linux_work.c revision 1.53 1 /* $NetBSD: linux_work.c,v 1.53 2021/12/19 11:38:03 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Taylor R. Campbell.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: linux_work.c,v 1.53 2021/12/19 11:38:03 riastradh Exp $");
34
35 #include <sys/types.h>
36 #include <sys/atomic.h>
37 #include <sys/callout.h>
38 #include <sys/condvar.h>
39 #include <sys/errno.h>
40 #include <sys/kmem.h>
41 #include <sys/kthread.h>
42 #include <sys/lwp.h>
43 #include <sys/mutex.h>
44 #ifndef _MODULE
45 #include <sys/once.h>
46 #endif
47 #include <sys/queue.h>
48 #include <sys/sdt.h>
49
50 #include <linux/workqueue.h>
51
52 TAILQ_HEAD(work_head, work_struct);
53 TAILQ_HEAD(dwork_head, delayed_work);
54
55 struct workqueue_struct {
56 kmutex_t wq_lock;
57 kcondvar_t wq_cv;
58 struct dwork_head wq_delayed; /* delayed work scheduled */
59 struct work_head wq_queue; /* work to run */
60 struct work_head wq_dqueue; /* delayed work to run now */
61 struct work_struct *wq_current_work;
62 int wq_flags;
63 bool wq_dying;
64 uint64_t wq_gen;
65 struct lwp *wq_lwp;
66 const char *wq_name;
67 };
68
69 static void __dead linux_workqueue_thread(void *);
70 static void linux_workqueue_timeout(void *);
71 static bool work_claimed(struct work_struct *,
72 struct workqueue_struct *);
73 static struct workqueue_struct *
74 work_queue(struct work_struct *);
75 static bool acquire_work(struct work_struct *,
76 struct workqueue_struct *);
77 static void release_work(struct work_struct *,
78 struct workqueue_struct *);
79 static void wait_for_current_work(struct work_struct *,
80 struct workqueue_struct *);
81 static void dw_callout_init(struct workqueue_struct *,
82 struct delayed_work *);
83 static void dw_callout_destroy(struct workqueue_struct *,
84 struct delayed_work *);
85 static void cancel_delayed_work_done(struct workqueue_struct *,
86 struct delayed_work *);
87
88 SDT_PROBE_DEFINE2(sdt, linux, work, acquire,
89 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
90 SDT_PROBE_DEFINE2(sdt, linux, work, release,
91 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
92 SDT_PROBE_DEFINE2(sdt, linux, work, queue,
93 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
94 SDT_PROBE_DEFINE2(sdt, linux, work, cancel,
95 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
96 SDT_PROBE_DEFINE3(sdt, linux, work, schedule,
97 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/,
98 "unsigned long"/*ticks*/);
99 SDT_PROBE_DEFINE2(sdt, linux, work, timer,
100 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/);
101 SDT_PROBE_DEFINE2(sdt, linux, work, wait__start,
102 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/);
103 SDT_PROBE_DEFINE2(sdt, linux, work, wait__done,
104 "struct delayed_work *"/*dw*/, "struct workqueue_struct *"/*wq*/);
105 SDT_PROBE_DEFINE2(sdt, linux, work, run,
106 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
107 SDT_PROBE_DEFINE2(sdt, linux, work, done,
108 "struct work_struct *"/*work*/, "struct workqueue_struct *"/*wq*/);
109 SDT_PROBE_DEFINE1(sdt, linux, work, batch__start,
110 "struct workqueue_struct *"/*wq*/);
111 SDT_PROBE_DEFINE1(sdt, linux, work, batch__done,
112 "struct workqueue_struct *"/*wq*/);
113 SDT_PROBE_DEFINE1(sdt, linux, work, flush__start,
114 "struct workqueue_struct *"/*wq*/);
115 SDT_PROBE_DEFINE1(sdt, linux, work, flush__done,
116 "struct workqueue_struct *"/*wq*/);
117
118 static specificdata_key_t workqueue_key __read_mostly;
119
120 struct workqueue_struct *system_highpri_wq __read_mostly;
121 struct workqueue_struct *system_long_wq __read_mostly;
122 struct workqueue_struct *system_power_efficient_wq __read_mostly;
123 struct workqueue_struct *system_unbound_wq __read_mostly;
124 struct workqueue_struct *system_wq __read_mostly;
125
126 static inline uintptr_t
127 atomic_cas_uintptr(volatile uintptr_t *p, uintptr_t old, uintptr_t new)
128 {
129
130 return (uintptr_t)atomic_cas_ptr(p, (void *)old, (void *)new);
131 }
132
133 /*
134 * linux_workqueue_init()
135 *
136 * Initialize the Linux workqueue subsystem. Return 0 on success,
137 * NetBSD error on failure.
138 */
139 static int
140 linux_workqueue_init0(void)
141 {
142 int error;
143
144 error = lwp_specific_key_create(&workqueue_key, NULL);
145 if (error)
146 goto out;
147
148 system_highpri_wq = alloc_ordered_workqueue("lnxhipwq", 0);
149 if (system_highpri_wq == NULL) {
150 error = ENOMEM;
151 goto out;
152 }
153
154 system_long_wq = alloc_ordered_workqueue("lnxlngwq", 0);
155 if (system_long_wq == NULL) {
156 error = ENOMEM;
157 goto out;
158 }
159
160 system_power_efficient_wq = alloc_ordered_workqueue("lnxpwrwq", 0);
161 if (system_power_efficient_wq == NULL) {
162 error = ENOMEM;
163 goto out;
164 }
165
166 system_unbound_wq = alloc_ordered_workqueue("lnxubdwq", 0);
167 if (system_unbound_wq == NULL) {
168 error = ENOMEM;
169 goto out;
170 }
171
172 system_wq = alloc_ordered_workqueue("lnxsyswq", 0);
173 if (system_wq == NULL) {
174 error = ENOMEM;
175 goto out;
176 }
177
178 /* Success! */
179 error = 0;
180
181 out: if (error) {
182 if (system_highpri_wq)
183 destroy_workqueue(system_highpri_wq);
184 if (system_long_wq)
185 destroy_workqueue(system_long_wq);
186 if (system_power_efficient_wq)
187 destroy_workqueue(system_power_efficient_wq);
188 if (system_unbound_wq)
189 destroy_workqueue(system_unbound_wq);
190 if (system_wq)
191 destroy_workqueue(system_wq);
192 if (workqueue_key)
193 lwp_specific_key_delete(workqueue_key);
194 }
195
196 return error;
197 }
198
199 /*
200 * linux_workqueue_fini()
201 *
202 * Destroy the Linux workqueue subsystem. Never fails.
