amdgpu_ttm.c revision 1.1.1.2 1 /* $NetBSD: amdgpu_ttm.c,v 1.1.1.2 2021/12/18 20:11:12 riastradh Exp $ */
2
3 /*
4 * Copyright 2009 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 *
27 */
28 /*
29 * Authors:
30 * Jerome Glisse <glisse (at) freedesktop.org>
31 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
32 * Dave Airlie
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ttm.c,v 1.1.1.2 2021/12/18 20:11:12 riastradh Exp $");
37
38 #include <linux/dma-mapping.h>
39 #include <linux/iommu.h>
40 #include <linux/hmm.h>
41 #include <linux/pagemap.h>
42 #include <linux/sched/task.h>
43 #include <linux/sched/mm.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/swap.h>
47 #include <linux/swiotlb.h>
48 #include <linux/dma-buf.h>
49 #include <linux/sizes.h>
50
51 #include <drm/ttm/ttm_bo_api.h>
52 #include <drm/ttm/ttm_bo_driver.h>
53 #include <drm/ttm/ttm_placement.h>
54 #include <drm/ttm/ttm_module.h>
55 #include <drm/ttm/ttm_page_alloc.h>
56
57 #include <drm/drm_debugfs.h>
58 #include <drm/amdgpu_drm.h>
59
60 #include "amdgpu.h"
61 #include "amdgpu_object.h"
62 #include "amdgpu_trace.h"
63 #include "amdgpu_amdkfd.h"
64 #include "amdgpu_sdma.h"
65 #include "amdgpu_ras.h"
66 #include "bif/bif_4_1_d.h"
67
68 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
69 struct ttm_mem_reg *mem, unsigned num_pages,
70 uint64_t offset, unsigned window,
71 struct amdgpu_ring *ring,
72 uint64_t *addr);
73
74 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
75 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
76
77 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
78 {
79 return 0;
80 }
81
82 /**
83 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
84 * memory request.
85 *
86 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
87 * @type: The type of memory requested
88 * @man: The memory type manager for each domain
89 *
90 * This is called by ttm_bo_init_mm() when a buffer object is being
91 * initialized.
92 */
93 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
94 struct ttm_mem_type_manager *man)
95 {
96 struct amdgpu_device *adev;
97
98 adev = amdgpu_ttm_adev(bdev);
99
100 switch (type) {
101 case TTM_PL_SYSTEM:
102 /* System memory */
103 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
104 man->available_caching = TTM_PL_MASK_CACHING;
105 man->default_caching = TTM_PL_FLAG_CACHED;
106 break;
107 case TTM_PL_TT:
108 /* GTT memory */
109 man->func = &amdgpu_gtt_mgr_func;
110 man->gpu_offset = adev->gmc.gart_start;
111 man->available_caching = TTM_PL_MASK_CACHING;
112 man->default_caching = TTM_PL_FLAG_CACHED;
113 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
114 break;
115 case TTM_PL_VRAM:
116 /* "On-card" video ram */
117 man->func = &amdgpu_vram_mgr_func;
118 man->gpu_offset = adev->gmc.vram_start;
119 man->flags = TTM_MEMTYPE_FLAG_FIXED |
120 TTM_MEMTYPE_FLAG_MAPPABLE;
121 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
122 man->default_caching = TTM_PL_FLAG_WC;
123 break;
124 case AMDGPU_PL_GDS:
125 case AMDGPU_PL_GWS:
126 case AMDGPU_PL_OA:
127 /* On-chip GDS memory*/
128 man->func = &ttm_bo_manager_func;
129 man->gpu_offset = 0;
130 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
131 man->available_caching = TTM_PL_FLAG_UNCACHED;
132 man->default_caching = TTM_PL_FLAG_UNCACHED;
133 break;
134 default:
135 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
136 return -EINVAL;
137 }
138 return 0;
139 }
140
141 /**
142 * amdgpu_evict_flags - Compute placement flags
143 *
144 * @bo: The buffer object to evict
145 * @placement: Possible destination(s) for evicted BO
146 *
147 * Fill in placement data when ttm_bo_evict() is called
148 */
149 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
150 struct ttm_placement *placement)
151 {
152 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
153 struct amdgpu_bo *abo;
154 static const struct ttm_place placements = {
155 .fpfn = 0,
156 .lpfn = 0,
157 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
158 };
159
160 /* Don't handle scatter gather BOs */
161 if (bo->type == ttm_bo_type_sg) {
162 placement->num_placement = 0;
163 placement->num_busy_placement = 0;
164 return;
165 }
166
167 /* Object isn't an AMDGPU object so ignore */
168 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
169 placement->placement = &placements;
170 placement->busy_placement = &placements;
171 placement->num_placement = 1;
172 placement->num_busy_placement = 1;
173 return;
174 }
175
176 abo = ttm_to_amdgpu_bo(bo);
177 switch (bo->mem.mem_type) {
178 case AMDGPU_PL_GDS:
179 case AMDGPU_PL_GWS:
180 case AMDGPU_PL_OA:
181 placement->num_placement = 0;
182 placement->num_busy_placement = 0;
183 return;
184
185 case TTM_PL_VRAM:
186 if (!adev->mman.buffer_funcs_enabled) {
187 /* Move to system memory */
188 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
189 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
190 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
191 amdgpu_bo_in_cpu_visible_vram(abo)) {
192
193 /* Try evicting to the CPU inaccessible part of VRAM
194 * first, but only set GTT as busy placement, so this
195 * BO will be evicted to GTT rather than causing other
196 * BOs to be evicted from VRAM
197 */
198 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
199 AMDGPU_GEM_DOMAIN_GTT);
200 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
201 abo->placements[0].lpfn = 0;
202 abo->placement.busy_placement = &abo->placements[1];
203 abo->placement.num_busy_placement = 1;
204 } else {
205 /* Move to GTT memory */
206 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
207 }
208 break;
209 case TTM_PL_TT:
210 default:
211 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
212 break;
213 }
214 *placement = abo->placement;
215 }
216
217 /**
218 * amdgpu_verify_access - Verify access for a mmap call
219 *
220 * @bo: The buffer object to map
221 * @filp: The file pointer from the process performing the mmap
222 *
223 * This is called by ttm_bo_mmap() to verify whether a process
224 * has the right to mmap a BO to their process space.
225 */
226 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
227 {
228 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
229
230 /*
231 * Don't verify access for KFD BOs. They don't have a GEM
232 * object associated with them.
233 */
234 if (abo->kfd_bo)
235 return 0;
236
237 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
238 return -EPERM;
239 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
240 filp->private_data);
241 }
242
243 /**
244 * amdgpu_move_null - Register memory for a buffer object
245 *
246 * @bo: The bo to assign the memory to
247 * @new_mem: The memory to be assigned.
248 *
249 * Assign the memory from new_mem to the memory of the buffer object bo.
250 */
251 static void amdgpu_move_null(struct ttm_buffer_object *bo,
252 struct ttm_mem_reg *new_mem)
253 {
254 struct ttm_mem_reg *old_mem = &bo->mem;
255
256 BUG_ON(old_mem->mm_node != NULL);
257 *old_mem = *new_mem;
258 new_mem->mm_node = NULL;
259 }
260
261 /**
262 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
263 *
264 * @bo: The bo to assign the memory to.
265 * @mm_node: Memory manager node for drm allocator.
266 * @mem: The region where the bo resides.
267 *
268 */
269 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
270 struct drm_mm_node *mm_node,
271 struct ttm_mem_reg *mem)
272 {
273 uint64_t addr = 0;
274
275 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
276 addr = mm_node->start << PAGE_SHIFT;
277 addr += bo->bdev->man[mem->mem_type].gpu_offset;
278 }
279 return addr;
280 }
281
282 /**
283 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
284 * @offset. It also modifies the offset to be within the drm_mm_node returned
285 *
286 * @mem: The region where the bo resides.
287 * @offset: The offset that drm_mm_node is used for finding.
288 *
289 */
290 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
291 unsigned long *offset)
292 {
293 struct drm_mm_node *mm_node = mem->mm_node;
294
295 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
296 *offset -= (mm_node->size << PAGE_SHIFT);
297 ++mm_node;
298 }
299 return mm_node;
300 }
301
302 /**
303 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
304 *
305 * The function copies @size bytes from {src->mem + src->offset} to
306 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
307 * move and different for a BO to BO copy.
308 *
309 * @f: Returns the last fence if multiple jobs are submitted.
