq;
    658 	bool cancelled_p = false;
    659 
    660 retry:
    661 	/*
    662 	 * If there's no workqueue, nothing to cancel, unless we've
    663 	 * started over from cancelling the callout.
    664 	 */
    665 	if ((wq = dw->work.work_queue) == NULL)
    666 		return cancelled_p;
    667 
    668 	mutex_enter(&wq->wq_lock);
    669 	if (__predict_false(dw->work.work_queue != wq)) {
    670 		cancelled_p = false;
    671 	} else {
    672 		switch (dw->dw_state) {
    673 		case DELAYED_WORK_IDLE:
    674 			if (wq->wq_current_work == &dw->work) {
    675 				/* Too late, it's already running.  Wait.  */
    676 				do {
    677 					cv_wait(&wq->wq_cv, &wq->wq_lock);
    678 				} while (wq->wq_current_work == &dw->work);
    679 				cancelled_p = false;
    680 			} else {
    681 				/* Got in before it started.  Remove it.  */
    682 				TAILQ_REMOVE(&wq->wq_queue, &dw->work,
    683 				    work_entry);
    684 				cancelled_p = true;
    685 			}
    686 			break;
    687 		case DELAYED_WORK_SCHEDULED:
    688 		case DELAYED_WORK_RESCHEDULED:
    689 		case DELAYED_WORK_CANCELLED:
    690 			/*
    691 			 * If it is scheduled, mark it cancelled and
    692 			 * try to stop the callout before it starts.
    693 			 *
    694 			 * If it's too late and the callout has already
    695 			 * begun to execute, we must wait for it to
    696 			 * complete.  In that case, the work has been
    697 			 * dissociated from the queue, so we must start
    698 			 * over from the top.
    699 			 *
    700 			 * If we stopped the callout before it started,
    701 			 * however, then destroy the callout and
    702 			 * dissociate it from the workqueue ourselves.
    703 			 *
    704 			 * XXX This logic is duplicated in the
    705 			 * DELAYED_WORK_CANCELLED case of
    706 			 * linux_workqueue_timeout.
    707 			 */
    708 			dw->dw_state = DELAYED_WORK_CANCELLED;
    709 			cancelled_p = true;
    710 			if (callout_halt(&dw->dw_callout, &wq->wq_lock))
    711 				goto retry;
    712 			KASSERT(dw->dw_state == DELAYED_WORK_CANCELLED);
    713 			dw->dw_state = DELAYED_WORK_IDLE;
    714 			callout_destroy(&dw->dw_callout);
    715 			TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
    716 			release_work(&dw->work, wq);
    717 			break;
    718 		default:
    719 			panic("invalid delayed work state: %d",
    720 			    dw->dw_state);
    721 		}
    722 	}
    723 	mutex_exit(&wq->wq_lock);
    724 
    725 	return cancelled_p;
    726 }
    727 
    728 /*
    730  * Flush
    731  */
    732 
    733 void
    734 flush_scheduled_work(void)
    735 {
    736 
    737 	flush_workqueue(system_wq);
    738 }
    739 
    740 void
    741 flush_workqueue(struct workqueue_struct *wq)
    742 {
    743 	uint64_t gen;
    744 
    745 	mutex_enter(&wq->wq_lock);
    746 	if (wq->wq_current_work || !TAILQ_EMPTY(&wq->wq_queue)) {
    747 		gen = wq->wq_gen;
    748 		do {
    749 			cv_wait(&wq->wq_cv, &wq->wq_lock);
    750 		} while (gen == wq->wq_gen);
    751 	}
    752 	mutex_exit(&wq->wq_lock);
    753 }
    754 
    755 bool
    756 flush_work(struct work_struct *work)
    757 {
    758 	struct workqueue_struct *wq;
    759 
    760 	/* If there's no workqueue, nothing to flush.  */
    761 	if ((wq = work->work_queue) == NULL)
    762 		return false;
    763 
    764 	flush_workqueue(wq);
    765 	return true;
    766 }
    767 
    768 bool
    769 flush_delayed_work(struct delayed_work *dw)
    770 {
    771 	struct workqueue_struct *wq;
    772 	bool do_flush = false;
    773 
    774 	/* If there's no workqueue, nothing to flush.  */
    775 	if ((wq = dw->work.work_queue) == NULL)
    776 		return false;
    777 
    778 	mutex_enter(&wq->wq_lock);
    779 	if (__predict_false(dw->work.work_queue != wq)) {
    780 		do_flush = true;
    781 	} else {
    782 retry:		switch (dw->dw_state) {
    783 		case DELAYED_WORK_IDLE:
    784 			if (wq->wq_current_work != &dw->work) {
    785 				TAILQ_REMOVE(&wq->wq_queue, &dw->work,
    786 				    work_entry);
    787 			} else {
    788 				do_flush = true;
    789 			}
    790 			break;
    791 		case DELAYED_WORK_SCHEDULED:
    792 		case DELAYED_WORK_RESCHEDULED:
    793 		case DELAYED_WORK_CANCELLED:
    794 			dw->dw_state = DELAYED_WORK_CANCELLED;
    795 			callout_halt(&dw->dw_callout, &wq->wq_lock);
    796 			goto retry;
    797 		default:
    798 			panic("invalid delayed work state: %d",
    799 			    dw->dw_state);
    800 		}
    801 	}
    802 	mutex_exit(&wq->wq_lock);
    803 
    804 	if (do_flush)
    805 		flush_workqueue(wq);
    806 
    807 	return true;
    808 }
    809