amdgpu_cs.c revision 1.1.1.1 1 /* $NetBSD: amdgpu_cs.c,v 1.1.1.1 2018/08/27 01:34:43 riastradh Exp $ */
2
3 /*
4 * Copyright 2008 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 *
26 * Authors:
27 * Jerome Glisse <glisse (at) freedesktop.org>
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: amdgpu_cs.c,v 1.1.1.1 2018/08/27 01:34:43 riastradh Exp $");
31
32 #include <linux/list_sort.h>
33 #include <drm/drmP.h>
34 #include <drm/amdgpu_drm.h>
35 #include "amdgpu.h"
36 #include "amdgpu_trace.h"
37
38 #define AMDGPU_CS_MAX_PRIORITY 32u
39 #define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1)
40
41 /* This is based on the bucket sort with O(n) time complexity.
42 * An item with priority "i" is added to bucket[i]. The lists are then
43 * concatenated in descending order.
44 */
45 struct amdgpu_cs_buckets {
46 struct list_head bucket[AMDGPU_CS_NUM_BUCKETS];
47 };
48
49 static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b)
50 {
51 unsigned i;
52
53 for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++)
54 INIT_LIST_HEAD(&b->bucket[i]);
55 }
56
57 static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b,
58 struct list_head *item, unsigned priority)
59 {
60 /* Since buffers which appear sooner in the relocation list are
61 * likely to be used more often than buffers which appear later
62 * in the list, the sort mustn't change the ordering of buffers
63 * with the same priority, i.e. it must be stable.
64 */
65 list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]);
66 }
67
68 static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b,
69 struct list_head *out_list)
70 {
71 unsigned i;
72
73 /* Connect the sorted buckets in the output list. */
74 for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) {
75 list_splice(&b->bucket[i], out_list);
76 }
77 }
78
79 int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type,
80 u32 ip_instance, u32 ring,
81 struct amdgpu_ring **out_ring)
82 {
83 /* Right now all IPs have only one instance - multiple rings. */
84 if (ip_instance != 0) {
85 DRM_ERROR("invalid ip instance: %d\n", ip_instance);
86 return -EINVAL;
87 }
88
89 switch (ip_type) {
90 default:
91 DRM_ERROR("unknown ip type: %d\n", ip_type);
92 return -EINVAL;
93 case AMDGPU_HW_IP_GFX:
94 if (ring < adev->gfx.num_gfx_rings) {
95 *out_ring = &adev->gfx.gfx_ring[ring];
96 } else {
97 DRM_ERROR("only %d gfx rings are supported now\n",
98 adev->gfx.num_gfx_rings);
99 return -EINVAL;
100 }
101 break;
102 case AMDGPU_HW_IP_COMPUTE:
103 if (ring < adev->gfx.num_compute_rings) {
104 *out_ring = &adev->gfx.compute_ring[ring];
105 } else {
106 DRM_ERROR("only %d compute rings are supported now\n",
107 adev->gfx.num_compute_rings);
108 return -EINVAL;
109 }
110 break;
111 case AMDGPU_HW_IP_DMA:
112 if (ring < adev->sdma.num_instances) {
113 *out_ring = &adev->sdma.instance[ring].ring;
114 } else {
115 DRM_ERROR("only %d SDMA rings are supported\n",
116 adev->sdma.num_instances);
117 return -EINVAL;
118 }
119 break;
120 case AMDGPU_HW_IP_UVD:
121 *out_ring = &adev->uvd.ring;
122 break;
123 case AMDGPU_HW_IP_VCE:
124 if (ring < 2){
125 *out_ring = &adev->vce.ring[ring];
126 } else {
127 DRM_ERROR("only two VCE rings are supported\n");
128 return -EINVAL;
129 }
130 break;
131 }
132
133 if (!(*out_ring && (*out_ring)->adev)) {
134 DRM_ERROR("Ring %d is not initialized on IP %d\n",
135 ring, ip_type);
136 return -EINVAL;
