amdgpu_ttm.c revision 1.6 1 /* $NetBSD: amdgpu_ttm.c,v 1.6 2021/12/18 23:44:58 riastradh Exp $ */
2
3 /*
4 * Copyright 2009 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 *
27 */
28 /*
29 * Authors:
30 * Jerome Glisse <glisse (at) freedesktop.org>
31 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
32 * Dave Airlie
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ttm.c,v 1.6 2021/12/18 23:44:58 riastradh Exp $");
37
38 #include <linux/dma-mapping.h>
39 #include <linux/iommu.h>
40 #include <linux/hmm.h>
41 #include <linux/pagemap.h>
42 #include <linux/sched/task.h>
43 #include <linux/sched/mm.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/swap.h>
47 #include <linux/swiotlb.h>
48 #include <linux/dma-buf.h>
49 #include <linux/sizes.h>
50
51 #include <drm/ttm/ttm_bo_api.h>
52 #include <drm/ttm/ttm_bo_driver.h>
53 #include <drm/ttm/ttm_placement.h>
54 #include <drm/ttm/ttm_module.h>
55 #include <drm/ttm/ttm_page_alloc.h>
56
57 #include <drm/drm_debugfs.h>
58 #include <drm/amdgpu_drm.h>
59
60 #include "amdgpu.h"
61 #include "amdgpu_object.h"
62 #include "amdgpu_trace.h"
63 #include "amdgpu_amdkfd.h"
64 #include "amdgpu_sdma.h"
65 #include "amdgpu_ras.h"
66 #include "bif/bif_4_1_d.h"
67
68 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
69 struct ttm_mem_reg *mem, unsigned num_pages,
70 uint64_t offset, unsigned window,
71 struct amdgpu_ring *ring,
72 uint64_t *addr);
73
74 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
75 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
76
77 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
78 {
79 return 0;
80 }
81
82 /**
83 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
84 * memory request.
85 *
86 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
87 * @type: The type of memory requested
88 * @man: The memory type manager for each domain
89 *
90 * This is called by ttm_bo_init_mm() when a buffer object is being
91 * initialized.
92 */
93 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
94 struct ttm_mem_type_manager *man)
95 {
96 struct amdgpu_device *adev;
97
98 adev = amdgpu_ttm_adev(bdev);
99
100 switch (type) {
101 case TTM_PL_SYSTEM:
102 /* System memory */
103 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
104 man->available_caching = TTM_PL_MASK_CACHING;
105 man->default_caching = TTM_PL_FLAG_CACHED;
106 break;
107 case TTM_PL_TT:
108 /* GTT memory */
109 man->func = &amdgpu_gtt_mgr_func;
110 man->gpu_offset = adev->gmc.gart_start;
111 man->available_caching = TTM_PL_MASK_CACHING;
112 man->default_caching = TTM_PL_FLAG_CACHED;
113 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
114 break;
115 case TTM_PL_VRAM:
116 /* "On-card" video ram */
117 man->func = &amdgpu_vram_mgr_func;
118 man->gpu_offset = adev->gmc.vram_start;
119 man->flags = TTM_MEMTYPE_FLAG_FIXED |
120 TTM_MEMTYPE_FLAG_MAPPABLE;
121 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
122 man->default_caching = TTM_PL_FLAG_WC;
123 break;
124 case AMDGPU_PL_GDS:
125 case AMDGPU_PL_GWS:
126 case AMDGPU_PL_OA:
127 /* On-chip GDS memory*/
128 man->func = &ttm_bo_manager_func;
129 man->gpu_offset = 0;
130 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
131 man->available_caching = TTM_PL_FLAG_UNCACHED;
132 man->default_caching = TTM_PL_FLAG_UNCACHED;
133 break;
134 default:
135 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
136 return -EINVAL;
137 }
138 return 0;
139 }
140
141 /**
142 * amdgpu_evict_flags - Compute placement flags
143 *
144 * @bo: The buffer object to evict
145 * @placement: Possible destination(s) for evicted BO
146 *
147 * Fill in placement data when ttm_bo_evict() is called
148 */
149 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
150 struct ttm_placement *placement)
151 {
152 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
153 struct amdgpu_bo *abo;
154 static const struct ttm_place placements = {
155 .fpfn = 0,
156 .lpfn = 0,
157 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
158 };
159
160 /* Don't handle scatter gather BOs */
161 if (bo->type == ttm_bo_type_sg) {
162 placement->num_placement = 0;
163 placement->num_busy_placement = 0;
164 return;
165 }
166
167 /* Object isn't an AMDGPU object so ignore */
168 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
169 placement->placement = &placements;
170 placement->busy_placement = &placements;
171 placement->num_placement = 1;
172 placement->num_busy_placement = 1;
173 return;
174 }
175
176 abo = ttm_to_amdgpu_bo(bo);
177 switch (bo->mem.mem_type) {
178 case AMDGPU_PL_GDS:
179 case AMDGPU_PL_GWS:
180 case AMDGPU_PL_OA:
181 placement->num_placement = 0;
182 placement->num_busy_placement = 0;
183 return;
184
185 case TTM_PL_VRAM:
186 if (!adev->mman.buffer_funcs_enabled) {
187 /* Move to system memory */
188 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
189 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
190 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
191 amdgpu_bo_in_cpu_visible_vram(abo)) {
192
193 /* Try evicting to the CPU inaccessible part of VRAM
194 * first, but only set GTT as busy placement, so this
195 * BO will be evicted to GTT rather than causing other
196 * BOs to be evicted from VRAM
197 */
198 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
199 AMDGPU_GEM_DOMAIN_GTT);
200 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
201 abo->placements[0].lpfn = 0;
202 abo->placement.busy_placement = &abo->placements[1];
203 abo->placement.num_busy_placement = 1;
204 } else {
205 /* Move to GTT memory */
206 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
207 }
208 break;
209 case TTM_PL_TT:
210 default:
211 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
212 break;
213 }
214 *placement = abo->placement;
215 }
216
217 /**
218 * amdgpu_verify_access - Verify access for a mmap call
219 *
220 * @bo: The buffer object to map
221 * @filp: The file pointer from the process performing the mmap
222 *
223 * This is called by ttm_bo_mmap() to verify whether a process
224 * has the right to mmap a BO to their process space.