310 */
311 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
312 struct amdgpu_copy_mem *src,
313 struct amdgpu_copy_mem *dst,
314 uint64_t size,
315 struct dma_resv *resv,
316 struct dma_fence **f)
317 {
318 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
319 struct drm_mm_node *src_mm, *dst_mm;
320 uint64_t src_node_start, dst_node_start, src_node_size,
321 dst_node_size, src_page_offset, dst_page_offset;
322 struct dma_fence *fence = NULL;
323 int r = 0;
324 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
325 AMDGPU_GPU_PAGE_SIZE);
326
327 if (!adev->mman.buffer_funcs_enabled) {
328 DRM_ERROR("Trying to move memory with ring turned off.\n");
329 return -EINVAL;
330 }
331
332 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
333 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
334 src->offset;
335 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
336 src_page_offset = src_node_start & (PAGE_SIZE - 1);
337
338 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
339 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
340 dst->offset;
341 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
342 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
343
344 mutex_lock(&adev->mman.gtt_window_lock);
345
346 while (size) {
347 unsigned long cur_size;
348 uint64_t from = src_node_start, to = dst_node_start;
349 struct dma_fence *next;
350
351 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
352 * begins at an offset, then adjust the size accordingly
353 */
354 cur_size = min3(min(src_node_size, dst_node_size), size,
355 GTT_MAX_BYTES);
356 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
357 cur_size + dst_page_offset > GTT_MAX_BYTES)
358 cur_size -= max(src_page_offset, dst_page_offset);
359
360 /* Map only what needs to be accessed. Map src to window 0 and
361 * dst to window 1
362 */
363 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
364 r = amdgpu_map_buffer(src->bo, src->mem,
365 PFN_UP(cur_size + src_page_offset),
366 src_node_start, 0, ring,
367 &from);
368 if (r)
369 goto error;
370 /* Adjust the offset because amdgpu_map_buffer returns
371 * start of mapped page
372 */
373 from += src_page_offset;
374 }
375
376 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
377 r = amdgpu_map_buffer(dst->bo, dst->mem,
378 PFN_UP(cur_size + dst_page_offset),
379 dst_node_start, 1, ring,
380 &to);
381 if (r)
382 goto error;
383 to += dst_page_offset;
384 }
385
386 r = amdgpu_copy_buffer(ring, from, to, cur_size,
387 resv, &next, false, true);
388 if (r)
389 goto error;
390
391 dma_fence_put(fence);
392 fence = next;
393
394 size -= cur_size;
395 if (!size)
396 break;
397
398 src_node_size -= cur_size;
399 if (!src_node_size) {
400 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
401 src->mem);
402 src_node_size = (src_mm->size << PAGE_SHIFT);
403 src_page_offset = 0;
404 } else {
405 src_node_start += cur_size;
406 src_page_offset = src_node_start & (PAGE_SIZE - 1);
407 }
408 dst_node_size -= cur_size;
409 if (!dst_node_size) {
410 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
411 dst->mem);
412 dst_node_size = (dst_mm->size << PAGE_SHIFT);
413 dst_page_offset = 0;
414 } else {
415 dst_node_start += cur_size;
416 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
417 }
418 }
419 error:
420 mutex_unlock(&adev->mman.gtt_window_lock);
421 if (f)
422 *f = dma_fence_get(fence);
423 dma_fence_put(fence);
424 return r;
425 }
426
427 /**
428 * amdgpu_move_blit - Copy an entire buffer to another buffer
429 *
430 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
431 * help move buffers to and from VRAM.
432 */
433 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
434 bool evict, bool no_wait_gpu,
435 struct ttm_mem_reg *new_mem,
436 struct ttm_mem_reg *old_mem)
437 {
438 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
439 struct amdgpu_copy_mem src, dst;
440 struct dma_fence *fence = NULL;
441 int r;
442
443 src.bo = bo;
444 dst.bo = bo;
445 src.mem = old_mem;
446 dst.mem = new_mem;
447 src.offset = 0;
448 dst.offset = 0;
449
450 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
451 new_mem->num_pages << PAGE_SHIFT,
452 bo->base.resv, &fence);
453 if (r)
454 goto error;
455
456 /* clear the space being freed */
457 if (old_mem->mem_type == TTM_PL_VRAM &&
458 (ttm_to_amdgpu_bo(bo)->flags &
459 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
460 struct dma_fence *wipe_fence = NULL;
461
462 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
463 NULL, &wipe_fence);
464 if (r) {
465 goto error;
466 } else if (wipe_fence) {
467 dma_fence_put(fence);
468 fence = wipe_fence;
469 }
470 }
471
472 /* Always block for VM page tables before committing the new location */
473 if (bo->type == ttm_bo_type_kernel)
474 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
475 else
476 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
477 dma_fence_put(fence);
478 return r;
479
480 error:
481 if (fence)
482 dma_fence_wait(fence, false);
483 dma_fence_put(fence);
484 return r;
485 }
486
487 /**
488 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
489 *
490 * Called by amdgpu_bo_move().
491 */
492 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
493 struct ttm_operation_ctx *ctx,
494 struct ttm_mem_reg *new_mem)
495 {
496 struct ttm_mem_reg *old_mem = &bo->mem;
497 struct ttm_mem_reg tmp_mem;
498 struct ttm_place placements;
499 struct ttm_placement placement;
500 int r;
501
502 /* create space/pages for new_mem in GTT space */
503 tmp_mem = *new_mem;
504 tmp_mem.mm_node = NULL;
505 placement.num_placement = 1;
506 placement.placement = &placements;
507 placement.num_busy_placement = 1;
508 placement.busy_placement = &placements;
509 placements.fpfn = 0;
510 placements.lpfn = 0;
511 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
512 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
513 if (unlikely(r)) {
514 pr_err("Failed to find GTT space for blit from VRAM\n");
515 return r;
516 }
517
518 /* set caching flags */
519 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
520 if (unlikely(r)) {
521 goto out_cleanup;
522 }
523
524 /* Bind the memory to the GTT space */
525 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
526 if (unlikely(r)) {
527 goto out_cleanup;
528 }
529
530 /* blit VRAM to GTT */
531 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
532 if (unlikely(r)) {
533 goto out_cleanup;
534 }
535
536 /* move BO (in tmp_mem) to new_mem */
537 r = ttm_bo_move_ttm(bo, ctx, new_mem);
538 out_cleanup:
539 ttm_bo_mem_put(bo, &tmp_mem);
540 return r;
541 }
542
543 /**
544 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
545 *
546 * Called by amdgpu_bo_move().
547 */
548 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
549 struct ttm_operation_ctx *ctx,
550 struct ttm_mem_reg *new_mem)
551 {
552 struct ttm_mem_reg *old_mem = &bo->mem;
553 struct ttm_mem_reg tmp_mem;
554 struct ttm_placement placement;
555 struct ttm_place placements;
556 int r;
557
558 /* make space in GTT for old_mem buffer */
559 tmp_mem = *new_mem;
560 tmp_mem.mm_node = NULL;
561 placement.num_placement = 1;
562 placement.placement = &placements;
563 placement.num_busy_placement = 1;
564 placement.busy_placement = &placements;
565 placements.fpfn = 0;
566 placements.lpfn = 0;
567 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
568 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
569 if (unlikely(r)) {
570 pr_err("Failed to find GTT space for blit to VRAM\n");
571 return r;
572 }
573
574 /* move/bind old memory to GTT space */
575 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
576 if (unlikely(r)) {
577 goto out_cleanup;
578 }
579
580 /* copy to VRAM */
581 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
582 if (unlikely(r)) {
583 goto out_cleanup;
584 }
585 out_cleanup:
586 ttm_bo_mem_put(bo, &tmp_mem);
587 return r;
588 }
589
590 /**
591 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
592 *
593 * Called by amdgpu_bo_move()
594 */
595 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
596 struct ttm_mem_reg *mem)
597 {
598 struct drm_mm_node *nodes = mem->mm_node;
599
600 if (mem->mem_type == TTM_PL_SYSTEM ||
601 mem->mem_type == TTM_PL_TT)
602 return true;
603 if (mem->mem_type != TTM_PL_VRAM)
604 return false;
605
606 /* ttm_mem_reg_ioremap only supports contiguous memory */
607 if (nodes->size != mem->num_pages)
608 return false;
609
610 return ((nodes->start + nodes->size) << PAGE_SHIFT)
611 <= adev->gmc.visible_vram_size;
612 }
613
614 /**
615 * amdgpu_bo_move - Move a buffer object to a new memory location
616 *
617 * Called by ttm_bo_handle_move_mem()
618 */
619 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
620 struct ttm_operation_ctx *ctx,
621 struct ttm_mem_reg *new_mem)
622 {
623 struct amdgpu_device *adev;
624 struct amdgpu_bo *abo;
625 struct ttm_mem_reg *old_mem = &bo->mem;
626 int r;
627
628 /* Can't move a pinned BO */
629 abo = ttm_to_amdgpu_bo(bo);
630 if (WARN_ON_ONCE(abo->pin_count > 0))
631 return -EINVAL;
632
633 adev = amdgpu_ttm_adev(bo->bdev);
634
635 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
636 amdgpu_move_null(bo, new_mem);
637 return 0;
638 }
639 if ((old_mem->mem_type == TTM_PL_TT &&
640 new_mem->mem_type == TTM_PL_SYSTEM) ||
641 (old_mem->mem_type == TTM_PL_SYSTEM &&
642 new_mem->mem_type == TTM_PL_TT)) {
643 /* bind is enough */
644 amdgpu_move_null(bo, new_mem);
645 return 0;
646 }
647 if (old_mem->mem_type == AMDGPU_PL_GDS ||
648 old_mem->mem_type == AMDGPU_PL_GWS ||
649 old_mem->mem_type == AMDGPU_PL_OA ||
650 new_mem->mem_type == AMDGPU_PL_GDS ||
651 new_mem->mem_type == AMDGPU_PL_GWS ||
652 new_mem->mem_type == AMDGPU_PL_OA) {
653 /* Nothing to save here */
654 amdgpu_move_null(bo, new_mem);
655 return 0;
656 }
657
658 if (!adev->mman.buffer_funcs_enabled) {
659 r = -ENODEV;
660 goto memcpy;
661 }
662
663 if (old_mem->mem_type == TTM_PL_VRAM &&
664 new_mem->mem_type == TTM_PL_SYSTEM) {
665 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
666 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
667 new_mem->mem_type == TTM_PL_VRAM) {
668 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
669 } else {
670 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
671 new_mem, old_mem);
672 }
673
674 if (r) {
675 memcpy:
676 /* Check that all memory is CPU accessible */
677 if (!amdgpu_mem_visible(adev, old_mem) ||
678 !amdgpu_mem_visible(adev, new_mem)) {
679 pr_err("Move buffer fallback to memcpy unavailable\n");
680 return r;
681 }
682
683 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
684 if (r)
685 return r;
686 }
687
688 if (bo->type == ttm_bo_type_device &&
689 new_mem->mem_type == TTM_PL_VRAM &&
690 old_mem->mem_type != TTM_PL_VRAM) {
691 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
692 * accesses the BO after it's moved.
