linux_work.c revision 1.44.6.1 1 /* $NetBSD: linux_work.c,v 1.44.6.1 2020/02/29 20:20:12 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: linux_work.c,v 1.44.6.1 2020/02/29 20:20:12 ad Exp $");
34
35 #include <sys/types.h>
36 #include <sys/atomic.h>
37 #include <sys/callout.h>
38 #include <sys/condvar.h>
39 #include <sys/errno.h>
40 #include <sys/kmem.h>
41 #include <sys/kthread.h>
42 #include <sys/lwp.h>
43 #include <sys/mutex.h>
44 #ifndef _MODULE
45 #include <sys/once.h>
46 #endif
47 #include <sys/queue.h>
48 #include <sys/sdt.h>
49
50 #include <linux/workqueue.h>
51
52 TAILQ_HEAD(work_head, work_struct);
53 TAILQ_HEAD(dwork_head, delayed_work);
54
55 struct workqueue_struct {
56 kmutex_t wq_lock;
57 kcondvar_t wq_cv;
58 struct dwork_head wq_delayed; /* delayed work scheduled */
59 struct work_head wq_queue; /* work to run */
60 struct work_head wq_dqueue; /* delayed work to run now */
61 struct work_struct *wq_current_work;
62 int wq_flags;
63 bool wq_dying;
64 uint64_t wq_gen;
65 struct lwp *wq_lwp;
66 };
67
68 static void __dead linux_workqueue_thread(void *);
69 static void linux_workqueue_timeout(void *);
70 static bool work_claimed(struct work_struct *,
71 struct workqueue_struct *);
72 static struct workqueue_struct *
73 work_queue(struct work_struct *);
74 static bool acquire_work(struct work_struct *,
75 struct workqueue_struct *);
76 static void release_work(struct work_struct *,
77 struct workqueue_struct *);
78 static void wait_for_current_work(struct work_struct *,
79 struct workqueue_struct *);
80 static void dw_callout_init(struct workqueue_struct *,
81 struct delayed_work *);
82 static void dw_callout_destroy(struct workqueue_struct *,
83 struct delayed_work *);
84 static void cancel_delayed_work_done(struct workqueue_struct *,
85 struct delayed_work *);
86
87 SDT_PROBE_DEFINE2(sdt, linux, work, acquire,
88 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
89 SDT_PROBE_DEFINE2(sdt, linux, work, release,
90 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
91 SDT_PROBE_DEFINE2(sdt, linux, work, queue,
92 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
93 SDT_PROBE_DEFINE2(sdt, linux, work, cancel,
94 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
95 SDT_PROBE_DEFINE3(sdt, linux, work, schedule,
96 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/,
97 "unsigned long"/*ticks*/);
98 SDT_PROBE_DEFINE2(sdt, linux, work, timer,
99 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/);
100 SDT_PROBE_DEFINE2(sdt, linux, work, wait__start,
101 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/);
102 SDT_PROBE_DEFINE2(sdt, linux, work, wait__done,
103 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/);
104 SDT_PROBE_DEFINE2(sdt, linux, work, run,
105 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
106 SDT_PROBE_DEFINE2(sdt, linux, work, done,
107 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
108 SDT_PROBE_DEFINE1(sdt, linux, work, batch__start,
109 "struct workqueue_struct *"/*wq*/);
110 SDT_PROBE_DEFINE1(sdt, linux, work, batch__done,
111 "struct workqueue_struct *"/*wq*/);
112 SDT_PROBE_DEFINE1(sdt, linux, work, flush__start,
113 "struct workqueue_struct *"/*wq*/);
114 SDT_PROBE_DEFINE1(sdt, linux, work, flush__done,
115 "struct workqueue_struct *"/*wq*/);
116
117 static specificdata_key_t workqueue_key __read_mostly;
118
119 struct workqueue_struct *system_wq __read_mostly;
120 struct workqueue_struct *system_long_wq __read_mostly;
121 struct workqueue_struct *system_power_efficient_wq __read_mostly;
122
123 static inline uintptr_t
124 atomic_cas_uintptr(volatile uintptr_t *p, uintptr_t old, uintptr_t new)
125 {
126
127 return (uintptr_t)atomic_cas_ptr(p, (void *)old, (void *)new);
128 }
129
130 /*
131 * linux_workqueue_init()
132 *
133 * Initialize the Linux workqueue subsystem. Return 0 on success,
134 * NetBSD error on failure.
135 */
136 static int
137 linux_workqueue_init0(void)
138 {
139 int error;
140
141 error = lwp_specific_key_create(&workqueue_key, NULL);
142 if (error)
143 goto fail0;
144
145 system_wq = alloc_ordered_workqueue("lnxsyswq", 0);
146 if (system_wq == NULL) {
147 error = ENOMEM;
148 goto fail1;
149 }
150
151 system_long_wq = alloc_ordered_workqueue("lnxlngwq", 0);
152 if (system_long_wq == NULL) {
153 error = ENOMEM;
154 goto fail2;
155 }
156
157 system_power_efficient_wq = alloc_ordered_workqueue("lnxpwrwq", 0);
158 if (system_long_wq == NULL) {
159 error = ENOMEM;
160 goto fail3;
161 }
162
163 return 0;
164
165 fail4: __unused
166 destroy_workqueue(system_power_efficient_wq);
167 fail3: destroy_workqueue(system_long_wq);
168 fail2: destroy_workqueue(system_wq);
169 fail1: lwp_specific_key_delete(workqueue_key);
170 fail0: KASSERT(error);
171 return error;
172 }
173
174 /*
175 * linux_workqueue_fini()
176 *
177 * Destroy the Linux workqueue subsystem. Never fails.
178 */
179 static void
180 linux_workqueue_fini0(void)
181 {
182
183 destroy_workqueue(system_power_efficient_wq);
184 destroy_workqueue(system_long_wq);
185 destroy_workqueue(system_wq);
186 lwp_specific_key_delete(workqueue_key);
187 }
188
189 #ifndef _MODULE
190 static ONCE_DECL(linux_workqueue_init_once);
191 #endif
192
193 int
194 linux_workqueue_init(void)
195 {
196 #ifdef _MODULE
197 return linux_workqueue_init0();
198 #else
199 return INIT_ONCE(&linux_workqueue_init_once, &linux_workqueue_init0);
200 #endif
201 }
202
203 void
204 linux_workqueue_fini(void)
205 {
206 #ifdef _MODULE
207 return linux_workqueue_fini0();
208 #else
209 return FINI_ONCE(&linux_workqueue_init_once, &linux_workqueue_fini0);
210 #endif
211 }
212
213 /*
215 * Workqueues
216 */
217
218 /*
219 * alloc_ordered_workqueue(name, flags)
220 *
221 * Create a workqueue of the given name. No flags are currently
222 * defined. Return NULL on failure, pointer to struct
223 * workqueue_struct object on success.
