fp_lib.h revision 1.1.1.3 1 //===-- lib/fp_lib.h - Floating-point utilities -------------------*- C -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a configuration header for soft-float routines in compiler-rt.
11 // This file does not provide any part of the compiler-rt interface, but defines
12 // many useful constants and utility routines that are used in the
13 // implementation of the soft-float routines in compiler-rt.
14 //
15 // Assumes that float, double and long double correspond to the IEEE-754
16 // binary32, binary64 and binary 128 types, respectively, and that integer
17 // endianness matches floating point endianness on the target platform.
18 //
19 //===----------------------------------------------------------------------===//
20
21 #ifndef FP_LIB_HEADER
22 #define FP_LIB_HEADER
23
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include <limits.h>
27 #include "int_lib.h"
28
29 #if defined SINGLE_PRECISION
30
31 typedef uint32_t rep_t;
32 typedef int32_t srep_t;
33 typedef float fp_t;
34 #define REP_C UINT32_C
35 #define significandBits 23
36
37 static inline int rep_clz(rep_t a) {
38 return __builtin_clz(a);
39 }
40
41 // 32x32 --> 64 bit multiply
42 static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
43 const uint64_t product = (uint64_t)a*b;
44 *hi = product >> 32;
45 *lo = product;
46 }
47 COMPILER_RT_ABI fp_t __addsf3(fp_t a, fp_t b);
48
49 #elif defined DOUBLE_PRECISION
50
51 typedef uint64_t rep_t;
52 typedef int64_t srep_t;
53 typedef double fp_t;
54 #define REP_C UINT64_C
55 #define significandBits 52
56
57 static inline int rep_clz(rep_t a) {
58 #if defined __LP64__
59 return __builtin_clzl(a);
60 #else
61 if (a & REP_C(0xffffffff00000000))
62 return __builtin_clz(a >> 32);
63 else
64 return 32 + __builtin_clz(a & REP_C(0xffffffff));
65 #endif
66 }
67
68 #define loWord(a) (a & 0xffffffffU)
69 #define hiWord(a) (a >> 32)
70
71 // 64x64 -> 128 wide multiply for platforms that don't have such an operation;
72 // many 64-bit platforms have this operation, but they tend to have hardware
73 // floating-point, so we don't bother with a special case for them here.
74 static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
75 // Each of the component 32x32 -> 64 products
76 const uint64_t plolo = loWord(a) * loWord(b);
77 const uint64_t plohi = loWord(a) * hiWord(b);
78 const uint64_t philo = hiWord(a) * loWord(b);
79 const uint64_t phihi = hiWord(a) * hiWord(b);
80 // Sum terms that contribute to lo in a way that allows us to get the carry
81 const uint64_t r0 = loWord(plolo);
82 const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
83 *lo = r0 + (r1 << 32);
84 // Sum terms contributing to hi with the carry from lo
85 *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
86 }
87 #undef loWord
88 #undef hiWord
89
90 COMPILER_RT_ABI fp_t __adddf3(fp_t a, fp_t b);
91
92 #elif defined QUAD_PRECISION
93 #if __LDBL_MANT_DIG__ == 113
94 #define CRT_LDBL_128BIT
95 typedef __uint128_t rep_t;
96 typedef __int128_t srep_t;
97 typedef long double fp_t;
98 #define REP_C (__uint128_t)
99 // Note: Since there is no explicit way to tell compiler the constant is a
100 // 128-bit integer, we let the constant be casted to 128-bit integer
101 #define significandBits 112
102
103 static inline int rep_clz(rep_t a) {
104 const union
105 {
106 __uint128_t ll;
107 #if _YUGA_BIG_ENDIAN
108 struct { uint64_t high, low; } s;
109 #else
110 struct { uint64_t low, high; } s;
111 #endif
112 } uu = { .ll = a };
113
114 uint64_t word;
115 uint64_t add;
116
117 if (uu.s.high){
118 word = uu.s.high;
119 add = 0;
120 }
121 else{
122 word = uu.s.low;
123 add = 64;
124 }
125 return __builtin_clzll(word) + add;
126 }
127
128 #define Word_LoMask UINT64_C(0x00000000ffffffff)
129 #define Word_HiMask UINT64_C(0xffffffff00000000)
130 #define Word_FullMask UINT64_C(0xffffffffffffffff)
131 #define Word_1(a) (uint64_t)((a >> 96) & Word_LoMask)
132 #define Word_2(a) (uint64_t)((a >> 64) & Word_LoMask)
133 #define Word_3(a) (uint64_t)((a >> 32) & Word_LoMask)
134 #define Word_4(a) (uint64_t)(a & Word_LoMask)
135
136 // 128x128 -> 256 wide multiply for platforms that don't have such an operation;
137 // many 64-bit platforms have this operation, but they tend to have hardware
138 // floating-point, so we don't bother with a special case for them here.
