amdgpu_cs.c revision 1.3.10.1 1 /* $NetBSD: amdgpu_cs.c,v 1.3.10.1 2020/02/29 20:20:13 ad Exp $ */
2
3 /*
4 * Copyright 2008 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 *
26 * Authors:
27 * Jerome Glisse <glisse (at) freedesktop.org>
28 */
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: amdgpu_cs.c,v 1.3.10.1 2020/02/29 20:20:13 ad Exp $");
31
32 #include <linux/list_sort.h>
33 #include <drm/drmP.h>
34 #include <drm/amdgpu_drm.h>
35 #include "amdgpu.h"
36 #include "amdgpu_trace.h"
37
38 #define AMDGPU_CS_MAX_PRIORITY 32u
39 #define AMDGPU_CS_NUM_BUCKETS (AMDGPU_CS_MAX_PRIORITY + 1)
40
41 /* This is based on the bucket sort with O(n) time complexity.
42 * An item with priority "i" is added to bucket[i]. The lists are then
43 * concatenated in descending order.
44 */
45 struct amdgpu_cs_buckets {
46 struct list_head bucket[AMDGPU_CS_NUM_BUCKETS];
47 };
48
49 static void amdgpu_cs_buckets_init(struct amdgpu_cs_buckets *b)
50 {
51 unsigned i;
52
53 for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++)
54 INIT_LIST_HEAD(&b->bucket[i]);
55 }
56
57 static void amdgpu_cs_buckets_add(struct amdgpu_cs_buckets *b,
58 struct list_head *item, unsigned priority)
59 {
60 /* Since buffers which appear sooner in the relocation list are
61 * likely to be used more often than buffers which appear later
62 * in the list, the sort mustn't change the ordering of buffers
63 * with the same priority, i.e. it must be stable.
64 */
65 list_add_tail(item, &b->bucket[min(priority, AMDGPU_CS_MAX_PRIORITY)]);
66 }
67
68 static void amdgpu_cs_buckets_get_list(struct amdgpu_cs_buckets *b,
69 struct list_head *out_list)
70 {
71 unsigned i;
72
73 /* Connect the sorted buckets in the output list. */
74 for (i = 0; i < AMDGPU_CS_NUM_BUCKETS; i++) {
75 list_splice(&b->bucket[i], out_list);
76 }
77 }
78
79 int amdgpu_cs_get_ring(struct amdgpu_device *adev, u32 ip_type,
80 u32 ip_instance, u32 ring,
81 struct amdgpu_ring **out_ring)
82 {
83 /* Right now all IPs have only one instance - multiple rings. */
84 if (ip_instance != 0) {
85 DRM_ERROR("invalid ip instance: %d\n", ip_instance);
86 return -EINVAL;
87 }
88
89 switch (ip_type) {
90 default:
91 DRM_ERROR("unknown ip type: %d\n", ip_type);
92 return -EINVAL;
93 case AMDGPU_HW_IP_GFX:
94 if (ring < adev->gfx.num_gfx_rings) {
95 *out_ring = &adev->gfx.gfx_ring[ring];
96 } else {
97 DRM_ERROR("only %d gfx rings are supported now\n",
98 adev->gfx.num_gfx_rings);
99 return -EINVAL;
100 }
101 break;
102 case AMDGPU_HW_IP_COMPUTE:
103 if (ring < adev->gfx.num_compute_rings) {
104 *out_ring = &adev->gfx.compute_ring[ring];
105 } else {
106 DRM_ERROR("only %d compute rings are supported now\n",
107 adev->gfx.num_compute_rings);
108 return -EINVAL;
109 }
110 break;
111 case AMDGPU_HW_IP_DMA:
112 if (ring < adev->sdma.num_instances) {
113 *out_ring = &adev->sdma.instance[ring].ring;
114 } else {
115 DRM_ERROR("only %d SDMA rings are supported\n",
116 adev->sdma.num_instances);
117 return -EINVAL;
118 }
119 break;
120 case AMDGPU_HW_IP_UVD:
121 *out_ring = &adev->uvd.ring;
122 break;
123 case AMDGPU_HW_IP_VCE:
124 if (ring < 2){
125 *out_ring = &adev->vce.ring[ring];
126 } else {
127 DRM_ERROR("only two VCE rings are supported\n");
128 return -EINVAL;
129 }
130 break;
131 }
132
133 if (!(*out_ring && (*out_ring)->adev)) {
134 DRM_ERROR("Ring %d is not initialized on IP %d\n",
135 ring, ip_type);
136 return -EINVAL;
137 }
138
139 return 0;
