Home | History | Annotate | Line # | Download | only in linux
linux_work.c revision 1.25
      1 /*	$NetBSD: linux_work.c,v 1.25 2018/08/27 15:02:38 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2018 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Taylor R. Campbell.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: linux_work.c,v 1.25 2018/08/27 15:02:38 riastradh Exp $");
     34 
     35 #include <sys/types.h>
     36 #include <sys/atomic.h>
     37 #include <sys/callout.h>
     38 #include <sys/condvar.h>
     39 #include <sys/errno.h>
     40 #include <sys/kmem.h>
     41 #include <sys/kthread.h>
     42 #include <sys/lwp.h>
     43 #include <sys/mutex.h>
     44 #include <sys/queue.h>
     45 
     46 #include <linux/workqueue.h>
     47 
     48 struct workqueue_struct {
     49 	kmutex_t			wq_lock;
     50 	kcondvar_t			wq_cv;
     51 	TAILQ_HEAD(, delayed_work)	wq_delayed;
     52 	TAILQ_HEAD(, work_struct)	wq_queue;
     53 	struct work_struct		*wq_current_work;
     54 	int				wq_flags;
     55 	struct lwp			*wq_lwp;
     56 	uint64_t			wq_gen;
     57 	bool				wq_requeued:1;
     58 	bool				wq_dying:1;
     59 };
     60 
     61 static void __dead	linux_workqueue_thread(void *);
     62 static void		linux_workqueue_timeout(void *);
     63 static struct workqueue_struct *
     64 			acquire_work(struct work_struct *,
     65 			    struct workqueue_struct *);
     66 static void		release_work(struct work_struct *,
     67 			    struct workqueue_struct *);
     68 static void		queue_delayed_work_anew(struct workqueue_struct *,
     69 			    struct delayed_work *, unsigned long);
     70 static void		cancel_delayed_work_done(struct workqueue_struct *,
     71 			    struct delayed_work *);
     72 
     73 static specificdata_key_t workqueue_key __read_mostly;
     74 
     75 struct workqueue_struct	*system_wq __read_mostly;
     76 struct workqueue_struct	*system_long_wq __read_mostly;
     77 struct workqueue_struct	*system_power_efficient_wq __read_mostly;
     78 
     79 int
     80 linux_workqueue_init(void)
     81 {
     82 	int error;
     83 
     84 	error = lwp_specific_key_create(&workqueue_key, NULL);
     85 	if (error)
     86 		goto fail0;
     87 
     88 	system_wq = alloc_ordered_workqueue("lnxsyswq", 0);
     89 	if (system_wq == NULL) {
     90 		error = ENOMEM;
     91 		goto fail1;
     92 	}
     93 
     94 	system_long_wq = alloc_ordered_workqueue("lnxlngwq", 0);
     95 	if (system_long_wq == NULL) {
     96 		error = ENOMEM;
     97 		goto fail2;
     98 	}
     99 
    100 	system_power_efficient_wq = alloc_ordered_workqueue("lnxpwrwq", 0);
    101 	if (system_long_wq == NULL) {
    102 		error = ENOMEM;
    103 		goto fail3;
    104 	}
    105 
    106 	return 0;
    107 
    108 fail4: __unused
    109 	destroy_workqueue(system_power_efficient_wq);
    110 fail3:	destroy_workqueue(system_long_wq);
    111 fail2:	destroy_workqueue(system_wq);
    112 fail1:	lwp_specific_key_delete(workqueue_key);
    113 fail0:	KASSERT(error);
    114 	return error;
    115 }
    116 
    117 void
    118 linux_workqueue_fini(void)
    119 {
    120 