137 }
138
139 return 0;
140 }
141
142 static int amdgpu_cs_user_fence_chunk(struct amdgpu_cs_parser *p,
143 struct drm_amdgpu_cs_chunk_fence *fence_data)
144 {
145 struct drm_gem_object *gobj;
146 uint32_t handle;
147
148 handle = fence_data->handle;
149 gobj = drm_gem_object_lookup(p->adev->ddev, p->filp,
150 fence_data->handle);
151 if (gobj == NULL)
152 return -EINVAL;
153
154 p->uf.bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
155 p->uf.offset = fence_data->offset;
156
157 if (amdgpu_ttm_tt_has_userptr(p->uf.bo->tbo.ttm)) {
158 drm_gem_object_unreference_unlocked(gobj);
159 return -EINVAL;
160 }
161
162 p->uf_entry.robj = amdgpu_bo_ref(p->uf.bo);
163 p->uf_entry.prefered_domains = AMDGPU_GEM_DOMAIN_GTT;
164 p->uf_entry.allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
165 p->uf_entry.priority = 0;
166 p->uf_entry.tv.bo = &p->uf_entry.robj->tbo;
167 p->uf_entry.tv.shared = true;
168
169 drm_gem_object_unreference_unlocked(gobj);
170 return 0;
171 }
172
173 int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data)
174 {
175 union drm_amdgpu_cs *cs = data;
176 uint64_t *chunk_array_user;
177 uint64_t *chunk_array;
178 struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
179 unsigned size;
180 int i;
181 int ret;
182
183 if (cs->in.num_chunks == 0)
184 return 0;
185
186 chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
187 if (!chunk_array)
188 return -ENOMEM;
189
190 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
191 if (!p->ctx) {
192 ret = -EINVAL;
193 goto free_chunk;
194 }
195
196 p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle);
197
198 /* get chunks */
199 INIT_LIST_HEAD(&p->validated);
200 chunk_array_user = (uint64_t __user *)(unsigned long)(cs->in.chunks);
201 if (copy_from_user(chunk_array, chunk_array_user,
202 sizeof(uint64_t)*cs->in.num_chunks)) {
203 ret = -EFAULT;
204 goto put_bo_list;
205 }
206
207 p->nchunks = cs->in.num_chunks;
208 p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
209 GFP_KERNEL);
210 if (!p->chunks) {
211 ret = -ENOMEM;
212 goto put_bo_list;
213 }
214
215 for (i = 0; i < p->nchunks; i++) {
216 struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
217 struct drm_amdgpu_cs_chunk user_chunk;
218 uint32_t __user *cdata;
219
220 chunk_ptr = (void __user *)(unsigned long)chunk_array[i];
221 if (copy_from_user(&user_chunk, chunk_ptr,
222 sizeof(struct drm_amdgpu_cs_chunk))) {
223 ret = -EFAULT;
224 i--;
225 goto free_partial_kdata;
226 }
227 p->chunks[i].chunk_id = user_chunk.chunk_id;
228 p->chunks[i].length_dw = user_chunk.length_dw;
229
230 size = p->chunks[i].length_dw;
231 cdata = (void __user *)(unsigned long)user_chunk.chunk_data;
232 p->chunks[i].user_ptr = cdata;
233
234 p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t));
235 if (p->chunks[i].kdata == NULL) {
236 ret = -ENOMEM;
237 i--;
238 goto free_partial_kdata;
239 }
240 size *= sizeof(uint32_t);
241 if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
242 ret = -EFAULT;
243 goto free_partial_kdata;
244 }
245
246 switch (p->chunks[i].chunk_id) {
247 case AMDGPU_CHUNK_ID_IB:
248 p->num_ibs++;
249 break;
250
251 case AMDGPU_CHUNK_ID_FENCE:
252 size = sizeof(struct drm_amdgpu_cs_chunk_fence);
253 if (p->chunks[i].length_dw * sizeof(uint32_t) < size) {
254 ret = -EINVAL;
255 goto free_partial_kdata;
256 }
257
258 ret = amdgpu_cs_user_fence_chunk(p, (void *)p->chunks[i].kdata);