203 */
204 static void
205 linux_workqueue_fini0(void)
206 {
207
208 destroy_workqueue(system_power_efficient_wq);
209 destroy_workqueue(system_long_wq);
210 destroy_workqueue(system_wq);
211 lwp_specific_key_delete(workqueue_key);
212 }
213
214 #ifndef _MODULE
215 static ONCE_DECL(linux_workqueue_init_once);
216 #endif
217
218 int
219 linux_workqueue_init(void)
220 {
221 #ifdef _MODULE
222 return linux_workqueue_init0();
223 #else
224 return INIT_ONCE(&linux_workqueue_init_once, &linux_workqueue_init0);
225 #endif
226 }
227
228 void
229 linux_workqueue_fini(void)
230 {
231 #ifdef _MODULE
232 return linux_workqueue_fini0();
233 #else
234 return FINI_ONCE(&linux_workqueue_init_once, &linux_workqueue_fini0);
235 #endif
236 }
237
238 /*
240 * Workqueues
241 */
242
243 /*
244 * alloc_workqueue(name, flags, max_active)
245 *
246 * Create a workqueue of the given name. max_active is the
247 * maximum number of work items in flight, or 0 for the default.
248 * Return NULL on failure, pointer to struct workqueue_struct
249 * object on success.
250 */
251 struct workqueue_struct *
252 alloc_workqueue(const char *name, int flags, unsigned max_active)
253 {
254 struct workqueue_struct *wq;
255 int error;
256
257 KASSERT(max_active == 0 || max_active == 1);
258
259 wq = kmem_zalloc(sizeof(*wq), KM_SLEEP);
260
261 mutex_init(&wq->wq_lock, MUTEX_DEFAULT, IPL_VM);
262 cv_init(&wq->wq_cv, name);
263 TAILQ_INIT(&wq->wq_delayed);
264 TAILQ_INIT(&wq->wq_queue);
265 TAILQ_INIT(&wq->wq_dqueue);
266 wq->wq_current_work = NULL;
267 wq->wq_flags = 0;
268 wq->wq_dying = false;
269 wq->wq_gen = 0;
270 wq->wq_lwp = NULL;
271 wq->wq_name = name;
272
273 error = kthread_create(PRI_NONE,
274 KTHREAD_MPSAFE|KTHREAD_TS|KTHREAD_MUSTJOIN, NULL,
275 &linux_workqueue_thread, wq, &wq->wq_lwp, "%s", name);
276 if (error)
277 goto fail0;
278
279 return wq;
280
281 fail0: KASSERT(TAILQ_EMPTY(&wq->wq_dqueue));
282 KASSERT(TAILQ_EMPTY(&wq->wq_queue));
283 KASSERT(TAILQ_EMPTY(&wq->wq_delayed));
284 cv_destroy(&wq->wq_cv);
285 mutex_destroy(&wq->wq_lock);
286 kmem_free(wq, sizeof(*wq));
287 return NULL;
288 }
289
290 /*
291 * alloc_ordered_workqueue(name, flags)
292 *
293 * Same as alloc_workqueue(name, flags, 1).
294 */
295 struct workqueue_struct *
296 alloc_ordered_workqueue(const char *name, int flags)
297 {
298
299 return alloc_workqueue(name, flags, 1);
300 }
301
302 /*
303 * destroy_workqueue(wq)
304 *
305 * Destroy a workqueue created with wq. Cancel any pending
306 * delayed work. Wait for all queued work to complete.
307 *
308 * May sleep.
309 */
310 void
311 destroy_workqueue(struct workqueue_struct *wq)
312 {
313
314 /*
315 * Cancel all delayed work. We do this first because any
316 * delayed work that that has already timed out, which we can't
317 * cancel, may have queued new work.
318 */
319 mutex_enter(&wq->wq_lock);
320 while (!TAILQ_EMPTY(&wq->wq_delayed)) {
321 struct delayed_work *const dw = TAILQ_FIRST(&wq->wq_delayed);
322
323 KASSERT(work_queue(&dw->work) == wq);
324 KASSERTMSG((dw->dw_state == DELAYED_WORK_SCHEDULED ||
325 dw->dw_state == DELAYED_WORK_RESCHEDULED ||
326 dw->dw_state == DELAYED_WORK_CANCELLED),
327 "delayed work %p in bad state: %d",
328 dw, dw->dw_state);
329
330 /*
331 * Mark it cancelled and try to stop the callout before
332 * it starts.
333 *
334 * If it's too late and the callout has already begun
335 * to execute, then it will notice that we asked to
336 * cancel it and remove itself from the queue before
337 * returning.
338 *
339 * If we stopped the callout before it started,
340 * however, then we can safely destroy the callout and
341 * dissociate it from the workqueue ourselves.
342 */
343 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
344 dw->dw_state = DELAYED_WORK_CANCELLED;
345 if (!callout_halt(&dw->dw_callout, &wq->wq_lock))
346 cancel_delayed_work_done(wq, dw);
347 }
348 mutex_exit(&wq->wq_lock);
349
350 /*
351 * At this point, no new work can be put on the queue.
352 */
353
354 /* Tell the thread to exit. */
355 mutex_enter(&wq->wq_lock);
356 wq->wq_dying = true;
357 cv_broadcast(&wq->wq_cv);
358 mutex_exit(&wq->wq_lock);
359
360 /* Wait for it to exit. */
361 (void)kthread_join(wq->wq_lwp);
362
363 KASSERT(wq->wq_dying);
364 KASSERT(wq->wq_flags == 0);
365 KASSERT(wq->wq_current_work == NULL);
366 KASSERT(TAILQ_EMPTY(&wq->wq_dqueue));
367 KASSERT(TAILQ_EMPTY(&wq->wq_queue));
368 KASSERT(TAILQ_EMPTY(&wq->wq_delayed));
369 cv_destroy(&wq->wq_cv);
370 mutex_destroy(&wq->wq_lock);
371
372 kmem_free(wq, sizeof(*wq));
373 }
374
375 /*
377 * Work thread and callout
378 */
379
380 /*
381 * linux_workqueue_thread(cookie)
382 *
383 * Main function for a workqueue's worker thread. Waits until
384 * there is work queued, grabs a batch of work off the queue,
385 * executes it all, bumps the generation number, and repeats,
386 * until dying.
387 */
388 static void __dead
389 linux_workqueue_thread(void *cookie)
390 {
391 struct workqueue_struct *const wq = cookie;
392 struct work_head *const q[2] = { &wq->wq_queue, &wq->wq_dqueue };
393 struct work_struct marker, *work;
394 unsigned i;
395
396 lwp_setspecific(workqueue_key, wq);
397
398 mutex_enter(&wq->wq_lock);
399 for (;;) {
400 /*
401 * Wait until there's activity. If there's no work and
402 * we're dying, stop here.
403 */
404 if (TAILQ_EMPTY(&wq->wq_queue) &&
405 TAILQ_EMPTY(&wq->wq_dqueue)) {
406 if (wq->wq_dying)
407 break;
408 cv_wait(&wq->wq_cv, &wq->wq_lock);
409 continue;
410 }
411
412 /*
413 * Start a batch of work. Use a marker to delimit when
414 * the batch ends so we can advance the generation
415 * after the batch.