    121 	destroy_workqueue(system_power_efficient_wq);
    122 	destroy_workqueue(system_long_wq);
    123 	destroy_workqueue(system_wq);
    124 	lwp_specific_key_delete(workqueue_key);
    125 }
    126 
    127 /*
    129  * Workqueues
    130  */
    131 
    132 struct workqueue_struct *
    133 alloc_ordered_workqueue(const char *name, int flags)
    134 {
    135 	struct workqueue_struct *wq;
    136 	int error;
    137 
    138 	KASSERT(flags == 0);
    139 
    140 	wq = kmem_zalloc(sizeof(*wq), KM_SLEEP);
    141 
    142 	mutex_init(&wq->wq_lock, MUTEX_DEFAULT, IPL_NONE);
    143 	cv_init(&wq->wq_cv, name);
    144 	TAILQ_INIT(&wq->wq_delayed);
    145 	TAILQ_INIT(&wq->wq_queue);
    146 	wq->wq_current_work = NULL;
    147 	wq->wq_flags = 0;
    148 	wq->wq_lwp = NULL;
    149 	wq->wq_gen = 0;
    150 	wq->wq_requeued = false;
    151 	wq->wq_dying = false;
    152 
    153 	error = kthread_create(PRI_NONE,
    154 	    KTHREAD_MPSAFE|KTHREAD_TS|KTHREAD_MUSTJOIN, NULL,
    155 	    &linux_workqueue_thread, wq, &wq->wq_lwp, "%s", name);
    156 	if (error)
    157 		goto fail0;
    158 
    159 	return wq;
    160 
    161 fail0:	KASSERT(TAILQ_EMPTY(&wq->wq_queue));
    162 	KASSERT(TAILQ_EMPTY(&wq->wq_delayed));
    163 	cv_destroy(&wq->wq_cv);
    164 	mutex_destroy(&wq->wq_lock);
    165 	kmem_free(wq, sizeof(*wq));
    166 	return NULL;
    167 }
    168 
    169 void
    170 destroy_workqueue(struct workqueue_struct *wq)
    171 {
    172 
    173 	/*
    174 	 * Cancel all delayed work.  We do this first because any
    175 	 * delayed work that that has already timed out, which we can't
    176 	 * cancel, may have queued new work.
    177 	 */
    178 	for (;;) {
    179 		struct delayed_work *dw = NULL;
    180 
    181 		mutex_enter(&wq->wq_lock);
    182 		if (!TAILQ_EMPTY(&wq->wq_delayed)) {
    183 			dw = TAILQ_FIRST(&wq->wq_delayed);
    184 			if (!callout_halt(&dw->dw_callout, &wq->wq_lock))
    185 				TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
    186 		}
    187 		mutex_exit(&wq->wq_lock);
    188 
    189 		if (dw == NULL)
    190 			break;
    191 		cancel_delayed_work_sync(dw);
    192 	}
    193 
    194 	/* Tell the thread to exit.  */
    195 	mutex_enter(&wq->wq_lock);
    196 	wq->wq_dying = true;
    197 	cv_broadcast(&wq->wq_cv);
    198 	mutex_exit(&wq->wq_lock);
    199 
    200 	/* Wait for it to exit.  */
    201 	(void)kthread_join(wq->wq_lwp);
    202 
    203 	KASSERT(wq->wq_dying);
    204 	KASSERT(!wq->wq_requeued);
    205 	KASSERT(wq->wq_flags == 0);
    206 	KASSERT(wq->wq_current_work == NULL);
    207 	KASSERT(TAILQ_EMPTY(&wq->wq_queue));
    208 	KASSERT(TAILQ_EMPTY(&wq->wq_delayed));
    209 	cv_destroy(&wq->wq_cv);
    210 	mutex_destroy(&wq->wq_lock);
    211 
    212 	kmem_free(wq, sizeof(*wq));
    213 }
    214 
    215 /*
    217  * Work thread and callout
    218  */
    219 
    220 static void __dead
    221 linux_workqueue_thread(void *cookie)
    222 {
    223 	struct workqueue_struct *const wq = cookie;
    224 	TAILQ_HEAD(, work_struct) tmp;
    225 
    226 	lwp_setspecific(workqueue_key, wq);
    227 