140 }
141
142 static int amdgpu_cs_user_fence_chunk(struct amdgpu_cs_parser *p,
143 struct drm_amdgpu_cs_chunk_fence *fence_data)
144 {
145 struct drm_gem_object *gobj;
146 uint32_t handle __unused;
147
148 handle = fence_data->handle;
149 gobj = drm_gem_object_lookup(p->adev->ddev, p->filp,
150 fence_data->handle);
151 if (gobj == NULL)
152 return -EINVAL;
153
154 p->uf.bo = amdgpu_bo_ref(gem_to_amdgpu_bo(gobj));
155 p->uf.offset = fence_data->offset;
156
157 if (amdgpu_ttm_tt_has_userptr(p->uf.bo->tbo.ttm)) {
158 drm_gem_object_unreference_unlocked(gobj);
159 return -EINVAL;
160 }
161
162 p->uf_entry.robj = amdgpu_bo_ref(p->uf.bo);
163 p->uf_entry.prefered_domains = AMDGPU_GEM_DOMAIN_GTT;
164 p->uf_entry.allowed_domains = AMDGPU_GEM_DOMAIN_GTT;
165 p->uf_entry.priority = 0;
166 p->uf_entry.tv.bo = &p->uf_entry.robj->tbo;
167 p->uf_entry.tv.shared = true;
168
169 drm_gem_object_unreference_unlocked(gobj);
170 return 0;
171 }
172
173 int amdgpu_cs_parser_init(struct amdgpu_cs_parser *p, void *data)
174 {
175 union drm_amdgpu_cs *cs = data;
176 uint64_t *chunk_array_user;
177 uint64_t *chunk_array;
178 struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
179 unsigned size;
180 int i;
181 int ret;
182
183 if (cs->in.num_chunks == 0)
184 return 0;
185
186 chunk_array = kmalloc_array(cs->in.num_chunks, sizeof(uint64_t), GFP_KERNEL);
187 if (!chunk_array)
188 return -ENOMEM;
189
190 p->ctx = amdgpu_ctx_get(fpriv, cs->in.ctx_id);
191 if (!p->ctx) {
192 ret = -EINVAL;
193 goto free_chunk;
194 }
195
196 p->bo_list = amdgpu_bo_list_get(fpriv, cs->in.bo_list_handle);
197
198 /* get chunks */
199 INIT_LIST_HEAD(&p->validated);
200 chunk_array_user = (uint64_t __user *)(unsigned long)(cs->in.chunks);
201 if (copy_from_user(chunk_array, chunk_array_user,
202 sizeof(uint64_t)*cs->in.num_chunks)) {
203 ret = -EFAULT;
204 goto put_bo_list;
205 }
206
207 p->nchunks = cs->in.num_chunks;
208 p->chunks = kmalloc_array(p->nchunks, sizeof(struct amdgpu_cs_chunk),
209 GFP_KERNEL);
210 if (!p->chunks) {
211 ret = -ENOMEM;
212 goto put_bo_list;
213 }
214
215 for (i = 0; i < p->nchunks; i++) {
216 struct drm_amdgpu_cs_chunk __user **chunk_ptr = NULL;
217 struct drm_amdgpu_cs_chunk user_chunk;
218 uint32_t __user *cdata;
219
220 chunk_ptr = (void __user *)(unsigned long)chunk_array[i];
221 if (copy_from_user(&user_chunk, chunk_ptr,
222 sizeof(struct drm_amdgpu_cs_chunk))) {
223 ret = -EFAULT;
224 i--;
225 goto free_partial_kdata;
226 }
227 p->chunks[i].chunk_id = user_chunk.chunk_id;
228 p->chunks[i].length_dw = user_chunk.length_dw;
229
230 size = p->chunks[i].length_dw;
231 cdata = (void __user *)(unsigned long)user_chunk.chunk_data;
232 p->chunks[i].user_ptr = cdata;
233
234 p->chunks[i].kdata = drm_malloc_ab(size, sizeof(uint32_t));
235 if (p->chunks[i].kdata == NULL) {
236 ret = -ENOMEM;
237 i--;
238 goto free_partial_kdata;
239 }
240 size *= sizeof(uint32_t);
241 if (copy_from_user(p->chunks[i].kdata, cdata, size)) {
242 ret = -EFAULT;
243 goto free_partial_kdata;
244 }
245
246 switch (p->chunks[i].chunk_id) {
247 case AMDGPU_CHUNK_ID_IB:
248 p->num_ibs++;
249 break;
250
251 case AMDGPU_CHUNK_ID_FENCE:
252 size = sizeof(struct drm_amdgpu_cs_chunk_fence);
253 if (p->chunks[i].length_dw * sizeof(uint32_t) < size) {
254 ret = -EINVAL;
255 goto free_partial_kdata;
256 }
257
258 ret = amdgpu_cs_user_fence_chunk(p, (void *)p->chunks[i].kdata);
259 if (ret)
260 goto free_partial_kdata;