224 */
225 struct workqueue_struct *
226 alloc_ordered_workqueue(const char *name, int flags)
227 {
228 struct workqueue_struct *wq;
229 int error;
230
231 KASSERT(flags == 0);
232
233 wq = kmem_zalloc(sizeof(*wq), KM_SLEEP);
234
235 mutex_init(&wq->wq_lock, MUTEX_DEFAULT, IPL_VM);
236 cv_init(&wq->wq_cv, name);
237 TAILQ_INIT(&wq->wq_delayed);
238 TAILQ_INIT(&wq->wq_queue);
239 TAILQ_INIT(&wq->wq_dqueue);
240 wq->wq_current_work = NULL;
241 wq->wq_flags = 0;
242 wq->wq_dying = false;
243 wq->wq_gen = 0;
244 wq->wq_lwp = NULL;
245
246 error = kthread_create(PRI_NONE,
247 KTHREAD_MPSAFE|KTHREAD_TS|KTHREAD_MUSTJOIN, NULL,
248 &linux_workqueue_thread, wq, &wq->wq_lwp, "%s", name);
249 if (error)
250 goto fail0;
251
252 return wq;
253
254 fail0: KASSERT(TAILQ_EMPTY(&wq->wq_dqueue));
255 KASSERT(TAILQ_EMPTY(&wq->wq_queue));
256 KASSERT(TAILQ_EMPTY(&wq->wq_delayed));
257 cv_destroy(&wq->wq_cv);
258 mutex_destroy(&wq->wq_lock);
259 kmem_free(wq, sizeof(*wq));
260 return NULL;
261 }
262
263 /*
264 * destroy_workqueue(wq)
265 *
266 * Destroy a workqueue created with wq. Cancel any pending
267 * delayed work. Wait for all queued work to complete.
268 *
269 * May sleep.
270 */
271 void
272 destroy_workqueue(struct workqueue_struct *wq)
273 {
274
275 /*
276 * Cancel all delayed work. We do this first because any
277 * delayed work that that has already timed out, which we can't
278 * cancel, may have queued new work.
279 */
280 mutex_enter(&wq->wq_lock);
281 while (!TAILQ_EMPTY(&wq->wq_delayed)) {
282 struct delayed_work *const dw = TAILQ_FIRST(&wq->wq_delayed);
283
284 KASSERT(work_queue(&dw->work) == wq);
285 KASSERTMSG((dw->dw_state == DELAYED_WORK_SCHEDULED ||
286 dw->dw_state == DELAYED_WORK_RESCHEDULED ||
287 dw->dw_state == DELAYED_WORK_CANCELLED),
288 "delayed work %p in bad state: %d",
289 dw, dw->dw_state);
290
291 /*
292 * Mark it cancelled and try to stop the callout before
293 * it starts.
294 *
295 * If it's too late and the callout has already begun
296 * to execute, then it will notice that we asked to
297 * cancel it and remove itself from the queue before
298 * returning.
299 *
300 * If we stopped the callout before it started,
301 * however, then we can safely destroy the callout and
302 * dissociate it from the workqueue ourselves.
303 */
304 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
305 dw->dw_state = DELAYED_WORK_CANCELLED;
306 if (!callout_halt(&dw->dw_callout, &wq->wq_lock))
307 cancel_delayed_work_done(wq, dw);
308 }
309 mutex_exit(&wq->wq_lock);
310
311 /*
312 * At this point, no new work can be put on the queue.
313 */
314
315 /* Tell the thread to exit. */
316 mutex_enter(&wq->wq_lock);
317 wq->wq_dying = true;
318 cv_broadcast(&wq->wq_cv);
319 mutex_exit(&wq->wq_lock);
320
321 /* Wait for it to exit. */
322 (void)kthread_join(wq->wq_lwp);
323
324 KASSERT(wq->wq_dying);
325 KASSERT(wq->wq_flags == 0);
326 KASSERT(wq->wq_current_work == NULL);
327 KASSERT(TAILQ_EMPTY(&wq->wq_dqueue));
328 KASSERT(TAILQ_EMPTY(&wq->wq_queue));
329 KASSERT(TAILQ_EMPTY(&wq->wq_delayed));
330 cv_destroy(&wq->wq_cv);
331 mutex_destroy(&wq->wq_lock);
332
333 kmem_free(wq, sizeof(*wq));
334 }
335
336 /*
338 * Work thread and callout
339 */
340
341 /*
342 * linux_workqueue_thread(cookie)
343 *
344 * Main function for a workqueue's worker thread. Waits until
345 * there is work queued, grabs a batch of work off the queue,
346 * executes it all, bumps the generation number, and repeats,
347 * until dying.
348 */
349 static void __dead
350 linux_workqueue_thread(void *cookie)
351 {
352 struct workqueue_struct *const wq = cookie;
353 struct work_head *const q[2] = { &wq->wq_queue, &wq->wq_dqueue };
354 struct work_struct marker, *work;
355 unsigned i;
356
357 lwp_setspecific(workqueue_key, wq);
358
359 mutex_enter(&wq->wq_lock);
360 for (;;) {
361 /*
362 * Wait until there's activity. If there's no work and
363 * we're dying, stop here.
364 */
365 if (TAILQ_EMPTY(&wq->wq_queue) &&
366 TAILQ_EMPTY(&wq->wq_dqueue)) {
367 if (wq->wq_dying)
368 break;
369 cv_wait(&wq->wq_cv, &wq->wq_lock);
370 continue;
371 }
372
373 /*
374 * Start a batch of work. Use a marker to delimit when
375 * the batch ends so we can advance the generation
376 * after the batch.