693 */
694 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
695 }
696
697 /* update statistics */
698 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
699 return 0;
700 }
701
702 /**
703 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
704 *
705 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
706 */
707 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
708 {
709 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
710 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
711 struct drm_mm_node *mm_node = mem->mm_node;
712
713 mem->bus.addr = NULL;
714 mem->bus.offset = 0;
715 mem->bus.size = mem->num_pages << PAGE_SHIFT;
716 mem->bus.base = 0;
717 mem->bus.is_iomem = false;
718 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
719 return -EINVAL;
720 switch (mem->mem_type) {
721 case TTM_PL_SYSTEM:
722 /* system memory */
723 return 0;
724 case TTM_PL_TT:
725 break;
726 case TTM_PL_VRAM:
727 mem->bus.offset = mem->start << PAGE_SHIFT;
728 /* check if it's visible */
729 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
730 return -EINVAL;
731 /* Only physically contiguous buffers apply. In a contiguous
732 * buffer, size of the first mm_node would match the number of
733 * pages in ttm_mem_reg.
734 */
735 if (adev->mman.aper_base_kaddr &&
736 (mm_node->size == mem->num_pages))
737 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
738 mem->bus.offset;
739
740 mem->bus.base = adev->gmc.aper_base;
741 mem->bus.is_iomem = true;
742 break;
743 default:
744 return -EINVAL;
745 }
746 return 0;
747 }
748
749 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
750 {
751 }
752
753 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
754 unsigned long page_offset)
755 {
756 struct drm_mm_node *mm;
757 unsigned long offset = (page_offset << PAGE_SHIFT);
758
759 mm = amdgpu_find_mm_node(&bo->mem, &offset);
760 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
761 (offset >> PAGE_SHIFT);
762 }
763
764 /*
765 * TTM backend functions.
766 */
767 struct amdgpu_ttm_tt {
768 struct ttm_dma_tt ttm;
769 struct drm_gem_object *gobj;
770 u64 offset;
771 uint64_t userptr;
772 struct task_struct *usertask;
773 uint32_t userflags;
774 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
775 struct hmm_range *range;
776 #endif
777 };
778
779 #ifdef CONFIG_DRM_AMDGPU_USERPTR
780 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
781 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
782 (1 << 0), /* HMM_PFN_VALID */
783 (1 << 1), /* HMM_PFN_WRITE */
784 0 /* HMM_PFN_DEVICE_PRIVATE */
785 };
786
787 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
788 0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
789 0, /* HMM_PFN_NONE */
790 0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
791 };
792
793 /**
794 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
795 * memory and start HMM tracking CPU page table update
796 *
797 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
798 * once afterwards to stop HMM tracking
799 */
800 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
801 {
802 struct ttm_tt *ttm = bo->tbo.ttm;
803 struct amdgpu_ttm_tt *gtt = (void *)ttm;
804 unsigned long start = gtt->userptr;
805 struct vm_area_struct *vma;
806 struct hmm_range *range;
807 unsigned long timeout;
808 struct mm_struct *mm;
809 unsigned long i;
810 int r = 0;
811
812 mm = bo->notifier.mm;
813 if (unlikely(!mm)) {
814 DRM_DEBUG_DRIVER("BO is not registered?\n");
815 return -EFAULT;
816 }
817
818 /* Another get_user_pages is running at the same time?? */
819 if (WARN_ON(gtt->range))
820 return -EFAULT;
821
822 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
823 return -ESRCH;
824
825 range = kzalloc(sizeof(*range), GFP_KERNEL);
826 if (unlikely(!range)) {
827 r = -ENOMEM;
828 goto out;
829 }
830 range->notifier = &bo->notifier;
831 range->flags = hmm_range_flags;
832 range->values = hmm_range_values;
833 range->pfn_shift = PAGE_SHIFT;
834 range->start = bo->notifier.interval_tree.start;
835 range->end = bo->notifier.interval_tree.last + 1;
836 range->default_flags = hmm_range_flags[HMM_PFN_VALID];
837 if (!amdgpu_ttm_tt_is_readonly(ttm))
838 range->default_flags |= range->flags[HMM_PFN_WRITE];
839
840 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
841 GFP_KERNEL);
842 if (unlikely(!range->pfns)) {
843 r = -ENOMEM;
844 goto out_free_ranges;
845 }
846
847 down_read(&mm->mmap_sem);
848 vma = find_vma(mm, start);
849 if (unlikely(!vma || start < vma->vm_start)) {
850 r = -EFAULT;
851 goto out_unlock;
852 }
853 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
854 vma->vm_file)) {
855 r = -EPERM;
856 goto out_unlock;
857 }
858 up_read(&mm->mmap_sem);
859 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
860
861 retry:
862 range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
863
864 down_read(&mm->mmap_sem);
865 r = hmm_range_fault(range, 0);
866 up_read(&mm->mmap_sem);
867 if (unlikely(r <= 0)) {
868 /*
869 * FIXME: This timeout should encompass the retry from
870 * mmu_interval_read_retry() as well.
871 */
872 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
873 goto retry;
874 goto out_free_pfns;
875 }
876
877 for (i = 0; i < ttm->num_pages; i++) {
878 /* FIXME: The pages cannot be touched outside the notifier_lock */
879 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
880 if (unlikely(!pages[i])) {
881 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
882 i, range->pfns[i]);
883 r = -ENOMEM;
884
885 goto out_free_pfns;
886 }
887 }
888
889 gtt->range = range;
890 mmput(mm);
891
892 return 0;
893
894 out_unlock:
895 up_read(&mm->mmap_sem);
896 out_free_pfns:
897 kvfree(range->pfns);
898 out_free_ranges:
899 kfree(range);
900 out:
901 mmput(mm);
902 return r;
903 }
904
905 /**
906 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
907 * Check if the pages backing this ttm range have been invalidated
908 *
909 * Returns: true if pages are still valid
910 */
911 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
912 {
913 struct amdgpu_ttm_tt *gtt = (void *)ttm;
914 bool r = false;
915
916 if (!gtt || !gtt->userptr)
917 return false;
918
919 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
920 gtt->userptr, ttm->num_pages);
921
922 WARN_ONCE(!gtt->range || !gtt->range->pfns,
923 "No user pages to check\n");
924
925 if (gtt->range) {
926 /*
927 * FIXME: Must always hold notifier_lock for this, and must
928 * not ignore the return code.