416 */
417 SDT_PROBE1(sdt, linux, work, batch__start, wq);
418 for (i = 0; i < 2; i++) {
419 if (TAILQ_EMPTY(q[i]))
420 continue;
421 TAILQ_INSERT_TAIL(q[i], &marker, work_entry);
422 while ((work = TAILQ_FIRST(q[i])) != &marker) {
423 void (*func)(struct work_struct *);
424
425 KASSERT(work_queue(work) == wq);
426 KASSERT(work_claimed(work, wq));
427 KASSERTMSG((q[i] != &wq->wq_dqueue ||
428 container_of(work, struct delayed_work,
429 work)->dw_state ==
430 DELAYED_WORK_IDLE),
431 "delayed work %p queued and scheduled",
432 work);
433
434 TAILQ_REMOVE(q[i], work, work_entry);
435 KASSERT(wq->wq_current_work == NULL);
436 wq->wq_current_work = work;
437 func = work->func;
438 release_work(work, wq);
439 /* Can't dereference work after this point. */
440
441 mutex_exit(&wq->wq_lock);
442 SDT_PROBE2(sdt, linux, work, run, work, wq);
443 (*func)(work);
444 SDT_PROBE2(sdt, linux, work, done, work, wq);
445 mutex_enter(&wq->wq_lock);
446
447 KASSERT(wq->wq_current_work == work);
448 wq->wq_current_work = NULL;
449 cv_broadcast(&wq->wq_cv);
450 }
451 TAILQ_REMOVE(q[i], &marker, work_entry);
452 }
453
454 /* Notify flush that we've completed a batch of work. */
455 wq->wq_gen++;
456 cv_broadcast(&wq->wq_cv);
457 SDT_PROBE1(sdt, linux, work, batch__done, wq);
458 }
459 mutex_exit(&wq->wq_lock);
460
461 kthread_exit(0);
462 }
463
464 /*
465 * linux_workqueue_timeout(cookie)
466 *
467 * Delayed work timeout callback.
468 *
469 * - If scheduled, queue it.
470 * - If rescheduled, callout_schedule ourselves again.
471 * - If cancelled, destroy the callout and release the work from
472 * the workqueue.
473 */
474 static void
475 linux_workqueue_timeout(void *cookie)
476 {
477 struct delayed_work *const dw = cookie;
478 struct workqueue_struct *const wq = work_queue(&dw->work);
479
480 KASSERTMSG(wq != NULL,
481 "delayed work %p state %d resched %d",
482 dw, dw->dw_state, dw->dw_resched);
483
484 SDT_PROBE2(sdt, linux, work, timer, dw, wq);
485
486 mutex_enter(&wq->wq_lock);
487 KASSERT(work_queue(&dw->work) == wq);
488 switch (dw->dw_state) {
489 case DELAYED_WORK_IDLE:
490 panic("delayed work callout uninitialized: %p", dw);
491 case DELAYED_WORK_SCHEDULED:
492 dw_callout_destroy(wq, dw);
493 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work, work_entry);
494 cv_broadcast(&wq->wq_cv);
495 SDT_PROBE2(sdt, linux, work, queue, &dw->work, wq);
496 break;
497 case DELAYED_WORK_RESCHEDULED:
498 KASSERT(dw->dw_resched >= 0);
499 callout_schedule(&dw->dw_callout, dw->dw_resched);
500 dw->dw_state = DELAYED_WORK_SCHEDULED;
501 dw->dw_resched = -1;
502 break;
503 case DELAYED_WORK_CANCELLED:
504 cancel_delayed_work_done(wq, dw);
505 /* Can't dereference dw after this point. */
506 goto out;
507 default:
508 panic("delayed work callout in bad state: %p", dw);
509 }
510 KASSERT(dw->dw_state == DELAYED_WORK_IDLE ||
511 dw->dw_state == DELAYED_WORK_SCHEDULED);
512 out: mutex_exit(&wq->wq_lock);
513 }
514
515 /*
516 * current_work()
517 *
518 * If in a workqueue worker thread, return the work it is
519 * currently executing. Otherwise return NULL.
520 */
521 struct work_struct *
522 current_work(void)
523 {
524 struct workqueue_struct *wq = lwp_getspecific(workqueue_key);
525
526 /* If we're not a workqueue thread, then there's no work. */
527 if (wq == NULL)
528 return NULL;
529
530 /*
531 * Otherwise, this should be possible only while work is in
532 * progress. Return the current work item.
533 */
534 KASSERT(wq->wq_current_work != NULL);
535 return wq->wq_current_work;
536 }
537
538 /*
540 * Work
541 */
542
543 /*
544 * INIT_WORK(work, fn)
545 *
546 * Initialize work for use with a workqueue to call fn in a worker
547 * thread. There is no corresponding destruction operation.
548 */
549 void
550 INIT_WORK(struct work_struct *work, void (*fn)(struct work_struct *))
551 {
552
553 work->work_owner = 0;
554 work->func = fn;
555 }
556
557 /*
558 * work_claimed(work, wq)
559 *
560 * True if work is currently claimed by a workqueue, meaning it is
561 * either on the queue or scheduled in a callout. The workqueue
562 * must be wq, and caller must hold wq's lock.
563 */
564 static bool
565 work_claimed(struct work_struct *work, struct workqueue_struct *wq)
566 {
567
568 KASSERT(work_queue(work) == wq);
569 KASSERT(mutex_owned(&wq->wq_lock));
570
571 return work->work_owner & 1;
572 }
573
574 /*
575 * work_pending(work)
576 *
577 * True if work is currently claimed by any workqueue, scheduled
578 * to run on that workqueue.
579 */
580 bool
581 work_pending(const struct work_struct *work)
582 {
583
584 return work->work_owner & 1;
585 }
586
587 /*
588 * work_queue(work)
589 *
590 * Return the last queue that work was queued on, or NULL if it
591 * was never queued.
592 */
593 static struct workqueue_struct *
594 work_queue(struct work_struct *work)
595 {
596
597 return (struct workqueue_struct *)(work->work_owner & ~(uintptr_t)1);
598 }
599
600 /*
601 * acquire_work(work, wq)
602 *
603 * Try to claim work for wq. If work is already claimed, it must
604 * be claimed by wq; return false. If work is not already
605 * claimed, claim it, issue a memory barrier to match any prior
606 * release_work, and return true.
607 *
608 * Caller must hold wq's lock.