225 */
226 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
227 {
228 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
229
230 /*
231 * Don't verify access for KFD BOs. They don't have a GEM
232 * object associated with them.
233 */
234 if (abo->kfd_bo)
235 return 0;
236
237 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
238 return -EPERM;
239 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
240 filp->private_data);
241 }
242
243 /**
244 * amdgpu_move_null - Register memory for a buffer object
245 *
246 * @bo: The bo to assign the memory to
247 * @new_mem: The memory to be assigned.
248 *
249 * Assign the memory from new_mem to the memory of the buffer object bo.
250 */
251 static void amdgpu_move_null(struct ttm_buffer_object *bo,
252 struct ttm_mem_reg *new_mem)
253 {
254 struct ttm_mem_reg *old_mem = &bo->mem;
255
256 BUG_ON(old_mem->mm_node != NULL);
257 *old_mem = *new_mem;
258 new_mem->mm_node = NULL;
259 }
260
261 /**
262 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
263 *
264 * @bo: The bo to assign the memory to.
265 * @mm_node: Memory manager node for drm allocator.
266 * @mem: The region where the bo resides.
267 *
268 */
269 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
270 struct drm_mm_node *mm_node,
271 struct ttm_mem_reg *mem)
272 {
273 uint64_t addr = 0;
274
275 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
276 addr = mm_node->start << PAGE_SHIFT;
277 addr += bo->bdev->man[mem->mem_type].gpu_offset;
278 }
279 return addr;
280 }
281
282 /**
283 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
284 * @offset. It also modifies the offset to be within the drm_mm_node returned
285 *
286 * @mem: The region where the bo resides.
287 * @offset: The offset that drm_mm_node is used for finding.
288 *
289 */
290 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
291 unsigned long *offset)
292 {
293 struct drm_mm_node *mm_node = mem->mm_node;
294
295 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
296 *offset -= (mm_node->size << PAGE_SHIFT);
297 ++mm_node;
298 }
299 return mm_node;
300 }
301
302 /**
303 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
304 *
305 * The function copies @size bytes from {src->mem + src->offset} to
306 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
307 * move and different for a BO to BO copy.
308 *
309 * @f: Returns the last fence if multiple jobs are submitted.
310 */
311 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
312 struct amdgpu_copy_mem *src,
313 struct amdgpu_copy_mem *dst,
314 uint64_t size,
315 struct dma_resv *resv,
316 struct dma_fence **f)
317 {
318 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
319 struct drm_mm_node *src_mm, *dst_mm;
320 uint64_t src_node_start, dst_node_start, src_node_size,
321 dst_node_size, src_page_offset, dst_page_offset;
322 struct dma_fence *fence = NULL;
323 int r = 0;
324 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
325 AMDGPU_GPU_PAGE_SIZE);
326
327 if (!adev->mman.buffer_funcs_enabled) {
328 DRM_ERROR("Trying to move memory with ring turned off.\n");
329 return -EINVAL;
330 }
331
332 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
333 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
334 src->offset;
335 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
336 src_page_offset = src_node_start & (PAGE_SIZE - 1);
337
338 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
339 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
340 dst->offset;
341 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
342 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
343
344 mutex_lock(&adev->mman.gtt_window_lock);
345
346 while (size) {
347 unsigned long cur_size;
348 uint64_t from = src_node_start, to = dst_node_start;
349 struct dma_fence *next;
350
351 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
352 * begins at an offset, then adjust the size accordingly
353 */
354 cur_size = min3(min(src_node_size, dst_node_size), size,
355 GTT_MAX_BYTES);
356 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
357 cur_size + dst_page_offset > GTT_MAX_BYTES)
358 cur_size -= max(src_page_offset, dst_page_offset);
359
360 /* Map only what needs to be accessed. Map src to window 0 and
361 * dst to window 1
362 */
363 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
364 r = amdgpu_map_buffer(src->bo, src->mem,
365 PFN_UP(cur_size + src_page_offset),
366 src_node_start, 0, ring,
367 &from);
368 if (r)
369 goto error;
370 /* Adjust the offset because amdgpu_map_buffer returns
371 * start of mapped page
372 */
373 from += src_page_offset;
374 }
375
376 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
377 r = amdgpu_map_buffer(dst->bo, dst->mem,
378 PFN_UP(cur_size + dst_page_offset),
379 dst_node_start, 1, ring,
380 &to);
381 if (r)
382 goto error;
383 to += dst_page_offset;
384 }
385
386 r = amdgpu_copy_buffer(ring, from, to, cur_size,
387 resv, &next, false, true);
388 if (r)
389 goto error;
390
391 dma_fence_put(fence);
392 fence = next;
393
394 size -= cur_size;
395 if (!size)
396 break;
397
398 src_node_size -= cur_size;
399 if (!src_node_size) {
400 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
401 src->mem);
402 src_node_size = (src_mm->size << PAGE_SHIFT);
403 src_page_offset = 0;
404 } else {
405 src_node_start += cur_size;
406 src_page_offset = src_node_start & (PAGE_SIZE - 1);
407 }
408 dst_node_size -= cur_size;
409 if (!dst_node_size) {
410 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
411 dst->mem);
412 dst_node_size = (dst_mm->size << PAGE_SHIFT);
413 dst_page_offset = 0;
414 } else {
415 dst_node_start += cur_size;
416 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
417 }
418 }
419 error:
420 mutex_unlock(&adev->mman.gtt_window_lock);
421 if (f)
422 *f = dma_fence_get(fence);
423 dma_fence_put(fence);
424 return r;
425 }
426
427 /**
428 * amdgpu_move_blit - Copy an entire buffer to another buffer
429 *
430 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
431 * help move buffers to and from VRAM.
