Home | History | Annotate | Line # | Download | only in ppc
      1      1.1  joerg /* This file is distributed under the University of Illinois Open Source
      2      1.1  joerg  * License. See LICENSE.TXT for details.
      3      1.1  joerg  */
      4      1.1  joerg 
      5      1.1  joerg /* int64_t __fixunstfdi(long double x);
      6      1.1  joerg  * This file implements the PowerPC 128-bit double-double -> int64_t conversion
      7      1.1  joerg  */
      8      1.1  joerg 
      9      1.1  joerg #include "DD.h"
     10      1.1  joerg #include "../int_math.h"
     11      1.1  joerg 
     12      1.1  joerg uint64_t __fixtfdi(long double input)
     13      1.1  joerg {
     14      1.1  joerg 	const DD x = { .ld = input };
     15      1.1  joerg 	const doublebits hibits = { .d = x.s.hi };
     16      1.1  joerg 
     17      1.1  joerg 	const uint32_t absHighWord = (uint32_t)(hibits.x >> 32) & UINT32_C(0x7fffffff);
     18      1.1  joerg 	const uint32_t absHighWordMinusOne = absHighWord - UINT32_C(0x3ff00000);
     19      1.1  joerg 
     20      1.1  joerg 	/* If (1.0 - tiny) <= input < 0x1.0p63: */
     21      1.1  joerg 	if (UINT32_C(0x03f00000) > absHighWordMinusOne)
     22      1.1  joerg 	{
     23      1.1  joerg 		/* Do an unsigned conversion of the absolute value, then restore the sign. */
     24      1.1  joerg 		const int unbiasedHeadExponent = absHighWordMinusOne >> 20;
     25      1.1  joerg 
     26      1.1  joerg 		int64_t result = hibits.x & INT64_C(0x000fffffffffffff); /* mantissa(hi) */
     27      1.1  joerg 		result |= INT64_C(0x0010000000000000); /* matissa(hi) with implicit bit */
     28  1.1.1.2  joerg 		result <<= 10; /* mantissa(hi) with one zero preceding bit. */
     29      1.1  joerg 
     30      1.1  joerg 		const int64_t hiNegationMask = ((int64_t)(hibits.x)) >> 63;
     31      1.1  joerg 
     32      1.1  joerg 		/* If the tail is non-zero, we need to patch in the tail bits. */
     33      1.1  joerg 		if (0.0 != x.s.lo)
     34      1.1  joerg 		{
     35      1.1  joerg 			const doublebits lobits = { .d = x.s.lo };
     36      1.1  joerg 			int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
     37      1.1  joerg 			tailMantissa |= INT64_C(0x0010000000000000);
     38      1.1  joerg 
     39      1.1  joerg 			/* At this point we have the mantissa of |tail| */
     40      1.1  joerg 			/* We need to negate it if head and tail have different signs. */
     41      1.1  joerg 			const int64_t loNegationMask = ((int64_t)(lobits.x)) >> 63;
     42      1.1  joerg 			const int64_t negationMask = loNegationMask ^ hiNegationMask;
     43      1.1  joerg 			tailMantissa = (tailMantissa ^ negationMask) - negationMask;
     44      1.1  joerg 
     45      1.1  joerg 			/* Now we have the mantissa of tail as a signed 2s-complement integer */
     46      1.1  joerg 
     47      1.1  joerg 			const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
     48      1.1  joerg 
     49      1.1  joerg 			/* Shift the tail mantissa into the right position, accounting for the
     50      1.1  joerg 			 * bias of 10 that we shifted the head mantissa by.
     51      1.1  joerg 			 */
     52      1.1  joerg 			tailMantissa >>= (unbiasedHeadExponent - (biasedTailExponent - (1023 - 10)));
     53      1.1  joerg 
     54      1.1  joerg 			result += tailMantissa;
     55      1.1  joerg 		}
     56      1.1  joerg 
     57      1.1  joerg 		result >>= (62 - unbiasedHeadExponent);
     58      1.1  joerg 
     59      1.1  joerg 		/* Restore the sign of the result and return */
     60      1.1  joerg 		result = (result ^ hiNegationMask) - hiNegationMask;
     61      1.1  joerg 		return result;
     62      1.1  joerg 
     63      1.1  joerg 	}
     64      1.1  joerg 
     65      1.1  joerg 	/* Edge cases handled here: */
     66      1.1  joerg 
     67      1.1  joerg 	/* |x| < 1, result is zero. */
     68      1.1  joerg 	if (1.0 > crt_fabs(x.s.hi))
     69      1.1  joerg 		return INT64_C(0);
     70      1.1  joerg 
     71      1.1  joerg 	/* x very close to INT64_MIN, care must be taken to see which side we are on. */
     72      1.1  joerg 	if (x.s.hi == -0x1.0p63) {
     73      1.1  joerg 
     74      1.1  joerg 		int64_t result = INT64_MIN;
     75      1.1  joerg 
     76      1.1  joerg 		if (0.0 < x.s.lo)
     77      1.1  joerg 		{
     78      1.1  joerg 			/* If the tail is positive, the correct result is something other than INT64_MIN.
     79      1.1  joerg 			 * we'll need to figure out what it is.
     80      1.1  joerg 			 */
     81      1.1  joerg 
     82      1.1  joerg 			const doublebits lobits = { .d = x.s.lo };
     83      1.1  joerg 			int64_t tailMantissa = lobits.x & INT64_C(0x000fffffffffffff);
     84      1.1  joerg 			tailMantissa |= INT64_C(0x0010000000000000);
     85      1.1  joerg 
     86      1.1  joerg 			/* Now we negate the tailMantissa */
     87      1.1  joerg 			tailMantissa = (tailMantissa ^ INT64_C(-1)) + INT64_C(1);
     88      1.1  joerg 
     89      1.1  joerg 			/* And shift it by the appropriate amount */
     90      1.1  joerg 			const int biasedTailExponent = (int)(lobits.x >> 52) & 0x7ff;
     91      1.1  joerg 			tailMantissa >>= 1075 - biasedTailExponent;
     92      1.1  joerg 
     93      1.1  joerg 			result -= tailMantissa;
     94      1.1  joerg 		}
     95      1.1  joerg 
     96      1.1  joerg 		return result;
     97      1.1  joerg 	}
     98      1.1  joerg 
     99      1.1  joerg 	/* Signed overflows, infinities, and NaNs */
    100      1.1  joerg 	if (x.s.hi > 0.0)
    101      1.1  joerg 		return INT64_MAX;
    102      1.1  joerg 	else
    103      1.1  joerg 		return INT64_MIN;
    104      1.1  joerg }
    105