377 */
378 SDT_PROBE1(sdt, linux, work, batch__start, wq);
379 for (i = 0; i < 2; i++) {
380 if (TAILQ_EMPTY(q[i]))
381 continue;
382 TAILQ_INSERT_TAIL(q[i], &marker, work_entry);
383 while ((work = TAILQ_FIRST(q[i])) != &marker) {
384 void (*func)(struct work_struct *);
385
386 KASSERT(work_queue(work) == wq);
387 KASSERT(work_claimed(work, wq));
388 KASSERTMSG((q[i] != &wq->wq_dqueue ||
389 container_of(work, struct delayed_work,
390 work)->dw_state ==
391 DELAYED_WORK_IDLE),
392 "delayed work %p queued and scheduled",
393 work);
394
395 TAILQ_REMOVE(q[i], work, work_entry);
396 KASSERT(wq->wq_current_work == NULL);
397 wq->wq_current_work = work;
398 func = work->func;
399 release_work(work, wq);
400 /* Can't dereference work after this point. */
401
402 mutex_exit(&wq->wq_lock);
403 SDT_PROBE2(sdt, linux, work, run, work, wq);
404 (*func)(work);
405 SDT_PROBE2(sdt, linux, work, done, work, wq);
406 mutex_enter(&wq->wq_lock);
407
408 KASSERT(wq->wq_current_work == work);
409 wq->wq_current_work = NULL;
410 cv_broadcast(&wq->wq_cv);
411 }
412 TAILQ_REMOVE(q[i], &marker, work_entry);
413 }
414
415 /* Notify flush that we've completed a batch of work. */
416 wq->wq_gen++;
417 cv_broadcast(&wq->wq_cv);
418 SDT_PROBE1(sdt, linux, work, batch__done, wq);
419 }
420 mutex_exit(&wq->wq_lock);
421
422 kthread_exit(0);
423 }
424
425 /*
426 * linux_workqueue_timeout(cookie)
427 *
428 * Delayed work timeout callback.
429 *
430 * - If scheduled, queue it.
431 * - If rescheduled, callout_schedule ourselves again.
432 * - If cancelled, destroy the callout and release the work from
433 * the workqueue.
434 */
435 static void
436 linux_workqueue_timeout(void *cookie)
437 {
438 struct delayed_work *const dw = cookie;
439 struct workqueue_struct *const wq = work_queue(&dw->work);
440
441 KASSERTMSG(wq != NULL,
442 "delayed work %p state %d resched %d",
443 dw, dw->dw_state, dw->dw_resched);
444
445 SDT_PROBE2(sdt, linux, work, timer, dw, wq);
446
447 mutex_enter(&wq->wq_lock);
448 KASSERT(work_queue(&dw->work) == wq);
449 switch (dw->dw_state) {
450 case DELAYED_WORK_IDLE:
451 panic("delayed work callout uninitialized: %p", dw);
452 case DELAYED_WORK_SCHEDULED:
453 dw_callout_destroy(wq, dw);
454 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work, work_entry);
455 cv_broadcast(&wq->wq_cv);
456 SDT_PROBE2(sdt, linux, work, queue, &dw->work, wq);
457 break;
458 case DELAYED_WORK_RESCHEDULED:
459 KASSERT(dw->dw_resched >= 0);
460 callout_schedule(&dw->dw_callout, dw->dw_resched);
461 dw->dw_state = DELAYED_WORK_SCHEDULED;
462 dw->dw_resched = -1;
463 break;
464 case DELAYED_WORK_CANCELLED:
465 cancel_delayed_work_done(wq, dw);
466 /* Can't dereference dw after this point. */
467 goto out;
468 default:
469 panic("delayed work callout in bad state: %p", dw);
470 }
471 KASSERT(dw->dw_state == DELAYED_WORK_IDLE ||
472 dw->dw_state == DELAYED_WORK_SCHEDULED);
473 out: mutex_exit(&wq->wq_lock);
474 }
475
476 /*
477 * current_work()
478 *
479 * If in a workqueue worker thread, return the work it is
480 * currently executing. Otherwise return NULL.
481 */
482 struct work_struct *
483 current_work(void)
484 {
485 struct workqueue_struct *wq = lwp_getspecific(workqueue_key);
486
487 /* If we're not a workqueue thread, then there's no work. */
488 if (wq == NULL)
489 return NULL;
490
491 /*
492 * Otherwise, this should be possible only while work is in
493 * progress. Return the current work item.
494 */
495 KASSERT(wq->wq_current_work != NULL);
496 return wq->wq_current_work;
497 }
498
499 /*
501 * Work
502 */
503
504 /*
505 * INIT_WORK(work, fn)
506 *
507 * Initialize work for use with a workqueue to call fn in a worker
508 * thread. There is no corresponding destruction operation.
509 */
510 void
511 INIT_WORK(struct work_struct *work, void (*fn)(struct work_struct *))
512 {
513
514 work->work_owner = 0;
515 work->func = fn;
516 }
517
518 /*
519 * work_claimed(work, wq)
520 *
521 * True if work is currently claimed by a workqueue, meaning it is
522 * either on the queue or scheduled in a callout. The workqueue
523 * must be wq, and caller must hold wq's lock.
524 */
525 static bool
526 work_claimed(struct work_struct *work, struct workqueue_struct *wq)
527 {
528
529 KASSERT(work_queue(work) == wq);
530 KASSERT(mutex_owned(&wq->wq_lock));
531
532 return work->work_owner & 1;
533 }
534
535 /*
536 * work_queue(work)
537 *
538 * Return the last queue that work was queued on, or NULL if it
539 * was never queued.
540 */
541 static struct workqueue_struct *
542 work_queue(struct work_struct *work)
543 {
544
545 return (struct workqueue_struct *)(work->work_owner & ~(uintptr_t)1);
546 }
547
548 /*
549 * acquire_work(work, wq)
550 *
551 * Try to claim work for wq. If work is already claimed, it must
552 * be claimed by wq; return false. If work is not already
553 * claimed, claim it, issue a memory barrier to match any prior
554 * release_work, and return true.
555 *
556 * Caller must hold wq's lock.
557 */
558 static bool
559 acquire_work(struct work_struct *work, struct workqueue_struct *wq)
560 {
561 uintptr_t owner0, owner;
562
563 KASSERT(mutex_owned(&wq->wq_lock));
564 KASSERT(((uintptr_t)wq & 1) == 0);
565
566 owner = (uintptr_t)wq | 1;
567 do {
568 owner0 = work->work_owner;
569 if (owner0 & 1) {
570 KASSERT((owner0 & ~(uintptr_t)1) == (uintptr_t)wq);
571 return false;
572 }
573 KASSERT(owner0 == (uintptr_t)NULL || owner0 == (uintptr_t)wq);
574 } while (atomic_cas_uintptr(&work->work_owner, owner0, owner) !=
575 owner0);
576
577 KASSERT(work_queue(work) == wq);
578 membar_enter();
579 SDT_PROBE2(sdt, linux, work, acquire, work, wq);
580 return true;
581 }
582
583 /*
584 * release_work(work, wq)
585 *
586 * Issue a memory barrier to match any subsequent acquire_work and
587 * dissociate work from wq.