432 */
433 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
434 bool evict, bool no_wait_gpu,
435 struct ttm_mem_reg *new_mem,
436 struct ttm_mem_reg *old_mem)
437 {
438 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
439 struct amdgpu_copy_mem src, dst;
440 struct dma_fence *fence = NULL;
441 int r;
442
443 src.bo = bo;
444 dst.bo = bo;
445 src.mem = old_mem;
446 dst.mem = new_mem;
447 src.offset = 0;
448 dst.offset = 0;
449
450 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
451 new_mem->num_pages << PAGE_SHIFT,
452 bo->base.resv, &fence);
453 if (r)
454 goto error;
455
456 /* clear the space being freed */
457 if (old_mem->mem_type == TTM_PL_VRAM &&
458 (ttm_to_amdgpu_bo(bo)->flags &
459 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
460 struct dma_fence *wipe_fence = NULL;
461
462 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
463 NULL, &wipe_fence);
464 if (r) {
465 goto error;
466 } else if (wipe_fence) {
467 dma_fence_put(fence);
468 fence = wipe_fence;
469 }
470 }
471
472 /* Always block for VM page tables before committing the new location */
473 if (bo->type == ttm_bo_type_kernel)
474 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
475 else
476 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
477 dma_fence_put(fence);
478 return r;
479
480 error:
481 if (fence)
482 dma_fence_wait(fence, false);
483 dma_fence_put(fence);
484 return r;
485 }
486
487 /**
488 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
489 *
490 * Called by amdgpu_bo_move().
491 */
492 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
493 struct ttm_operation_ctx *ctx,
494 struct ttm_mem_reg *new_mem)
495 {
496 struct ttm_mem_reg *old_mem = &bo->mem;
497 struct ttm_mem_reg tmp_mem;
498 struct ttm_place placements;
499 struct ttm_placement placement;
500 int r;
501
502 /* create space/pages for new_mem in GTT space */
503 tmp_mem = *new_mem;
504 tmp_mem.mm_node = NULL;
505 placement.num_placement = 1;
506 placement.placement = &placements;
507 placement.num_busy_placement = 1;
508 placement.busy_placement = &placements;
509 placements.fpfn = 0;
510 placements.lpfn = 0;
511 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
512 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
513 if (unlikely(r)) {
514 pr_err("Failed to find GTT space for blit from VRAM\n");
515 return r;
516 }
517
518 /* set caching flags */
519 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
520 if (unlikely(r)) {
521 goto out_cleanup;
522 }
523
524 /* Bind the memory to the GTT space */
525 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
526 if (unlikely(r)) {
527 goto out_cleanup;
528 }
529
530 /* blit VRAM to GTT */
531 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
532 if (unlikely(r)) {
533 goto out_cleanup;
534 }
535
536 /* move BO (in tmp_mem) to new_mem */
537 r = ttm_bo_move_ttm(bo, ctx, new_mem);
538 out_cleanup:
539 ttm_bo_mem_put(bo, &tmp_mem);
540 return r;
541 }
542
543 /**
544 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
545 *
546 * Called by amdgpu_bo_move().
547 */
548 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
549 struct ttm_operation_ctx *ctx,
550 struct ttm_mem_reg *new_mem)
551 {
552 struct ttm_mem_reg *old_mem = &bo->mem;
553 struct ttm_mem_reg tmp_mem;
554 struct ttm_placement placement;
555 struct ttm_place placements;
556 int r;
557
558 /* make space in GTT for old_mem buffer */
559 tmp_mem = *new_mem;
560 tmp_mem.mm_node = NULL;
561 placement.num_placement = 1;
562 placement.placement = &placements;
563 placement.num_busy_placement = 1;
564 placement.busy_placement = &placements;
565 placements.fpfn = 0;
566 placements.lpfn = 0;
567 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
568 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
569 if (unlikely(r)) {
570 pr_err("Failed to find GTT space for blit to VRAM\n");
571 return r;
572 }
573
574 /* move/bind old memory to GTT space */
575 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
576 if (unlikely(r)) {
577 goto out_cleanup;
578 }
579
580 /* copy to VRAM */
581 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
582 if (unlikely(r)) {
583 goto out_cleanup;
584 }
585 out_cleanup:
586 ttm_bo_mem_put(bo, &tmp_mem);
587 return r;
588 }
589
590 /**
591 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
592 *
593 * Called by amdgpu_bo_move()
594 */
595 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
596 struct ttm_mem_reg *mem)
597 {
598 struct drm_mm_node *nodes = mem->mm_node;
599
600 if (mem->mem_type == TTM_PL_SYSTEM ||
601 mem->mem_type == TTM_PL_TT)
602 return true;
603 if (mem->mem_type != TTM_PL_VRAM)
604 return false;
605
606 /* ttm_mem_reg_ioremap only supports contiguous memory */
607 if (nodes->size != mem->num_pages)
608 return false;
609
610 return ((nodes->start + nodes->size) << PAGE_SHIFT)
611 <= adev->gmc.visible_vram_size;
612 }
613
614 /**
615 * amdgpu_bo_move - Move a buffer object to a new memory location
616 *
617 * Called by ttm_bo_handle_move_mem()
618 */
619 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
620 struct ttm_operation_ctx *ctx,
621 struct ttm_mem_reg *new_mem)
622 {
623 struct amdgpu_device *adev;
624 struct amdgpu_bo *abo;
625 struct ttm_mem_reg *old_mem = &bo->mem;
626 int r;
627
628 /* Can't move a pinned BO */
629 abo = ttm_to_amdgpu_bo(bo);
630 if (WARN_ON_ONCE(abo->pin_count > 0))
631 return -EINVAL;
632
633 adev = amdgpu_ttm_adev(bo->bdev);
634
635 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
636 amdgpu_move_null(bo, new_mem);
637 return 0;
638 }
639 if ((old_mem->mem_type == TTM_PL_TT &&
640 new_mem->mem_type == TTM_PL_SYSTEM) ||
641 (old_mem->mem_type == TTM_PL_SYSTEM &&
642 new_mem->mem_type == TTM_PL_TT)) {
643 /* bind is enough */
644 amdgpu_move_null(bo, new_mem);
645 return 0;
646 }
647 if (old_mem->mem_type == AMDGPU_PL_GDS ||
648 old_mem->mem_type == AMDGPU_PL_GWS ||
649 old_mem->mem_type == AMDGPU_PL_OA ||
650 new_mem->mem_type == AMDGPU_PL_GDS ||
651 new_mem->mem_type == AMDGPU_PL_GWS ||
652 new_mem->mem_type == AMDGPU_PL_OA) {
653 /* Nothing to save here */
654 amdgpu_move_null(bo, new_mem);
655 return 0;
656 }
657
658 if (!adev->mman.buffer_funcs_enabled) {
659 r = -ENODEV;
660 goto memcpy;
661 }
662
663 if (old_mem->mem_type == TTM_PL_VRAM &&
664 new_mem->mem_type == TTM_PL_SYSTEM) {
665 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
666 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
667 new_mem->mem_type == TTM_PL_VRAM) {
668 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
669 } else {
670 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
671 new_mem, old_mem);
672 }
673
674 if (r) {
675 memcpy:
676 /* Check that all memory is CPU accessible */
677 if (!amdgpu_mem_visible(adev, old_mem) ||
678 !amdgpu_mem_visible(adev, new_mem)) {
679 pr_err("Move buffer fallback to memcpy unavailable\n");
680 return r;
681 }
682
683 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
684 if (r)
685 return r;
686 }
687
688 if (bo->type == ttm_bo_type_device &&
689 new_mem->mem_type == TTM_PL_VRAM &&
690 old_mem->mem_type != TTM_PL_VRAM) {
691 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
692 * accesses the BO after it's moved.