259 if (ret)
260 goto free_partial_kdata;
261
262 break;
263
264 case AMDGPU_CHUNK_ID_DEPENDENCIES:
265 break;
266
267 default:
268 ret = -EINVAL;
269 goto free_partial_kdata;
270 }
271 }
272
273
274 p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL);
275 if (!p->ibs) {
276 ret = -ENOMEM;
277 goto free_all_kdata;
278 }
279
280 kfree(chunk_array);
281 return 0;
282
283 free_all_kdata:
284 i = p->nchunks - 1;
285 free_partial_kdata:
286 for (; i >= 0; i--)
287 drm_free_large(p->chunks[i].kdata);
288 kfree(p->chunks);
289 put_bo_list:
290 if (p->bo_list)
291 amdgpu_bo_list_put(p->bo_list);
292 amdgpu_ctx_put(p->ctx);
293 free_chunk:
294 kfree(chunk_array);
295
296 return ret;
297 }
298
299 /* Returns how many bytes TTM can move per IB.
300 */
301 static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev)
302 {
303 u64 real_vram_size = adev->mc.real_vram_size;
304 u64 vram_usage = atomic64_read(&adev->vram_usage);
305
306 /* This function is based on the current VRAM usage.
307 *
308 * - If all of VRAM is free, allow relocating the number of bytes that
309 * is equal to 1/4 of the size of VRAM for this IB.
310
311 * - If more than one half of VRAM is occupied, only allow relocating
312 * 1 MB of data for this IB.
313 *
314 * - From 0 to one half of used VRAM, the threshold decreases
315 * linearly.
316 * __________________
317 * 1/4 of -|\ |
318 * VRAM | \ |
319 * | \ |
320 * | \ |
321 * | \ |
322 * | \ |
323 * | \ |
324 * | \________|1 MB
325 * |----------------|
326 * VRAM 0 % 100 %
327 * used used
328 *
329 * Note: It's a threshold, not a limit. The threshold must be crossed
330 * for buffer relocations to stop, so any buffer of an arbitrary size
331 * can be moved as long as the threshold isn't crossed before
332 * the relocation takes place. We don't want to disable buffer
333 * relocations completely.
334 *
335 * The idea is that buffers should be placed in VRAM at creation time
336 * and TTM should only do a minimum number of relocations during
337 * command submission. In practice, you need to submit at least
338 * a dozen IBs to move all buffers to VRAM if they are in GTT.
339 *
340 * Also, things can get pretty crazy under memory pressure and actual
341 * VRAM usage can change a lot, so playing safe even at 50% does
342 * consistently increase performance.
343 */
344
345 u64 half_vram = real_vram_size >> 1;
346 u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage;
347 u64 bytes_moved_threshold = half_free_vram >> 1;
348 return max(bytes_moved_threshold, 1024*1024ull);
349 }
350
351 int amdgpu_cs_list_validate(struct amdgpu_device *adev,
352 struct amdgpu_vm *vm,
353 struct list_head *validated)
354 {
355 struct amdgpu_bo_list_entry *lobj;
356 struct amdgpu_bo *bo;
357 u64 bytes_moved = 0, initial_bytes_moved;
358 u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev);
359 int r;
360
361 list_for_each_entry(lobj, validated, tv.head) {
362 bo = lobj->robj;
363 if (!bo->pin_count) {
364 u32 domain = lobj->prefered_domains;
365 u32 current_domain =
366 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
367
368 /* Check if this buffer will be moved and don't move it
369 * if we have moved too many buffers for this IB already.
370 *
371 * Note that this allows moving at least one buffer of
372 * any size, because it doesn't take the current "bo"
373 * into account. We don't want to disallow buffer moves
374 * completely.
