1 1.1 joerg //===-- lib/divtf3.c - Quad-precision division --------------------*- C -*-===// 2 1.1 joerg // 3 1.1 joerg // The LLVM Compiler Infrastructure 4 1.1 joerg // 5 1.1 joerg // This file is dual licensed under the MIT and the University of Illinois Open 6 1.1 joerg // Source Licenses. See LICENSE.TXT for details. 7 1.1 joerg // 8 1.1 joerg //===----------------------------------------------------------------------===// 9 1.1 joerg // 10 1.1 joerg // This file implements quad-precision soft-float division 11 1.1 joerg // with the IEEE-754 default rounding (to nearest, ties to even). 12 1.1 joerg // 13 1.1 joerg // For simplicity, this implementation currently flushes denormals to zero. 14 1.1 joerg // It should be a fairly straightforward exercise to implement gradual 15 1.1 joerg // underflow with correct rounding. 16 1.1 joerg // 17 1.1 joerg //===----------------------------------------------------------------------===// 18 1.1 joerg 19 1.1 joerg #define QUAD_PRECISION 20 1.1 joerg #include "fp_lib.h" 21 1.1 joerg 22 1.1 joerg #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT) 23 1.1 joerg COMPILER_RT_ABI fp_t __divtf3(fp_t a, fp_t b) { 24 1.1 joerg 25 1.1 joerg const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; 26 1.1 joerg const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; 27 1.1 joerg const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit; 28 1.1 joerg 29 1.1 joerg rep_t aSignificand = toRep(a) & significandMask; 30 1.1 joerg rep_t bSignificand = toRep(b) & significandMask; 31 1.1 joerg int scale = 0; 32 1.1 joerg 33 1.1 joerg // Detect if a or b is zero, denormal, infinity, or NaN. 34 1.1 joerg if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { 35 1.1 joerg 36 1.1 joerg const rep_t aAbs = toRep(a) & absMask; 37 1.1 joerg const rep_t bAbs = toRep(b) & absMask; 38 1.1 joerg 39 1.1 joerg // NaN / anything = qNaN 40 1.1 joerg if (aAbs > infRep) return fromRep(toRep(a) | quietBit); 41 1.1 joerg // anything / NaN = qNaN 42 1.1 joerg if (bAbs > infRep) return fromRep(toRep(b) | quietBit); 43 1.1 joerg 44 1.1 joerg if (aAbs == infRep) { 45 1.1 joerg // infinity / infinity = NaN 46 1.1 joerg if (bAbs == infRep) return fromRep(qnanRep); 47 1.1 joerg // infinity / anything else = +/- infinity 48 1.1 joerg else return fromRep(aAbs | quotientSign); 49 1.1 joerg } 50 1.1 joerg 51 1.1 joerg // anything else / infinity = +/- 0 52 1.1 joerg if (bAbs == infRep) return fromRep(quotientSign); 53 1.1 joerg 54 1.1 joerg if (!aAbs) { 55 1.1 joerg // zero / zero = NaN 56 1.1 joerg if (!bAbs) return fromRep(qnanRep); 57 1.1 joerg // zero / anything else = +/- zero 58 1.1 joerg else return fromRep(quotientSign); 59 1.1 joerg } 60 1.1 joerg // anything else / zero = +/- infinity 61 1.1 joerg if (!bAbs) return fromRep(infRep | quotientSign); 62 1.1 joerg 63 1.1 joerg // one or both of a or b is denormal, the other (if applicable) is a 64 1.1 joerg // normal number. Renormalize one or both of a and b, and set scale to 65 1.1 joerg // include the necessary exponent adjustment. 66 1.1 joerg if (aAbs < implicitBit) scale += normalize(&aSignificand); 67 1.1 joerg if (bAbs < implicitBit) scale -= normalize(&bSignificand); 68 1.1 joerg } 69 1.1 joerg 70 1.1 joerg // Or in the implicit significand bit. (If we fell through from the 71 1.1 joerg // denormal path it was already set by normalize( ), but setting it twice 72 1.1 joerg // won't hurt anything.) 