588 *
589 * Caller must hold wq's lock and work must be associated with wq.
590 */
591 static void
592 release_work(struct work_struct *work, struct workqueue_struct *wq)
593 {
594
595 KASSERT(work_queue(work) == wq);
596 KASSERT(mutex_owned(&wq->wq_lock));
597
598 SDT_PROBE2(sdt, linux, work, release, work, wq);
599 membar_exit();
600
601 /*
602 * Non-interlocked r/m/w is safe here because nobody else can
603 * write to this while the claimed bit is setand the workqueue
604 * lock is held.
605 */
606 work->work_owner &= ~(uintptr_t)1;
607 }
608
609 /*
610 * schedule_work(work)
611 *
612 * If work is not already queued on system_wq, queue it to be run
613 * by system_wq's worker thread when it next can. True if it was
614 * newly queued, false if it was already queued. If the work was
615 * already running, queue it to run again.
616 *
617 * Caller must ensure work is not queued to run on a different
618 * workqueue.
619 */
620 bool
621 schedule_work(struct work_struct *work)
622 {
623
624 return queue_work(system_wq, work);
625 }
626
627 /*
628 * queue_work(wq, work)
629 *
630 * If work is not already queued on wq, queue it to be run by wq's
631 * worker thread when it next can. True if it was newly queued,
632 * false if it was already queued. If the work was already
633 * running, queue it to run again.
634 *
635 * Caller must ensure work is not queued to run on a different
636 * workqueue.
637 */
638 bool
639 queue_work(struct workqueue_struct *wq, struct work_struct *work)
640 {
641 bool newly_queued;
642
643 KASSERT(wq != NULL);
644
645 mutex_enter(&wq->wq_lock);
646 if (__predict_true(acquire_work(work, wq))) {
647 /*
648 * It wasn't on any workqueue at all. Put it on this
649 * one, and signal the worker thread that there is work
650 * to do.
651 */
652 TAILQ_INSERT_TAIL(&wq->wq_queue, work, work_entry);
653 cv_broadcast(&wq->wq_cv);
654 SDT_PROBE2(sdt, linux, work, queue, work, wq);
655 newly_queued = true;
656 } else {
657 /*
658 * It was already on this workqueue. Nothing to do
659 * since it is already queued.
660 */
661 newly_queued = false;
662 }
663 mutex_exit(&wq->wq_lock);
664
665 return newly_queued;
666 }
667
668 /*
669 * cancel_work(work)
670 *
671 * If work was queued, remove it from the queue and return true.
672 * If work was not queued, return false. Work may still be
673 * running when this returns.
674 */
675 bool
676 cancel_work(struct work_struct *work)
677 {
678 struct workqueue_struct *wq;
679 bool cancelled_p = false;
680
681 /* If there's no workqueue, nothing to cancel. */
682 if ((wq = work_queue(work)) == NULL)
683 goto out;
684
685 mutex_enter(&wq->wq_lock);
686 if (__predict_false(work_queue(work) != wq)) {
687 /*
688 * It has finished execution or been cancelled by
689 * another thread, and has been moved off the
690 * workqueue, so it's too to cancel.
691 */
692 cancelled_p = false;
693 } else {
694 /* Check whether it's on the queue. */
695 if (work_claimed(work, wq)) {
696 /*
697 * It is still on the queue. Take it off the
698 * queue and report successful cancellation.
699 */
700 TAILQ_REMOVE(&wq->wq_queue, work, work_entry);
701 SDT_PROBE2(sdt, linux, work, cancel, work, wq);
702 release_work(work, wq);
703 /* Can't dereference work after this point. */
704 cancelled_p = true;
705 } else {
706 /* Not on the queue. Couldn't cancel it. */
707 cancelled_p = false;
708 }
709 }
710 mutex_exit(&wq->wq_lock);
711
712 out: return cancelled_p;
713 }
714
715 /*
716 * cancel_work_sync(work)
717 *
718 * If work was queued, remove it from the queue and return true.
719 * If work was not queued, return false. Either way, if work is
720 * currently running, wait for it to complete.
721 *
722 * May sleep.
723 */
724 bool
725 cancel_work_sync(struct work_struct *work)
726 {
727 struct workqueue_struct *wq;
728 bool cancelled_p = false;
729
730 /* If there's no workqueue, nothing to cancel. */
731 if ((wq = work_queue(work)) == NULL)
732 goto out;
733
734 mutex_enter(&wq->wq_lock);
735 if (__predict_false(work_queue(work) != wq)) {
736 /*
737 * It has finished execution or been cancelled by
738 * another thread, and has been moved off the
739 * workqueue, so it's too late to cancel.
740 */
741 cancelled_p = false;
742 } else {
743 /* Check whether it's on the queue. */
744 if (work_claimed(work, wq)) {
745 /*
746 * It is still on the queue. Take it off the
747 * queue and report successful cancellation.
748 */
749 TAILQ_REMOVE(&wq->wq_queue, work, work_entry);
750 SDT_PROBE2(sdt, linux, work, cancel, work, wq);
751 release_work(work, wq);
752 /* Can't dereference work after this point. */
753 cancelled_p = true;
754 } else {
755 /* Not on the queue. Couldn't cancel it. */
756 cancelled_p = false;
757 }
758 /* If it's still running, wait for it to complete. */
759 if (wq->wq_current_work == work)
760 wait_for_current_work(work, wq);
761 }
762 mutex_exit(&wq->wq_lock);
763
764 out: return cancelled_p;
765 }
766
767 /*
768 * wait_for_current_work(work, wq)
769 *
770 * wq must be currently executing work. Wait for it to finish.
771 *
772 * Does not dereference work.