609 */
610 static bool
611 acquire_work(struct work_struct *work, struct workqueue_struct *wq)
612 {
613 uintptr_t owner0, owner;
614
615 KASSERT(mutex_owned(&wq->wq_lock));
616 KASSERT(((uintptr_t)wq & 1) == 0);
617
618 owner = (uintptr_t)wq | 1;
619 do {
620 owner0 = work->work_owner;
621 if (owner0 & 1) {
622 KASSERT((owner0 & ~(uintptr_t)1) == (uintptr_t)wq);
623 return false;
624 }
625 KASSERT(owner0 == (uintptr_t)NULL || owner0 == (uintptr_t)wq);
626 } while (atomic_cas_uintptr(&work->work_owner, owner0, owner) !=
627 owner0);
628
629 KASSERT(work_queue(work) == wq);
630 membar_enter();
631 SDT_PROBE2(sdt, linux, work, acquire, work, wq);
632 return true;
633 }
634
635 /*
636 * release_work(work, wq)
637 *
638 * Issue a memory barrier to match any subsequent acquire_work and
639 * dissociate work from wq.
640 *
641 * Caller must hold wq's lock and work must be associated with wq.
642 */
643 static void
644 release_work(struct work_struct *work, struct workqueue_struct *wq)
645 {
646
647 KASSERT(work_queue(work) == wq);
648 KASSERT(mutex_owned(&wq->wq_lock));
649
650 SDT_PROBE2(sdt, linux, work, release, work, wq);
651 membar_exit();
652
653 /*
654 * Non-interlocked r/m/w is safe here because nobody else can
655 * write to this while the claimed bit is setand the workqueue
656 * lock is held.
657 */
658 work->work_owner &= ~(uintptr_t)1;
659 }
660
661 /*
662 * schedule_work(work)
663 *
664 * If work is not already queued on system_wq, queue it to be run
665 * by system_wq's worker thread when it next can. True if it was
666 * newly queued, false if it was already queued. If the work was
667 * already running, queue it to run again.
668 *
669 * Caller must ensure work is not queued to run on a different
670 * workqueue.
671 */
672 bool
673 schedule_work(struct work_struct *work)
674 {
675
676 return queue_work(system_wq, work);
677 }
678
679 /*
680 * queue_work(wq, work)
681 *
682 * If work is not already queued on wq, queue it to be run by wq's
683 * worker thread when it next can. True if it was newly queued,
684 * false if it was already queued. If the work was already
685 * running, queue it to run again.
686 *
687 * Caller must ensure work is not queued to run on a different
688 * workqueue.
689 */
690 bool
691 queue_work(struct workqueue_struct *wq, struct work_struct *work)
692 {
693 bool newly_queued;
694
695 KASSERT(wq != NULL);
696
697 mutex_enter(&wq->wq_lock);
698 if (__predict_true(acquire_work(work, wq))) {
699 /*
700 * It wasn't on any workqueue at all. Put it on this
701 * one, and signal the worker thread that there is work
702 * to do.
703 */
704 TAILQ_INSERT_TAIL(&wq->wq_queue, work, work_entry);
705 cv_broadcast(&wq->wq_cv);
706 SDT_PROBE2(sdt, linux, work, queue, work, wq);
707 newly_queued = true;
708 } else {
709 /*
710 * It was already on this workqueue. Nothing to do
711 * since it is already queued.
712 */
713 newly_queued = false;
714 }
715 mutex_exit(&wq->wq_lock);
716
717 return newly_queued;
718 }
719
720 /*
721 * cancel_work(work)
722 *
723 * If work was queued, remove it from the queue and return true.
724 * If work was not queued, return false. Work may still be
725 * running when this returns.
726 */
727 bool
728 cancel_work(struct work_struct *work)
729 {
730 struct workqueue_struct *wq;
731 bool cancelled_p = false;
732
733 /* If there's no workqueue, nothing to cancel. */
734 if ((wq = work_queue(work)) == NULL)
735 goto out;
736
737 mutex_enter(&wq->wq_lock);
738 if (__predict_false(work_queue(work) != wq)) {
739 /*
740 * It has finished execution or been cancelled by
741 * another thread, and has been moved off the
742 * workqueue, so it's too to cancel.
743 */
744 cancelled_p = false;
745 } else {
746 /* Check whether it's on the queue. */
747 if (work_claimed(work, wq)) {
748 /*
749 * It is still on the queue. Take it off the
750 * queue and report successful cancellation.
751 */
752 TAILQ_REMOVE(&wq->wq_queue, work, work_entry);
753 SDT_PROBE2(sdt, linux, work, cancel, work, wq);
754 release_work(work, wq);
755 /* Can't dereference work after this point. */
756 cancelled_p = true;
757 } else {
758 /* Not on the queue. Couldn't cancel it. */
759 cancelled_p = false;
760 }
761 }
762 mutex_exit(&wq->wq_lock);
763
764 out: return cancelled_p;
765 }
766
767 /*
768 * cancel_work_sync(work)
769 *
770 * If work was queued, remove it from the queue and return true.
771 * If work was not queued, return false. Either way, if work is
772 * currently running, wait for it to complete.
773 *
774 * May sleep.
775 */
776 bool
777 cancel_work_sync(struct work_struct *work)
778 {
779 struct workqueue_struct *wq;
780 bool cancelled_p = false;
781
782 /* If there's no workqueue, nothing to cancel. */
783 if ((wq = work_queue(work)) == NULL)
784 goto out;
785
786 mutex_enter(&wq->wq_lock);
787 if (__predict_false(work_queue(work) != wq)) {
788 /*
789 * It has finished execution or been cancelled by
790 * another thread, and has been moved off the
791 * workqueue, so it's too late to cancel.
792 */
793 cancelled_p = false;
794 } else {
795 /* Check whether it's on the queue. */
796 if (work_claimed(work, wq)) {
797 /*
798 * It is still on the queue. Take it off the
799 * queue and report successful cancellation.
800 */
801 TAILQ_REMOVE(&wq->wq_queue, work, work_entry);
802 SDT_PROBE2(sdt, linux, work, cancel, work, wq);
803 release_work(work, wq);
804 /* Can't dereference work after this point. */
805 cancelled_p = true;
806 } else {
807 /* Not on the queue. Couldn't cancel it. */
808 cancelled_p = false;
809 }
810 /* If it's still running, wait for it to complete. */
811 if (wq->wq_current_work == work)
812 wait_for_current_work(work, wq);
813 }
814 mutex_exit(&wq->wq_lock);
815
816 out: return cancelled_p;
817 }
818
819 /*
820 * wait_for_current_work(work, wq)
821 *
822 * wq must be currently executing work. Wait for it to finish.
823 *
824 * Does not dereference work.
825 */
826 static void
827 wait_for_current_work(struct work_struct *work, struct workqueue_struct *wq)
828 {
829 uint64_t gen;
830
831 KASSERT(mutex_owned(&wq->wq_lock));
832 KASSERT(wq->wq_current_work == work);
833
834 /* Wait only one generation in case it gets requeued quickly. */
835 SDT_PROBE2(sdt, linux, work, wait__start, work, wq);
836 gen = wq->wq_gen;
837 do {
838 cv_wait(&wq->wq_cv, &wq->wq_lock);
839 } while (wq->wq_current_work == work && wq->wq_gen == gen);
840 SDT_PROBE2(sdt, linux, work, wait__done, work, wq);
841 }
842
843 /*
845 * Delayed work
846 */
847
848 /*
849 * INIT_DELAYED_WORK(dw, fn)
850 *
851 * Initialize dw for use with a workqueue to call fn in a worker
852 * thread after a delay. There is no corresponding destruction
853 * operation.