375 */
376 if ((lobj->allowed_domains & current_domain) != 0 &&
377 (domain & current_domain) == 0 && /* will be moved */
378 bytes_moved > bytes_moved_threshold) {
379 /* don't move it */
380 domain = current_domain;
381 }
382
383 retry:
384 amdgpu_ttm_placement_from_domain(bo, domain);
385 initial_bytes_moved = atomic64_read(&adev->num_bytes_moved);
386 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
387 bytes_moved += atomic64_read(&adev->num_bytes_moved) -
388 initial_bytes_moved;
389
390 if (unlikely(r)) {
391 if (r != -ERESTARTSYS && domain != lobj->allowed_domains) {
392 domain = lobj->allowed_domains;
393 goto retry;
394 }
395 return r;
396 }
397 }
398 lobj->bo_va = amdgpu_vm_bo_find(vm, bo);
399 }
400 return 0;
401 }
402
403 static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p)
404 {
405 struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
406 struct amdgpu_cs_buckets buckets;
407 struct list_head duplicates;
408 bool need_mmap_lock = false;
409 int i, r;
410
411 if (p->bo_list) {
412 need_mmap_lock = p->bo_list->has_userptr;
413 amdgpu_cs_buckets_init(&buckets);
414 for (i = 0; i < p->bo_list->num_entries; i++)
415 amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head,
416 p->bo_list->array[i].priority);
417
418 amdgpu_cs_buckets_get_list(&buckets, &p->validated);
419 }
420
421 p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm,
422 &p->validated);
423
424 if (p->uf.bo)
425 list_add(&p->uf_entry.tv.head, &p->validated);
426
427 if (need_mmap_lock)
428 down_read(¤t->mm->mmap_sem);
429
430 INIT_LIST_HEAD(&duplicates);
431 r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates);
432 if (unlikely(r != 0))
433 goto error_reserve;
434
435 r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &p->validated);
436 if (r)
437 goto error_validate;
438
439 r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &duplicates);
440
441 error_validate:
442 if (r)
443 ttm_eu_backoff_reservation(&p->ticket, &p->validated);
444
445 error_reserve:
446 if (need_mmap_lock)
447 up_read(¤t->mm->mmap_sem);
448
449 return r;
450 }
451
452 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
453 {
454 struct amdgpu_bo_list_entry *e;
455 int r;
456
457 list_for_each_entry(e, &p->validated, tv.head) {
458 struct reservation_object *resv = e->robj->tbo.resv;
459 r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp);
460
461 if (r)
462 return r;
463 }
464 return 0;
465 }
466
467 static int cmp_size_smaller_first(void *priv, struct list_head *a,
468 struct list_head *b)
469 {
470 struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head);
471 struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head);
472
473 /* Sort A before B if A is smaller. */
474 return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages;
475 }
476
477 /**
478 * cs_parser_fini() - clean parser states
479 * @parser: parser structure holding parsing context.
480 * @error: error number
481 *
482 * If error is set than unvalidate buffer, otherwise just free memory
483 * used by parsing context.
484 **/
485 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff)
486 {
487 unsigned i;
488
489 if (!error) {
490 /* Sort the buffer list from the smallest to largest buffer,
491 * which affects the order of buffers in the LRU list.
492 * This assures that the smallest buffers are added first
493 * to the LRU list, so they are likely to be later evicted
494 * first, instead of large buffers whose eviction is more
495 * expensive.
496 *
497 * This slightly lowers the number of bytes moved by TTM
498 * per frame under memory pressure.