693 */
694 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
695 }
696
697 /* update statistics */
698 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
699 return 0;
700 }
701
702 /**
703 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
704 *
705 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
706 */
707 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
708 {
709 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
710 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
711 struct drm_mm_node *mm_node = mem->mm_node;
712
713 mem->bus.addr = NULL;
714 mem->bus.offset = 0;
715 mem->bus.size = mem->num_pages << PAGE_SHIFT;
716 mem->bus.base = 0;
717 mem->bus.is_iomem = false;
718 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
719 return -EINVAL;
720 switch (mem->mem_type) {
721 case TTM_PL_SYSTEM:
722 /* system memory */
723 return 0;
724 case TTM_PL_TT:
725 break;
726 case TTM_PL_VRAM:
727 mem->bus.offset = mem->start << PAGE_SHIFT;
728 /* check if it's visible */
729 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
730 return -EINVAL;
731 /* Only physically contiguous buffers apply. In a contiguous
732 * buffer, size of the first mm_node would match the number of
733 * pages in ttm_mem_reg.
734 */
735 if (adev->mman.aper_base_kaddr &&
736 (mm_node->size == mem->num_pages))
737 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
738 mem->bus.offset;
739
740 mem->bus.base = adev->gmc.aper_base;
741 mem->bus.is_iomem = true;
742 break;
743 default:
744 return -EINVAL;
745 }
746 return 0;
747 }
748
749 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
750 {
751 }
752
753 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
754 unsigned long page_offset)
755 {
756 struct drm_mm_node *mm;
757 unsigned long offset = (page_offset << PAGE_SHIFT);
758
759 mm = amdgpu_find_mm_node(&bo->mem, &offset);
760 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
761 (offset >> PAGE_SHIFT);
762 }
763
764 /*
765 * TTM backend functions.
766 */
767 struct amdgpu_ttm_tt {
768 struct ttm_dma_tt ttm;
769 struct drm_gem_object *gobj;
770 u64 offset;
771 uint64_t userptr;
772 struct task_struct *usertask;
773 uint32_t userflags;
774 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
775 struct hmm_range *range;
776 #endif
777 };
778
779 #ifdef CONFIG_DRM_AMDGPU_USERPTR
780 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
781 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
782 (1 << 0), /* HMM_PFN_VALID */
783 (1 << 1), /* HMM_PFN_WRITE */
784 0 /* HMM_PFN_DEVICE_PRIVATE */
785 };
786
787 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
788 0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
789 0, /* HMM_PFN_NONE */
790 0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
791 };
792
793 /**
794 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
795 * memory and start HMM tracking CPU page table update
796 *
797 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
798 * once afterwards to stop HMM tracking
799 */
800 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
801 {
802 struct ttm_tt *ttm = bo->tbo.ttm;
803 struct amdgpu_ttm_tt *gtt = (void *)ttm;
804 unsigned long start = gtt->userptr;
805 struct vm_area_struct *vma;
806 struct hmm_range *range;
807 unsigned long timeout;
808 struct mm_struct *mm;
809 unsigned long i;
810 int r = 0;
811
812 mm = bo->notifier.mm;
813 if (unlikely(!mm)) {
814 DRM_DEBUG_DRIVER("BO is not registered?\n");
815 return -EFAULT;
816 }
817
818 /* Another get_user_pages is running at the same time?? */
819 if (WARN_ON(gtt->range))
820 return -EFAULT;
821
822 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
823 return -ESRCH;
824
825 range = kzalloc(sizeof(*range), GFP_KERNEL);
826 if (unlikely(!range)) {
827 r = -ENOMEM;
828 goto out;
829 }
830 range->notifier = &bo->notifier;
831 range->flags = hmm_range_flags;
832 range->values = hmm_range_values;
833 range->pfn_shift = PAGE_SHIFT;
834 range->start = bo->notifier.interval_tree.start;
835 range->end = bo->notifier.interval_tree.last + 1;
836 range->default_flags = hmm_range_flags[HMM_PFN_VALID];
837 if (!amdgpu_ttm_tt_is_readonly(ttm))
838 range->default_flags |= range->flags[HMM_PFN_WRITE];
839
840 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
841 GFP_KERNEL);
842 if (unlikely(!range->pfns)) {
843 r = -ENOMEM;
844 goto out_free_ranges;
845 }
846
847 down_read(&mm->mmap_sem);
848 vma = find_vma(mm, start);
849 if (unlikely(!vma || start < vma->vm_start)) {
850 r = -EFAULT;
851 goto out_unlock;
852 }
853 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
854 vma->vm_file)) {
855 r = -EPERM;
856 goto out_unlock;
857 }
858 up_read(&mm->mmap_sem);
859 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
860
861 retry:
862 range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
863
864 down_read(&mm->mmap_sem);
865 r = hmm_range_fault(range, 0);
866 up_read(&mm->mmap_sem);
867 if (unlikely(r <= 0)) {
868 /*
869 * FIXME: This timeout should encompass the retry from
870 * mmu_interval_read_retry() as well.