    228 	mutex_enter(&wq->wq_lock);
    229 	for (;;) {
    230 		/* Wait until there's activity.  If we're dying, stop.  */
    231 		while (TAILQ_EMPTY(&wq->wq_queue) && !wq->wq_dying)
    232 			cv_wait(&wq->wq_cv, &wq->wq_lock);
    233 		if (wq->wq_dying)
    234 			break;
    235 
    236 		/* Grab a batch of work off the queue.  */
    237 		KASSERT(!TAILQ_EMPTY(&wq->wq_queue));
    238 		TAILQ_INIT(&tmp);
    239 		TAILQ_CONCAT(&tmp, &wq->wq_queue, work_entry);
    240 
    241 		/* Process each work item in the batch.  */
    242 		while (!TAILQ_EMPTY(&tmp)) {
    243 			struct work_struct *const work = TAILQ_FIRST(&tmp);
    244 
    245 			KASSERT(work->work_queue == wq);
    246 			TAILQ_REMOVE(&tmp, work, work_entry);
    247 			KASSERT(wq->wq_current_work == NULL);
    248 			wq->wq_current_work = work;
    249 
    250 			mutex_exit(&wq->wq_lock);
    251 			(*work->func)(work);
    252 			mutex_enter(&wq->wq_lock);
    253 
    254 			KASSERT(wq->wq_current_work == work);
    255 			KASSERT(work->work_queue == wq);
    256 			if (wq->wq_requeued)
    257 				wq->wq_requeued = false;
    258 			else
    259 				release_work(work, wq);
    260 			wq->wq_current_work = NULL;
    261 			cv_broadcast(&wq->wq_cv);
    262 		}
    263 
    264 		/* Notify flush that we've completed a batch of work.  */
    265 		wq->wq_gen++;
    266 		cv_broadcast(&wq->wq_cv);
    267 	}
    268 	mutex_exit(&wq->wq_lock);
    269 
    270 	kthread_exit(0);
    271 }
    272 
    273 static void
    274 linux_workqueue_timeout(void *cookie)
    275 {
    276 	struct delayed_work *const dw = cookie;
    277 	struct workqueue_struct *const wq = dw->work.work_queue;
    278 
    279 	KASSERT(wq != NULL);
    280 
    281 	mutex_enter(&wq->wq_lock);
    282 	KASSERT(dw->work.work_queue == wq);
    283 	switch (dw->dw_state) {
    284 	case DELAYED_WORK_IDLE:
    285 		panic("delayed work callout uninitialized: %p", dw);
    286 	case DELAYED_WORK_SCHEDULED:
    287 		dw->dw_state = DELAYED_WORK_IDLE;
    288 		callout_destroy(&dw->dw_callout);
    289 		TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
    290 		TAILQ_INSERT_TAIL(&wq->wq_queue, &dw->work, work_entry);
    291 		cv_broadcast(&wq->wq_cv);
    292 		break;
    293 	case DELAYED_WORK_RESCHEDULED:
    294 		dw->dw_state = DELAYED_WORK_SCHEDULED;
    295 		break;
    296 	case DELAYED_WORK_CANCELLED:
    297 		cancel_delayed_work_done(wq, dw);
    298 		/* Can't touch dw any more.  */
    299 		goto out;
    300 	default:
    301 		panic("delayed work callout in bad state: %p", dw);
    302 	}
    303 	KASSERT(dw->dw_state == DELAYED_WORK_IDLE ||
    304 	    dw->dw_state == DELAYED_WORK_SCHEDULED);
    305 out:	mutex_exit(&wq->wq_lock);
    306 }
    307 
    308 struct work_struct *
    309 current_work(void)
    310 {
    311 	struct workqueue_struct *wq = lwp_getspecific(workqueue_key);
    312 
    313 	/* If we're not a workqueue thread, then there's no work.  */
    314 	if (wq == NULL)
    315 		return NULL;
    316 
    317 	/*
    318 	 * Otherwise, this should be possible only while work is in
    319 	 * progress.  Return the current work item.