73 1.1 joerg aSignificand |= implicitBit; 74 1.1 joerg bSignificand |= implicitBit; 75 1.1 joerg int quotientExponent = aExponent - bExponent + scale; 76 1.1 joerg 77 1.1 joerg // Align the significand of b as a Q63 fixed-point number in the range 78 1.1 joerg // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax 79 1.1 joerg // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This 80 1.1 joerg // is accurate to about 3.5 binary digits. 81 1.1 joerg const uint64_t q63b = bSignificand >> 49; 82 1.1 joerg uint64_t recip64 = UINT64_C(0x7504f333F9DE6484) - q63b; 83 1.1 joerg // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2) 84 1.1 joerg 85 1.1 joerg // Now refine the reciprocal estimate using a Newton-Raphson iteration: 86 1.1 joerg // 87 1.1 joerg // x1 = x0 * (2 - x0 * b) 88 1.1 joerg // 89 1.1 joerg // This doubles the number of correct binary digits in the approximation 90 1.1 joerg // with each iteration. 91 1.1 joerg uint64_t correction64; 92 1.1 joerg correction64 = -((rep_t)recip64 * q63b >> 64); 93 1.1 joerg recip64 = (rep_t)recip64 * correction64 >> 63; 94 1.1 joerg correction64 = -((rep_t)recip64 * q63b >> 64); 95 1.1 joerg recip64 = (rep_t)recip64 * correction64 >> 63; 96 1.1 joerg correction64 = -((rep_t)recip64 * q63b >> 64); 97 1.1 joerg recip64 = (rep_t)recip64 * correction64 >> 63; 98 1.1 joerg correction64 = -((rep_t)recip64 * q63b >> 64); 99 1.1 joerg recip64 = (rep_t)recip64 * correction64 >> 63; 100 1.1 joerg correction64 = -((rep_t)recip64 * q63b >> 64); 101 1.1 joerg recip64 = (rep_t)recip64 * correction64 >> 63; 102 1.1 joerg 103 1.1 joerg // recip64 might have overflowed to exactly zero in the preceeding 104 1.1 joerg // computation if the high word of b is exactly 1.0. This would sabotage 105 1.1 joerg // the full-width final stage of the computation that follows, so we adjust 106 1.1 joerg // recip64 downward by one bit. 107 1.1 joerg recip64--; 108 1.1 joerg 109 1.1 joerg // We need to perform one more iteration to get us to 112 binary digits; 110 1.1 joerg // The last iteration needs to happen with extra precision. 111 1.1 joerg const uint64_t q127blo = bSignificand << 15; 112 1.1 joerg rep_t correction, reciprocal; 113 1.1 joerg 114 1.1 joerg // NOTE: This operation is equivalent to __multi3, which is not implemented 115 1.1 joerg // in some architechure 116 1.1 joerg rep_t r64q63, r64q127, r64cH, r64cL, dummy; 117 1.1 joerg wideMultiply((rep_t)recip64, (rep_t)q63b, &dummy, &r64q63); 118 1.1 joerg wideMultiply((rep_t)recip64, (rep_t)q127blo, &dummy, &r64q127); 119 1.1 joerg 120 1.1 joerg correction = -(r64q63 + (r64q127 >> 64)); 121 1.1 joerg 122 1.1 joerg uint64_t cHi = correction >> 64; 123 1.1 joerg uint64_t cLo = correction; 124 1.1 joerg 125 1.1 joerg wideMultiply((rep_t)recip64, (rep_t)cHi, &dummy, &r64cH); 126 1.1 joerg wideMultiply((rep_t)recip64, (rep_t)cLo, &dummy, &r64cL); 127 1.1 joerg 128 1.1 joerg reciprocal = r64cH + (r64cL >> 64); 129 1.1 joerg 130 1.1 joerg // We already adjusted the 64-bit estimate, now we need to adjust the final 131 1.1 joerg // 128-bit reciprocal estimate downward to ensure that it is strictly smaller 132 1.1 joerg // than the infinitely precise