499 */
500 list_sort(NULL, &parser->validated, cmp_size_smaller_first);
501
502 ttm_eu_fence_buffer_objects(&parser->ticket,
503 &parser->validated,
504 parser->fence);
505 } else if (backoff) {
506 ttm_eu_backoff_reservation(&parser->ticket,
507 &parser->validated);
508 }
509 fence_put(parser->fence);
510
511 if (parser->ctx)
512 amdgpu_ctx_put(parser->ctx);
513 if (parser->bo_list)
514 amdgpu_bo_list_put(parser->bo_list);
515
516 drm_free_large(parser->vm_bos);
517 for (i = 0; i < parser->nchunks; i++)
518 drm_free_large(parser->chunks[i].kdata);
519 kfree(parser->chunks);
520 if (parser->ibs)
521 for (i = 0; i < parser->num_ibs; i++)
522 amdgpu_ib_free(parser->adev, &parser->ibs[i]);
523 kfree(parser->ibs);
524 amdgpu_bo_unref(&parser->uf.bo);
525 amdgpu_bo_unref(&parser->uf_entry.robj);
526 }
527
528 static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p,
529 struct amdgpu_vm *vm)
530 {
531 struct amdgpu_device *adev = p->adev;
532 struct amdgpu_bo_va *bo_va;
533 struct amdgpu_bo *bo;
534 int i, r;
535
536 r = amdgpu_vm_update_page_directory(adev, vm);
537 if (r)
538 return r;
539
540 r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence);
541 if (r)
542 return r;
543
544 r = amdgpu_vm_clear_freed(adev, vm);
545 if (r)
546 return r;
547
548 if (p->bo_list) {
549 for (i = 0; i < p->bo_list->num_entries; i++) {
550 struct fence *f;
551
552 /* ignore duplicates */
553 bo = p->bo_list->array[i].robj;
554 if (!bo)
555 continue;
556
557 bo_va = p->bo_list->array[i].bo_va;
558 if (bo_va == NULL)
559 continue;
560
561 r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem);
562 if (r)
563 return r;
564
565 f = bo_va->last_pt_update;
566 r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f);
567 if (r)
568 return r;
569 }
570
571 }
572
573 r = amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync);
574
575 if (amdgpu_vm_debug && p->bo_list) {
576 /* Invalidate all BOs to test for userspace bugs */
577 for (i = 0; i < p->bo_list->num_entries; i++) {
578 /* ignore duplicates */
579 bo = p->bo_list->array[i].robj;
580 if (!bo)
581 continue;
582
583 amdgpu_vm_bo_invalidate(adev, bo);
584 }
585 }
586
587 return r;
588 }
589
590 static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
591 struct amdgpu_cs_parser *parser)
592 {
593 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
594 struct amdgpu_vm *vm = &fpriv->vm;
595 struct amdgpu_ring *ring;
596 int i, r;
597
598 if (parser->num_ibs == 0)
599 return 0;
600
601 /* Only for UVD/VCE VM emulation */
602 for (i = 0; i < parser->num_ibs; i++) {
603 ring = parser->ibs[i].ring;
604 if (ring->funcs->parse_cs) {
605 r = amdgpu_ring_parse_cs(ring, parser, i);
606 if (r)
607 return r;
608 }
609 }
610
611 r = amdgpu_bo_vm_update_pte(parser, vm);
612 if (!r)
613 amdgpu_cs_sync_rings(parser);
614
615 return r;
616 }
617
618 static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r)
619 {
620 if (r == -EDEADLK) {
621 r = amdgpu_gpu_reset(adev);
622 if (!r)
623 r = -EAGAIN;
624 }
625 return r;
626 }
627
628 static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
629 struct amdgpu_cs_parser *parser)
630 {
631 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
632 struct amdgpu_vm *vm = &fpriv->vm;
633 int i, j;
634 int r;
635