773 */
774 static void
775 wait_for_current_work(struct work_struct *work, struct workqueue_struct *wq)
776 {
777 uint64_t gen;
778
779 KASSERT(mutex_owned(&wq->wq_lock));
780 KASSERT(wq->wq_current_work == work);
781
782 /* Wait only one generation in case it gets requeued quickly. */
783 SDT_PROBE2(sdt, linux, work, wait__start, work, wq);
784 gen = wq->wq_gen;
785 do {
786 cv_wait(&wq->wq_cv, &wq->wq_lock);
787 } while (wq->wq_current_work == work && wq->wq_gen == gen);
788 SDT_PROBE2(sdt, linux, work, wait__done, work, wq);
789 }
790
791 /*
793 * Delayed work
794 */
795
796 /*
797 * INIT_DELAYED_WORK(dw, fn)
798 *
799 * Initialize dw for use with a workqueue to call fn in a worker
800 * thread after a delay. There is no corresponding destruction
801 * operation.
802 */
803 void
804 INIT_DELAYED_WORK(struct delayed_work *dw, void (*fn)(struct work_struct *))
805 {
806
807 INIT_WORK(&dw->work, fn);
808 dw->dw_state = DELAYED_WORK_IDLE;
809 dw->dw_resched = -1;
810
811 /*
812 * Defer callout_init until we are going to schedule the
813 * callout, which can then callout_destroy it, because
814 * otherwise since there's no DESTROY_DELAYED_WORK or anything
815 * we have no opportunity to call callout_destroy.
816 */
817 }
818
819 /*
820 * schedule_delayed_work(dw, ticks)
821 *
822 * If it is not currently scheduled, schedule dw to run after
823 * ticks on system_wq. If currently executing and not already
824 * rescheduled, reschedule it. True if it was newly scheduled,
825 * false if it was already scheduled.
826 *
827 * If ticks == 0, queue it to run as soon as the worker can,
828 * without waiting for the next callout tick to run.
829 */
830 bool
831 schedule_delayed_work(struct delayed_work *dw, unsigned long ticks)
832 {
833
834 return queue_delayed_work(system_wq, dw, ticks);
835 }
836
837 /*
838 * dw_callout_init(wq, dw)
839 *
840 * Initialize the callout of dw and transition to
841 * DELAYED_WORK_SCHEDULED. Caller must use callout_schedule.
842 */
843 static void
844 dw_callout_init(struct workqueue_struct *wq, struct delayed_work *dw)
845 {
846
847 KASSERT(mutex_owned(&wq->wq_lock));
848 KASSERT(work_queue(&dw->work) == wq);
849 KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
850
851 callout_init(&dw->dw_callout, CALLOUT_MPSAFE);
852 callout_setfunc(&dw->dw_callout, &linux_workqueue_timeout, dw);
853 TAILQ_INSERT_HEAD(&wq->wq_delayed, dw, dw_entry);
854 dw->dw_state = DELAYED_WORK_SCHEDULED;
855 }
856
857 /*
858 * dw_callout_destroy(wq, dw)
859 *
860 * Destroy the callout of dw and transition to DELAYED_WORK_IDLE.
861 */
862 static void
863 dw_callout_destroy(struct workqueue_struct *wq, struct delayed_work *dw)
864 {
865
866 KASSERT(mutex_owned(&wq->wq_lock));
867 KASSERT(work_queue(&dw->work) == wq);
868 KASSERT(dw->dw_state == DELAYED_WORK_SCHEDULED ||
869 dw->dw_state == DELAYED_WORK_RESCHEDULED ||
870 dw->dw_state == DELAYED_WORK_CANCELLED);
871
872 TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
873 callout_destroy(&dw->dw_callout);
874 dw->dw_resched = -1;
875 dw->dw_state = DELAYED_WORK_IDLE;
876 }
877
878 /*
879 * cancel_delayed_work_done(wq, dw)
880 *
881 * Complete cancellation of a delayed work: transition from
882 * DELAYED_WORK_CANCELLED to DELAYED_WORK_IDLE and off the
883 * workqueue. Caller must not dereference dw after this returns.
884 */
885 static void
886 cancel_delayed_work_done(struct workqueue_struct *wq, struct delayed_work *dw)
887 {
888
889 KASSERT(mutex_owned(&wq->wq_lock));
890 KASSERT(work_queue(&dw->work) == wq);
891 KASSERT(dw->dw_state == DELAYED_WORK_CANCELLED);
892
893 dw_callout_destroy(wq, dw);
894 release_work(&dw->work, wq);
895 /* Can't dereference dw after this point. */
896 }
897
898 /*
899 * queue_delayed_work(wq, dw, ticks)
900 *
901 * If it is not currently scheduled, schedule dw to run after
902 * ticks on wq. If currently queued, remove it from the queue
903 * first.
904 *
905 * If ticks == 0, queue it to run as soon as the worker can,
906 * without waiting for the next callout tick to run.
907 */
908 bool
909 queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
910 unsigned long ticks)
911 {
912 bool newly_queued;
913
914 mutex_enter(&wq->wq_lock);
915 if (__predict_true(acquire_work(&dw->work, wq))) {
916 /*
917 * It wasn't on any workqueue at all. Schedule it to
918 * run on this one.
919 */
920 KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
921 if (ticks == 0) {
922 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work,
923 work_entry);
924 cv_broadcast(&wq->wq_cv);
925 SDT_PROBE2(sdt, linux, work, queue, &dw->work, wq);
926 } else {
927 /*
928 * Initialize a callout and schedule to run
929 * after a delay.
930 */
931 dw_callout_init(wq, dw);
932 callout_schedule(&dw->dw_callout, MIN(INT_MAX, ticks));
933 SDT_PROBE3(sdt, linux, work, schedule, dw, wq, ticks);
934 }
935 newly_queued = true;
936 } else {
937 /* It was already on this workqueue. */
938 switch (dw->dw_state) {
939 case DELAYED_WORK_IDLE:
940 case DELAYED_WORK_SCHEDULED:
941 case DELAYED_WORK_RESCHEDULED:
942 /* On the queue or already scheduled. Leave it. */
943 newly_queued = false;
944 break;
945 case DELAYED_WORK_CANCELLED:
946 /*
947 * Scheduled and the callout began, but it was
948 * cancelled. Reschedule it.
949 */
950 if (ticks == 0) {
951 dw->dw_state = DELAYED_WORK_SCHEDULED;
952 SDT_PROBE2(sdt, linux, work, queue,
953 &dw->work, wq);
954 } else {
955 dw->dw_state = DELAYED_WORK_RESCHEDULED;
956 dw->dw_resched = MIN(INT_MAX, ticks);
957 SDT_PROBE3(sdt, linux, work, schedule,
958 dw, wq, ticks);
959 }
960 newly_queued = true;
961 break;
962 default:
963 panic("invalid delayed work state: %d",
964 dw->dw_state);
965 }
966 }
967 mutex_exit(&wq->wq_lock);
968
969 return newly_queued;
970 }
971
972 /*
973 * mod_delayed_work(wq, dw, ticks)
974 *
975 * Schedule dw to run after ticks. If scheduled or queued,
976 * reschedule. If ticks == 0, run without delay.
