Home | History | Annotate | Line # | Download | only in builtins
      1  1.1  joerg //===-- lib/comparedf2.c - Double-precision comparisons -----------*- C -*-===//
      2  1.1  joerg //
      3  1.1  joerg //                     The LLVM Compiler Infrastructure
      4  1.1  joerg //
      5  1.1  joerg // This file is dual licensed under the MIT and the University of Illinois Open
      6  1.1  joerg // Source Licenses. See LICENSE.TXT for details.
      7  1.1  joerg //
      8  1.1  joerg //===----------------------------------------------------------------------===//
      9  1.1  joerg //
     10  1.1  joerg // // This file implements the following soft-float comparison routines:
     11  1.1  joerg //
     12  1.1  joerg //   __eqdf2   __gedf2   __unorddf2
     13  1.1  joerg //   __ledf2   __gtdf2
     14  1.1  joerg //   __ltdf2
     15  1.1  joerg //   __nedf2
     16  1.1  joerg //
     17  1.1  joerg // The semantics of the routines grouped in each column are identical, so there
     18  1.1  joerg // is a single implementation for each, and wrappers to provide the other names.
     19  1.1  joerg //
     20  1.1  joerg // The main routines behave as follows:
     21  1.1  joerg //
     22  1.1  joerg //   __ledf2(a,b) returns -1 if a < b
     23  1.1  joerg //                         0 if a == b
     24  1.1  joerg //                         1 if a > b
     25  1.1  joerg //                         1 if either a or b is NaN
     26  1.1  joerg //
     27  1.1  joerg //   __gedf2(a,b) returns -1 if a < b
     28  1.1  joerg //                         0 if a == b
     29  1.1  joerg //                         1 if a > b
     30  1.1  joerg //                        -1 if either a or b is NaN
     31  1.1  joerg //
     32  1.1  joerg //   __unorddf2(a,b) returns 0 if both a and b are numbers
     33  1.1  joerg //                           1 if either a or b is NaN
     34  1.1  joerg //
     35  1.1  joerg // Note that __ledf2( ) and __gedf2( ) are identical except in their handling of
     36  1.1  joerg // NaN values.
     37  1.1  joerg //
     38  1.1  joerg //===----------------------------------------------------------------------===//
     39  1.1  joerg 
     40  1.1  joerg #define DOUBLE_PRECISION
     41  1.1  joerg #include "fp_lib.h"
     42  1.1  joerg 
     43  1.1  joerg enum LE_RESULT {
     44  1.1  joerg     LE_LESS      = -1,
     45  1.1  joerg     LE_EQUAL     =  0,
     46  1.1  joerg     LE_GREATER   =  1,
     47  1.1  joerg     LE_UNORDERED =  1
     48  1.1  joerg };
     49  1.1  joerg 
     50  1.2    rin COMPILER_RT_ABI enum LE_RESULT
     51  1.2    rin __ledf2(fp_t a, fp_t b) {
     52  1.1  joerg 
     53  1.1  joerg     const srep_t aInt = toRep(a);
     54  1.1  joerg     const srep_t bInt = toRep(b);
     55  1.1  joerg     const rep_t aAbs = aInt & absMask;
     56  1.1  joerg     const rep_t bAbs = bInt & absMask;
     57  1.1  joerg 
     58  1.1  joerg     // If either a or b is NaN, they are unordered.
     59  1.1  joerg     if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
     60  1.1  joerg 
     61  1.1  joerg     // If a and b are both zeros, they are equal.
     62  1.1  joerg     if ((aAbs | bAbs) == 0) return LE_EQUAL;
     63  1.1  joerg 
     64  1.1  joerg     // If at least one of a and b is positive, we get the same result comparing
     65  1.1  joerg     // a and b as signed integers as we would with a floating-point compare.
     66  1.1  joerg     if ((aInt & bInt) >= 0) {
     67  1.1  joerg         if (aInt < bInt) return LE_LESS;
     68  1.1  joerg         else if (aInt == bInt) return LE_EQUAL;
     69  1.1  joerg         else return LE_GREATER;
     70  1.1  joerg     }
     71  1.1  joerg 
     72  1.1  joerg     // Otherwise, both are negative, so we need to flip the sense of the
     73  1.1  joerg     // comparison to get the correct result.  (This assumes a twos- or ones-
     74  1.1  joerg     // complement integer representation; if integers are represented in a
     75  1.1  joerg     // sign-magnitude representation, then this flip is incorrect).
