1 1.1 joerg /*===-- divsc3.c - Implement __divsc3 -------------------------------------=== 2 1.1 joerg * 3 1.1 joerg * The LLVM Compiler Infrastructure 4 1.1 joerg * 5 1.1 joerg * This file is dual licensed under the MIT and the University of Illinois Open 6 1.1 joerg * Source Licenses. See LICENSE.TXT for details. 7 1.1 joerg * 8 1.1 joerg * ===----------------------------------------------------------------------=== 9 1.1 joerg * 10 1.1 joerg * This file implements __divsc3 for the compiler_rt library. 11 1.1 joerg * 12 1.1 joerg *===----------------------------------------------------------------------=== 13 1.1 joerg */ 14 1.1 joerg 15 1.1 joerg #include "int_lib.h" 16 1.1 joerg #include "int_math.h" 17 1.1 joerg 18 1.1 joerg /* Returns: the quotient of (a + ib) / (c + id) */ 19 1.1 joerg 20 1.1.1.3 joerg COMPILER_RT_ABI Fcomplex 21 1.1 joerg __divsc3(float __a, float __b, float __c, float __d) 22 1.1 joerg { 23 1.1 joerg int __ilogbw = 0; 24 1.1 joerg float __logbw = crt_logbf(crt_fmaxf(crt_fabsf(__c), crt_fabsf(__d))); 25 1.1 joerg if (crt_isfinite(__logbw)) 26 1.1 joerg { 27 1.1 joerg __ilogbw = (int)__logbw; 28 1.1 joerg __c = crt_scalbnf(__c, -__ilogbw); 29 1.1 joerg __d = crt_scalbnf(__d, -__ilogbw); 30 1.1 joerg } 31 1.1 joerg float __denom = __c * __c + __d * __d; 32 1.1.1.3 joerg Fcomplex z; 33 1.1.1.3 joerg COMPLEX_REAL(z) = crt_scalbnf((__a * __c + __b * __d) / __denom, -__ilogbw); 34 1.1.1.3 joerg COMPLEX_IMAGINARY(z) = crt_scalbnf((__b * __c - __a * __d) / __denom, -__ilogbw); 35 1.1.1.3 joerg if (crt_isnan(COMPLEX_REAL(z)) && crt_isnan(COMPLEX_IMAGINARY(z))) 36 1.1 joerg { 37 1.1 joerg if ((__denom == 0) && (!crt_isnan(__a) || !crt_isnan(__b))) 38 1.1 joerg { 39 1.1.1.3 joerg COMPLEX_REAL(z) = crt_copysignf(CRT_INFINITY, __c) * __a; 40 1.1.1.3 joerg COMPLEX_IMAGINARY(z) = crt_copysignf(CRT_INFINITY, __c) * __b; 41 1.1 joerg } 42 1.1 joerg else if ((crt_isinf(__a) || crt_isinf(__b)) && 43 1.1 joerg crt_isfinite(__c) && crt_isfinite(__d)) 44 1.1 joerg { 45 1.1 joerg __a = crt_copysignf(crt_isinf(__a) ? 1 : 0, __a); 46 1.1 joerg __b = crt_copysignf(crt_isinf(__b) ? 1 : 0, __b); 47 1.1.1.3 joerg COMPLEX_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d); 48 1.1.1.3 joerg COMPLEX_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d); 49 1.1 joerg } 50 1.1 joerg else if (crt_isinf(__logbw) && __logbw > 0 && 51 1.1 joerg crt_isfinite(__a) && crt_isfinite(__b)) 52 1.1 joerg { 53 1.1 joerg __c = crt_copysignf(crt_isinf(__c) ? 1 : 0, __c); 54 1.1 joerg __d = crt_copysignf(crt_isinf(__d) ? 1 : 0, __d); 55 1.1.1.3 joerg COMPLEX_REAL(z) = 0 * (__a * __c + __b * __d); 56 1.1.1.3 joerg COMPLEX_IMAGINARY(z) = 0 * (__b * __c - __a * __d); 57 1.1 joerg } 58 1.1 joerg } 59 1.1 joerg return z; 60 1.1 joerg } 61