977 *
978 * True if it modified the timer of an already scheduled work,
979 * false if it newly scheduled the work.
980 */
981 bool
982 mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
983 unsigned long ticks)
984 {
985 bool timer_modified;
986
987 mutex_enter(&wq->wq_lock);
988 if (acquire_work(&dw->work, wq)) {
989 /*
990 * It wasn't on any workqueue at all. Schedule it to
991 * run on this one.
992 */
993 KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
994 if (ticks == 0) {
995 /*
996 * Run immediately: put it on the queue and
997 * signal the worker thread.
998 */
999 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work,
1000 work_entry);
1001 cv_broadcast(&wq->wq_cv);
1002 SDT_PROBE2(sdt, linux, work, queue, &dw->work, wq);
1003 } else {
1004 /*
1005 * Initialize a callout and schedule to run
1006 * after a delay.
1007 */
1008 dw_callout_init(wq, dw);
1009 callout_schedule(&dw->dw_callout, MIN(INT_MAX, ticks));
1010 SDT_PROBE3(sdt, linux, work, schedule, dw, wq, ticks);
1011 }
1012 timer_modified = false;
1013 } else {
1014 /* It was already on this workqueue. */
1015 switch (dw->dw_state) {
1016 case DELAYED_WORK_IDLE:
1017 /* On the queue. */
1018 if (ticks == 0) {
1019 /* Leave it be. */
1020 SDT_PROBE2(sdt, linux, work, cancel,
1021 &dw->work, wq);
1022 SDT_PROBE2(sdt, linux, work, queue,
1023 &dw->work, wq);
1024 } else {
1025 /* Remove from the queue and schedule. */
1026 TAILQ_REMOVE(&wq->wq_dqueue, &dw->work,
1027 work_entry);
1028 dw_callout_init(wq, dw);
1029 callout_schedule(&dw->dw_callout,
1030 MIN(INT_MAX, ticks));
1031 SDT_PROBE2(sdt, linux, work, cancel,
1032 &dw->work, wq);
1033 SDT_PROBE3(sdt, linux, work, schedule,
1034 dw, wq, ticks);
1035 }
1036 timer_modified = true;
1037 break;
1038 case DELAYED_WORK_SCHEDULED:
1039 /*
1040 * It is scheduled to run after a delay. Try
1041 * to stop it and reschedule it; if we can't,
1042 * either reschedule it or cancel it to put it
1043 * on the queue, and inform the callout.
1044 */
1045 if (callout_stop(&dw->dw_callout)) {
1046 /* Can't stop, callout has begun. */
1047 if (ticks == 0) {
1048 /*
1049 * We don't actually need to do
1050 * anything. The callout will
1051 * queue it as soon as it gets
1052 * the lock.
1053 */
1054 SDT_PROBE2(sdt, linux, work, cancel,
1055 &dw->work, wq);
1056 SDT_PROBE2(sdt, linux, work, queue,
1057 &dw->work, wq);
1058 } else {
1059 /* Ask the callout to reschedule. */
1060 dw->dw_state = DELAYED_WORK_RESCHEDULED;
1061 dw->dw_resched = MIN(INT_MAX, ticks);
1062 SDT_PROBE2(sdt, linux, work, cancel,
1063 &dw->work, wq);
1064 SDT_PROBE3(sdt, linux, work, schedule,
1065 dw, wq, ticks);
1066 }
1067 } else {
1068 /* We stopped the callout before it began. */
1069 if (ticks == 0) {
1070 /*
1071 * Run immediately: destroy the
1072 * callout, put it on the
1073 * queue, and signal the worker
1074 * thread.
1075 */
1076 dw_callout_destroy(wq, dw);
1077 TAILQ_INSERT_TAIL(&wq->wq_dqueue,
1078 &dw->work, work_entry);
1079 cv_broadcast(&wq->wq_cv);
1080 SDT_PROBE2(sdt, linux, work, cancel,
1081 &dw->work, wq);
1082 SDT_PROBE2(sdt, linux, work, queue,
1083 &dw->work, wq);
1084 } else {
1085 /*
1086 * Reschedule the callout. No
1087 * state change.
1088 */
1089 callout_schedule(&dw->dw_callout,
1090 MIN(INT_MAX, ticks));
1091 SDT_PROBE2(sdt, linux, work, cancel,
1092 &dw->work, wq);
1093 SDT_PROBE3(sdt, linux, work, schedule,
1094 dw, wq, ticks);
1095 }
1096 }
1097 timer_modified = true;
1098 break;
1099 case DELAYED_WORK_RESCHEDULED:
1100 /*
1101 * Someone rescheduled it after the callout
1102 * started but before the poor thing even had a
1103 * chance to acquire the lock.
1104 */
1105 if (ticks == 0) {
1106 /*
1107 * We can just switch back to
1108 * DELAYED_WORK_SCHEDULED so that the
1109 * callout will queue the work as soon
1110 * as it gets the lock.
1111 */
1112 dw->dw_state = DELAYED_WORK_SCHEDULED;
1113 dw->dw_resched = -1;
1114 SDT_PROBE2(sdt, linux, work, cancel,
1115 &dw->work, wq);
1116 SDT_PROBE2(sdt, linux, work, queue,
1117 &dw->work, wq);
1118 } else {
1119 /* Change the rescheduled time. */
1120 dw->dw_resched = ticks;
1121 SDT_PROBE2(sdt, linux, work, cancel,
1122 &dw->work, wq);
1123 SDT_PROBE3(sdt, linux, work, schedule,
1124 dw, wq, ticks);
1125 }
1126 timer_modified = true;
1127 break;
1128 case DELAYED_WORK_CANCELLED:
1129 /*
1130 * Someone cancelled it after the callout
1131 * started but before the poor thing even had a
1132 * chance to acquire the lock.
1133 */
1134 if (ticks == 0) {
1135 /*
1136 * We can just switch back to
1137 * DELAYED_WORK_SCHEDULED so that the
1138 * callout will queue the work as soon
1139 * as it gets the lock.