261
262 break;
263
264 case AMDGPU_CHUNK_ID_DEPENDENCIES:
265 break;
266
267 default:
268 ret = -EINVAL;
269 goto free_partial_kdata;
270 }
271 }
272
273
274 p->ibs = kcalloc(p->num_ibs, sizeof(struct amdgpu_ib), GFP_KERNEL);
275 if (!p->ibs) {
276 ret = -ENOMEM;
277 goto free_all_kdata;
278 }
279
280 kfree(chunk_array);
281 return 0;
282
283 free_all_kdata:
284 i = p->nchunks - 1;
285 free_partial_kdata:
286 for (; i >= 0; i--)
287 drm_free_large(p->chunks[i].kdata);
288 kfree(p->chunks);
289 put_bo_list:
290 if (p->bo_list)
291 amdgpu_bo_list_put(p->bo_list);
292 amdgpu_ctx_put(p->ctx);
293 free_chunk:
294 kfree(chunk_array);
295
296 return ret;
297 }
298
299 /* Returns how many bytes TTM can move per IB.
300 */
301 static u64 amdgpu_cs_get_threshold_for_moves(struct amdgpu_device *adev)
302 {
303 u64 real_vram_size = adev->mc.real_vram_size;
304 u64 vram_usage = atomic64_read(&adev->vram_usage);
305
306 /* This function is based on the current VRAM usage.
307 *
308 * - If all of VRAM is free, allow relocating the number of bytes that
309 * is equal to 1/4 of the size of VRAM for this IB.
310
311 * - If more than one half of VRAM is occupied, only allow relocating
312 * 1 MB of data for this IB.
313 *
314 * - From 0 to one half of used VRAM, the threshold decreases
315 * linearly.
316 * __________________
317 * 1/4 of -|\ |
318 * VRAM | \ |
319 * | \ |
320 * | \ |
321 * | \ |
322 * | \ |
323 * | \ |
324 * | \________|1 MB
325 * |----------------|
326 * VRAM 0 % 100 %
327 * used used
328 *
329 * Note: It's a threshold, not a limit. The threshold must be crossed
330 * for buffer relocations to stop, so any buffer of an arbitrary size
331 * can be moved as long as the threshold isn't crossed before
332 * the relocation takes place. We don't want to disable buffer
333 * relocations completely.
334 *
335 * The idea is that buffers should be placed in VRAM at creation time
336 * and TTM should only do a minimum number of relocations during
337 * command submission. In practice, you need to submit at least
338 * a dozen IBs to move all buffers to VRAM if they are in GTT.
339 *
340 * Also, things can get pretty crazy under memory pressure and actual
341 * VRAM usage can change a lot, so playing safe even at 50% does
342 * consistently increase performance.
343 */
344
345 u64 half_vram = real_vram_size >> 1;
346 u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage;
347 u64 bytes_moved_threshold = half_free_vram >> 1;
348 return max(bytes_moved_threshold, 1024*1024ull);
349 }
350
351 static
352 int amdgpu_cs_list_validate(struct amdgpu_device *adev,
353 struct amdgpu_vm *vm,
354 struct list_head *validated)
355 {
356 struct amdgpu_bo_list_entry *lobj;
357 struct amdgpu_bo *bo;
358 u64 bytes_moved = 0, initial_bytes_moved;
359 u64 bytes_moved_threshold = amdgpu_cs_get_threshold_for_moves(adev);
360 int r;
361
362 list_for_each_entry(lobj, validated, tv.head) {
363 bo = lobj->robj;
364 if (!bo->pin_count) {
365 u32 domain = lobj->prefered_domains;
366 u32 current_domain =
367 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type);
368
369 /* Check if this buffer will be moved and don't move it
370 * if we have moved too many buffers for this IB already.
371 *
372 * Note that this allows moving at least one buffer of
373 * any size, because it doesn't take the current "bo"
374 * into account. We don't want to disallow buffer moves
375 * completely.