871 */
872 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
873 goto retry;
874 goto out_free_pfns;
875 }
876
877 for (i = 0; i < ttm->num_pages; i++) {
878 /* FIXME: The pages cannot be touched outside the notifier_lock */
879 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
880 if (unlikely(!pages[i])) {
881 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
882 i, range->pfns[i]);
883 r = -ENOMEM;
884
885 goto out_free_pfns;
886 }
887 }
888
889 gtt->range = range;
890 mmput(mm);
891
892 return 0;
893
894 out_unlock:
895 up_read(&mm->mmap_sem);
896 out_free_pfns:
897 kvfree(range->pfns);
898 out_free_ranges:
899 kfree(range);
900 out:
901 mmput(mm);
902 return r;
903 }
904
905 /**
906 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
907 * Check if the pages backing this ttm range have been invalidated
908 *
909 * Returns: true if pages are still valid
910 */
911 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
912 {
913 struct amdgpu_ttm_tt *gtt = (void *)ttm;
914 bool r = false;
915
916 if (!gtt || !gtt->userptr)
917 return false;
918
919 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
920 gtt->userptr, ttm->num_pages);
921
922 WARN_ONCE(!gtt->range || !gtt->range->pfns,
923 "No user pages to check\n");
924
925 if (gtt->range) {
926 /*
927 * FIXME: Must always hold notifier_lock for this, and must
928 * not ignore the return code.
929 */
930 r = mmu_interval_read_retry(gtt->range->notifier,
931 gtt->range->notifier_seq);
932 kvfree(gtt->range->pfns);
933 kfree(gtt->range);
934 gtt->range = NULL;
935 }
936
937 return !r;
938 }
939 #endif
940
941 /**
942 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
943 *
944 * Called by amdgpu_cs_list_validate(). This creates the page list
945 * that backs user memory and will ultimately be mapped into the device
946 * address space.
947 */
948 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
949 {
950 unsigned long i;
951
952 for (i = 0; i < ttm->num_pages; ++i)
953 ttm->pages[i] = pages ? pages[i] : NULL;
954 }
955
956 /**
957 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
958 *
959 * Called by amdgpu_ttm_backend_bind()
960 **/
961 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
962 {
963 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
964 struct amdgpu_ttm_tt *gtt = (void *)ttm;
965 unsigned nents;
966 int r;
967
968 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
969 #ifndef __NetBSD__
970 enum dma_data_direction direction = write ?
971 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
972 #endif
973
974 /* Allocate an SG array and squash pages into it */
975 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
976 ttm->num_pages << PAGE_SHIFT,
977 GFP_KERNEL);
978 if (r)
979 goto release_sg;
980
981 /* Map SG to device */
982 r = -ENOMEM;
983 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
984 if (nents != ttm->sg->nents)
985 goto release_sg;
986
987 /* convert SG to linear array of pages and dma addresses */
988 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
989 gtt->ttm.dma_address, ttm->num_pages);
990
991 return 0;
992
993 release_sg:
994 kfree(ttm->sg);
995 return r;
996 #endif
997 }
998
999 /**
1000 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1001 */
1002 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1003 {
1004 #ifdef __NetBSD__
1005 struct amdgpu_device *adev = amdgpu_get_adev(ttm->bdev);
1006 struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
1007 ttm.ttm);
1008
1009 bus_dmamap_unload(adev->ddev->dmat, gtt->ttm.dma_address);
1010 uvm_vsunlock(gtt->usermm, (void *)(vaddr_t)gtt->userptr,
1011 ttm->num_pages << PAGE_SHIFT);
1012 #else
1013 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1014 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1015
1016 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1017 enum dma_data_direction direction = write ?
1018 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1019
1020 /* double check that we don't free the table twice */
1021 if (!ttm->sg->sgl)
1022 return;
1023
1024 /* unmap the pages mapped to the device */
1025 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1026
1027 sg_free_table(ttm->sg);
1028
1029 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1030 if (gtt->range) {
1031 unsigned long i;
1032
1033 for (i = 0; i < ttm->num_pages; i++) {
1034 if (ttm->pages[i] !=
1035 hmm_device_entry_to_page(gtt->range,
1036 gtt->range->pfns[i]))
1037 break;
1038 }
1039
1040 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1041 }
1042 #endif
1043 #endif
1044 }
1045
1046 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1047 struct ttm_buffer_object *tbo,
1048 uint64_t flags)
1049 {
1050 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1051 struct ttm_tt *ttm = tbo->ttm;
1052 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1053 int r;
1054
1055 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1056 uint64_t page_idx = 1;
1057
1058 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1059 ttm->pages, gtt->ttm.dma_address, flags);
1060 if (r)
1061 goto gart_bind_fail;
1062
1063 /* Patch mtype of the second part BO */
1064 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1065 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1066
1067 r = amdgpu_gart_bind(adev,
1068 gtt->offset + (page_idx << PAGE_SHIFT),
1069 ttm->num_pages - page_idx,
1070 &ttm->pages[page_idx],
1071 &(gtt->ttm.dma_address[page_idx]), flags);
1072 } else {
1073 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1074 ttm->pages, gtt->ttm.dma_address, flags);
1075 }
1076
1077 gart_bind_fail:
1078 if (r)
1079 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1080 ttm->num_pages, gtt->offset);
1081
1082 return r;
1083 }
1084
1085 /**
1086 * amdgpu_ttm_backend_bind - Bind GTT memory
1087 *
1088 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1089 * This handles binding GTT memory to the device address space.