1140 */
1141 dw->dw_state = DELAYED_WORK_SCHEDULED;
1142 SDT_PROBE2(sdt, linux, work, queue,
1143 &dw->work, wq);
1144 } else {
1145 /* Ask it to reschedule. */
1146 dw->dw_state = DELAYED_WORK_RESCHEDULED;
1147 dw->dw_resched = MIN(INT_MAX, ticks);
1148 SDT_PROBE3(sdt, linux, work, schedule,
1149 dw, wq, ticks);
1150 }
1151 timer_modified = false;
1152 break;
1153 default:
1154 panic("invalid delayed work state: %d", dw->dw_state);
1155 }
1156 }
1157 mutex_exit(&wq->wq_lock);
1158
1159 return timer_modified;
1160 }
1161
1162 /*
1163 * cancel_delayed_work(dw)
1164 *
1165 * If work was scheduled or queued, remove it from the schedule or
1166 * queue and return true. If work was not scheduled or queued,
1167 * return false. Note that work may already be running; if it
1168 * hasn't been rescheduled or requeued, then cancel_delayed_work
1169 * will return false, and either way, cancel_delayed_work will NOT
1170 * wait for the work to complete.
1171 */
1172 bool
1173 cancel_delayed_work(struct delayed_work *dw)
1174 {
1175 struct workqueue_struct *wq;
1176 bool cancelled_p;
1177
1178 /* If there's no workqueue, nothing to cancel. */
1179 if ((wq = work_queue(&dw->work)) == NULL)
1180 return false;
1181
1182 mutex_enter(&wq->wq_lock);
1183 if (__predict_false(work_queue(&dw->work) != wq)) {
1184 cancelled_p = false;
1185 } else {
1186 switch (dw->dw_state) {
1187 case DELAYED_WORK_IDLE:
1188 /*
1189 * It is either on the queue or already running
1190 * or both.
1191 */
1192 if (work_claimed(&dw->work, wq)) {
1193 /* On the queue. Remove and release. */
1194 TAILQ_REMOVE(&wq->wq_dqueue, &dw->work,
1195 work_entry);
1196 SDT_PROBE2(sdt, linux, work, cancel,
1197 &dw->work, wq);
1198 release_work(&dw->work, wq);
1199 /* Can't dereference dw after this point. */
1200 cancelled_p = true;
1201 } else {
1202 /* Not on the queue, so didn't cancel. */
1203 cancelled_p = false;
1204 }
1205 break;
1206 case DELAYED_WORK_SCHEDULED:
1207 /*
1208 * If it is scheduled, mark it cancelled and
1209 * try to stop the callout before it starts.
1210 *
1211 * If it's too late and the callout has already
1212 * begun to execute, tough.
1213 *
1214 * If we stopped the callout before it started,
1215 * however, then destroy the callout and
1216 * dissociate it from the workqueue ourselves.
1217 */
1218 dw->dw_state = DELAYED_WORK_CANCELLED;
1219 cancelled_p = true;
1220 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1221 if (!callout_stop(&dw->dw_callout))
1222 cancel_delayed_work_done(wq, dw);
1223 break;
1224 case DELAYED_WORK_RESCHEDULED:
1225 /*
1226 * If it is being rescheduled, the callout has
1227 * already fired. We must ask it to cancel.
1228 */
1229 dw->dw_state = DELAYED_WORK_CANCELLED;
1230 dw->dw_resched = -1;
1231 cancelled_p = true;
1232 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1233 break;
1234 case DELAYED_WORK_CANCELLED:
1235 /*
1236 * If it is being cancelled, the callout has
1237 * already fired. There is nothing more for us
1238 * to do. Someone else claims credit for
1239 * cancelling it.
1240 */
1241 cancelled_p = false;
1242 break;
1243 default:
1244 panic("invalid delayed work state: %d",
1245 dw->dw_state);
1246 }
1247 }
1248 mutex_exit(&wq->wq_lock);
1249
1250 return cancelled_p;
1251 }
1252
1253 /*
1254 * cancel_delayed_work_sync(dw)
1255 *
1256 * If work was scheduled or queued, remove it from the schedule or
1257 * queue and return true. If work was not scheduled or queued,
1258 * return false. Note that work may already be running; if it
1259 * hasn't been rescheduled or requeued, then cancel_delayed_work
1260 * will return false; either way, wait for it to complete.
1261 */
1262 bool
1263 cancel_delayed_work_sync(struct delayed_work *dw)
1264 {
1265 struct workqueue_struct *wq;
1266 bool cancelled_p;
1267
1268 /* If there's no workqueue, nothing to cancel. */
1269 if ((wq = work_queue(&dw->work)) == NULL)
1270 return false;
1271
1272 mutex_enter(&wq->wq_lock);
1273 if (__predict_false(work_queue(&dw->work) != wq)) {
1274 cancelled_p = false;
1275 } else {
1276 switch (dw->dw_state) {
1277 case DELAYED_WORK_IDLE:
1278 /*
1279 * It is either on the queue or already running
1280 * or both.
1281 */
1282 if (work_claimed(&dw->work, wq)) {
1283 /* On the queue. Remove and release. */
1284 TAILQ_REMOVE(&wq->wq_dqueue, &dw->work,
1285 work_entry);
1286 SDT_PROBE2(sdt, linux, work, cancel,
1287 &dw->work, wq);
1288 release_work(&dw->work, wq);
1289 /* Can't dereference dw after this point. */
1290 cancelled_p = true;
1291 } else {
1292 /* Not on the queue, so didn't cancel. */
1293 cancelled_p = false;
1294 }
1295 /* If it's still running, wait for it to complete. */
1296 if (wq->wq_current_work == &dw->work)
1297 wait_for_current_work(&dw->work, wq);
1298 break;
1299 case DELAYED_WORK_SCHEDULED:
1300 /*
1301 * If it is scheduled, mark it cancelled and
1302 * try to stop the callout before it starts.
1303 *
1304 * If it's too late and the callout has already
1305 * begun to execute, we must wait for it to
1306 * complete. But we got in soon enough to ask
1307 * the callout not to run, so we successfully
1308 * cancelled it in that case.
1309 *
1310 * If we stopped the callout before it started,
1311 * then we must destroy the callout and
1312 * dissociate it from the workqueue ourselves.
