Home | History | Annotate | Line # | Download | only in builtins
      1  1.1  joerg //===-- lib/divsf3.c - Single-precision division ------------------*- C -*-===//
      2  1.1  joerg //
      3  1.1  joerg //                     The LLVM Compiler Infrastructure
      4  1.1  joerg //
      5  1.1  joerg // This file is dual licensed under the MIT and the University of Illinois Open
      6  1.1  joerg // Source Licenses. See LICENSE.TXT for details.
      7  1.1  joerg //
      8  1.1  joerg //===----------------------------------------------------------------------===//
      9  1.1  joerg //
     10  1.1  joerg // This file implements single-precision soft-float division
     11  1.1  joerg // with the IEEE-754 default rounding (to nearest, ties to even).
     12  1.1  joerg //
     13  1.1  joerg // For simplicity, this implementation currently flushes denormals to zero.
     14  1.1  joerg // It should be a fairly straightforward exercise to implement gradual
     15  1.1  joerg // underflow with correct rounding.
     16  1.1  joerg //
     17  1.1  joerg //===----------------------------------------------------------------------===//
     18  1.1  joerg 
     19  1.1  joerg #define SINGLE_PRECISION
     20  1.1  joerg #include "fp_lib.h"
     21  1.1  joerg 
     22  1.2    rin COMPILER_RT_ABI fp_t
     23  1.2    rin __divsf3(fp_t a, fp_t b) {
     24  1.1  joerg 
     25  1.1  joerg     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
     26  1.1  joerg     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
     27  1.1  joerg     const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
     28  1.1  joerg 
     29  1.1  joerg     rep_t aSignificand = toRep(a) & significandMask;
     30  1.1  joerg     rep_t bSignificand = toRep(b) & significandMask;
     31  1.1  joerg     int scale = 0;
     32  1.1  joerg 
     33  1.1  joerg     // Detect if a or b is zero, denormal, infinity, or NaN.
     34  1.1  joerg     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
     35  1.1  joerg 
     36  1.1  joerg         const rep_t aAbs = toRep(a) & absMask;
     37  1.1  joerg         const rep_t bAbs = toRep(b) & absMask;
     38  1.1  joerg 
     39  1.1  joerg         // NaN / anything = qNaN
     40  1.1  joerg         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
     41  1.1  joerg         // anything / NaN = qNaN
     42  1.1  joerg         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
     43  1.1  joerg 
     44  1.1  joerg         if (aAbs == infRep) {
     45  1.1  joerg             // infinity / infinity = NaN
     46  1.1  joerg             if (bAbs == infRep) return fromRep(qnanRep);
     47  1.1  joerg             // infinity / anything else = +/- infinity
     48  1.1  joerg             else return fromRep(aAbs | quotientSign);
     49  1.1  joerg         }
     50  1.1  joerg 
     51  1.1  joerg         // anything else / infinity = +/- 0
     52  1.1  joerg         if (bAbs == infRep) return fromRep(quotientSign);
     53  1.1  joerg 
     54  1.1  joerg         if (!aAbs) {
     55  1.1  joerg             // zero / zero = NaN
     56  1.1  joerg             if (!bAbs) return fromRep(qnanRep);
     57  1.1  joerg             // zero / anything else = +/- zero
     58  1.1  joerg             else return fromRep(quotientSign);
     59  1.1  joerg         }
     60  1.1  joerg         // anything else / zero = +/- infinity
     61  1.1  joerg         if (!bAbs) return fromRep(infRep | quotientSign);
     62  1.1  joerg 
     63  1.1  joerg         // one or both of a or b is denormal, the other (if applicable) is a
     64  1.1  joerg         // normal number.  Renormalize one or both of a and b, and set scale to
     65  1.1  joerg         // include the necessary exponent adjustment.
     66  1.1  joerg         if (aAbs < implicitBit) scale += normalize(&aSignificand);
     67  1.1  joerg         if (bAbs < implicitBit) scale -= normalize(&bSignificand);
     68  1.1  joerg     }
     69  1.1  joerg 
     70  1.1  joerg     // Or in the implicit significand bit.  (If we fell through from the
     71  1.1  joerg     // denormal path it was already set by normalize( ), but setting it twice
     72  1.1  joerg     // won't hurt anything.)
     73  1.1  joerg     aSignificand |= implicitBit;
     74  1.1  joerg     bSignificand |= implicitBit;
     75  1.1  joerg     int quotientExponent = aExponent - bExponent + scale;
     76  1.1  joerg 
     77  1.1  joerg     // Align the significand of b as a Q31 fixed-point number in the range
     78  1.1  joerg     // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
     79  1.1  joerg     // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
     80  1.1  joerg     // is accurate to about 3.5 binary digits.
     81  1.1  joerg     uint32_t q31b = bSignificand << 8;
     82  1.1  joerg     uint32_t reciprocal = UINT32_C(0x7504f333) - q31b;
     83  1.1  joerg 
     84  1.1  joerg     // Now refine the reciprocal estimate using a Newton-Raphson iteration:
     85  1.1  joerg     //
     86  1.1  joerg     //     x1 = x0 * (2 - x0 * b)
     87  1.1  joerg     //
     88  1.1  joerg     // This doubles the number of correct binary digits in the approximation
     89  1.1  joerg     // with each iteration, so after three iterations, we have about 28 binary
     90  1.1  joerg     // digits of accuracy.