1090 */
1091 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1092 struct ttm_mem_reg *bo_mem)
1093 {
1094 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1095 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1096 uint64_t flags;
1097 int r = 0;
1098
1099 if (gtt->userptr) {
1100 r = amdgpu_ttm_tt_pin_userptr(ttm);
1101 if (r) {
1102 DRM_ERROR("failed to pin userptr\n");
1103 return r;
1104 }
1105 }
1106 if (!ttm->num_pages) {
1107 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1108 ttm->num_pages, bo_mem, ttm);
1109 }
1110
1111 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1112 bo_mem->mem_type == AMDGPU_PL_GWS ||
1113 bo_mem->mem_type == AMDGPU_PL_OA)
1114 return -EINVAL;
1115
1116 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1117 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1118 return 0;
1119 }
1120
1121 /* compute PTE flags relevant to this BO memory */
1122 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1123
1124 /* bind pages into GART page tables */
1125 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1126 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1127 ttm->pages, gtt->ttm.dma_address, flags);
1128
1129 if (r)
1130 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1131 ttm->num_pages, gtt->offset);
1132 return r;
1133 }
1134
1135 /**
1136 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1137 */
1138 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1139 {
1140 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1141 struct ttm_operation_ctx ctx = { false, false };
1142 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1143 struct ttm_mem_reg tmp;
1144 struct ttm_placement placement;
1145 struct ttm_place placements;
1146 uint64_t addr, flags;
1147 int r;
1148
1149 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1150 return 0;
1151
1152 addr = amdgpu_gmc_agp_addr(bo);
1153 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1154 bo->mem.start = addr >> PAGE_SHIFT;
1155 } else {
1156
1157 /* allocate GART space */
1158 tmp = bo->mem;
1159 tmp.mm_node = NULL;
1160 placement.num_placement = 1;
1161 placement.placement = &placements;
1162 placement.num_busy_placement = 1;
1163 placement.busy_placement = &placements;
1164 placements.fpfn = 0;
1165 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1166 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1167 TTM_PL_FLAG_TT;
1168
1169 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1170 if (unlikely(r))
1171 return r;
1172
1173 /* compute PTE flags for this buffer object */
1174 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1175
1176 /* Bind pages */
1177 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1178 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1179 if (unlikely(r)) {
1180 ttm_bo_mem_put(bo, &tmp);
1181 return r;
1182 }
1183
1184 ttm_bo_mem_put(bo, &bo->mem);
1185 bo->mem = tmp;
1186 }
1187
1188 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1189 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1190
1191 return 0;
1192 }
1193
1194 /**
1195 * amdgpu_ttm_recover_gart - Rebind GTT pages
1196 *
1197 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1198 * rebind GTT pages during a GPU reset.
1199 */
1200 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1201 {
1202 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1203 uint64_t flags;
1204 int r;
1205
1206 if (!tbo->ttm)
1207 return 0;
1208
1209 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1210 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1211
1212 return r;
1213 }
1214
1215 /**
1216 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1217 *
1218 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1219 * ttm_tt_destroy().
1220 */
1221 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1222 {
1223 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1224 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1225 int r;
1226
1227 /* if the pages have userptr pinning then clear that first */
1228 if (gtt->userptr)
1229 amdgpu_ttm_tt_unpin_userptr(ttm);
1230
1231 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1232 return 0;
1233
1234 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1235 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1236 if (r)
1237 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1238 gtt->ttm.ttm.num_pages, gtt->offset);
1239 return r;
1240 }
1241
1242 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1243 {
1244 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1245
1246 if (gtt->usertask)
1247 put_task_struct(gtt->usertask);
1248
1249 ttm_dma_tt_fini(>t->ttm);
1250 kfree(gtt);
1251 }
1252
1253 static struct ttm_backend_func amdgpu_backend_func = {
1254 .bind = &amdgpu_ttm_backend_bind,
1255 .unbind = &amdgpu_ttm_backend_unbind,
1256 .destroy = &amdgpu_ttm_backend_destroy,
1257 };
1258
1259 /**
1260 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1261 *
1262 * @bo: The buffer object to create a GTT ttm_tt object around
1263 *
1264 * Called by ttm_tt_create().
1265 */
1266 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1267 uint32_t page_flags)
1268 {
1269 struct amdgpu_ttm_tt *gtt;
1270
1271 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1272 if (gtt == NULL) {
1273 return NULL;
1274 }
1275 gtt->ttm.ttm.func = &amdgpu_backend_func;
1276 gtt->gobj = &bo->base;
1277
1278 /* allocate space for the uninitialized page entries */
1279 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) {
1280 kfree(gtt);
1281 return NULL;
1282 }
1283 return >t->ttm.ttm;
1284 }
1285
1286 /**
1287 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1288 *
1289 * Map the pages of a ttm_tt object to an address space visible
1290 * to the underlying device.
1291 */
1292 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1293 struct ttm_operation_ctx *ctx)
1294 {
1295 #ifndef __NetBSD__
1296 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1297 #endif
1298 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1299
1300 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1301 if (gtt && gtt->userptr) {
1302 #ifdef __NetBSD__
1303 ttm->sg = NULL;
1304 #else
1305 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1306 if (!ttm->sg)
1307 return -ENOMEM;
1308 #endif
1309
1310 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1311 ttm->state = tt_unbound;
1312 return 0;
1313 }
1314
1315 if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1316 if (!ttm->sg) {
1317 struct dma_buf_attachment *attach;
1318 struct sg_table *sgt;
1319
1320 attach = gtt->gobj->import_attach;
1321 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1322 if (IS_ERR(sgt))
1323 return PTR_ERR(sgt);
1324
1325 ttm->sg = sgt;
1326 }
1327
1328 #ifdef __NetBSD__
1329 r = drm_prime_bus_dmamap_load_sgt(ttm->bdev->dmat,
1330 gtt->ttm.dma_address, ttm->sg);
1331 if (r)
1332 return r;
1333 #else
1334 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1335 gtt->ttm.dma_address,
1336 ttm->num_pages);
1337 #endif
1338 ttm->state = tt_unbound;
1339 return 0;
1340 }
1341
1342 #ifdef __NetBSD__
1343 /* XXX errno NetBSD->Linux */
1344 return ttm_bus_dma_populate(>t->ttm);
1345 #else
1346 #ifdef CONFIG_SWIOTLB
1347 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1348 return ttm_dma_populate(>t->ttm, adev->dev, ctx);
1349 }
1350 #endif
1351
1352 /* fall back to generic helper to populate the page array
1353 * and map them to the device */
1354 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx);
1355 #endif
1356 }
1357
1358 /**
1359 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1360 *
1361 * Unmaps pages of a ttm_tt object from the device address space and
1362 * unpopulates the page array backing it.