636 for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) {
637 struct amdgpu_cs_chunk *chunk;
638 struct amdgpu_ib *ib;
639 struct drm_amdgpu_cs_chunk_ib *chunk_ib;
640 struct amdgpu_ring *ring;
641
642 chunk = &parser->chunks[i];
643 ib = &parser->ibs[j];
644 chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
645
646 if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
647 continue;
648
649 r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
650 chunk_ib->ip_instance, chunk_ib->ring,
651 &ring);
652 if (r)
653 return r;
654
655 if (ring->funcs->parse_cs) {
656 struct amdgpu_bo_va_mapping *m;
657 struct amdgpu_bo *aobj = NULL;
658 uint64_t offset;
659 uint8_t *kptr;
660
661 m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start,
662 &aobj);
663 if (!aobj) {
664 DRM_ERROR("IB va_start is invalid\n");
665 return -EINVAL;
666 }
667
668 if ((chunk_ib->va_start + chunk_ib->ib_bytes) >
669 (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) {
670 DRM_ERROR("IB va_start+ib_bytes is invalid\n");
671 return -EINVAL;
672 }
673
674 /* the IB should be reserved at this point */
675 r = amdgpu_bo_kmap(aobj, (void **)&kptr);
676 if (r) {
677 return r;
678 }
679
680 offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE;
681 kptr += chunk_ib->va_start - offset;
682
683 r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib);
684 if (r) {
685 DRM_ERROR("Failed to get ib !\n");
686 return r;
687 }
688
689 memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
690 amdgpu_bo_kunmap(aobj);
691 } else {
692 r = amdgpu_ib_get(ring, vm, 0, ib);
693 if (r) {
694 DRM_ERROR("Failed to get ib !\n");
695 return r;
696 }
697
698 ib->gpu_addr = chunk_ib->va_start;
699 }
700
701 ib->length_dw = chunk_ib->ib_bytes / 4;
702 ib->flags = chunk_ib->flags;
703 ib->ctx = parser->ctx;
704 j++;
705 }
706
707 if (!parser->num_ibs)
708 return 0;
709
710 /* add GDS resources to first IB */
711 if (parser->bo_list) {
712 struct amdgpu_bo *gds = parser->bo_list->gds_obj;
713 struct amdgpu_bo *gws = parser->bo_list->gws_obj;
714 struct amdgpu_bo *oa = parser->bo_list->oa_obj;
715 struct amdgpu_ib *ib = &parser->ibs[0];
716
717 if (gds) {
718 ib->gds_base = amdgpu_bo_gpu_offset(gds);
719 ib->gds_size = amdgpu_bo_size(gds);
720 }
721 if (gws) {
722 ib->gws_base = amdgpu_bo_gpu_offset(gws);
723 ib->gws_size = amdgpu_bo_size(gws);
724 }
725 if (oa) {
726 ib->oa_base = amdgpu_bo_gpu_offset(oa);
727 ib->oa_size = amdgpu_bo_size(oa);
728 }
729 }
730 /* wrap the last IB with user fence */
731 if (parser->uf.bo) {
732 struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1];
733
734 /* UVD & VCE fw doesn't support user fences */
735 if (ib->ring->type == AMDGPU_RING_TYPE_UVD ||
736 ib->ring->type == AMDGPU_RING_TYPE_VCE)
737 return -EINVAL;
738
739 ib->user = &parser->uf;
740 }
741
742 return 0;
743 }
744
745 static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
746 struct amdgpu_cs_parser *p)
747 {
748 struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
749 struct amdgpu_ib *ib;
750 int i, j, r;
751
752 if (!p->num_ibs)
753 return 0;
754
755 /* Add dependencies to first IB */
756 ib = &p->ibs[0];
757 for (i = 0; i < p->nchunks; ++i) {
758 struct drm_amdgpu_cs_chunk_dep *deps;
759 struct amdgpu_cs_chunk *chunk;
760 unsigned num_deps;