139 static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
140
141 const uint64_t product11 = Word_1(a) * Word_1(b);
142 const uint64_t product12 = Word_1(a) * Word_2(b);
143 const uint64_t product13 = Word_1(a) * Word_3(b);
144 const uint64_t product14 = Word_1(a) * Word_4(b);
145 const uint64_t product21 = Word_2(a) * Word_1(b);
146 const uint64_t product22 = Word_2(a) * Word_2(b);
147 const uint64_t product23 = Word_2(a) * Word_3(b);
148 const uint64_t product24 = Word_2(a) * Word_4(b);
149 const uint64_t product31 = Word_3(a) * Word_1(b);
150 const uint64_t product32 = Word_3(a) * Word_2(b);
151 const uint64_t product33 = Word_3(a) * Word_3(b);
152 const uint64_t product34 = Word_3(a) * Word_4(b);
153 const uint64_t product41 = Word_4(a) * Word_1(b);
154 const uint64_t product42 = Word_4(a) * Word_2(b);
155 const uint64_t product43 = Word_4(a) * Word_3(b);
156 const uint64_t product44 = Word_4(a) * Word_4(b);
157
158 const __uint128_t sum0 = (__uint128_t)product44;
159 const __uint128_t sum1 = (__uint128_t)product34 +
160 (__uint128_t)product43;
161 const __uint128_t sum2 = (__uint128_t)product24 +
162 (__uint128_t)product33 +
163 (__uint128_t)product42;
164 const __uint128_t sum3 = (__uint128_t)product14 +
165 (__uint128_t)product23 +
166 (__uint128_t)product32 +
167 (__uint128_t)product41;
168 const __uint128_t sum4 = (__uint128_t)product13 +
169 (__uint128_t)product22 +
170 (__uint128_t)product31;
171 const __uint128_t sum5 = (__uint128_t)product12 +
172 (__uint128_t)product21;
173 const __uint128_t sum6 = (__uint128_t)product11;
174
175 const __uint128_t r0 = (sum0 & Word_FullMask) +
176 ((sum1 & Word_LoMask) << 32);
177 const __uint128_t r1 = (sum0 >> 64) +
178 ((sum1 >> 32) & Word_FullMask) +
179 (sum2 & Word_FullMask) +
180 ((sum3 << 32) & Word_HiMask);
181
182 *lo = r0 + (r1 << 64);
183 *hi = (r1 >> 64) +
184 (sum1 >> 96) +
185 (sum2 >> 64) +
186 (sum3 >> 32) +
187 sum4 +
188 (sum5 << 32) +
189 (sum6 << 64);
190 }
191 #undef Word_1
192 #undef Word_2
193 #undef Word_3
194 #undef Word_4
195 #undef Word_HiMask
196 #undef Word_LoMask
197 #undef Word_FullMask
198 #endif // __LDBL_MANT_DIG__ == 113
199 #else
200 #error SINGLE_PRECISION, DOUBLE_PRECISION or QUAD_PRECISION must be defined.
201 #endif
202
203 #if defined(SINGLE_PRECISION) || defined(DOUBLE_PRECISION) || defined(CRT_LDBL_128BIT)
204 #define typeWidth (sizeof(rep_t)*CHAR_BIT)
205 #define exponentBits (typeWidth - significandBits - 1)
206 #define maxExponent ((1 << exponentBits) - 1)
207 #define exponentBias (maxExponent >> 1)
208
209 #define implicitBit (REP_C(1) << significandBits)
210 #define significandMask (implicitBit - 1U)
211 #define signBit (REP_C(1) << (significandBits + exponentBits))
212 #define absMask (signBit - 1U)
213 #define exponentMask (absMask ^ significandMask)
214 #define oneRep ((rep_t)exponentBias << significandBits)
215 #define infRep exponentMask
216 #define quietBit (implicitBit >> 1)
217 #define qnanRep (exponentMask | quietBit)
218
219 static inline rep_t toRep(fp_t x) {
220 const union { fp_t f; rep_t i; } rep = {.f = x};
221 return rep.i;
222 }
223
224 static inline fp_t fromRep(rep_t x) {
225 const union { fp_t f; rep_t i; } rep = {.i = x};
226 return rep.f;
227 }
228
229 static inline int normalize(rep_t *significand) {
230 const int shift = rep_clz(*significand) - rep_clz(implicitBit);
231 *significand <<= shift;
232 return 1 - shift;
233 }
234
235 static inline void wideLeftShift(rep_t *hi, rep_t *lo, int count) {
236 *hi = *hi << count | *lo >> (typeWidth - count);
237 *lo = *lo << count;
238 }
239
240 static inline void wideRightShiftWithSticky(rep_t *hi, rep_t *lo, unsigned int count) {
241 if (count < typeWidth) {
242 const bool sticky = *lo << (typeWidth - count);
243 *lo = *hi << (typeWidth - count) | *lo >> count | sticky;
244 *hi = *hi >> count;
245 }
246 else if (count < 2*typeWidth) {
247 const bool sticky = *hi << (2*typeWidth - count) | *lo;
248 *lo = *hi >> (count - typeWidth) | sticky;
249 *hi = 0;
250 } else {
251 const bool sticky = *hi | *lo;
252 *lo = sticky;
253 *hi = 0;
254 }
255 }
256 #endif
257
258 #endif // FP_LIB_HEADER
259