929 */
930 r = mmu_interval_read_retry(gtt->range->notifier,
931 gtt->range->notifier_seq);
932 kvfree(gtt->range->pfns);
933 kfree(gtt->range);
934 gtt->range = NULL;
935 }
936
937 return !r;
938 }
939 #endif
940
941 /**
942 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
943 *
944 * Called by amdgpu_cs_list_validate(). This creates the page list
945 * that backs user memory and will ultimately be mapped into the device
946 * address space.
947 */
948 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
949 {
950 unsigned long i;
951
952 for (i = 0; i < ttm->num_pages; ++i)
953 ttm->pages[i] = pages ? pages[i] : NULL;
954 }
955
956 /**
957 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
958 *
959 * Called by amdgpu_ttm_backend_bind()
960 **/
961 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
962 {
963 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
964 struct amdgpu_ttm_tt *gtt = (void *)ttm;
965 unsigned nents;
966 int r;
967
968 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
969 enum dma_data_direction direction = write ?
970 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
971
972 /* Allocate an SG array and squash pages into it */
973 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
974 ttm->num_pages << PAGE_SHIFT,
975 GFP_KERNEL);
976 if (r)
977 goto release_sg;
978
979 /* Map SG to device */
980 r = -ENOMEM;
981 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
982 if (nents != ttm->sg->nents)
983 goto release_sg;
984
985 /* convert SG to linear array of pages and dma addresses */
986 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
987 gtt->ttm.dma_address, ttm->num_pages);
988
989 return 0;
990
991 release_sg:
992 kfree(ttm->sg);
993 return r;
994 }
995
996 /**
997 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
998 */
999 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1000 {
1001 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1002 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1003
1004 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1005 enum dma_data_direction direction = write ?
1006 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1007
1008 /* double check that we don't free the table twice */
1009 if (!ttm->sg->sgl)
1010 return;
1011
1012 /* unmap the pages mapped to the device */
1013 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1014
1015 sg_free_table(ttm->sg);
1016
1017 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1018 if (gtt->range) {
1019 unsigned long i;
1020
1021 for (i = 0; i < ttm->num_pages; i++) {
1022 if (ttm->pages[i] !=
1023 hmm_device_entry_to_page(gtt->range,
1024 gtt->range->pfns[i]))
1025 break;
1026 }
1027
1028 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1029 }
1030 #endif
1031 }
1032
1033 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1034 struct ttm_buffer_object *tbo,
1035 uint64_t flags)
1036 {
1037 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1038 struct ttm_tt *ttm = tbo->ttm;
1039 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1040 int r;
1041
1042 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1043 uint64_t page_idx = 1;
1044
1045 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1046 ttm->pages, gtt->ttm.dma_address, flags);
1047 if (r)
1048 goto gart_bind_fail;
1049
1050 /* Patch mtype of the second part BO */
1051 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1052 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1053
1054 r = amdgpu_gart_bind(adev,
1055 gtt->offset + (page_idx << PAGE_SHIFT),
1056 ttm->num_pages - page_idx,
1057 &ttm->pages[page_idx],
1058 &(gtt->ttm.dma_address[page_idx]), flags);
1059 } else {
1060 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1061 ttm->pages, gtt->ttm.dma_address, flags);
1062 }
1063
1064 gart_bind_fail:
1065 if (r)
1066 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1067 ttm->num_pages, gtt->offset);
1068
1069 return r;
1070 }
1071
1072 /**
1073 * amdgpu_ttm_backend_bind - Bind GTT memory
1074 *
1075 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1076 * This handles binding GTT memory to the device address space.
1077 */
1078 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1079 struct ttm_mem_reg *bo_mem)
1080 {
1081 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1082 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1083 uint64_t flags;
1084 int r = 0;
1085
1086 if (gtt->userptr) {
1087 r = amdgpu_ttm_tt_pin_userptr(ttm);
1088 if (r) {
1089 DRM_ERROR("failed to pin userptr\n");
1090 return r;
1091 }
1092 }
1093 if (!ttm->num_pages) {
1094 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1095 ttm->num_pages, bo_mem, ttm);
1096 }
1097
1098 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1099 bo_mem->mem_type == AMDGPU_PL_GWS ||
1100 bo_mem->mem_type == AMDGPU_PL_OA)
1101 return -EINVAL;
1102
1103 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1104 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1105 return 0;
1106 }
1107
1108 /* compute PTE flags relevant to this BO memory */
1109 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1110
1111 /* bind pages into GART page tables */
1112 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1113 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1114 ttm->pages, gtt->ttm.dma_address, flags);
1115
1116 if (r)
1117 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1118 ttm->num_pages, gtt->offset);
1119 return r;
1120 }
1121
1122 /**
1123 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1124 */
1125 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1126 {
1127 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1128 struct ttm_operation_ctx ctx = { false, false };
1129 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1130 struct ttm_mem_reg tmp;
1131 struct ttm_placement placement;
1132 struct ttm_place placements;
1133 uint64_t addr, flags;
1134 int r;
1135
1136 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1137 return 0;
1138
1139 addr = amdgpu_gmc_agp_addr(bo);
1140 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1141 bo->mem.start = addr >> PAGE_SHIFT;
1142 } else {
1143
1144 /* allocate GART space */
1145 tmp = bo->mem;
1146 tmp.mm_node = NULL;
1147 placement.num_placement = 1;
1148 placement.placement = &placements;
1149 placement.num_busy_placement = 1;
1150 placement.busy_placement = &placements;
1151 placements.fpfn = 0;
1152 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1153 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1154 TTM_PL_FLAG_TT;
1155
1156 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1157 if (unlikely(r))
1158 return r;
1159
1160 /* compute PTE flags for this buffer object */
1161 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1162
1163 /* Bind pages */
1164 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1165 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1166 if (unlikely(r)) {
1167 ttm_bo_mem_put(bo, &tmp);
1168 return r;
1169 }
1170
1171 ttm_bo_mem_put(bo, &bo->mem);
1172 bo->mem = tmp;
1173 }
1174
1175 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1176 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1177
1178 return 0;
1179 }
1180
1181 /**
1182 * amdgpu_ttm_recover_gart - Rebind GTT pages
1183 *
1184 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1185 * rebind GTT pages during a GPU reset.
1186 */
1187 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1188 {
1189 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1190 uint64_t flags;
1191 int r;
1192
1193 if (!tbo->ttm)
1194 return 0;
1195
1196 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1197 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1198
1199 return r;
1200 }
1201
1202 /**
1203 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1204 *
1205 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1206 * ttm_tt_destroy().
1207 */
1208 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1209 {
1210 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1211 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1212 int r;
1213
1214 /* if the pages have userptr pinning then clear that first */
1215 if (gtt->userptr)
1216 amdgpu_ttm_tt_unpin_userptr(ttm);
1217
1218 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1219 return 0;
1220
1221 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1222 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1223 if (r)
1224 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1225 gtt->ttm.ttm.num_pages, gtt->offset);
1226 return r;
1227 }
1228
1229 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1230 {
1231 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1232
1233 if (gtt->usertask)
1234 put_task_struct(gtt->usertask);
1235
1236 ttm_dma_tt_fini(>t->ttm);
1237 kfree(gtt);
1238 }
1239
1240 static struct ttm_backend_func amdgpu_backend_func = {
1241 .bind = &amdgpu_ttm_backend_bind,
1242 .unbind = &amdgpu_ttm_backend_unbind,
1243 .destroy = &amdgpu_ttm_backend_destroy,
1244 };
1245
1246 /**
1247 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1248 *
1249 * @bo: The buffer object to create a GTT ttm_tt object around
1250 *
1251 * Called by ttm_tt_create().
1252 */
1253 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1254 uint32_t page_flags)
1255 {
1256 struct amdgpu_ttm_tt *gtt;
1257
1258 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1259 if (gtt == NULL) {
1260 return NULL;
1261 }
1262 gtt->ttm.ttm.func = &amdgpu_backend_func;
1263 gtt->gobj = &bo->base;
1264
1265 /* allocate space for the uninitialized page entries */
1266 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) {
1267 kfree(gtt);
1268 return NULL;
1269 }
1270 return >t->ttm.ttm;
1271 }
1272
1273 /**
1274 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1275 *
1276 * Map the pages of a ttm_tt object to an address space visible
1277 * to the underlying device.