    320 	 */
    321 	KASSERT(wq->wq_current_work != NULL);
    322 	return wq->wq_current_work;
    323 }
    324 
    325 /*
    327  * Work
    328  */
    329 
    330 void
    331 INIT_WORK(struct work_struct *work, void (*fn)(struct work_struct *))
    332 {
    333 
    334 	work->work_queue = NULL;
    335 	work->func = fn;
    336 }
    337 
    338 static struct workqueue_struct *
    339 acquire_work(struct work_struct *work, struct workqueue_struct *wq)
    340 {
    341 	struct workqueue_struct *wq0;
    342 
    343 	KASSERT(mutex_owned(&wq->wq_lock));
    344 
    345 	wq0 = atomic_cas_ptr(&work->work_queue, NULL, wq);
    346 	if (wq0 == NULL) {
    347 		membar_enter();
    348 		KASSERT(work->work_queue == wq);
    349 	}
    350 
    351 	return wq0;
    352 }
    353 
    354 static void
    355 release_work(struct work_struct *work, struct workqueue_struct *wq)
    356 {
    357 
    358 	KASSERT(work->work_queue == wq);
    359 	KASSERT(mutex_owned(&wq->wq_lock));
    360 
    361 	membar_exit();
    362 	work->work_queue = NULL;
    363 }
    364 
    365 bool
    366 schedule_work(struct work_struct *work)
    367 {
    368 
    369 	return queue_work(system_wq, work);
    370 }
    371 
    372 bool
    373 queue_work(struct workqueue_struct *wq, struct work_struct *work)
    374 {
    375 	struct workqueue_struct *wq0;
    376 	bool newly_queued;
    377 
    378 	KASSERT(wq != NULL);
    379 
    380 	mutex_enter(&wq->wq_lock);
    381 	if (__predict_true((wq0 = acquire_work(work, wq)) == NULL)) {
    382 		TAILQ_INSERT_TAIL(&wq->wq_queue, work, work_entry);
    383 		newly_queued = true;
    384 	} else {
    385 		KASSERT(wq0 == wq);
    386 		newly_queued = false;
    387 	}
    388 	mutex_exit(&wq->wq_lock);
    389 
    390 	return newly_queued;
    391 }
    392 
    393 bool
    394 cancel_work(struct work_struct *work)
    395 {
    396 	struct workqueue_struct *wq;
    397 	bool cancelled_p = false;
    398 
    399 	/* If there's no workqueue, nothing to cancel.   */
    400 	if ((wq = work->work_queue) == NULL)
    401 		goto out;
    402 
    403 	mutex_enter(&wq->wq_lock);
    404 	if (__predict_false(work->work_queue != wq)) {
    405 		cancelled_p = false;
    406 	} else if (wq->wq_current_work == work) {
    407 		cancelled_p = false;
    408 	} else {
    409 		TAILQ_REMOVE(&wq->wq_queue, work, work_entry);
    410 		cancelled_p = true;
    411 	}
    412 	mutex_exit(&wq->wq_lock);
    413 
    414 out:	return cancelled_p;
    415 }
    416 
    417 bool
    418 cancel_work_sync(struct work_struct *work)
    419 {
    420 	struct workqueue_struct *wq;
    421 	bool cancelled_p = false;
    422 
    423 	/* If there's no workqueue, nothing to cancel.   */
    424 	if ((wq = work->work_queue) == NULL)
    425 		goto out;
    426 
    427 	mutex_enter(&wq->wq_lock);
    428 	if (__predict_false(work->work_queue != wq)) {
    429 		cancelled_p = false;
    430 	} else if (wq->wq_current_work == work) {
    431 		do {
    432 			cv_wait(&wq->wq_cv, &wq->wq_lock);
    433 		} while (wq->wq_current_work == work);
    434 		cancelled_p = false;
    435 	} else {
    436 		TAILQ_REMOVE(&wq->wq_queue, work, work_entry);
    437 		cancelled_p = true;
    438 	}
    439 	mutex_exit(&wq->wq_lock);
    440 
    441 out:	return cancelled_p;
    442 }
    443 
    444 /*
    446  * Delayed work
    447  */
    448 
    449 void
    450 INIT_DELAYED_WORK(struct delayed_work *dw, void (*fn)(struct work_struct *))
    451 {
    452 
    453 	INIT_WORK(&dw->work, fn);
    454 	dw->dw_state = DELAYED_WORK_IDLE;
    455 
    456 	/*
    457 	 * Defer callout_init until we are going to schedule the
    458 	 * callout, which can then callout_destroy it, because
    459 	 * otherwise since there's no DESTROY_DELAYED_WORK or anything
    460 	 * we have no opportunity to call callout_destroy.