376 */
377 if ((lobj->allowed_domains & current_domain) != 0 &&
378 (domain & current_domain) == 0 && /* will be moved */
379 bytes_moved > bytes_moved_threshold) {
380 /* don't move it */
381 domain = current_domain;
382 }
383
384 retry:
385 amdgpu_ttm_placement_from_domain(bo, domain);
386 initial_bytes_moved = atomic64_read(&adev->num_bytes_moved);
387 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
388 bytes_moved += atomic64_read(&adev->num_bytes_moved) -
389 initial_bytes_moved;
390
391 if (unlikely(r)) {
392 if (r != -ERESTARTSYS && domain != lobj->allowed_domains) {
393 domain = lobj->allowed_domains;
394 goto retry;
395 }
396 return r;
397 }
398 }
399 lobj->bo_va = amdgpu_vm_bo_find(vm, bo);
400 }
401 return 0;
402 }
403
404 static int amdgpu_cs_parser_relocs(struct amdgpu_cs_parser *p)
405 {
406 struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
407 struct amdgpu_cs_buckets buckets;
408 struct list_head duplicates;
409 bool need_mmap_lock = false;
410 int i, r;
411
412 if (p->bo_list) {
413 need_mmap_lock = p->bo_list->has_userptr;
414 amdgpu_cs_buckets_init(&buckets);
415 for (i = 0; i < p->bo_list->num_entries; i++)
416 amdgpu_cs_buckets_add(&buckets, &p->bo_list->array[i].tv.head,
417 p->bo_list->array[i].priority);
418
419 amdgpu_cs_buckets_get_list(&buckets, &p->validated);
420 }
421
422 p->vm_bos = amdgpu_vm_get_bos(p->adev, &fpriv->vm,
423 &p->validated);
424
425 if (p->uf.bo)
426 list_add(&p->uf_entry.tv.head, &p->validated);
427
428 #ifdef __NetBSD__
429 if (need_mmap_lock)
430 vm_map_lock_read(&curproc->p_vmspace->vm_map);
431 #else
432 if (need_mmap_lock)
433 down_read(¤t->mm->mmap_sem);
434 #endif
435
436 INIT_LIST_HEAD(&duplicates);
437 r = ttm_eu_reserve_buffers(&p->ticket, &p->validated, true, &duplicates);
438 if (unlikely(r != 0))
439 goto error_reserve;
440
441 r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &p->validated);
442 if (r)
443 goto error_validate;
444
445 r = amdgpu_cs_list_validate(p->adev, &fpriv->vm, &duplicates);
446
447 error_validate:
448 if (r)
449 ttm_eu_backoff_reservation(&p->ticket, &p->validated);
450
451 error_reserve:
452 #ifdef __NetBSD__
453 if (need_mmap_lock)
454 vm_map_unlock_read(&curproc->p_vmspace->vm_map);
455 #else
456 if (need_mmap_lock)
457 up_read(¤t->mm->mmap_sem);
458 #endif
459
460 return r;
461 }
462
463 static int amdgpu_cs_sync_rings(struct amdgpu_cs_parser *p)
464 {
465 struct amdgpu_bo_list_entry *e;
466 int r;
467
468 list_for_each_entry(e, &p->validated, tv.head) {
469 struct reservation_object *resv = e->robj->tbo.resv;
470 r = amdgpu_sync_resv(p->adev, &p->ibs[0].sync, resv, p->filp);
471
472 if (r)
473 return r;
474 }
475 return 0;
476 }
477
478 static int cmp_size_smaller_first(void *priv, struct list_head *a,
479 struct list_head *b)
480 {
481 struct amdgpu_bo_list_entry *la = list_entry(a, struct amdgpu_bo_list_entry, tv.head);
482 struct amdgpu_bo_list_entry *lb = list_entry(b, struct amdgpu_bo_list_entry, tv.head);
483
484 /* Sort A before B if A is smaller. */
485 return (int)la->robj->tbo.num_pages - (int)lb->robj->tbo.num_pages;
486 }
487
488 /**
489 * cs_parser_fini() - clean parser states
490 * @parser: parser structure holding parsing context.
491 * @error: error number
492 *
493 * If error is set than unvalidate buffer, otherwise just free memory
494 * used by parsing context.
495 **/
496 static void amdgpu_cs_parser_fini(struct amdgpu_cs_parser *parser, int error, bool backoff)
497 {
498 unsigned i;
499
500 if (!error) {
501 /* Sort the buffer list from the smallest to largest buffer,
502 * which affects the order of buffers in the LRU list.
503 * This assures that the smallest buffers are added first
504 * to the LRU list, so they are likely to be later evicted
505 * first, instead of large buffers whose eviction is more
506 * expensive.
507 *
508 * This slightly lowers the number of bytes moved by TTM
509 * per frame under memory pressure.