1278 */
1279 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1280 struct ttm_operation_ctx *ctx)
1281 {
1282 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1283 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1284
1285 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1286 if (gtt && gtt->userptr) {
1287 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1288 if (!ttm->sg)
1289 return -ENOMEM;
1290
1291 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1292 ttm->state = tt_unbound;
1293 return 0;
1294 }
1295
1296 if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1297 if (!ttm->sg) {
1298 struct dma_buf_attachment *attach;
1299 struct sg_table *sgt;
1300
1301 attach = gtt->gobj->import_attach;
1302 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1303 if (IS_ERR(sgt))
1304 return PTR_ERR(sgt);
1305
1306 ttm->sg = sgt;
1307 }
1308
1309 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1310 gtt->ttm.dma_address,
1311 ttm->num_pages);
1312 ttm->state = tt_unbound;
1313 return 0;
1314 }
1315
1316 #ifdef CONFIG_SWIOTLB
1317 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1318 return ttm_dma_populate(>t->ttm, adev->dev, ctx);
1319 }
1320 #endif
1321
1322 /* fall back to generic helper to populate the page array
1323 * and map them to the device */
1324 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx);
1325 }
1326
1327 /**
1328 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1329 *
1330 * Unmaps pages of a ttm_tt object from the device address space and
1331 * unpopulates the page array backing it.
1332 */
1333 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1334 {
1335 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1336 struct amdgpu_device *adev;
1337
1338 if (gtt && gtt->userptr) {
1339 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1340 kfree(ttm->sg);
1341 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1342 return;
1343 }
1344
1345 if (ttm->sg && gtt->gobj->import_attach) {
1346 struct dma_buf_attachment *attach;
1347
1348 attach = gtt->gobj->import_attach;
1349 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1350 ttm->sg = NULL;
1351 return;
1352 }
1353
1354 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1355 return;
1356
1357 adev = amdgpu_ttm_adev(ttm->bdev);
1358
1359 #ifdef CONFIG_SWIOTLB
1360 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1361 ttm_dma_unpopulate(>t->ttm, adev->dev);
1362 return;
1363 }
1364 #endif
1365
1366 /* fall back to generic helper to unmap and unpopulate array */
1367 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm);
1368 }
1369
1370 /**
1371 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1372 * task
1373 *
1374 * @ttm: The ttm_tt object to bind this userptr object to
1375 * @addr: The address in the current tasks VM space to use
1376 * @flags: Requirements of userptr object.
1377 *
1378 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1379 * to current task
1380 */
1381 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1382 uint32_t flags)
1383 {
1384 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1385
1386 if (gtt == NULL)
1387 return -EINVAL;
1388
1389 gtt->userptr = addr;
1390 gtt->userflags = flags;
1391
1392 if (gtt->usertask)
1393 put_task_struct(gtt->usertask);
1394 gtt->usertask = current->group_leader;
1395 get_task_struct(gtt->usertask);
1396
1397 return 0;
1398 }
1399
1400 /**
1401 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1402 */
1403 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1404 {
1405 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1406
1407 if (gtt == NULL)
1408 return NULL;
1409
1410 if (gtt->usertask == NULL)
1411 return NULL;
1412
1413 return gtt->usertask->mm;
1414 }
1415
1416 /**
1417 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1418 * address range for the current task.
1419 *
1420 */
1421 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1422 unsigned long end)
1423 {
1424 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1425 unsigned long size;
1426
1427 if (gtt == NULL || !gtt->userptr)
1428 return false;
1429
1430 /* Return false if no part of the ttm_tt object lies within
1431 * the range
1432 */
1433 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1434 if (gtt->userptr > end || gtt->userptr + size <= start)
1435 return false;
1436
1437 return true;
1438 }
1439
1440 /**
1441 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1442 */
1443 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1444 {
1445 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1446
1447 if (gtt == NULL || !gtt->userptr)
1448 return false;
1449
1450 return true;
1451 }
1452
1453 /**
1454 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1455 */
1456 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1457 {
1458 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1459
1460 if (gtt == NULL)
1461 return false;
1462
1463 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1464 }
1465
1466 /**
1467 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1468 *
1469 * @ttm: The ttm_tt object to compute the flags for
1470 * @mem: The memory registry backing this ttm_tt object
1471 *
1472 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1473 */
1474 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1475 {
1476 uint64_t flags = 0;
1477
1478 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1479 flags |= AMDGPU_PTE_VALID;
1480
1481 if (mem && mem->mem_type == TTM_PL_TT) {
1482 flags |= AMDGPU_PTE_SYSTEM;
1483
1484 if (ttm->caching_state == tt_cached)
1485 flags |= AMDGPU_PTE_SNOOPED;
1486 }
1487
1488 return flags;
1489 }
1490
1491 /**
1492 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1493 *
1494 * @ttm: The ttm_tt object to compute the flags for
1495 * @mem: The memory registry backing this ttm_tt object
1496
1497 * Figure out the flags to use for a VM PTE (Page Table Entry).
1498 */
1499 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1500 struct ttm_mem_reg *mem)
1501 {
1502 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1503
1504 flags |= adev->gart.gart_pte_flags;
1505 flags |= AMDGPU_PTE_READABLE;
1506
1507 if (!amdgpu_ttm_tt_is_readonly(ttm))
1508 flags |= AMDGPU_PTE_WRITEABLE;
1509
1510 return flags;
1511 }
1512
1513 /**
1514 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1515 * object.
1516 *
1517 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1518 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1519 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1520 * used to clean out a memory space.
1521 */
1522 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1523 const struct ttm_place *place)
1524 {
1525 unsigned long num_pages = bo->mem.num_pages;
1526 struct drm_mm_node *node = bo->mem.mm_node;
1527 struct dma_resv_list *flist;
1528 struct dma_fence *f;
1529 int i;
1530
1531 if (bo->type == ttm_bo_type_kernel &&
1532 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1533 return false;
1534
1535 /* If bo is a KFD BO, check if the bo belongs to the current process.
1536 * If true, then return false as any KFD process needs all its BOs to
1537 * be resident to run successfully
1538 */
1539 flist = dma_resv_get_list(bo->base.resv);
1540 if (flist) {
1541 for (i = 0; i < flist->shared_count; ++i) {
1542 f = rcu_dereference_protected(flist->shared[i],
1543 dma_resv_held(bo->base.resv));
1544 if (amdkfd_fence_check_mm(f, current->mm))
1545 return false;
1546 }
1547 }
1548
1549 switch (bo->mem.mem_type) {
1550 case TTM_PL_TT:
1551 return true;
1552
1553 case TTM_PL_VRAM:
1554 /* Check each drm MM node individually */
1555 while (num_pages) {
1556 if (place->fpfn < (node->start + node->size) &&
1557 !(place->lpfn && place->lpfn <= node->start))
1558 return true;
1559
1560 num_pages -= node->size;
1561 ++node;
1562 }
1563 return false;
1564
1565 default:
1566 break;
1567 }
1568
1569 return ttm_bo_eviction_valuable(bo, place);
1570 }
1571
1572 /**
1573 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1574 *
1575 * @bo: The buffer object to read/write
1576 * @offset: Offset into buffer object
1577 * @buf: Secondary buffer to write/read from
1578 * @len: Length in bytes of access
1579 * @write: true if writing
1580 *
1581 * This is used to access VRAM that backs a buffer object via MMIO
1582 * access for debugging purposes.
1583 */
1584 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1585 unsigned long offset,
1586 void *buf, int len, int write)
1587 {
1588 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1589 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1590 struct drm_mm_node *nodes;
1591 uint32_t value = 0;
1592 int ret = 0;
1593 uint64_t pos;
1594 unsigned long flags;
1595
1596 if (bo->mem.mem_type != TTM_PL_VRAM)
1597 return -EIO;
1598
1599 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1600 pos = (nodes->start << PAGE_SHIFT) + offset;
1601
1602 while (len && pos < adev->gmc.mc_vram_size) {
1603 uint64_t aligned_pos = pos & ~(uint64_t)3;
1604 uint32_t bytes = 4 - (pos & 3);
1605 uint32_t shift = (pos & 3) * 8;
1606 uint32_t mask = 0xffffffff << shift;
1607
1608 if (len < bytes) {
1609 mask &= 0xffffffff >> (bytes - len) * 8;
1610 bytes = len;
1611 }
1612
1613 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1614 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1615 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1616 if (!write || mask != 0xffffffff)
1617 value = RREG32_NO_KIQ(mmMM_DATA);
1618 if (write) {
1619 value &= ~mask;
1620 value |= (*(uint32_t *)buf << shift) & mask;
1621 WREG32_NO_KIQ(mmMM_DATA, value);
1622 }
1623 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1624 if (!write) {
1625 value = (value & mask) >> shift;
1626 memcpy(buf, &value, bytes);
1627 }
1628
1629 ret += bytes;
1630 buf = (uint8_t *)buf + bytes;
1631 pos += bytes;
1632 len -= bytes;
1633 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1634 ++nodes;
1635 pos = (nodes->start << PAGE_SHIFT);
1636 }
1637 }
1638
1639 return ret;
1640 }
1641
1642 static struct ttm_bo_driver amdgpu_bo_driver = {
1643 .ttm_tt_create = &amdgpu_ttm_tt_create,
1644 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1645 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1646 .invalidate_caches = &amdgpu_invalidate_caches,
1647 .init_mem_type = &amdgpu_init_mem_type,
1648 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1649 .evict_flags = &amdgpu_evict_flags,
1650 .move = &amdgpu_bo_move,
1651 .verify_access = &amdgpu_verify_access,
1652 .move_notify = &amdgpu_bo_move_notify,
1653 .release_notify = &amdgpu_bo_release_notify,
1654 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1655 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1656 .io_mem_free = &amdgpu_ttm_io_mem_free,
1657 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1658 .access_memory = &amdgpu_ttm_access_memory,
1659 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1660 };
1661
1662 /*
1663 * Firmware Reservation functions
1664 */
1665 /**
1666 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1667 *
1668 * @adev: amdgpu_device pointer
1669 *
1670 * free fw reserved vram if it has been reserved.