1363 */
1364 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1365 {
1366 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1367 #ifndef __NetBSD__
1368 struct amdgpu_device *adev;
1369 #endif
1370
1371 if (gtt && gtt->userptr) {
1372 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1373 kfree(ttm->sg);
1374 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1375 return;
1376 }
1377
1378 if (ttm->sg && gtt->gobj->import_attach) {
1379 struct dma_buf_attachment *attach;
1380
1381 attach = gtt->gobj->import_attach;
1382 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1383 ttm->sg = NULL;
1384 return;
1385 }
1386
1387 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1388 return;
1389
1390 #ifdef __NetBSD__
1391 ttm_bus_dma_unpopulate(>t->ttm);
1392 return;
1393 #else
1394 adev = amdgpu_ttm_adev(ttm->bdev);
1395
1396 #ifdef CONFIG_SWIOTLB
1397 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1398 ttm_dma_unpopulate(>t->ttm, adev->dev);
1399 return;
1400 }
1401 #endif
1402
1403 /* fall back to generic helper to unmap and unpopulate array */
1404 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm);
1405 #endif /* __NetBSD__ */
1406 }
1407
1408 #ifdef __NetBSD__
1409 static void amdgpu_ttm_tt_swapout(struct ttm_tt *ttm)
1410 {
1411 struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
1412 ttm.ttm);
1413 struct ttm_dma_tt *ttm_dma = >t->ttm;
1414
1415 ttm_bus_dma_swapout(ttm_dma);
1416 }
1417
1418 static const struct uvm_pagerops amdgpu_uvm_ops = {
1419 .pgo_reference = &ttm_bo_uvm_reference,
1420 .pgo_detach = &ttm_bo_uvm_detach,
1421 .pgo_fault = &ttm_bo_uvm_fault,
1422 };
1423 #endif
1424
1425 /**
1426 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1427 * task
1428 *
1429 * @ttm: The ttm_tt object to bind this userptr object to
1430 * @addr: The address in the current tasks VM space to use
1431 * @flags: Requirements of userptr object.
1432 *
1433 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1434 * to current task
1435 */
1436 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1437 uint32_t flags)
1438 {
1439 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1440
1441 if (gtt == NULL)
1442 return -EINVAL;
1443
1444 gtt->userptr = addr;
1445 gtt->userflags = flags;
1446
1447 if (gtt->usertask)
1448 put_task_struct(gtt->usertask);
1449 gtt->usertask = current->group_leader;
1450 get_task_struct(gtt->usertask);
1451
1452 return 0;
1453 }
1454
1455 /**
1456 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1457 */
1458 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1459 {
1460 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1461
1462 if (gtt == NULL)
1463 return NULL;
1464
1465 if (gtt->usertask == NULL)
1466 return NULL;
1467
1468 return gtt->usertask->mm;
1469 }
1470
1471 /**
1472 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1473 * address range for the current task.
1474 *
1475 */
1476 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1477 unsigned long end)
1478 {
1479 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1480 unsigned long size;
1481
1482 if (gtt == NULL || !gtt->userptr)
1483 return false;
1484
1485 /* Return false if no part of the ttm_tt object lies within
1486 * the range
1487 */
1488 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1489 if (gtt->userptr > end || gtt->userptr + size <= start)
1490 return false;
1491
1492 return true;
1493 }
1494
1495 /**
1496 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1497 */
1498 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1499 {
1500 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1501
1502 if (gtt == NULL || !gtt->userptr)
1503 return false;
1504
1505 return true;
1506 }
1507
1508 /**
1509 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1510 */
1511 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1512 {
1513 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1514
1515 if (gtt == NULL)
1516 return false;
1517
1518 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1519 }
1520
1521 /**
1522 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1523 *
1524 * @ttm: The ttm_tt object to compute the flags for
1525 * @mem: The memory registry backing this ttm_tt object
1526 *
1527 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1528 */
1529 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1530 {
1531 uint64_t flags = 0;
1532
1533 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1534 flags |= AMDGPU_PTE_VALID;
1535
1536 if (mem && mem->mem_type == TTM_PL_TT) {
1537 flags |= AMDGPU_PTE_SYSTEM;
1538
1539 if (ttm->caching_state == tt_cached)
1540 flags |= AMDGPU_PTE_SNOOPED;
1541 }
1542
1543 return flags;
1544 }
1545
1546 /**
1547 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1548 *
1549 * @ttm: The ttm_tt object to compute the flags for
1550 * @mem: The memory registry backing this ttm_tt object
1551
1552 * Figure out the flags to use for a VM PTE (Page Table Entry).
1553 */
1554 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1555 struct ttm_mem_reg *mem)
1556 {
1557 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1558
1559 flags |= adev->gart.gart_pte_flags;
1560 flags |= AMDGPU_PTE_READABLE;
1561
1562 if (!amdgpu_ttm_tt_is_readonly(ttm))
1563 flags |= AMDGPU_PTE_WRITEABLE;
1564
1565 return flags;
1566 }
1567
1568 /**
1569 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1570 * object.
1571 *
1572 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1573 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1574 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1575 * used to clean out a memory space.
1576 */
1577 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1578 const struct ttm_place *place)
1579 {
1580 unsigned long num_pages = bo->mem.num_pages;
1581 struct drm_mm_node *node = bo->mem.mm_node;
1582 struct dma_resv_list *flist;
1583 struct dma_fence *f;
1584 int i;
1585
1586 if (bo->type == ttm_bo_type_kernel &&
1587 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1588 return false;
1589
1590 /* If bo is a KFD BO, check if the bo belongs to the current process.
1591 * If true, then return false as any KFD process needs all its BOs to
1592 * be resident to run successfully
1593 */
1594 flist = dma_resv_get_list(bo->base.resv);
1595 if (flist) {
1596 for (i = 0; i < flist->shared_count; ++i) {
1597 f = rcu_dereference_protected(flist->shared[i],
1598 dma_resv_held(bo->base.resv));
1599 if (amdkfd_fence_check_mm(f, current->mm))
1600 return false;
1601 }
1602 }
1603
1604 switch (bo->mem.mem_type) {
1605 case TTM_PL_TT:
1606 return true;
1607
1608 case TTM_PL_VRAM:
1609 /* Check each drm MM node individually */
1610 while (num_pages) {
1611 if (place->fpfn < (node->start + node->size) &&
1612 !(place->lpfn && place->lpfn <= node->start))
1613 return true;
1614
1615 num_pages -= node->size;
1616 ++node;
1617 }
1618 return false;
1619
1620 default:
1621 break;
1622 }
1623
1624 return ttm_bo_eviction_valuable(bo, place);
1625 }
1626
1627 /**
1628 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1629 *
1630 * @bo: The buffer object to read/write
1631 * @offset: Offset into buffer object
1632 * @buf: Secondary buffer to write/read from
1633 * @len: Length in bytes of access
1634 * @write: true if writing
1635 *
1636 * This is used to access VRAM that backs a buffer object via MMIO
1637 * access for debugging purposes.