854 */
855 void
856 INIT_DELAYED_WORK(struct delayed_work *dw, void (*fn)(struct work_struct *))
857 {
858
859 INIT_WORK(&dw->work, fn);
860 dw->dw_state = DELAYED_WORK_IDLE;
861 dw->dw_resched = -1;
862
863 /*
864 * Defer callout_init until we are going to schedule the
865 * callout, which can then callout_destroy it, because
866 * otherwise since there's no DESTROY_DELAYED_WORK or anything
867 * we have no opportunity to call callout_destroy.
868 */
869 }
870
871 /*
872 * schedule_delayed_work(dw, ticks)
873 *
874 * If it is not currently scheduled, schedule dw to run after
875 * ticks on system_wq. If currently executing and not already
876 * rescheduled, reschedule it. True if it was newly scheduled,
877 * false if it was already scheduled.
878 *
879 * If ticks == 0, queue it to run as soon as the worker can,
880 * without waiting for the next callout tick to run.
881 */
882 bool
883 schedule_delayed_work(struct delayed_work *dw, unsigned long ticks)
884 {
885
886 return queue_delayed_work(system_wq, dw, ticks);
887 }
888
889 /*
890 * dw_callout_init(wq, dw)
891 *
892 * Initialize the callout of dw and transition to
893 * DELAYED_WORK_SCHEDULED. Caller must use callout_schedule.
894 */
895 static void
896 dw_callout_init(struct workqueue_struct *wq, struct delayed_work *dw)
897 {
898
899 KASSERT(mutex_owned(&wq->wq_lock));
900 KASSERT(work_queue(&dw->work) == wq);
901 KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
902
903 callout_init(&dw->dw_callout, CALLOUT_MPSAFE);
904 callout_setfunc(&dw->dw_callout, &linux_workqueue_timeout, dw);
905 TAILQ_INSERT_HEAD(&wq->wq_delayed, dw, dw_entry);
906 dw->dw_state = DELAYED_WORK_SCHEDULED;
907 }
908
909 /*
910 * dw_callout_destroy(wq, dw)
911 *
912 * Destroy the callout of dw and transition to DELAYED_WORK_IDLE.
913 */
914 static void
915 dw_callout_destroy(struct workqueue_struct *wq, struct delayed_work *dw)
916 {
917
918 KASSERT(mutex_owned(&wq->wq_lock));
919 KASSERT(work_queue(&dw->work) == wq);
920 KASSERT(dw->dw_state == DELAYED_WORK_SCHEDULED ||
921 dw->dw_state == DELAYED_WORK_RESCHEDULED ||
922 dw->dw_state == DELAYED_WORK_CANCELLED);
923
924 TAILQ_REMOVE(&wq->wq_delayed, dw, dw_entry);
925 callout_destroy(&dw->dw_callout);
926 dw->dw_resched = -1;
927 dw->dw_state = DELAYED_WORK_IDLE;
928 }
929
930 /*
931 * cancel_delayed_work_done(wq, dw)
932 *
933 * Complete cancellation of a delayed work: transition from
934 * DELAYED_WORK_CANCELLED to DELAYED_WORK_IDLE and off the
935 * workqueue. Caller must not dereference dw after this returns.
936 */
937 static void
938 cancel_delayed_work_done(struct workqueue_struct *wq, struct delayed_work *dw)
939 {
940
941 KASSERT(mutex_owned(&wq->wq_lock));
942 KASSERT(work_queue(&dw->work) == wq);
943 KASSERT(dw->dw_state == DELAYED_WORK_CANCELLED);
944
945 dw_callout_destroy(wq, dw);
946 release_work(&dw->work, wq);
947 /* Can't dereference dw after this point. */
948 }
949
950 /*
951 * queue_delayed_work(wq, dw, ticks)
952 *
953 * If it is not currently scheduled, schedule dw to run after
954 * ticks on wq. If currently queued, remove it from the queue
955 * first.
956 *
957 * If ticks == 0, queue it to run as soon as the worker can,
958 * without waiting for the next callout tick to run.
959 */
960 bool
961 queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
962 unsigned long ticks)
963 {
964 bool newly_queued;
965
966 mutex_enter(&wq->wq_lock);
967 if (__predict_true(acquire_work(&dw->work, wq))) {
968 /*
969 * It wasn't on any workqueue at all. Schedule it to
970 * run on this one.
971 */
972 KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
973 if (ticks == 0) {
974 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work,
975 work_entry);
976 cv_broadcast(&wq->wq_cv);
977 SDT_PROBE2(sdt, linux, work, queue, &dw->work, wq);
978 } else {
979 /*
980 * Initialize a callout and schedule to run
981 * after a delay.
982 */
983 dw_callout_init(wq, dw);
984 callout_schedule(&dw->dw_callout, MIN(INT_MAX, ticks));
985 SDT_PROBE3(sdt, linux, work, schedule, dw, wq, ticks);
986 }
987 newly_queued = true;
988 } else {
989 /* It was already on this workqueue. */
990 switch (dw->dw_state) {
991 case DELAYED_WORK_IDLE:
992 case DELAYED_WORK_SCHEDULED:
993 case DELAYED_WORK_RESCHEDULED:
994 /* On the queue or already scheduled. Leave it. */
995 newly_queued = false;
996 break;
997 case DELAYED_WORK_CANCELLED:
998 /*
999 * Scheduled and the callout began, but it was
1000 * cancelled. Reschedule it.
1001 */
1002 if (ticks == 0) {
1003 dw->dw_state = DELAYED_WORK_SCHEDULED;
1004 SDT_PROBE2(sdt, linux, work, queue,
1005 &dw->work, wq);
1006 } else {
1007 dw->dw_state = DELAYED_WORK_RESCHEDULED;
1008 dw->dw_resched = MIN(INT_MAX, ticks);
1009 SDT_PROBE3(sdt, linux, work, schedule,
1010 dw, wq, ticks);
1011 }
1012 newly_queued = true;
1013 break;
1014 default:
1015 panic("invalid delayed work state: %d",
1016 dw->dw_state);
1017 }
1018 }
1019 mutex_exit(&wq->wq_lock);
1020
1021 return newly_queued;
1022 }
1023
1024 /*
1025 * mod_delayed_work(wq, dw, ticks)
1026 *
1027 * Schedule dw to run after ticks. If scheduled or queued,
1028 * reschedule. If ticks == 0, run without delay.