1671 */
1672 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1673 {
1674 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1675 NULL, &adev->fw_vram_usage.va);
1676 }
1677
1678 /**
1679 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1680 *
1681 * @adev: amdgpu_device pointer
1682 *
1683 * create bo vram reservation from fw.
1684 */
1685 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1686 {
1687 uint64_t vram_size = adev->gmc.visible_vram_size;
1688
1689 adev->fw_vram_usage.va = NULL;
1690 adev->fw_vram_usage.reserved_bo = NULL;
1691
1692 if (adev->fw_vram_usage.size == 0 ||
1693 adev->fw_vram_usage.size > vram_size)
1694 return 0;
1695
1696 return amdgpu_bo_create_kernel_at(adev,
1697 adev->fw_vram_usage.start_offset,
1698 adev->fw_vram_usage.size,
1699 AMDGPU_GEM_DOMAIN_VRAM,
1700 &adev->fw_vram_usage.reserved_bo,
1701 &adev->fw_vram_usage.va);
1702 }
1703
1704 /*
1705 * Memoy training reservation functions
1706 */
1707
1708 /**
1709 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1710 *
1711 * @adev: amdgpu_device pointer
1712 *
1713 * free memory training reserved vram if it has been reserved.
1714 */
1715 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1716 {
1717 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1718
1719 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1720 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1721 ctx->c2p_bo = NULL;
1722
1723 return 0;
1724 }
1725
1726 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1727 {
1728 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1729 vram_size -= SZ_1M;
1730
1731 return ALIGN(vram_size, SZ_1M);
1732 }
1733
1734 /**
1735 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1736 *
1737 * @adev: amdgpu_device pointer
1738 *
1739 * create bo vram reservation from memory training.
1740 */
1741 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1742 {
1743 int ret;
1744 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1745
1746 memset(ctx, 0, sizeof(*ctx));
1747 if (!adev->fw_vram_usage.mem_train_support) {
1748 DRM_DEBUG("memory training does not support!\n");
1749 return 0;
1750 }
1751
1752 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1753 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1754 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1755
1756 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1757 ctx->train_data_size,
1758 ctx->p2c_train_data_offset,
1759 ctx->c2p_train_data_offset);
1760
1761 ret = amdgpu_bo_create_kernel_at(adev,
1762 ctx->c2p_train_data_offset,
1763 ctx->train_data_size,
1764 AMDGPU_GEM_DOMAIN_VRAM,
1765 &ctx->c2p_bo,
1766 NULL);
1767 if (ret) {
1768 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1769 amdgpu_ttm_training_reserve_vram_fini(adev);
1770 return ret;
1771 }
1772
1773 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1774 return 0;
1775 }
1776
1777 /**
1778 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1779 * gtt/vram related fields.
1780 *
1781 * This initializes all of the memory space pools that the TTM layer
1782 * will need such as the GTT space (system memory mapped to the device),
1783 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1784 * can be mapped per VMID.
1785 */
1786 int amdgpu_ttm_init(struct amdgpu_device *adev)
1787 {
1788 uint64_t gtt_size;
1789 int r;
1790 u64 vis_vram_limit;
1791 void *stolen_vga_buf;
1792
1793 mutex_init(&adev->mman.gtt_window_lock);
1794
1795 /* No others user of address space so set it to 0 */
1796 r = ttm_bo_device_init(&adev->mman.bdev,
1797 &amdgpu_bo_driver,
1798 adev->ddev->anon_inode->i_mapping,
1799 adev->ddev->vma_offset_manager,
1800 dma_addressing_limited(adev->dev));
1801 if (r) {
1802 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1803 return r;
1804 }
1805 adev->mman.initialized = true;
1806
1807 /* We opt to avoid OOM on system pages allocations */
1808 adev->mman.bdev.no_retry = true;
1809
1810 /* Initialize VRAM pool with all of VRAM divided into pages */
1811 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1812 adev->gmc.real_vram_size >> PAGE_SHIFT);
1813 if (r) {
1814 DRM_ERROR("Failed initializing VRAM heap.\n");
1815 return r;
1816 }
1817
1818 /* Reduce size of CPU-visible VRAM if requested */
1819 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1820 if (amdgpu_vis_vram_limit > 0 &&
1821 vis_vram_limit <= adev->gmc.visible_vram_size)
1822 adev->gmc.visible_vram_size = vis_vram_limit;
1823
1824 /* Change the size here instead of the init above so only lpfn is affected */
1825 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1826 #ifdef CONFIG_64BIT
1827 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1828 adev->gmc.visible_vram_size);
1829 #endif
1830
1831 /*
1832 *The reserved vram for firmware must be pinned to the specified
1833 *place on the VRAM, so reserve it early.
1834 */
1835 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1836 if (r) {
1837 return r;
1838 }
1839
1840 /*
1841 *The reserved vram for memory training must be pinned to the specified
1842 *place on the VRAM, so reserve it early.
1843 */
1844 r = amdgpu_ttm_training_reserve_vram_init(adev);
1845 if (r)
1846 return r;
1847
1848 /* allocate memory as required for VGA
1849 * This is used for VGA emulation and pre-OS scanout buffers to
1850 * avoid display artifacts while transitioning between pre-OS
1851 * and driver. */
1852 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1853 AMDGPU_GEM_DOMAIN_VRAM,
1854 &adev->stolen_vga_memory,
1855 NULL, &stolen_vga_buf);
1856 if (r)
1857 return r;
1858
1859 /*
1860 * reserve one TMR (64K) memory at the top of VRAM which holds
1861 * IP Discovery data and is protected by PSP.
1862 */
1863 r = amdgpu_bo_create_kernel_at(adev,
1864 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1865 DISCOVERY_TMR_SIZE,
1866 AMDGPU_GEM_DOMAIN_VRAM,
1867 &adev->discovery_memory,
1868 NULL);
1869 if (r)
1870 return r;
1871
1872 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1873 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1874
1875 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1876 * or whatever the user passed on module init */
1877 if (amdgpu_gtt_size == -1) {
1878 struct sysinfo si;
1879
1880 si_meminfo(&si);
1881 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1882 adev->gmc.mc_vram_size),
1883 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1884 }
1885 else
1886 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1887
1888 /* Initialize GTT memory pool */
1889 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1890 if (r) {
1891 DRM_ERROR("Failed initializing GTT heap.\n");
1892 return r;
1893 }
1894 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1895 (unsigned)(gtt_size / (1024 * 1024)));
1896
1897 /* Initialize various on-chip memory pools */
1898 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1899 adev->gds.gds_size);
1900 if (r) {
1901 DRM_ERROR("Failed initializing GDS heap.\n");
1902 return r;
1903 }
1904
1905 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1906 adev->gds.gws_size);
1907 if (r) {
1908 DRM_ERROR("Failed initializing gws heap.\n");
1909 return r;
1910 }
1911
1912 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1913 adev->gds.oa_size);
1914 if (r) {
1915 DRM_ERROR("Failed initializing oa heap.\n");
1916 return r;
1917 }
1918
1919 /* Register debugfs entries for amdgpu_ttm */
1920 r = amdgpu_ttm_debugfs_init(adev);
1921 if (r) {
1922 DRM_ERROR("Failed to init debugfs\n");
1923 return r;
1924 }
1925 return 0;
1926 }
1927
1928 /**
1929 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1930 */
1931 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1932 {
1933 void *stolen_vga_buf;
1934 /* return the VGA stolen memory (if any) back to VRAM */
1935 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
1936 }
1937
1938 /**
1939 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1940 */
1941 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1942 {
1943 if (!adev->mman.initialized)
1944 return;
1945
1946 amdgpu_ttm_debugfs_fini(adev);
1947 amdgpu_ttm_training_reserve_vram_fini(adev);
1948 /* return the IP Discovery TMR memory back to VRAM */
1949 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
1950 amdgpu_ttm_fw_reserve_vram_fini(adev);
1951
1952 if (adev->mman.aper_base_kaddr)
1953 iounmap(adev->mman.aper_base_kaddr);
1954 adev->mman.aper_base_kaddr = NULL;
1955
1956 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1957 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1958 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1959 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1960 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1961 ttm_bo_device_release(&adev->mman.bdev);
1962 adev->mman.initialized = false;
1963 DRM_INFO("amdgpu: ttm finalized\n");
1964 }
1965
1966 /**
1967 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1968 *
1969 * @adev: amdgpu_device pointer
1970 * @enable: true when we can use buffer functions.