510 */
511 list_sort(NULL, &parser->validated, cmp_size_smaller_first);
512
513 ttm_eu_fence_buffer_objects(&parser->ticket,
514 &parser->validated,
515 parser->fence);
516 } else if (backoff) {
517 ttm_eu_backoff_reservation(&parser->ticket,
518 &parser->validated);
519 }
520 fence_put(parser->fence);
521
522 if (parser->ctx)
523 amdgpu_ctx_put(parser->ctx);
524 if (parser->bo_list)
525 amdgpu_bo_list_put(parser->bo_list);
526
527 drm_free_large(parser->vm_bos);
528 for (i = 0; i < parser->nchunks; i++)
529 drm_free_large(parser->chunks[i].kdata);
530 kfree(parser->chunks);
531 if (parser->ibs)
532 for (i = 0; i < parser->num_ibs; i++)
533 amdgpu_ib_free(parser->adev, &parser->ibs[i]);
534 kfree(parser->ibs);
535 amdgpu_bo_unref(&parser->uf.bo);
536 amdgpu_bo_unref(&parser->uf_entry.robj);
537 }
538
539 static int amdgpu_bo_vm_update_pte(struct amdgpu_cs_parser *p,
540 struct amdgpu_vm *vm)
541 {
542 struct amdgpu_device *adev = p->adev;
543 struct amdgpu_bo_va *bo_va;
544 struct amdgpu_bo *bo;
545 int i, r;
546
547 r = amdgpu_vm_update_page_directory(adev, vm);
548 if (r)
549 return r;
550
551 r = amdgpu_sync_fence(adev, &p->ibs[0].sync, vm->page_directory_fence);
552 if (r)
553 return r;
554
555 r = amdgpu_vm_clear_freed(adev, vm);
556 if (r)
557 return r;
558
559 if (p->bo_list) {
560 for (i = 0; i < p->bo_list->num_entries; i++) {
561 struct fence *f;
562
563 /* ignore duplicates */
564 bo = p->bo_list->array[i].robj;
565 if (!bo)
566 continue;
567
568 bo_va = p->bo_list->array[i].bo_va;
569 if (bo_va == NULL)
570 continue;
571
572 r = amdgpu_vm_bo_update(adev, bo_va, &bo->tbo.mem);
573 if (r)
574 return r;
575
576 f = bo_va->last_pt_update;
577 r = amdgpu_sync_fence(adev, &p->ibs[0].sync, f);
578 if (r)
579 return r;
580 }
581
582 }
583
584 r = amdgpu_vm_clear_invalids(adev, vm, &p->ibs[0].sync);
585
586 if (amdgpu_vm_debug && p->bo_list) {
587 /* Invalidate all BOs to test for userspace bugs */
588 for (i = 0; i < p->bo_list->num_entries; i++) {
589 /* ignore duplicates */
590 bo = p->bo_list->array[i].robj;
591 if (!bo)
592 continue;
593
594 amdgpu_vm_bo_invalidate(adev, bo);
595 }
596 }
597
598 return r;
599 }
600
601 static int amdgpu_cs_ib_vm_chunk(struct amdgpu_device *adev,
602 struct amdgpu_cs_parser *parser)
603 {
604 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
605 struct amdgpu_vm *vm = &fpriv->vm;
606 struct amdgpu_ring *ring;
607 int i, r;
608
609 if (parser->num_ibs == 0)
610 return 0;
611
612 /* Only for UVD/VCE VM emulation */
613 for (i = 0; i < parser->num_ibs; i++) {
614 ring = parser->ibs[i].ring;
615 if (ring->funcs->parse_cs) {
616 r = amdgpu_ring_parse_cs(ring, parser, i);
617 if (r)
618 return r;
619 }
620 }
621
622 r = amdgpu_bo_vm_update_pte(parser, vm);
623 if (!r)
624 amdgpu_cs_sync_rings(parser);
625
626 return r;
627 }
628
629 static int amdgpu_cs_handle_lockup(struct amdgpu_device *adev, int r)
630 {
631 if (r == -EDEADLK) {
632 r = amdgpu_gpu_reset(adev);
633 if (!r)
634 r = -EAGAIN;
635 }
636 return r;
637 }
638
639 static int amdgpu_cs_ib_fill(struct amdgpu_device *adev,
640 struct amdgpu_cs_parser *parser)
641 {
642 struct amdgpu_fpriv *fpriv = parser->filp->driver_priv;
643 struct amdgpu_vm *vm = &fpriv->vm;
644 int i, j;
645 int r;
646
