1 1.1 joerg //===-- lib/comparetf2.c - Quad-precision comparisons -------------*- C -*-===// 2 1.1 joerg // 3 1.1 joerg // The LLVM Compiler Infrastructure 4 1.1 joerg // 5 1.1 joerg // This file is dual licensed under the MIT and the University of Illinois Open 6 1.1 joerg // Source Licenses. See LICENSE.TXT for details. 7 1.1 joerg // 8 1.1 joerg //===----------------------------------------------------------------------===// 9 1.1 joerg // 10 1.1 joerg // // This file implements the following soft-float comparison routines: 11 1.1 joerg // 12 1.1 joerg // __eqtf2 __getf2 __unordtf2 13 1.1 joerg // __letf2 __gttf2 14 1.1 joerg // __lttf2 15 1.1 joerg // __netf2 16 1.1 joerg // 17 1.1 joerg // The semantics of the routines grouped in each column are identical, so there 18 1.1 joerg // is a single implementation for each, and wrappers to provide the other names. 19 1.1 joerg // 20 1.1 joerg // The main routines behave as follows: 21 1.1 joerg // 22 1.1 joerg // __letf2(a,b) returns -1 if a < b 23 1.1 joerg // 0 if a == b 24 1.1 joerg // 1 if a > b 25 1.1 joerg // 1 if either a or b is NaN 26 1.1 joerg // 27 1.1 joerg // __getf2(a,b) returns -1 if a < b 28 1.1 joerg // 0 if a == b 29 1.1 joerg // 1 if a > b 30 1.1 joerg // -1 if either a or b is NaN 31 1.1 joerg // 32 1.1 joerg // __unordtf2(a,b) returns 0 if both a and b are numbers 33 1.1 joerg // 1 if either a or b is NaN 34 1.1 joerg // 35 1.1 joerg // Note that __letf2( ) and __getf2( ) are identical except in their handling of 36 1.1 joerg // NaN values. 37 1.1 joerg // 38 1.1 joerg //===----------------------------------------------------------------------===// 39 1.1 joerg 40 1.1 joerg #define QUAD_PRECISION 41 1.1 joerg #include "fp_lib.h" 42 1.1 joerg 43 1.1 joerg #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT) 44 1.1 joerg enum LE_RESULT { 45 1.1 joerg LE_LESS = -1, 46 1.1 joerg LE_EQUAL = 0, 47 1.1 joerg LE_GREATER = 1, 48 1.1 joerg LE_UNORDERED = 1 49 1.1 joerg }; 50 1.1 joerg 51 1.1 joerg COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) { 52 1.1 joerg 53 1.1 joerg const srep_t aInt = toRep(a); 54 1.1 joerg const srep_t bInt = toRep(b); 55 1.1 joerg const rep_t aAbs = aInt & absMask; 56 1.1 joerg const rep_t bAbs = bInt & absMask; 57 1.1 joerg 58 1.1 joerg // If either a or b is NaN, they are unordered. 59 1.1 joerg if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; 60 1.1 joerg 61 1.1 joerg // If a and b are both zeros, they are equal. 62 1.1 joerg if ((aAbs | bAbs) == 0) return LE_EQUAL; 63 1.1 joerg 64 1.1 joerg // If at least one of a and b is positive, we get the same result comparing 65 1.1 joerg // a and b as signed integers as we would with a floating-point compare. 66 1.1 joerg if ((aInt & bInt) >= 0) { 67 1.1 joerg if (aInt < bInt) return LE_LESS; 68 1.1 joerg else if (aInt == bInt) return LE_EQUAL; 69 1.1 joerg else return LE_GREATER; 70 1.1 joerg } 71 1.1 joerg else { 72 1.1 joerg // Otherwise, both are negative, so we need to flip the sense of the 73 1.1 joerg // comparison to get the correct result. (This assumes a twos- or ones- 74 1.1 joerg // complement integer representation; if integers are represented in a 75 1.1 joerg // sign-magnitude representation, then this flip is incorrect). 76 1.1 joerg if (aInt > bInt) return LE_LESS; 77 1.1 joerg else if (aInt == bInt) return LE_EQUAL; 78 1.1 joerg else return LE_GREATER; 79 1.1 joerg } 80 1.1 joerg } 81 1.1 joerg 82 1.1.1.3 joerg #if defined(__ELF__) 83 1.1.1.3 joerg // Alias for libgcc compatibility 84 1.1.1.3 joerg FNALIAS(__cmptf2, __letf2); 85 1.1.1.3 joerg #endif 86 1.1.1.3 joerg 87 1.1 joerg enum GE_RESULT { 88 1.1 joerg GE_LESS = -1, 89 1.1 joerg GE_EQUAL = 0, 90 1.1 joerg GE_GREATER = 1, 91 1.1 joerg GE_UNORDERED = -1 // Note: different from LE_UNORDERED 92 1.1 joerg }; 93 1.1 joerg 94 1.1 joerg COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) { 95 1.1 joerg 96 1.1 joerg const srep_t aInt = toRep(a); 97 1.1 joerg const srep_t bInt = toRep(b); 98 1.1 joerg const rep_t aAbs = aInt & absMask; 99 1.1 joerg const rep_t bAbs = bInt & absMask; 100 1.1 joerg 101 1.1 joerg if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; 102 1.1 joerg if ((aAbs | bAbs) == 0) return GE_EQUAL; 103 1.1 joerg if ((aInt & bInt) >= 0) { 104 1.1 joerg if (aInt < bInt) return GE_LESS; 105 1.1 joerg else if (aInt == bInt) return GE_EQUAL; 106 1.1 joerg else return GE_GREATER; 107 1.1 joerg } else { 108 1.1 joerg if (aInt > bInt) return GE_LESS; 109 1.1 joerg else if (aInt == bInt) return GE_EQUAL; 110 1.1 joerg else return GE_GREATER; 111 1.1 joerg } 112 1.1 joerg } 113 1.1 joerg 114 1.1 joerg COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) { 115 1.1 joerg const rep_t aAbs = toRep(a) & absMask; 116 1.1 joerg const rep_t bAbs = toRep(b) & absMask; 117 1.1 joerg return aAbs > infRep || bAbs > infRep; 118 1.1 joerg } 119 1.1 joerg 120 1.1.1.2 joerg // The following are alternative names for the preceding routines. 121 1.1 joerg 122 1.1 joerg COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) { 123 1.1 joerg return __letf2(a, b); 124 1.1 joerg } 125 1.1 joerg 126 1.1 joerg COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) { 127 1.1 joerg return __letf2(a, b); 128 1.1 joerg } 129 1.1 joerg 130 1.1 joerg COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) { 131 1.1 joerg return __letf2(a, b); 132 1.1 joerg } 133 1.1 joerg 134 1.1 joerg COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) { 135 1.1 joerg return __getf2(a, b); 136 1.1 joerg } 137 1.1 joerg 138 1.1 joerg #endif 139