1971 *
1972 * Enable/disable use of buffer functions during suspend/resume. This should
1973 * only be called at bootup or when userspace isn't running.
1974 */
1975 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1976 {
1977 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1978 uint64_t size;
1979 int r;
1980
1981 if (!adev->mman.initialized || adev->in_gpu_reset ||
1982 adev->mman.buffer_funcs_enabled == enable)
1983 return;
1984
1985 if (enable) {
1986 struct amdgpu_ring *ring;
1987 struct drm_gpu_scheduler *sched;
1988
1989 ring = adev->mman.buffer_funcs_ring;
1990 sched = &ring->sched;
1991 r = drm_sched_entity_init(&adev->mman.entity,
1992 DRM_SCHED_PRIORITY_KERNEL, &sched,
1993 1, NULL);
1994 if (r) {
1995 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1996 r);
1997 return;
1998 }
1999 } else {
2000 drm_sched_entity_destroy(&adev->mman.entity);
2001 dma_fence_put(man->move);
2002 man->move = NULL;
2003 }
2004
2005 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2006 if (enable)
2007 size = adev->gmc.real_vram_size;
2008 else
2009 size = adev->gmc.visible_vram_size;
2010 man->size = size >> PAGE_SHIFT;
2011 adev->mman.buffer_funcs_enabled = enable;
2012 }
2013
2014 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2015 {
2016 struct drm_file *file_priv = filp->private_data;
2017 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2018
2019 if (adev == NULL)
2020 return -EINVAL;
2021
2022 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2023 }
2024
2025 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2026 struct ttm_mem_reg *mem, unsigned num_pages,
2027 uint64_t offset, unsigned window,
2028 struct amdgpu_ring *ring,
2029 uint64_t *addr)
2030 {
2031 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2032 struct amdgpu_device *adev = ring->adev;
2033 struct ttm_tt *ttm = bo->ttm;
2034 struct amdgpu_job *job;
2035 unsigned num_dw, num_bytes;
2036 dma_addr_t *dma_address;
2037 struct dma_fence *fence;
2038 uint64_t src_addr, dst_addr;
2039 uint64_t flags;
2040 int r;
2041
2042 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2043 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2044
2045 *addr = adev->gmc.gart_start;
2046 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2047 AMDGPU_GPU_PAGE_SIZE;
2048
2049 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2050 num_bytes = num_pages * 8;
2051
2052 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2053 if (r)
2054 return r;
2055
2056 src_addr = num_dw * 4;
2057 src_addr += job->ibs[0].gpu_addr;
2058
2059 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2060 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2061 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2062 dst_addr, num_bytes);
2063
2064 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2065 WARN_ON(job->ibs[0].length_dw > num_dw);
2066
2067 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT];
2068 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2069 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2070 &job->ibs[0].ptr[num_dw]);
2071 if (r)
2072 goto error_free;
2073
2074 r = amdgpu_job_submit(job, &adev->mman.entity,
2075 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2076 if (r)
2077 goto error_free;
2078
2079 dma_fence_put(fence);
2080
2081 return r;
2082
2083 error_free:
2084 amdgpu_job_free(job);
2085 return r;
2086 }
2087
2088 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2089 uint64_t dst_offset, uint32_t byte_count,
2090 struct dma_resv *resv,
2091 struct dma_fence **fence, bool direct_submit,
2092 bool vm_needs_flush)
2093 {
2094 struct amdgpu_device *adev = ring->adev;
2095 struct amdgpu_job *job;
2096
2097 uint32_t max_bytes;
2098 unsigned num_loops, num_dw;
2099 unsigned i;
2100 int r;
2101
2102 if (direct_submit && !ring->sched.ready) {
2103 DRM_ERROR("Trying to move memory with ring turned off.\n");
2104 return -EINVAL;
2105 }
2106
2107 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2108 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2109 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2110
2111 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2112 if (r)
2113 return r;
2114
2115 if (vm_needs_flush) {
2116 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2117 job->vm_needs_flush = true;
2118 }
2119 if (resv) {
2120 r = amdgpu_sync_resv(adev, &job->sync, resv,
2121 AMDGPU_FENCE_OWNER_UNDEFINED,
2122 false);
2123 if (r) {
2124 DRM_ERROR("sync failed (%d).\n", r);
2125 goto error_free;
2126 }
2127 }
2128
2129 for (i = 0; i < num_loops; i++) {
2130 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2131
2132 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2133 dst_offset, cur_size_in_bytes);
2134
2135 src_offset += cur_size_in_bytes;
2136 dst_offset += cur_size_in_bytes;
2137 byte_count -= cur_size_in_bytes;
2138 }
2139
2140 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2141 WARN_ON(job->ibs[0].length_dw > num_dw);
2142 if (direct_submit)
2143 r = amdgpu_job_submit_direct(job, ring, fence);
2144 else
2145 r = amdgpu_job_submit(job, &adev->mman.entity,
2146 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2147 if (r)
2148 goto error_free;
2149
2150 return r;
2151
2152 error_free:
2153 amdgpu_job_free(job);
2154 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2155 return r;
2156 }
2157
2158 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2159 uint32_t src_data,
2160 struct dma_resv *resv,
2161 struct dma_fence **fence)
2162 {
2163 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2164 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2165 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2166
2167 struct drm_mm_node *mm_node;
2168 unsigned long num_pages;
2169 unsigned int num_loops, num_dw;
2170
2171 struct amdgpu_job *job;
2172 int r;
2173
2174 if (!adev->mman.buffer_funcs_enabled) {
2175 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2176 return -EINVAL;
2177 }
2178
2179 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2180 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2181 if (r)
2182 return r;
2183 }
2184
2185 num_pages = bo->tbo.num_pages;
2186 mm_node = bo->tbo.mem.mm_node;
2187 num_loops = 0;
2188 while (num_pages) {
2189 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2190
2191 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2192 num_pages -= mm_node->size;
2193 ++mm_node;
2194 }
2195 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2196
2197 /* for IB padding */
2198 num_dw += 64;
2199
2200 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2201 if (r)
2202 return r;
2203
2204 if (resv) {
2205 r = amdgpu_sync_resv(adev, &job->sync, resv,
2206 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2207 if (r) {
2208 DRM_ERROR("sync failed (%d).\n", r);
2209 goto error_free;
2210 }
2211 }
2212
2213 num_pages = bo->tbo.num_pages;
2214 mm_node = bo->tbo.mem.mm_node;
2215
2216 while (num_pages) {
2217 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2218 uint64_t dst_addr;
2219
2220 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2221 while (byte_count) {
2222 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2223 max_bytes);
2224
2225 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2226 dst_addr, cur_size_in_bytes);
2227
2228 dst_addr += cur_size_in_bytes;
2229 byte_count -= cur_size_in_bytes;
2230 }
2231
2232 num_pages -= mm_node->size;
2233 ++mm_node;
2234 }
2235
2236 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2237 WARN_ON(job->ibs[0].length_dw > num_dw);
2238 r = amdgpu_job_submit(job, &adev->mman.entity,
2239 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2240 if (r)
2241 goto error_free;
2242
2243 return 0;
2244
2245 error_free:
2246 amdgpu_job_free(job);
2247 return r;
2248 }
2249
2250 #if defined(CONFIG_DEBUG_FS)
2251
2252 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2253 {
2254 struct drm_info_node *node = (struct drm_info_node *)m->private;
2255 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2256 struct drm_device *dev = node->minor->dev;
2257 struct amdgpu_device *adev = dev->dev_private;
2258 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2259 struct drm_printer p = drm_seq_file_printer(m);
2260
2261 man->func->debug(man, &p);
2262 return 0;
2263 }
2264
2265 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2266 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2267 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2268 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2269 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2270 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2271 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2272 #ifdef CONFIG_SWIOTLB
2273 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2274 #endif
2275 };
2276
2277 /**
2278 * amdgpu_ttm_vram_read - Linear read access to VRAM
2279 *
2280 * Accesses VRAM via MMIO for debugging purposes.