647 for (i = 0, j = 0; i < parser->nchunks && j < parser->num_ibs; i++) {
648 struct amdgpu_cs_chunk *chunk;
649 struct amdgpu_ib *ib;
650 struct drm_amdgpu_cs_chunk_ib *chunk_ib;
651 struct amdgpu_ring *ring;
652
653 chunk = &parser->chunks[i];
654 ib = &parser->ibs[j];
655 chunk_ib = (struct drm_amdgpu_cs_chunk_ib *)chunk->kdata;
656
657 if (chunk->chunk_id != AMDGPU_CHUNK_ID_IB)
658 continue;
659
660 r = amdgpu_cs_get_ring(adev, chunk_ib->ip_type,
661 chunk_ib->ip_instance, chunk_ib->ring,
662 &ring);
663 if (r)
664 return r;
665
666 if (ring->funcs->parse_cs) {
667 struct amdgpu_bo_va_mapping *m;
668 struct amdgpu_bo *aobj = NULL;
669 uint64_t offset;
670 uint8_t *kptr;
671
672 m = amdgpu_cs_find_mapping(parser, chunk_ib->va_start,
673 &aobj);
674 if (!aobj) {
675 DRM_ERROR("IB va_start is invalid\n");
676 return -EINVAL;
677 }
678
679 if ((chunk_ib->va_start + chunk_ib->ib_bytes) >
680 (m->it.last + 1) * AMDGPU_GPU_PAGE_SIZE) {
681 DRM_ERROR("IB va_start+ib_bytes is invalid\n");
682 return -EINVAL;
683 }
684
685 /* the IB should be reserved at this point */
686 r = amdgpu_bo_kmap(aobj, (void **)&kptr);
687 if (r) {
688 return r;
689 }
690
691 offset = ((uint64_t)m->it.start) * AMDGPU_GPU_PAGE_SIZE;
692 kptr += chunk_ib->va_start - offset;
693
694 r = amdgpu_ib_get(ring, NULL, chunk_ib->ib_bytes, ib);
695 if (r) {
696 DRM_ERROR("Failed to get ib !\n");
697 return r;
698 }
699
700 memcpy(ib->ptr, kptr, chunk_ib->ib_bytes);
701 amdgpu_bo_kunmap(aobj);
702 } else {
703 r = amdgpu_ib_get(ring, vm, 0, ib);
704 if (r) {
705 DRM_ERROR("Failed to get ib !\n");
706 return r;
707 }
708
709 ib->gpu_addr = chunk_ib->va_start;
710 }
711
712 ib->length_dw = chunk_ib->ib_bytes / 4;
713 ib->flags = chunk_ib->flags;
714 ib->ctx = parser->ctx;
715 j++;
716 }
717
718 if (!parser->num_ibs)
719 return 0;
720
721 /* add GDS resources to first IB */
722 if (parser->bo_list) {
723 struct amdgpu_bo *gds = parser->bo_list->gds_obj;
724 struct amdgpu_bo *gws = parser->bo_list->gws_obj;
725 struct amdgpu_bo *oa = parser->bo_list->oa_obj;
726 struct amdgpu_ib *ib = &parser->ibs[0];
727
728 if (gds) {
729 ib->gds_base = amdgpu_bo_gpu_offset(gds);
730 ib->gds_size = amdgpu_bo_size(gds);
731 }
732 if (gws) {
733 ib->gws_base = amdgpu_bo_gpu_offset(gws);
734 ib->gws_size = amdgpu_bo_size(gws);
735 }
736 if (oa) {
737 ib->oa_base = amdgpu_bo_gpu_offset(oa);
738 ib->oa_size = amdgpu_bo_size(oa);
739 }
740 }
741 /* wrap the last IB with user fence */
742 if (parser->uf.bo) {
743 struct amdgpu_ib *ib = &parser->ibs[parser->num_ibs - 1];
744
745 /* UVD & VCE fw doesn't support user fences */
746 if (ib->ring->type == AMDGPU_RING_TYPE_UVD ||
747 ib->ring->type == AMDGPU_RING_TYPE_VCE)
748 return -EINVAL;
749
750 ib->user = &parser->uf;
751 }
752
753 return 0;
754 }
755
756 static int amdgpu_cs_dependencies(struct amdgpu_device *adev,
757 struct amdgpu_cs_parser *p)
758 {
759 struct amdgpu_fpriv *fpriv = p->filp->driver_priv;
760 struct amdgpu_ib *ib;
761 int i, j, r;
762
763 if (!p->num_ibs)
764 return 0;
765
766 /* Add dependencies to first IB */
767 ib = &p->ibs[0];
768 for (i = 0; i < p->nchunks; ++i) {
769 struct drm_amdgpu_cs_chunk_dep *deps;
770 struct amdgpu_cs_chunk *chunk;
771 unsigned num_deps;
772
773 chunk = &p->chunks[i];
774