761
762 chunk = &p->chunks[i];
763
764 if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES)
765 continue;
766
767 deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
768 num_deps = chunk->length_dw * 4 /
769 sizeof(struct drm_amdgpu_cs_chunk_dep);
770
771 for (j = 0; j < num_deps; ++j) {
772 struct amdgpu_ring *ring;
773 struct amdgpu_ctx *ctx;
774 struct fence *fence;
775
776 r = amdgpu_cs_get_ring(adev, deps[j].ip_type,
777 deps[j].ip_instance,
778 deps[j].ring, &ring);
779 if (r)
780 return r;
781
782 ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id);
783 if (ctx == NULL)
784 return -EINVAL;
785
786 fence = amdgpu_ctx_get_fence(ctx, ring,
787 deps[j].handle);
788 if (IS_ERR(fence)) {
789 r = PTR_ERR(fence);
790 amdgpu_ctx_put(ctx);
791 return r;
792
793 } else if (fence) {
794 r = amdgpu_sync_fence(adev, &ib->sync, fence);
795 fence_put(fence);
796 amdgpu_ctx_put(ctx);
797 if (r)
798 return r;
799 }
800 }
801 }
802
803 return 0;
804 }
805
806 static int amdgpu_cs_free_job(struct amdgpu_job *job)
807 {
808 int i;
809 if (job->ibs)
810 for (i = 0; i < job->num_ibs; i++)
811 amdgpu_ib_free(job->adev, &job->ibs[i]);
812 kfree(job->ibs);
813 if (job->uf.bo)
814 amdgpu_bo_unref(&job->uf.bo);
815 return 0;
816 }
817
818 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
819 {
820 struct amdgpu_device *adev = dev->dev_private;
821 union drm_amdgpu_cs *cs = data;
822 struct amdgpu_cs_parser parser = {};
823 bool reserved_buffers = false;
824 int i, r;
825
826 if (!adev->accel_working)
827 return -EBUSY;
828
829 parser.adev = adev;
830 parser.filp = filp;
831
832 r = amdgpu_cs_parser_init(&parser, data);
833 if (r) {
834 DRM_ERROR("Failed to initialize parser !\n");
835 amdgpu_cs_parser_fini(&parser, r, false);
836 r = amdgpu_cs_handle_lockup(adev, r);
837 return r;
838 }
839 r = amdgpu_cs_parser_relocs(&parser);
840 if (r == -ENOMEM)
841 DRM_ERROR("Not enough memory for command submission!\n");
842 else if (r && r != -ERESTARTSYS)
843 DRM_ERROR("Failed to process the buffer list %d!\n", r);
844 else if (!r) {
845 reserved_buffers = true;
846 r = amdgpu_cs_ib_fill(adev, &parser);
847 }
848
849 if (!r) {
850 r = amdgpu_cs_dependencies(adev, &parser);
851 if (r)
852 DRM_ERROR("Failed in the dependencies handling %d!\n", r);
853 }
854
855 if (r)
856 goto out;
857
858 for (i = 0; i < parser.num_ibs; i++)
859 trace_amdgpu_cs(&parser, i);
860
861 r = amdgpu_cs_ib_vm_chunk(adev, &parser);
862 if (r)
863 goto out;
864
865 if (amdgpu_enable_scheduler && parser.num_ibs) {
866 struct amdgpu_ring * ring = parser.ibs->ring;
867 struct amd_sched_fence *fence;
868 struct amdgpu_job *job;
869
870 job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL);
871 if (!job) {
872 r = -ENOMEM;
873 goto out;
874 }
875
876 job->base.sched = &ring->sched;
877 job->base.s_entity = &parser.ctx->rings[ring->idx].entity;
878 job->adev = parser.adev;
879 job->owner = parser.filp;
880 job->free_job = amdgpu_cs_free_job;
881
882 job->ibs = parser.ibs;
883 job->num_ibs = parser.num_ibs;
884 parser.ibs = NULL;
885 parser.num_ibs = 0;
886
887 if (job->ibs[job->num_ibs - 1].user) {
888 job->uf = parser.uf;
889 job->ibs[job->num_ibs - 1].user = &job->uf;
890 parser.uf.bo = NULL;
891 }
892
893 fence = amd_sched_fence_create(job->base.s_entity,