    461 	 */
    462 }
    463 
    464 bool
    465 schedule_delayed_work(struct delayed_work *dw, unsigned long ticks)
    466 {
    467 
    468 	return queue_delayed_work(system_wq, dw, ticks);
    469 }
    470 
    471 static void
    472 queue_delayed_work_anew(struct workqueue_struct *wq, struct delayed_work *dw,
    473     unsigned long ticks)
    474 {
    475 
    476 	KASSERT(mutex_owned(&wq->wq_lock));
    477 	KASSERT(dw->work.work_queue == wq);
    478 	KASSERT((dw->dw_state == DELAYED_WORK_IDLE) ||
    479 	    (dw->dw_state == DELAYED_WORK_SCHEDULED));
    480 
    481 	if (ticks == 0) {
    482 		if (dw->dw_state == DELAYED_WORK_SCHEDULED) {
    483 			callout_destroy(&dw->dw_callout);
    484 			TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
    485 		} else {
    486 			KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
    487 		}
    488 		TAILQ_INSERT_TAIL(&wq->wq_queue, &dw->work, work_entry);
    489 		dw->dw_state = DELAYED_WORK_IDLE;
    490 	} else {
    491 		if (dw->dw_state == DELAYED_WORK_IDLE) {
    492 			callout_init(&dw->dw_callout, CALLOUT_MPSAFE);
    493 			callout_reset(&dw->dw_callout, MIN(INT_MAX, ticks),
    494 			    &linux_workqueue_timeout, dw);
    495 			TAILQ_INSERT_HEAD(&wq->wq_delayed, dw, dw_entry);
    496 		} else {
    497 			KASSERT(dw->dw_state == DELAYED_WORK_SCHEDULED);
    498 		}
    499 		dw->dw_state = DELAYED_WORK_SCHEDULED;
    500 	}
    501 }
    502 
    503 static void
    504 cancel_delayed_work_done(struct workqueue_struct *wq, struct delayed_work *dw)
    505 {
    506 
    507 	KASSERT(mutex_owned(&wq->wq_lock));
    508 	KASSERT(dw->work.work_queue == wq);
    509 	KASSERT(dw->dw_state == DELAYED_WORK_CANCELLED);
    510 	dw->dw_state = DELAYED_WORK_IDLE;
    511 	callout_destroy(&dw->dw_callout);
    512 	TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
    513 	release_work(&dw->work, wq);
    514 	/* Can't touch dw after this point.  */
    515 }
    516 
    517 bool
    518 queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
    519     unsigned long ticks)
    520 {
    521 	struct workqueue_struct *wq0;
    522 	bool newly_queued;
    523 
    524 	mutex_enter(&wq->wq_lock);
    525 	if (__predict_true((wq0 = acquire_work(&dw->work, wq)) == NULL)) {
    526 		KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
    527 		queue_delayed_work_anew(wq, dw, ticks);
    528 		newly_queued = true;
    529 	} else {
    530 		KASSERT(wq0 == wq);
    531 		newly_queued = false;
    532 	}
    533 	mutex_exit(&wq->wq_lock);
    534 
    535 	return newly_queued;
    536 }
    537 
    538 bool
    539 mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
    540     unsigned long ticks)
    541 {
    542 	struct workqueue_struct *wq0;
    543 	bool timer_modified;
    544 
    545 	mutex_enter(&wq->wq_lock);
    546 	if ((wq0 = acquire_work(&dw->work, wq)) == NULL) {
    547 		KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
    548 		queue_delayed_work_anew(wq, dw, ticks);
    549 		timer_modified = false;
    550 	} else {
    551 		KASSERT(wq0 == wq);
    552 		switch (dw->dw_state) {
    553 		case DELAYED_WORK_IDLE:
    554 			if (wq->wq_current_work != &dw->work) {
    555 				/* Work is queued, but hasn't started yet.  */
    556 				TAILQ_REMOVE(&wq->wq_queue, &dw->work,
    557 				    work_entry);
    558 				queue_delayed_work_anew(wq, dw, ticks);
    559 				timer_modified = true;
    560 			} else {
    561 				/*
    562 				 * Too late.  Queue it anew.  If that
    563 				 * would skip the callout because it's
    564 				 * immediate, notify the workqueue.
    565 				 */
    566 				wq->wq_requeued = ticks == 0;
    567 				queue_delayed_work_anew(wq, dw, ticks);
    568 				timer_modified = false;
    569 			}
    570 			break;
    571 		case DELAYED_WORK_SCHEDULED:
    572 			if (callout_stop(&dw->dw_callout)) {
    573 				/*
    574 				 * Too late to stop, but we got in
    575 				 * before the callout acquired the
    576 				 * lock.  Reschedule it and tell it
    577 				 * we've done so.