775 if (chunk->chunk_id != AMDGPU_CHUNK_ID_DEPENDENCIES)
776 continue;
777
778 deps = (struct drm_amdgpu_cs_chunk_dep *)chunk->kdata;
779 num_deps = chunk->length_dw * 4 /
780 sizeof(struct drm_amdgpu_cs_chunk_dep);
781
782 for (j = 0; j < num_deps; ++j) {
783 struct amdgpu_ring *ring;
784 struct amdgpu_ctx *ctx;
785 struct fence *fence;
786
787 r = amdgpu_cs_get_ring(adev, deps[j].ip_type,
788 deps[j].ip_instance,
789 deps[j].ring, &ring);
790 if (r)
791 return r;
792
793 ctx = amdgpu_ctx_get(fpriv, deps[j].ctx_id);
794 if (ctx == NULL)
795 return -EINVAL;
796
797 fence = amdgpu_ctx_get_fence(ctx, ring,
798 deps[j].handle);
799 if (IS_ERR(fence)) {
800 r = PTR_ERR(fence);
801 amdgpu_ctx_put(ctx);
802 return r;
803
804 } else if (fence) {
805 r = amdgpu_sync_fence(adev, &ib->sync, fence);
806 fence_put(fence);
807 amdgpu_ctx_put(ctx);
808 if (r)
809 return r;
810 }
811 }
812 }
813
814 return 0;
815 }
816
817 static int amdgpu_cs_free_job(struct amdgpu_job *job)
818 {
819 int i;
820 if (job->ibs)
821 for (i = 0; i < job->num_ibs; i++)
822 amdgpu_ib_free(job->adev, &job->ibs[i]);
823 kfree(job->ibs);
824 if (job->uf.bo)
825 amdgpu_bo_unref(&job->uf.bo);
826 return 0;
827 }
828
829 int amdgpu_cs_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
830 {
831 struct amdgpu_device *adev = dev->dev_private;
832 union drm_amdgpu_cs *cs = data;
833 struct amdgpu_cs_parser parser = {};
834 bool reserved_buffers = false;
835 int i, r;
836
837 if (!adev->accel_working)
838 return -EBUSY;
839
840 parser.adev = adev;
841 parser.filp = filp;
842
843 r = amdgpu_cs_parser_init(&parser, data);
844 if (r) {
845 DRM_ERROR("Failed to initialize parser !\n");
846 amdgpu_cs_parser_fini(&parser, r, false);
847 r = amdgpu_cs_handle_lockup(adev, r);
848 return r;
849 }
850 r = amdgpu_cs_parser_relocs(&parser);
851 if (r == -ENOMEM)
852 DRM_ERROR("Not enough memory for command submission!\n");
853 else if (r && r != -ERESTARTSYS)
854 DRM_ERROR("Failed to process the buffer list %d!\n", r);
855 else if (!r) {
856 reserved_buffers = true;
857 r = amdgpu_cs_ib_fill(adev, &parser);
858 }
859
860 if (!r) {
861 r = amdgpu_cs_dependencies(adev, &parser);
862 if (r)
863 DRM_ERROR("Failed in the dependencies handling %d!\n", r);
864 }
865
866 if (r)
867 goto out;
868
869 for (i = 0; i < parser.num_ibs; i++)
870 trace_amdgpu_cs(&parser, i);
871
872 r = amdgpu_cs_ib_vm_chunk(adev, &parser);
873 if (r)
874 goto out;
875
876 if (amdgpu_enable_scheduler && parser.num_ibs) {
877 struct amdgpu_ring * ring = parser.ibs->ring;
878 struct amd_sched_fence *fence;
879 struct amdgpu_job *job;
880
881 job = kzalloc(sizeof(struct amdgpu_job), GFP_KERNEL);
882 if (!job) {
883 r = -ENOMEM;
884 goto out;
885 }
886
887 job->base.sched = &ring->sched;
888 job->base.s_entity = &parser.ctx->rings[ring->idx].entity;
889 job->adev = parser.adev;
890 job->owner = parser.filp;
891 job->free_job = amdgpu_cs_free_job;
892
893 job->ibs = parser.ibs;
894 job->num_ibs = parser.num_ibs;
895 parser.ibs = NULL;
896 parser.num_ibs = 0;
897
898 if (job->ibs[job->num_ibs - 1].user) {
899 job->uf = parser.uf;
900 job->ibs[job->num_ibs - 1].user = &job->uf;
901 parser.uf.bo = NULL;
902 }
903
904 fence = amd_sched_fence_create(job->base.s_entity,
905 parser.filp);
906 if (!fence) {