     76  1.1  joerg     else {
     77  1.1  joerg         if (aInt > bInt) return LE_LESS;
     78  1.1  joerg         else if (aInt == bInt) return LE_EQUAL;
     79  1.1  joerg         else return LE_GREATER;
     80  1.1  joerg     }
     81  1.1  joerg }
     82  1.1  joerg 
     83  1.2    rin #if defined(__ELF__)
     84  1.2    rin // Alias for libgcc compatibility
     85  1.2    rin FNALIAS(__cmpdf2, __ledf2);
     86  1.2    rin #endif
     87  1.2    rin 
     88  1.1  joerg enum GE_RESULT {
     89  1.1  joerg     GE_LESS      = -1,
     90  1.1  joerg     GE_EQUAL     =  0,
     91  1.1  joerg     GE_GREATER   =  1,
     92  1.1  joerg     GE_UNORDERED = -1   // Note: different from LE_UNORDERED
     93  1.1  joerg };
     94  1.1  joerg 
     95  1.2    rin COMPILER_RT_ABI enum GE_RESULT
     96  1.2    rin __gedf2(fp_t a, fp_t b) {
     97  1.1  joerg 
     98  1.1  joerg     const srep_t aInt = toRep(a);
     99  1.1  joerg     const srep_t bInt = toRep(b);
    100  1.1  joerg     const rep_t aAbs = aInt & absMask;
    101  1.1  joerg     const rep_t bAbs = bInt & absMask;
    102  1.1  joerg 
    103  1.1  joerg     if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
    104  1.1  joerg     if ((aAbs | bAbs) == 0) return GE_EQUAL;
    105  1.1  joerg     if ((aInt & bInt) >= 0) {
    106  1.1  joerg         if (aInt < bInt) return GE_LESS;
    107  1.1  joerg         else if (aInt == bInt) return GE_EQUAL;
    108  1.1  joerg         else return GE_GREATER;
    109  1.1  joerg     } else {
    110  1.1  joerg         if (aInt > bInt) return GE_LESS;
    111  1.1  joerg         else if (aInt == bInt) return GE_EQUAL;
    112  1.1  joerg         else return GE_GREATER;
    113  1.1  joerg     }
    114  1.1  joerg }
    115  1.1  joerg 
    116  1.2    rin COMPILER_RT_ABI int
    117  1.2    rin __unorddf2(fp_t a, fp_t b) {
    118  1.1  joerg     const rep_t aAbs = toRep(a) & absMask;
    119  1.1  joerg     const rep_t bAbs = toRep(b) & absMask;
    120  1.1  joerg     return aAbs > infRep || bAbs > infRep;
    121  1.1  joerg }
    122  1.1  joerg 
    123  1.2    rin // The following are alternative names for the preceding routines.
    124  1.1  joerg 
    125  1.2    rin COMPILER_RT_ABI enum LE_RESULT
    126  1.2    rin __eqdf2(fp_t a, fp_t b) {
    127  1.1  joerg     return __ledf2(a, b);
    128  1.1  joerg }
    129  1.1  joerg 
    130  1.2    rin COMPILER_RT_ABI enum LE_RESULT
    131  1.2    rin __ltdf2(fp_t a, fp_t b) {
    132  1.1  joerg     return __ledf2(a, b);
    133  1.1  joerg }
    134  1.1  joerg 
    135  1.2    rin COMPILER_RT_ABI enum LE_RESULT
    136  1.2    rin __nedf2(fp_t a, fp_t b) {
    137  1.1  joerg     return __ledf2(a, b);
    138  1.1  joerg }
    139  1.1  joerg 
    140  1.2    rin COMPILER_RT_ABI enum GE_RESULT
    141  1.2    rin __gtdf2(fp_t a, fp_t b) {
    142  1.1  joerg     return __gedf2(a, b);
    143  1.1  joerg }
    144  1.1  joerg 
    145  1.2    rin #if defined(__ARM_EABI__)
    146  1.3    rin #if defined(COMPILER_RT_ARMHF_TARGET)
    147  1.2    rin AEABI_RTABI int __aeabi_dcmpun(fp_t a, fp_t b) {
    148  1.2    rin   return __unorddf2(a, b);
    149  1.2    rin }
    150  1.3    rin #else
    151  1.3    rin AEABI_RTABI int __aeabi_dcmpun(fp_t a, fp_t b) COMPILER_RT_ALIAS(__unorddf2);
    152  1.3    rin #endif
    153  1.2    rin #endif
    154