    578 				 */
    579 				dw->dw_state = DELAYED_WORK_RESCHEDULED;
    580 				callout_schedule(&dw->dw_callout,
    581 				    MIN(INT_MAX, ticks));
    582 			} else {
    583 				/* Stopped it.  Queue it anew.  */
    584 				queue_delayed_work_anew(wq, dw, ticks);
    585 			}
    586 			timer_modified = true;
    587 			break;
    588 		case DELAYED_WORK_RESCHEDULED:
    589 		case DELAYED_WORK_CANCELLED:
    590 			/*
    591 			 * Someone modified the timer _again_, or
    592 			 * cancelled it, after the callout started but
    593 			 * before the poor thing even had a chance to
    594 			 * acquire the lock.  Just reschedule it once
    595 			 * more.
    596 			 */
    597 			callout_schedule(&dw->dw_callout, MIN(INT_MAX, ticks));
    598 			dw->dw_state = DELAYED_WORK_RESCHEDULED;
    599 			timer_modified = true;
    600 			break;
    601 		default:
    602 			panic("invalid delayed work state: %d",
    603 			    dw->dw_state);
    604 		}
    605 	}
    606 	mutex_exit(&wq->wq_lock);
    607 
    608 	return timer_modified;
    609 }
    610 
    611 bool
    612 cancel_delayed_work(struct delayed_work *dw)
    613 {
    614 	struct workqueue_struct *wq;
    615 	bool cancelled_p;
    616 
    617 	/* If there's no workqueue, nothing to cancel.   */
    618 	if ((wq = dw->work.work_queue) == NULL)
    619 		return false;
    620 
    621 	mutex_enter(&wq->wq_lock);
    622 	if (__predict_false(dw->work.work_queue != wq)) {
    623 		cancelled_p = false;
    624 	} else {
    625 		switch (dw->dw_state) {
    626 		case DELAYED_WORK_IDLE:
    627 			if (wq->wq_current_work == &dw->work) {
    628 				/* Too late, it's already running.  */
    629 				cancelled_p = false;
    630 			} else {
    631 				/* Got in before it started.  Remove it.  */
    632 				TAILQ_REMOVE(&wq->wq_queue, &dw->work,
    633 				    work_entry);
    634 				cancelled_p = true;
    635 			}
    636 			break;
    637 		case DELAYED_WORK_SCHEDULED:
    638 		case DELAYED_WORK_RESCHEDULED:
    639 		case DELAYED_WORK_CANCELLED:
    640 			/*
    641 			 * If it is scheduled, mark it cancelled and
    642 			 * try to stop the callout before it starts.
    643 			 *
    644 			 * If it's too late and the callout has already
    645 			 * begun to execute, tough.
    646 			 *
    647 			 * If we stopped the callout before it started,
    648 			 * however, then destroy the callout and
    649 			 * dissociate it from the workqueue ourselves.
    650 			 */
    651 			dw->dw_state = DELAYED_WORK_CANCELLED;
    652 			cancelled_p = true;
    653 			if (callout_stop(&dw->dw_callout))
    654 				break;
    655 			cancel_delayed_work_done(wq, dw);
    656 			break;
    657 		default:
    658 			panic("invalid delayed work state: %d",
    659 			    dw->dw_state);
    660 		}
    661 	}
    662 	mutex_exit(&wq->wq_lock);
    663 
    664 	return cancelled_p;
    665 }
    666 
    667 bool
    668 cancel_delayed_work_sync(struct delayed_work *dw)
    669 {
    670 	struct workqueue_struct *wq;
    671 	bool cancelled_p;
    672 
    673 	/* If there's no workqueue, nothing to cancel.  */
    674 	if ((wq = dw->work.work_queue) == NULL)
    675 		return false;
    676 
    677 	mutex_enter(&wq->wq_lock);
    678 	if (__predict_false(dw->work.work_queue != wq)) {
    679 		cancelled_p = false;
    680 	} else {
    681 		switch (dw->dw_state) {
    682 		case DELAYED_WORK_IDLE:
    683 			if (wq->wq_current_work == &dw->work) {
    684 				/* Too late, it's already running.  Wait.  */
    685 				do {
    686 					cv_wait(&wq->wq_cv, &wq->wq_lock);
    687 				} while (wq->wq_current_work == &dw->work);
    688 				cancelled_p = false;
    689 			} else {
    690 				/* Got in before it started.  Remove it.  */
    691 				TAILQ_REMOVE(&wq->wq_queue, &dw->work,
    692 				    work_entry);
    693 				cancelled_p = true;
    694 			}
    695 			break;
    696 		case DELAYED_WORK_SCHEDULED:
    697 		case DELAYED_WORK_RESCHEDULED:
    698 		case DELAYED_WORK_CANCELLED:
    699 			/*
    700 			 * If it is scheduled, mark it cancelled and
    701 			 * try to stop the callout before it starts.