1029 *
1030 * True if it modified the timer of an already scheduled work,
1031 * false if it newly scheduled the work.
1032 */
1033 bool
1034 mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dw,
1035 unsigned long ticks)
1036 {
1037 bool timer_modified;
1038
1039 mutex_enter(&wq->wq_lock);
1040 if (acquire_work(&dw->work, wq)) {
1041 /*
1042 * It wasn't on any workqueue at all. Schedule it to
1043 * run on this one.
1044 */
1045 KASSERT(dw->dw_state == DELAYED_WORK_IDLE);
1046 if (ticks == 0) {
1047 /*
1048 * Run immediately: put it on the queue and
1049 * signal the worker thread.
1050 */
1051 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work,
1052 work_entry);
1053 cv_broadcast(&wq->wq_cv);
1054 SDT_PROBE2(sdt, linux, work, queue, &dw->work, wq);
1055 } else {
1056 /*
1057 * Initialize a callout and schedule to run
1058 * after a delay.
1059 */
1060 dw_callout_init(wq, dw);
1061 callout_schedule(&dw->dw_callout, MIN(INT_MAX, ticks));
1062 SDT_PROBE3(sdt, linux, work, schedule, dw, wq, ticks);
1063 }
1064 timer_modified = false;
1065 } else {
1066 /* It was already on this workqueue. */
1067 switch (dw->dw_state) {
1068 case DELAYED_WORK_IDLE:
1069 /* On the queue. */
1070 if (ticks == 0) {
1071 /* Leave it be. */
1072 SDT_PROBE2(sdt, linux, work, cancel,
1073 &dw->work, wq);
1074 SDT_PROBE2(sdt, linux, work, queue,
1075 &dw->work, wq);
1076 } else {
1077 /* Remove from the queue and schedule. */
1078 TAILQ_REMOVE(&wq->wq_dqueue, &dw->work,
1079 work_entry);
1080 dw_callout_init(wq, dw);
1081 callout_schedule(&dw->dw_callout,
1082 MIN(INT_MAX, ticks));
1083 SDT_PROBE2(sdt, linux, work, cancel,
1084 &dw->work, wq);
1085 SDT_PROBE3(sdt, linux, work, schedule,
1086 dw, wq, ticks);
1087 }
1088 timer_modified = true;
1089 break;
1090 case DELAYED_WORK_SCHEDULED:
1091 /*
1092 * It is scheduled to run after a delay. Try
1093 * to stop it and reschedule it; if we can't,
1094 * either reschedule it or cancel it to put it
1095 * on the queue, and inform the callout.
1096 */
1097 if (callout_stop(&dw->dw_callout)) {
1098 /* Can't stop, callout has begun. */
1099 if (ticks == 0) {
1100 /*
1101 * We don't actually need to do
1102 * anything. The callout will
1103 * queue it as soon as it gets
1104 * the lock.
1105 */
1106 SDT_PROBE2(sdt, linux, work, cancel,
1107 &dw->work, wq);
1108 SDT_PROBE2(sdt, linux, work, queue,
1109 &dw->work, wq);
1110 } else {
1111 /* Ask the callout to reschedule. */
1112 dw->dw_state = DELAYED_WORK_RESCHEDULED;
1113 dw->dw_resched = MIN(INT_MAX, ticks);
1114 SDT_PROBE2(sdt, linux, work, cancel,
1115 &dw->work, wq);
1116 SDT_PROBE3(sdt, linux, work, schedule,
1117 dw, wq, ticks);
1118 }
1119 } else {
1120 /* We stopped the callout before it began. */
1121 if (ticks == 0) {
1122 /*
1123 * Run immediately: destroy the
1124 * callout, put it on the
1125 * queue, and signal the worker
1126 * thread.
1127 */
1128 dw_callout_destroy(wq, dw);
1129 TAILQ_INSERT_TAIL(&wq->wq_dqueue,
1130 &dw->work, work_entry);
1131 cv_broadcast(&wq->wq_cv);
1132 SDT_PROBE2(sdt, linux, work, cancel,
1133 &dw->work, wq);
1134 SDT_PROBE2(sdt, linux, work, queue,
1135 &dw->work, wq);
1136 } else {
1137 /*
1138 * Reschedule the callout. No
1139 * state change.
1140 */
1141 callout_schedule(&dw->dw_callout,
1142 MIN(INT_MAX, ticks));
1143 SDT_PROBE2(sdt, linux, work, cancel,
1144 &dw->work, wq);
1145 SDT_PROBE3(sdt, linux, work, schedule,
1146 dw, wq, ticks);
1147 }
1148 }
1149 timer_modified = true;
1150 break;
1151 case DELAYED_WORK_RESCHEDULED:
1152 /*
1153 * Someone rescheduled it after the callout
1154 * started but before the poor thing even had a
1155 * chance to acquire the lock.
1156 */
1157 if (ticks == 0) {
1158 /*
1159 * We can just switch back to
1160 * DELAYED_WORK_SCHEDULED so that the
1161 * callout will queue the work as soon
1162 * as it gets the lock.
1163 */
1164 dw->dw_state = DELAYED_WORK_SCHEDULED;
1165 dw->dw_resched = -1;
1166 SDT_PROBE2(sdt, linux, work, cancel,
1167 &dw->work, wq);
1168 SDT_PROBE2(sdt, linux, work, queue,
1169 &dw->work, wq);
1170 } else {
1171 /* Change the rescheduled time. */
1172 dw->dw_resched = ticks;
1173 SDT_PROBE2(sdt, linux, work, cancel,
1174 &dw->work, wq);
1175 SDT_PROBE3(sdt, linux, work, schedule,
1176 dw, wq, ticks);
1177 }
1178 timer_modified = true;
1179 break;
1180 case DELAYED_WORK_CANCELLED:
1181 /*
1182 * Someone cancelled it after the callout
1183 * started but before the poor thing even had a
1184 * chance to acquire the lock.
1185 */
1186 if (ticks == 0) {
1187 /*
1188 * We can just switch back to
1189 * DELAYED_WORK_SCHEDULED so that the
1190 * callout will queue the work as soon
1191 * as it gets the lock.
1192 */
1193 dw->dw_state = DELAYED_WORK_SCHEDULED;
1194 SDT_PROBE2(sdt, linux, work, queue,
1195 &dw->work, wq);
1196 } else {
1197 /* Ask it to reschedule. */
1198 dw->dw_state = DELAYED_WORK_RESCHEDULED;
1199 dw->dw_resched = MIN(INT_MAX, ticks);
1200 SDT_PROBE3(sdt, linux, work, schedule,
1201 dw, wq, ticks);
1202 }
1203 timer_modified = false;
1204 break;
1205 default:
1206 panic("invalid delayed work state: %d", dw->dw_state);
1207 }
1208 }
1209 mutex_exit(&wq->wq_lock);
1210
1211 return timer_modified;
1212 }
1213
1214 /*
1215 * cancel_delayed_work(dw)
1216 *
1217 * If work was scheduled or queued, remove it from the schedule or
1218 * queue and return true. If work was not scheduled or queued,
1219 * return false. Note that work may already be running; if it
1220 * hasn't been rescheduled or requeued, then cancel_delayed_work
1221 * will return false, and either way, cancel_delayed_work will NOT
1222 * wait for the work to complete.