1313 */
1314 dw->dw_state = DELAYED_WORK_CANCELLED;
1315 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1316 if (!callout_halt(&dw->dw_callout, &wq->wq_lock))
1317 cancel_delayed_work_done(wq, dw);
1318 cancelled_p = true;
1319 break;
1320 case DELAYED_WORK_RESCHEDULED:
1321 /*
1322 * If it is being rescheduled, the callout has
1323 * already fired. We must ask it to cancel and
1324 * wait for it to complete.
1325 */
1326 dw->dw_state = DELAYED_WORK_CANCELLED;
1327 dw->dw_resched = -1;
1328 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1329 (void)callout_halt(&dw->dw_callout, &wq->wq_lock);
1330 cancelled_p = true;
1331 break;
1332 case DELAYED_WORK_CANCELLED:
1333 /*
1334 * If it is being cancelled, the callout has
1335 * already fired. We need only wait for it to
1336 * complete. Someone else, however, claims
1337 * credit for cancelling it.
1338 */
1339 (void)callout_halt(&dw->dw_callout, &wq->wq_lock);
1340 cancelled_p = false;
1341 break;
1342 default:
1343 panic("invalid delayed work state: %d",
1344 dw->dw_state);
1345 }
1346 }
1347 mutex_exit(&wq->wq_lock);
1348
1349 return cancelled_p;
1350 }
1351
1352 /*
1354 * Flush
1355 */
1356
1357 /*
1358 * flush_scheduled_work()
1359 *
1360 * Wait for all work queued on system_wq to complete. This does
1361 * not include delayed work.
1362 */
1363 void
1364 flush_scheduled_work(void)
1365 {
1366
1367 flush_workqueue(system_wq);
1368 }
1369
1370 /*
1371 * flush_workqueue_locked(wq)
1372 *
1373 * Wait for all work queued on wq to complete. This does not
1374 * include delayed work.
1375 *
1376 * Caller must hold wq's lock.
1377 */
1378 static void
1379 flush_workqueue_locked(struct workqueue_struct *wq)
1380 {
1381 uint64_t gen;
1382
1383 KASSERT(mutex_owned(&wq->wq_lock));
1384
1385 /* Get the current generation number. */
1386 gen = wq->wq_gen;
1387
1388 /*
1389 * If there's a batch of work in progress, we must wait for the
1390 * worker thread to finish that batch.
1391 */
1392 if (wq->wq_current_work != NULL)
1393 gen++;
1394
1395 /*
1396 * If there's any work yet to be claimed from the queue by the
1397 * worker thread, we must wait for it to finish one more batch
1398 * too.
1399 */
1400 if (!TAILQ_EMPTY(&wq->wq_queue) || !TAILQ_EMPTY(&wq->wq_dqueue))
1401 gen++;
1402
1403 /* Wait until the generation number has caught up. */
1404 SDT_PROBE1(sdt, linux, work, flush__start, wq);
1405 while (wq->wq_gen < gen)
1406 cv_wait(&wq->wq_cv, &wq->wq_lock);
1407 SDT_PROBE1(sdt, linux, work, flush__done, wq);
1408 }
1409
1410 /*
1411 * flush_workqueue(wq)
1412 *
1413 * Wait for all work queued on wq to complete. This does not
1414 * include delayed work.
1415 */
1416 void
1417 flush_workqueue(struct workqueue_struct *wq)
1418 {
1419
1420 mutex_enter(&wq->wq_lock);
1421 flush_workqueue_locked(wq);
1422 mutex_exit(&wq->wq_lock);
1423 }
1424
1425 /*
1426 * flush_work(work)
1427 *
1428 * If work is queued or currently executing, wait for it to
1429 * complete.
1430 */
1431 void
1432 flush_work(struct work_struct *work)
1433 {
1434 struct workqueue_struct *wq;
1435
1436 /* If there's no workqueue, nothing to flush. */
1437 if ((wq = work_queue(work)) == NULL)
1438 return;
1439
1440 flush_workqueue(wq);
1441 }
1442
1443 /*
1444 * flush_delayed_work(dw)
1445 *
1446 * If dw is scheduled to run after a delay, queue it immediately
1447 * instead. Then, if dw is queued or currently executing, wait
1448 * for it to complete.
1449 */
1450 void
1451 flush_delayed_work(struct delayed_work *dw)
1452 {
1453 struct workqueue_struct *wq;
1454
1455 /* If there's no workqueue, nothing to flush. */
1456 if ((wq = work_queue(&dw->work)) == NULL)
1457 return;
1458
1459 mutex_enter(&wq->wq_lock);
1460 if (__predict_false(work_queue(&dw->work) != wq)) {
1461 /*
1462 * Moved off the queue already (and possibly to another
1463 * queue, though that would be ill-advised), so it must
1464 * have completed, and we have nothing more to do.
1465 */
1466 } else {
1467 switch (dw->dw_state) {
1468 case DELAYED_WORK_IDLE:
1469 /*
1470 * It has a workqueue assigned and the callout
1471 * is idle, so it must be in progress or on the
1472 * queue. In that case, we'll wait for it to
1473 * complete.
1474 */
1475 break;
1476 case DELAYED_WORK_SCHEDULED:
1477 case DELAYED_WORK_RESCHEDULED:
1478 case DELAYED_WORK_CANCELLED:
1479 /*
1480 * The callout is scheduled, and may have even
1481 * started. Mark it as scheduled so that if
1482 * the callout has fired it will queue the work
1483 * itself. Try to stop the callout -- if we
1484 * can, queue the work now; if we can't, wait
1485 * for the callout to complete, which entails
1486 * queueing it.
1487 */
1488 dw->dw_state = DELAYED_WORK_SCHEDULED;
1489 if (!callout_halt(&dw->dw_callout, &wq->wq_lock)) {
1490 /*
1491 * We stopped it before it ran. No
1492 * state change in the interim is
1493 * possible. Destroy the callout and
1494 * queue it ourselves.
1495 */
1496 KASSERT(dw->dw_state ==
1497 DELAYED_WORK_SCHEDULED);
1498 dw_callout_destroy(wq, dw);
1499 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work,
1500 work_entry);
1501 cv_broadcast(&wq->wq_cv);
1502 SDT_PROBE2(sdt, linux, work, queue,
1503 &dw->work, wq);
1504 }
1505 break;
1506 default:
1507 panic("invalid delayed work state: %d", dw->dw_state);
1508 }
1509 /*
1510 * Waiting for the whole queue to flush is overkill,
1511 * but doesn't hurt.
1512 */
1513 flush_workqueue_locked(wq);
1514 }
1515 mutex_exit(&wq->wq_lock);
1516 }
1517