    702 			 *
    703 			 * If it's too late and the callout has already
    704 			 * begun to execute, we must wait for it to
    705 			 * complete.  But we got in soon enough to ask
    706 			 * the callout not to run, so we successfully
    707 			 * cancelled it in that case.
    708 			 *
    709 			 * If we stopped the callout before it started,
    710 			 * however, then destroy the callout and
    711 			 * dissociate it from the workqueue ourselves.
    712 			 */
    713 			dw->dw_state = DELAYED_WORK_CANCELLED;
    714 			cancelled_p = true;
    715 			if (callout_halt(&dw->dw_callout, &wq->wq_lock))
    716 				break;
    717 			cancel_delayed_work_done(wq, dw);
    718 			break;
    719 		default:
    720 			panic("invalid delayed work state: %d",
    721 			    dw->dw_state);
    722 		}
    723 	}
    724 	mutex_exit(&wq->wq_lock);
    725 
    726 	return cancelled_p;
    727 }
    728 
    729 /*
    731  * Flush
    732  */
    733 
    734 void
    735 flush_scheduled_work(void)
    736 {
    737 
    738 	flush_workqueue(system_wq);
    739 }
    740 
    741 void
    742 flush_workqueue(struct workqueue_struct *wq)
    743 {
    744 	uint64_t gen;
    745 
    746 	mutex_enter(&wq->wq_lock);
    747 	if (wq->wq_current_work || !TAILQ_EMPTY(&wq->wq_queue)) {
    748 		gen = wq->wq_gen;
    749 		do {
    750 			cv_wait(&wq->wq_cv, &wq->wq_lock);
    751 		} while (gen == wq->wq_gen);
    752 	}
    753 	mutex_exit(&wq->wq_lock);
    754 }
    755 
    756 bool
    757 flush_work(struct work_struct *work)
    758 {
    759 	struct workqueue_struct *wq;
    760 
    761 	/* If there's no workqueue, nothing to flush.  */
    762 	if ((wq = work->work_queue) == NULL)
    763 		return false;
    764 
    765 	flush_workqueue(wq);
    766 	return true;
    767 }
    768 
    769 bool
    770 flush_delayed_work(struct delayed_work *dw)
    771 {
    772 	struct workqueue_struct *wq;
    773 	bool do_flush = false;
    774 
    775 	/* If there's no workqueue, nothing to flush.  */
    776 	if ((wq = dw->work.work_queue) == NULL)
    777 		return false;
    778 
    779 	mutex_enter(&wq->wq_lock);
    780 	if (__predict_false(dw->work.work_queue != wq)) {
    781 		do_flush = true;
    782 	} else {
    783 retry:		switch (dw->dw_state) {
    784 		case DELAYED_WORK_IDLE:
    785 			if (wq->wq_current_work != &dw->work) {
    786 				TAILQ_REMOVE(&wq->wq_queue, &dw->work,
    787 				    work_entry);
    788 			} else {
    789 				do_flush = true;
    790 			}
    791 			break;
    792 		case DELAYED_WORK_SCHEDULED:
    793 		case DELAYED_WORK_RESCHEDULED:
    794 		case DELAYED_WORK_CANCELLED:
    795 			dw->dw_state = DELAYED_WORK_CANCELLED;
    796 			callout_halt(&dw->dw_callout, &wq->wq_lock);
    797 			goto retry;
    798 		default:
    799 			panic("invalid delayed work state: %d",
    800 			    dw->dw_state);
    801 		}
    802 	}
    803 	mutex_exit(&wq->wq_lock);
    804 
    805 	if (do_flush)
    806 		flush_workqueue(wq);
    807 
    808 	return true;
    809 }
    810