1223 */
1224 bool
1225 cancel_delayed_work(struct delayed_work *dw)
1226 {
1227 struct workqueue_struct *wq;
1228 bool cancelled_p;
1229
1230 /* If there's no workqueue, nothing to cancel. */
1231 if ((wq = work_queue(&dw->work)) == NULL)
1232 return false;
1233
1234 mutex_enter(&wq->wq_lock);
1235 if (__predict_false(work_queue(&dw->work) != wq)) {
1236 cancelled_p = false;
1237 } else {
1238 switch (dw->dw_state) {
1239 case DELAYED_WORK_IDLE:
1240 /*
1241 * It is either on the queue or already running
1242 * or both.
1243 */
1244 if (work_claimed(&dw->work, wq)) {
1245 /* On the queue. Remove and release. */
1246 TAILQ_REMOVE(&wq->wq_dqueue, &dw->work,
1247 work_entry);
1248 SDT_PROBE2(sdt, linux, work, cancel,
1249 &dw->work, wq);
1250 release_work(&dw->work, wq);
1251 /* Can't dereference dw after this point. */
1252 cancelled_p = true;
1253 } else {
1254 /* Not on the queue, so didn't cancel. */
1255 cancelled_p = false;
1256 }
1257 break;
1258 case DELAYED_WORK_SCHEDULED:
1259 /*
1260 * If it is scheduled, mark it cancelled and
1261 * try to stop the callout before it starts.
1262 *
1263 * If it's too late and the callout has already
1264 * begun to execute, tough.
1265 *
1266 * If we stopped the callout before it started,
1267 * however, then destroy the callout and
1268 * dissociate it from the workqueue ourselves.
1269 */
1270 dw->dw_state = DELAYED_WORK_CANCELLED;
1271 cancelled_p = true;
1272 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1273 if (!callout_stop(&dw->dw_callout))
1274 cancel_delayed_work_done(wq, dw);
1275 break;
1276 case DELAYED_WORK_RESCHEDULED:
1277 /*
1278 * If it is being rescheduled, the callout has
1279 * already fired. We must ask it to cancel.
1280 */
1281 dw->dw_state = DELAYED_WORK_CANCELLED;
1282 dw->dw_resched = -1;
1283 cancelled_p = true;
1284 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1285 break;
1286 case DELAYED_WORK_CANCELLED:
1287 /*
1288 * If it is being cancelled, the callout has
1289 * already fired. There is nothing more for us
1290 * to do. Someone else claims credit for
1291 * cancelling it.
1292 */
1293 cancelled_p = false;
1294 break;
1295 default:
1296 panic("invalid delayed work state: %d",
1297 dw->dw_state);
1298 }
1299 }
1300 mutex_exit(&wq->wq_lock);
1301
1302 return cancelled_p;
1303 }
1304
1305 /*
1306 * cancel_delayed_work_sync(dw)
1307 *
1308 * If work was scheduled or queued, remove it from the schedule or
1309 * queue and return true. If work was not scheduled or queued,
1310 * return false. Note that work may already be running; if it
1311 * hasn't been rescheduled or requeued, then cancel_delayed_work
1312 * will return false; either way, wait for it to complete.
1313 */
1314 bool
1315 cancel_delayed_work_sync(struct delayed_work *dw)
1316 {
1317 struct workqueue_struct *wq;
1318 bool cancelled_p;
1319
1320 /* If there's no workqueue, nothing to cancel. */
1321 if ((wq = work_queue(&dw->work)) == NULL)
1322 return false;
1323
1324 mutex_enter(&wq->wq_lock);
1325 if (__predict_false(work_queue(&dw->work) != wq)) {
1326 cancelled_p = false;
1327 } else {
1328 switch (dw->dw_state) {
1329 case DELAYED_WORK_IDLE:
1330 /*
1331 * It is either on the queue or already running
1332 * or both.
1333 */
1334 if (work_claimed(&dw->work, wq)) {
1335 /* On the queue. Remove and release. */
1336 TAILQ_REMOVE(&wq->wq_dqueue, &dw->work,
1337 work_entry);
1338 SDT_PROBE2(sdt, linux, work, cancel,
1339 &dw->work, wq);
1340 release_work(&dw->work, wq);
1341 /* Can't dereference dw after this point. */
1342 cancelled_p = true;
1343 } else {
1344 /* Not on the queue, so didn't cancel. */
1345 cancelled_p = false;
1346 }
1347 /* If it's still running, wait for it to complete. */
1348 if (wq->wq_current_work == &dw->work)
1349 wait_for_current_work(&dw->work, wq);
1350 break;
1351 case DELAYED_WORK_SCHEDULED:
1352 /*
1353 * If it is scheduled, mark it cancelled and
1354 * try to stop the callout before it starts.
1355 *
1356 * If it's too late and the callout has already
1357 * begun to execute, we must wait for it to
1358 * complete. But we got in soon enough to ask
1359 * the callout not to run, so we successfully
1360 * cancelled it in that case.
1361 *
1362 * If we stopped the callout before it started,
1363 * then we must destroy the callout and
1364 * dissociate it from the workqueue ourselves.
1365 */
1366 dw->dw_state = DELAYED_WORK_CANCELLED;
1367 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1368 if (!callout_halt(&dw->dw_callout, &wq->wq_lock))
1369 cancel_delayed_work_done(wq, dw);
1370 cancelled_p = true;
1371 break;
1372 case DELAYED_WORK_RESCHEDULED:
1373 /*
1374 * If it is being rescheduled, the callout has
1375 * already fired. We must ask it to cancel and
1376 * wait for it to complete.
1377 */
1378 dw->dw_state = DELAYED_WORK_CANCELLED;
1379 dw->dw_resched = -1;
1380 SDT_PROBE2(sdt, linux, work, cancel, &dw->work, wq);
1381 (void)callout_halt(&dw->dw_callout, &wq->wq_lock);
1382 cancelled_p = true;
1383 break;
1384 case DELAYED_WORK_CANCELLED:
1385 /*
1386 * If it is being cancelled, the callout has
1387 * already fired. We need only wait for it to
1388 * complete. Someone else, however, claims
1389 * credit for cancelling it.
1390 */
1391 (void)callout_halt(&dw->dw_callout, &wq->wq_lock);
1392 cancelled_p = false;
1393 break;
1394 default:
1395 panic("invalid delayed work state: %d",
1396 dw->dw_state);
1397 }
1398 }
1399 mutex_exit(&wq->wq_lock);
1400
1401 return cancelled_p;
1402 }
1403
1404 /*
1406 * Flush
1407 */
1408
1409 /*
1410 * flush_scheduled_work()
1411 *
1412 * Wait for all work queued on system_wq to complete. This does
1413 * not include delayed work.