     91  1.1  joerg     uint32_t correction;
     92  1.1  joerg     correction = -((uint64_t)reciprocal * q31b >> 32);
     93  1.1  joerg     reciprocal = (uint64_t)reciprocal * correction >> 31;
     94  1.1  joerg     correction = -((uint64_t)reciprocal * q31b >> 32);
     95  1.1  joerg     reciprocal = (uint64_t)reciprocal * correction >> 31;
     96  1.1  joerg     correction = -((uint64_t)reciprocal * q31b >> 32);
     97  1.1  joerg     reciprocal = (uint64_t)reciprocal * correction >> 31;
     98  1.1  joerg 
     99  1.1  joerg     // Exhaustive testing shows that the error in reciprocal after three steps
    100  1.1  joerg     // is in the interval [-0x1.f58108p-31, 0x1.d0e48cp-29], in line with our
    101  1.1  joerg     // expectations.  We bump the reciprocal by a tiny value to force the error
    102  1.1  joerg     // to be strictly positive (in the range [0x1.4fdfp-37,0x1.287246p-29], to
    103  1.1  joerg     // be specific).  This also causes 1/1 to give a sensible approximation
    104  1.1  joerg     // instead of zero (due to overflow).
    105  1.1  joerg     reciprocal -= 2;
    106  1.1  joerg 
    107  1.1  joerg     // The numerical reciprocal is accurate to within 2^-28, lies in the
    108  1.1  joerg     // interval [0x1.000000eep-1, 0x1.fffffffcp-1], and is strictly smaller
    109  1.1  joerg     // than the true reciprocal of b.  Multiplying a by this reciprocal thus
    110  1.1  joerg     // gives a numerical q = a/b in Q24 with the following properties:
    111  1.1  joerg     //
    112  1.1  joerg     //    1. q < a/b
    113  1.1  joerg     //    2. q is in the interval [0x1.000000eep-1, 0x1.fffffffcp0)
    114  1.1  joerg     //    3. the error in q is at most 2^-24 + 2^-27 -- the 2^24 term comes
    115  1.1  joerg     //       from the fact that we truncate the product, and the 2^27 term
    116  1.1  joerg     //       is the error in the reciprocal of b scaled by the maximum
    117  1.1  joerg     //       possible value of a.  As a consequence of this error bound,
    118  1.1  joerg     //       either q or nextafter(q) is the correctly rounded
    119  1.1  joerg     rep_t quotient = (uint64_t)reciprocal*(aSignificand << 1) >> 32;
    120  1.1  joerg 
    121  1.1  joerg     // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
    122  1.1  joerg     // In either case, we are going to compute a residual of the form
    123  1.1  joerg     //
    124  1.1  joerg     //     r = a - q*b
    125  1.1  joerg     //
    126  1.1  joerg     // We know from the construction of q that r satisfies:
    127  1.1  joerg     //
    128  1.1  joerg     //     0 <= r < ulp(q)*b
    129  1.1  joerg     //
    130  1.1  joerg     // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
    131  1.1  joerg     // already have the correct result.  The exact halfway case cannot occur.
    132  1.1  joerg     // We also take this time to right shift quotient if it falls in the [1,2)
    133  1.1  joerg     // range and adjust the exponent accordingly.
    134  1.1  joerg     rep_t residual;
    135  1.1  joerg     if (quotient < (implicitBit << 1)) {
    136  1.1  joerg         residual = (aSignificand << 24) - quotient * bSignificand;
    137  1.1  joerg         quotientExponent--;
    138  1.1  joerg     } else {
    139  1.1  joerg         quotient >>= 1;
    140  1.1  joerg         residual = (aSignificand << 23) - quotient * bSignificand;
    141  1.1  joerg     }
    142  1.1  joerg 
    143  1.1  joerg     const int writtenExponent = quotientExponent + exponentBias;
    144  1.1  joerg 
    145  1.1  joerg     if (writtenExponent >= maxExponent) {
    146  1.1  joerg         // If we have overflowed the exponent, return infinity.
    147  1.1  joerg         return fromRep(infRep | quotientSign);
    148  1.1  joerg     }
    149  1.1  joerg 
    150  1.1  joerg     else if (writtenExponent < 1) {
    151  1.1  joerg         // Flush denormals to zero.  In the future, it would be nice to add
    152  1.1  joerg         // code to round them correctly.
    153  1.1  joerg         return fromRep(quotientSign);
    154  1.1  joerg     }
    155  1.1  joerg 
    156  1.1  joerg     else {
    157  1.1  joerg         const bool round = (residual << 1) > bSignificand;
    158  1.1  joerg         // Clear the implicit bit
    159  1.1  joerg         rep_t absResult = quotient & significandMask;
    160  1.1  joerg         // Insert the exponent
    161  1.1  joerg         absResult |= (rep_t)writtenExponent << significandBits;
    162  1.1  joerg         // Round
    163  1.1  joerg         absResult += round;
    164  1.1  joerg         // Insert the sign and return
    165  1.1  joerg         return fromRep(absResult | quotientSign);
    166  1.1  joerg     }
    167  1.1  joerg }
    168  1.2    rin 
    169  1.2    rin #if defined(__ARM_EABI__)
    170  1.3    rin #if defined(COMPILER_RT_ARMHF_TARGET)
    171  1.2    rin AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) {
    172  1.2    rin   return __divsf3(a, b);
    173  1.2    rin }
    174  1.3    rin #else
    175  1.3    rin AEABI_RTABI fp_t __aeabi_fdiv(fp_t a, fp_t b) COMPILER_RT_ALIAS(__divsf3);
    176  1.3    rin #endif
    177  1.2    rin #endif
    178