894 parser.filp);
895 if (!fence) {
896 r = -ENOMEM;
897 amdgpu_cs_free_job(job);
898 kfree(job);
899 goto out;
900 }
901 job->base.s_fence = fence;
902 parser.fence = fence_get(&fence->base);
903
904 cs->out.handle = amdgpu_ctx_add_fence(parser.ctx, ring,
905 &fence->base);
906 job->ibs[job->num_ibs - 1].sequence = cs->out.handle;
907
908 trace_amdgpu_cs_ioctl(job);
909 amd_sched_entity_push_job(&job->base);
910
911 } else {
912 struct amdgpu_fence *fence;
913
914 r = amdgpu_ib_schedule(adev, parser.num_ibs, parser.ibs,
915 parser.filp);
916 fence = parser.ibs[parser.num_ibs - 1].fence;
917 parser.fence = fence_get(&fence->base);
918 cs->out.handle = parser.ibs[parser.num_ibs - 1].sequence;
919 }
920
921 out:
922 amdgpu_cs_parser_fini(&parser, r, reserved_buffers);
923 r = amdgpu_cs_handle_lockup(adev, r);
924 return r;
925 }
926
927 /**
928 * amdgpu_cs_wait_ioctl - wait for a command submission to finish
929 *
930 * @dev: drm device
931 * @data: data from userspace
932 * @filp: file private
933 *
934 * Wait for the command submission identified by handle to finish.
935 */
936 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
937 struct drm_file *filp)
938 {
939 union drm_amdgpu_wait_cs *wait = data;
940 struct amdgpu_device *adev = dev->dev_private;
941 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
942 struct amdgpu_ring *ring = NULL;
943 struct amdgpu_ctx *ctx;
944 struct fence *fence;
945 long r;
946
947 r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance,
948 wait->in.ring, &ring);
949 if (r)
950 return r;
951
952 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
953 if (ctx == NULL)
954 return -EINVAL;
955
956 fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
957 if (IS_ERR(fence))
958 r = PTR_ERR(fence);
959 else if (fence) {
960 r = fence_wait_timeout(fence, true, timeout);
961 fence_put(fence);
962 } else
963 r = 1;
964
965 amdgpu_ctx_put(ctx);
966 if (r < 0)
967 return r;
968
969 memset(wait, 0, sizeof(*wait));
970 wait->out.status = (r == 0);
971
972 return 0;
973 }
974
975 /**
976 * amdgpu_cs_find_bo_va - find bo_va for VM address
977 *
978 * @parser: command submission parser context
979 * @addr: VM address
980 * @bo: resulting BO of the mapping found
981 *
982 * Search the buffer objects in the command submission context for a certain
983 * virtual memory address. Returns allocation structure when found, NULL
984 * otherwise.
985 */
986 struct amdgpu_bo_va_mapping *
987 amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
988 uint64_t addr, struct amdgpu_bo **bo)
989 {
990 struct amdgpu_bo_list_entry *reloc;
991 struct amdgpu_bo_va_mapping *mapping;
992
993 addr /= AMDGPU_GPU_PAGE_SIZE;
994
995 list_for_each_entry(reloc, &parser->validated, tv.head) {
996 if (!reloc->bo_va)
997 continue;
998
999 list_for_each_entry(mapping, &reloc->bo_va->valids, list) {
1000 if (mapping->it.start > addr ||
1001 addr > mapping->it.last)
1002 continue;
1003
1004 *bo = reloc->bo_va->bo;
1005 return mapping;
1006 }
1007
1008 list_for_each_entry(mapping, &reloc->bo_va->invalids, list) {
1009 if (mapping->it.start > addr ||
1010 addr > mapping->it.last)
1011 continue;
1012
1013 *bo = reloc->bo_va->bo;
1014 return mapping;
1015 }
1016 }
1017
1018 return NULL;
1019 }
1020