1414 */
1415 void
1416 flush_scheduled_work(void)
1417 {
1418
1419 flush_workqueue(system_wq);
1420 }
1421
1422 /*
1423 * flush_workqueue_locked(wq)
1424 *
1425 * Wait for all work queued on wq to complete. This does not
1426 * include delayed work. True if there was work to be flushed,
1427 * false it the queue was empty.
1428 *
1429 * Caller must hold wq's lock.
1430 */
1431 static bool
1432 flush_workqueue_locked(struct workqueue_struct *wq)
1433 {
1434 uint64_t gen;
1435 bool work_queued = false;
1436
1437 KASSERT(mutex_owned(&wq->wq_lock));
1438
1439 /* Get the current generation number. */
1440 gen = wq->wq_gen;
1441
1442 /*
1443 * If there's a batch of work in progress, we must wait for the
1444 * worker thread to finish that batch.
1445 */
1446 if (wq->wq_current_work != NULL) {
1447 gen++;
1448 work_queued = true;
1449 }
1450
1451 /*
1452 * If there's any work yet to be claimed from the queue by the
1453 * worker thread, we must wait for it to finish one more batch
1454 * too.
1455 */
1456 if (!TAILQ_EMPTY(&wq->wq_queue) || !TAILQ_EMPTY(&wq->wq_dqueue)) {
1457 gen++;
1458 work_queued = true;
1459 }
1460
1461 /* Wait until the generation number has caught up. */
1462 SDT_PROBE1(sdt, linux, work, flush__start, wq);
1463 while (wq->wq_gen < gen)
1464 cv_wait(&wq->wq_cv, &wq->wq_lock);
1465 SDT_PROBE1(sdt, linux, work, flush__done, wq);
1466
1467 /* Return whether we had to wait for anything. */
1468 return work_queued;
1469 }
1470
1471 /*
1472 * flush_workqueue(wq)
1473 *
1474 * Wait for all work queued on wq to complete. This does not
1475 * include delayed work.
1476 */
1477 void
1478 flush_workqueue(struct workqueue_struct *wq)
1479 {
1480
1481 mutex_enter(&wq->wq_lock);
1482 (void)flush_workqueue_locked(wq);
1483 mutex_exit(&wq->wq_lock);
1484 }
1485
1486 /*
1487 * drain_workqueue(wq)
1488 *
1489 * Repeatedly flush wq until there is no more work.
1490 */
1491 void
1492 drain_workqueue(struct workqueue_struct *wq)
1493 {
1494 unsigned ntries = 0;
1495
1496 mutex_enter(&wq->wq_lock);
1497 while (flush_workqueue_locked(wq)) {
1498 if (ntries++ == 10 || (ntries % 100) == 0)
1499 printf("linux workqueue %s"
1500 ": still clogged after %u flushes",
1501 wq->wq_name, ntries);
1502 }
1503 mutex_exit(&wq->wq_lock);
1504 }
1505
1506 /*
1507 * flush_work(work)
1508 *
1509 * If work is queued or currently executing, wait for it to
1510 * complete.
1511 *
1512 * Return true if we waited to flush it, false if it was already
1513 * idle.
1514 */
1515 bool
1516 flush_work(struct work_struct *work)
1517 {
1518 struct workqueue_struct *wq;
1519
1520 /* If there's no workqueue, nothing to flush. */
1521 if ((wq = work_queue(work)) == NULL)
1522 return false;
1523
1524 flush_workqueue(wq);
1525 return true;
1526 }
1527
1528 /*
1529 * flush_delayed_work(dw)
1530 *
1531 * If dw is scheduled to run after a delay, queue it immediately
1532 * instead. Then, if dw is queued or currently executing, wait
1533 * for it to complete.
1534 */
1535 bool
1536 flush_delayed_work(struct delayed_work *dw)
1537 {
1538 struct workqueue_struct *wq;
1539 bool waited = false;
1540
1541 /* If there's no workqueue, nothing to flush. */
1542 if ((wq = work_queue(&dw->work)) == NULL)
1543 return false;
1544
1545 mutex_enter(&wq->wq_lock);
1546 if (__predict_false(work_queue(&dw->work) != wq)) {
1547 /*
1548 * Moved off the queue already (and possibly to another
1549 * queue, though that would be ill-advised), so it must
1550 * have completed, and we have nothing more to do.
1551 */
1552 waited = false;
1553 } else {
1554 switch (dw->dw_state) {
1555 case DELAYED_WORK_IDLE:
1556 /*
1557 * It has a workqueue assigned and the callout
1558 * is idle, so it must be in progress or on the
1559 * queue. In that case, we'll wait for it to
1560 * complete.
1561 */
1562 break;
1563 case DELAYED_WORK_SCHEDULED:
1564 case DELAYED_WORK_RESCHEDULED:
1565 case DELAYED_WORK_CANCELLED:
1566 /*
1567 * The callout is scheduled, and may have even
1568 * started. Mark it as scheduled so that if
1569 * the callout has fired it will queue the work
1570 * itself. Try to stop the callout -- if we
1571 * can, queue the work now; if we can't, wait
1572 * for the callout to complete, which entails
1573 * queueing it.
1574 */
1575 dw->dw_state = DELAYED_WORK_SCHEDULED;
1576 if (!callout_halt(&dw->dw_callout, &wq->wq_lock)) {
1577 /*
1578 * We stopped it before it ran. No
1579 * state change in the interim is
1580 * possible. Destroy the callout and
1581 * queue it ourselves.
1582 */
1583 KASSERT(dw->dw_state ==
1584 DELAYED_WORK_SCHEDULED);
1585 dw_callout_destroy(wq, dw);
1586 TAILQ_INSERT_TAIL(&wq->wq_dqueue, &dw->work,
1587 work_entry);
1588 cv_broadcast(&wq->wq_cv);
1589 SDT_PROBE2(sdt, linux, work, queue,
1590 &dw->work, wq);
1591 }
1592 break;
1593 default:
1594 panic("invalid delayed work state: %d", dw->dw_state);
1595 }
1596 /*
1597 * Waiting for the whole queue to flush is overkill,
1598 * but doesn't hurt.
1599 */
1600 (void)flush_workqueue_locked(wq);
1601 waited = true;
1602 }
1603 mutex_exit(&wq->wq_lock);
1604
1605 return waited;
1606 }
1607
1608 /*
1609 * delayed_work_pending(dw)
1610 *
1611 * True if dw is currently scheduled to execute, false if not.
1612 */
1613 bool
1614 delayed_work_pending(const struct delayed_work *dw)
1615 {
1616
1617 return work_pending(&dw->work);
1618 }
1619