907 r = -ENOMEM;
908 amdgpu_cs_free_job(job);
909 kfree(job);
910 goto out;
911 }
912 job->base.s_fence = fence;
913 parser.fence = fence_get(&fence->base);
914
915 cs->out.handle = amdgpu_ctx_add_fence(parser.ctx, ring,
916 &fence->base);
917 job->ibs[job->num_ibs - 1].sequence = cs->out.handle;
918
919 trace_amdgpu_cs_ioctl(job);
920 amd_sched_entity_push_job(&job->base);
921
922 } else {
923 struct amdgpu_fence *fence;
924
925 r = amdgpu_ib_schedule(adev, parser.num_ibs, parser.ibs,
926 parser.filp);
927 fence = parser.ibs[parser.num_ibs - 1].fence;
928 parser.fence = fence_get(&fence->base);
929 cs->out.handle = parser.ibs[parser.num_ibs - 1].sequence;
930 }
931
932 out:
933 amdgpu_cs_parser_fini(&parser, r, reserved_buffers);
934 r = amdgpu_cs_handle_lockup(adev, r);
935 return r;
936 }
937
938 /**
939 * amdgpu_cs_wait_ioctl - wait for a command submission to finish
940 *
941 * @dev: drm device
942 * @data: data from userspace
943 * @filp: file private
944 *
945 * Wait for the command submission identified by handle to finish.
946 */
947 int amdgpu_cs_wait_ioctl(struct drm_device *dev, void *data,
948 struct drm_file *filp)
949 {
950 union drm_amdgpu_wait_cs *wait = data;
951 struct amdgpu_device *adev = dev->dev_private;
952 unsigned long timeout = amdgpu_gem_timeout(wait->in.timeout);
953 struct amdgpu_ring *ring = NULL;
954 struct amdgpu_ctx *ctx;
955 struct fence *fence;
956 long r;
957
958 r = amdgpu_cs_get_ring(adev, wait->in.ip_type, wait->in.ip_instance,
959 wait->in.ring, &ring);
960 if (r)
961 return r;
962
963 ctx = amdgpu_ctx_get(filp->driver_priv, wait->in.ctx_id);
964 if (ctx == NULL)
965 return -EINVAL;
966
967 fence = amdgpu_ctx_get_fence(ctx, ring, wait->in.handle);
968 if (IS_ERR(fence))
969 r = PTR_ERR(fence);
970 else if (fence) {
971 r = fence_wait_timeout(fence, true, timeout);
972 fence_put(fence);
973 } else
974 r = 1;
975
976 amdgpu_ctx_put(ctx);
977 if (r < 0)
978 return r;
979
980 memset(wait, 0, sizeof(*wait));
981 wait->out.status = (r == 0);
982
983 return 0;
984 }
985
986 /**
987 * amdgpu_cs_find_bo_va - find bo_va for VM address
988 *
989 * @parser: command submission parser context
990 * @addr: VM address
991 * @bo: resulting BO of the mapping found
992 *
993 * Search the buffer objects in the command submission context for a certain
994 * virtual memory address. Returns allocation structure when found, NULL
995 * otherwise.
996 */
997 struct amdgpu_bo_va_mapping *
998 amdgpu_cs_find_mapping(struct amdgpu_cs_parser *parser,
999 uint64_t addr, struct amdgpu_bo **bo)
1000 {
1001 struct amdgpu_bo_list_entry *reloc;
1002 struct amdgpu_bo_va_mapping *mapping;
1003
1004 addr /= AMDGPU_GPU_PAGE_SIZE;
1005
1006 list_for_each_entry(reloc, &parser->validated, tv.head) {
1007 if (!reloc->bo_va)
1008 continue;
1009
1010 list_for_each_entry(mapping, &reloc->bo_va->valids, list) {
1011 if (mapping->it.start > addr ||
1012 addr > mapping->it.last)
1013 continue;
1014
1015 *bo = reloc->bo_va->bo;
1016 return mapping;
1017 }
1018
1019 list_for_each_entry(mapping, &reloc->bo_va->invalids, list) {
1020 if (mapping->it.start > addr ||
1021 addr > mapping->it.last)
1022 continue;
1023
1024 *bo = reloc->bo_va->bo;
1025 return mapping;
1026 }
1027 }
1028
1029 return NULL;
1030 }
1031