exact reciprocal. Because the computation 133 1.1 joerg // of the Newton-Raphson step is truncating at every step, this adjustment 134 1.1 joerg // is small; most of the work is already done. 135 1.1 joerg reciprocal -= 2; 136 1.1 joerg 137 1.1 joerg // The numerical reciprocal is accurate to within 2^-112, lies in the 138 1.1 joerg // interval [0.5, 1.0), and is strictly smaller than the true reciprocal 139 1.1 joerg // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b 140 1.1 joerg // in Q127 with the following properties: 141 1.1 joerg // 142 1.1 joerg // 1. q < a/b 143 1.1 joerg // 2. q is in the interval [0.5, 2.0) 144 1.1 joerg // 3. the error in q is bounded away from 2^-113 (actually, we have a 145 1.1 joerg // couple of bits to spare, but this is all we need). 146 1.1 joerg 147 1.1 joerg // We need a 128 x 128 multiply high to compute q, which isn't a basic 148 1.1 joerg // operation in C, so we need to be a little bit fussy. 149 1.1 joerg rep_t quotient, quotientLo; 150 1.1 joerg wideMultiply(aSignificand << 2, reciprocal, "ient, "ientLo); 151 1.1 joerg 152 1.1 joerg // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). 153 1.1 joerg // In either case, we are going to compute a residual of the form 154 1.1 joerg // 155 1.1 joerg // r = a - q*b 156 1.1 joerg // 157 1.1 joerg // We know from the construction of q that r satisfies: 158 1.1 joerg // 159 1.1 joerg // 0 <= r < ulp(q)*b 160 1.1 joerg // 161 1.1 joerg // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we 162 1.1 joerg // already have the correct result. The exact halfway case cannot occur. 163 1.1 joerg // We also take this time to right shift quotient if it falls in the [1,2) 164 1.1 joerg // range and adjust the exponent accordingly. 165 1.1 joerg rep_t residual; 166 1.1 joerg rep_t qb; 167 1.1 joerg 168 1.1 joerg if (quotient < (implicitBit << 1)) { 169 1.1 joerg wideMultiply(quotient, bSignificand, &dummy, &qb); 170 1.1 joerg residual = (aSignificand << 113) - qb; 171 1.1 joerg quotientExponent--; 172 1.1 joerg } else { 173 1.1 joerg quotient >>= 1; 174 1.1 joerg wideMultiply(quotient, bSignificand, &dummy, &qb); 175 1.1 joerg residual = (aSignificand << 112) - qb; 176 1.1 joerg } 177 1.1 joerg 178 1.1 joerg const int writtenExponent = quotientExponent + exponentBias; 179 1.1 joerg 180 1.1 joerg if (writtenExponent >= maxExponent) { 181 1.1 joerg // If we have overflowed the exponent, return infinity. 182 1.1 joerg return fromRep(infRep | quotientSign); 183 1.1 joerg } 184 1.1 joerg else if (writtenExponent < 1) { 185 1.1 joerg // Flush denormals to zero. In the future, it would be nice to add 186 1.1 joerg // code to round them correctly. 187 1.1 joerg return fromRep(quotientSign); 188 1.1 joerg } 189 1.1 joerg else { 190 1.1 joerg const bool round = (residual << 1) >= bSignificand; 191 1.1 joerg // Clear the implicit bit 192 1.1 joerg rep_t absResult = quotient & significandMask; 193 1.1 joerg // Insert the exponent 194 1.1 joerg absResult |= (rep_t)writtenExponent << significandBits; 195 1.1 joerg // Round 196 1.1 joerg absResult += round; 197 1.1 joerg // Insert the sign and return 198 1.1 joerg const long double result = fromRep(absResult | quotientSign); 199 1.1 joerg return result; 200 1.1 joerg } 201 1.1 joerg } 202 1.1 joerg 203 1.1 joerg #endif 204