2281 */
2282 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2283 size_t size, loff_t *pos)
2284 {
2285 struct amdgpu_device *adev = file_inode(f)->i_private;
2286 ssize_t result = 0;
2287 int r;
2288
2289 if (size & 0x3 || *pos & 0x3)
2290 return -EINVAL;
2291
2292 if (*pos >= adev->gmc.mc_vram_size)
2293 return -ENXIO;
2294
2295 while (size) {
2296 unsigned long flags;
2297 uint32_t value;
2298
2299 if (*pos >= adev->gmc.mc_vram_size)
2300 return result;
2301
2302 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2303 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2304 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2305 value = RREG32_NO_KIQ(mmMM_DATA);
2306 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2307
2308 r = put_user(value, (uint32_t *)buf);
2309 if (r)
2310 return r;
2311
2312 result += 4;
2313 buf += 4;
2314 *pos += 4;
2315 size -= 4;
2316 }
2317
2318 return result;
2319 }
2320
2321 /**
2322 * amdgpu_ttm_vram_write - Linear write access to VRAM
2323 *
2324 * Accesses VRAM via MMIO for debugging purposes.
2325 */
2326 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2327 size_t size, loff_t *pos)
2328 {
2329 struct amdgpu_device *adev = file_inode(f)->i_private;
2330 ssize_t result = 0;
2331 int r;
2332
2333 if (size & 0x3 || *pos & 0x3)
2334 return -EINVAL;
2335
2336 if (*pos >= adev->gmc.mc_vram_size)
2337 return -ENXIO;
2338
2339 while (size) {
2340 unsigned long flags;
2341 uint32_t value;
2342
2343 if (*pos >= adev->gmc.mc_vram_size)
2344 return result;
2345
2346 r = get_user(value, (uint32_t *)buf);
2347 if (r)
2348 return r;
2349
2350 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2351 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2352 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2353 WREG32_NO_KIQ(mmMM_DATA, value);
2354 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2355
2356 result += 4;
2357 buf += 4;
2358 *pos += 4;
2359 size -= 4;
2360 }
2361
2362 return result;
2363 }
2364
2365 static const struct file_operations amdgpu_ttm_vram_fops = {
2366 .owner = THIS_MODULE,
2367 .read = amdgpu_ttm_vram_read,
2368 .write = amdgpu_ttm_vram_write,
2369 .llseek = default_llseek,
2370 };
2371
2372 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2373
2374 /**
2375 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2376 */
2377 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2378 size_t size, loff_t *pos)
2379 {
2380 struct amdgpu_device *adev = file_inode(f)->i_private;
2381 ssize_t result = 0;
2382 int r;
2383
2384 while (size) {
2385 loff_t p = *pos / PAGE_SIZE;
2386 unsigned off = *pos & ~PAGE_MASK;
2387 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2388 struct page *page;
2389 void *ptr;
2390
2391 if (p >= adev->gart.num_cpu_pages)
2392 return result;
2393
2394 page = adev->gart.pages[p];
2395 if (page) {
2396 ptr = kmap(page);
2397 ptr += off;
2398
2399 r = copy_to_user(buf, ptr, cur_size);
2400 kunmap(adev->gart.pages[p]);
2401 } else
2402 r = clear_user(buf, cur_size);
2403
2404 if (r)
2405 return -EFAULT;
2406
2407 result += cur_size;
2408 buf += cur_size;
2409 *pos += cur_size;
2410 size -= cur_size;
2411 }
2412
2413 return result;
2414 }
2415
2416 static const struct file_operations amdgpu_ttm_gtt_fops = {
2417 .owner = THIS_MODULE,
2418 .read = amdgpu_ttm_gtt_read,
2419 .llseek = default_llseek
2420 };
2421
2422 #endif
2423
2424 /**
2425 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2426 *
2427 * This function is used to read memory that has been mapped to the
2428 * GPU and the known addresses are not physical addresses but instead
2429 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2430 */
2431 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2432 size_t size, loff_t *pos)
2433 {
2434 struct amdgpu_device *adev = file_inode(f)->i_private;
2435 struct iommu_domain *dom;
2436 ssize_t result = 0;
2437 int r;
2438
2439 /* retrieve the IOMMU domain if any for this device */
2440 dom = iommu_get_domain_for_dev(adev->dev);
2441
2442 while (size) {
2443 phys_addr_t addr = *pos & PAGE_MASK;
2444 loff_t off = *pos & ~PAGE_MASK;
2445 size_t bytes = PAGE_SIZE - off;
2446 unsigned long pfn;
2447 struct page *p;
2448 void *ptr;
2449
2450 bytes = bytes < size ? bytes : size;
2451
2452 /* Translate the bus address to a physical address. If
2453 * the domain is NULL it means there is no IOMMU active
2454 * and the address translation is the identity
2455 */
2456 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2457
2458 pfn = addr >> PAGE_SHIFT;
2459 if (!pfn_valid(pfn))
2460 return -EPERM;
2461
2462 p = pfn_to_page(pfn);
2463 if (p->mapping != adev->mman.bdev.dev_mapping)
2464 return -EPERM;
2465
2466 ptr = kmap(p);
2467 r = copy_to_user(buf, ptr + off, bytes);
2468 kunmap(p);
2469 if (r)
2470 return -EFAULT;
2471
2472 size -= bytes;
2473 *pos += bytes;
2474 result += bytes;
2475 }
2476
2477 return result;
2478 }
2479
2480 /**
2481 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2482 *
2483 * This function is used to write memory that has been mapped to the
2484 * GPU and the known addresses are not physical addresses but instead
2485 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2486 */
2487 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2488 size_t size, loff_t *pos)
2489 {
2490 struct amdgpu_device *adev = file_inode(f)->i_private;
2491 struct iommu_domain *dom;
2492 ssize_t result = 0;
2493 int r;
2494
2495 dom = iommu_get_domain_for_dev(adev->dev);
2496
2497 while (size) {
2498 phys_addr_t addr = *pos & PAGE_MASK;
2499 loff_t off = *pos & ~PAGE_MASK;
2500 size_t bytes = PAGE_SIZE - off;
2501 unsigned long pfn;
2502 struct page *p;
2503 void *ptr;
2504
2505 bytes = bytes < size ? bytes : size;
2506
2507 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2508
2509 pfn = addr >> PAGE_SHIFT;
2510 if (!pfn_valid(pfn))
2511 return -EPERM;
2512
2513 p = pfn_to_page(pfn);
2514 if (p->mapping != adev->mman.bdev.dev_mapping)
2515 return -EPERM;
2516
2517 ptr = kmap(p);
2518 r = copy_from_user(ptr + off, buf, bytes);
2519 kunmap(p);
2520 if (r)
2521 return -EFAULT;
2522
2523 size -= bytes;
2524 *pos += bytes;
2525 result += bytes;
2526 }
2527
2528 return result;
2529 }
2530
2531 static const struct file_operations amdgpu_ttm_iomem_fops = {
2532 .owner = THIS_MODULE,
2533 .read = amdgpu_iomem_read,
2534 .write = amdgpu_iomem_write,
2535 .llseek = default_llseek
2536 };
2537
2538 static const struct {
2539 char *name;
2540 const struct file_operations *fops;
2541 int domain;
2542 } ttm_debugfs_entries[] = {
2543 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2544 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2545 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2546 #endif
2547 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2548 };
2549
2550 #endif
2551
2552 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2553 {
2554 #if defined(CONFIG_DEBUG_FS)
2555 unsigned count;
2556
2557 struct drm_minor *minor = adev->ddev->primary;
2558 struct dentry *ent, *root = minor->debugfs_root;
2559
2560 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2561 ent = debugfs_create_file(
2562 ttm_debugfs_entries[count].name,
2563 S_IFREG | S_IRUGO, root,
2564 adev,
2565 ttm_debugfs_entries[count].fops);
2566 if (IS_ERR(ent))
2567 return PTR_ERR(ent);
2568 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2569 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2570 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2571 i_size_write(ent->d_inode, adev->gmc.gart_size);
2572 adev->mman.debugfs_entries[count] = ent;
2573 }
2574
2575 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2576
2577 #ifdef CONFIG_SWIOTLB
2578 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2579 --count;
2580 #endif
2581
2582 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2583 #else
2584 return 0;
2585 #endif
2586 }
2587
2588 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2589 {
2590 #if defined(CONFIG_DEBUG_FS)
2591 unsigned i;
2592
2593 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2594 debugfs_remove(adev->mman.debugfs_entries[i]);
2595 #endif
2596 }
2597