1638 */
1639 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1640 unsigned long offset,
1641 void *buf, int len, int write)
1642 {
1643 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1644 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1645 struct drm_mm_node *nodes;
1646 uint32_t value = 0;
1647 int ret = 0;
1648 uint64_t pos;
1649 unsigned long flags;
1650
1651 if (bo->mem.mem_type != TTM_PL_VRAM)
1652 return -EIO;
1653
1654 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1655 pos = (nodes->start << PAGE_SHIFT) + offset;
1656
1657 while (len && pos < adev->gmc.mc_vram_size) {
1658 uint64_t aligned_pos = pos & ~(uint64_t)3;
1659 uint32_t bytes = 4 - (pos & 3);
1660 uint32_t shift = (pos & 3) * 8;
1661 uint32_t mask = 0xffffffff << shift;
1662
1663 if (len < bytes) {
1664 mask &= 0xffffffff >> (bytes - len) * 8;
1665 bytes = len;
1666 }
1667
1668 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1669 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1670 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1671 if (!write || mask != 0xffffffff)
1672 value = RREG32_NO_KIQ(mmMM_DATA);
1673 if (write) {
1674 value &= ~mask;
1675 value |= (*(uint32_t *)buf << shift) & mask;
1676 WREG32_NO_KIQ(mmMM_DATA, value);
1677 }
1678 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1679 if (!write) {
1680 value = (value & mask) >> shift;
1681 memcpy(buf, &value, bytes);
1682 }
1683
1684 ret += bytes;
1685 buf = (uint8_t *)buf + bytes;
1686 pos += bytes;
1687 len -= bytes;
1688 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1689 ++nodes;
1690 pos = (nodes->start << PAGE_SHIFT);
1691 }
1692 }
1693
1694 return ret;
1695 }
1696
1697 static struct ttm_bo_driver amdgpu_bo_driver = {
1698 .ttm_tt_create = &amdgpu_ttm_tt_create,
1699 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1700 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1701 #ifdef __NetBSD__
1702 .ttm_tt_swapout = &amdgpu_ttm_tt_swapout,
1703 .ttm_uvm_ops = &amdgpu_uvm_ops,
1704 #endif
1705 .invalidate_caches = &amdgpu_invalidate_caches,
1706 .init_mem_type = &amdgpu_init_mem_type,
1707 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1708 .evict_flags = &amdgpu_evict_flags,
1709 .move = &amdgpu_bo_move,
1710 .verify_access = &amdgpu_verify_access,
1711 .move_notify = &amdgpu_bo_move_notify,
1712 .release_notify = &amdgpu_bo_release_notify,
1713 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1714 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1715 .io_mem_free = &amdgpu_ttm_io_mem_free,
1716 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1717 .access_memory = &amdgpu_ttm_access_memory,
1718 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1719 };
1720
1721 /*
1722 * Firmware Reservation functions
1723 */
1724 /**
1725 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1726 *
1727 * @adev: amdgpu_device pointer
1728 *
1729 * free fw reserved vram if it has been reserved.
1730 */
1731 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1732 {
1733 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1734 NULL, &adev->fw_vram_usage.va);
1735 }
1736
1737 /**
1738 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1739 *
1740 * @adev: amdgpu_device pointer
1741 *
1742 * create bo vram reservation from fw.
1743 */
1744 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1745 {
1746 uint64_t vram_size = adev->gmc.visible_vram_size;
1747
1748 adev->fw_vram_usage.va = NULL;
1749 adev->fw_vram_usage.reserved_bo = NULL;
1750
1751 if (adev->fw_vram_usage.size == 0 ||
1752 adev->fw_vram_usage.size > vram_size)
1753 return 0;
1754
1755 return amdgpu_bo_create_kernel_at(adev,
1756 adev->fw_vram_usage.start_offset,
1757 adev->fw_vram_usage.size,
1758 AMDGPU_GEM_DOMAIN_VRAM,
1759 &adev->fw_vram_usage.reserved_bo,
1760 &adev->fw_vram_usage.va);
1761 }
1762
1763 /*
1764 * Memoy training reservation functions
1765 */
1766
1767 /**
1768 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1769 *
1770 * @adev: amdgpu_device pointer
1771 *
1772 * free memory training reserved vram if it has been reserved.
1773 */
1774 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1775 {
1776 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1777
1778 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1779 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1780 ctx->c2p_bo = NULL;
1781
1782 return 0;
1783 }
1784
1785 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1786 {
1787 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1788 vram_size -= SZ_1M;
1789
1790 return ALIGN(vram_size, SZ_1M);
1791 }
1792
1793 /**
1794 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1795 *
1796 * @adev: amdgpu_device pointer
1797 *
1798 * create bo vram reservation from memory training.
1799 */
1800 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1801 {
1802 int ret;
1803 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1804
1805 memset(ctx, 0, sizeof(*ctx));
1806 if (!adev->fw_vram_usage.mem_train_support) {
1807 DRM_DEBUG("memory training does not support!\n");
1808 return 0;
1809 }
1810
1811 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1812 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1813 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1814
1815 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1816 ctx->train_data_size,
1817 ctx->p2c_train_data_offset,
1818 ctx->c2p_train_data_offset);
1819
1820 ret = amdgpu_bo_create_kernel_at(adev,
1821 ctx->c2p_train_data_offset,
1822 ctx->train_data_size,
1823 AMDGPU_GEM_DOMAIN_VRAM,
1824 &ctx->c2p_bo,
1825 NULL);
1826 if (ret) {
1827 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1828 amdgpu_ttm_training_reserve_vram_fini(adev);
1829 return ret;
1830 }
1831
1832 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1833 return 0;
1834 }
1835
1836 /**
1837 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1838 * gtt/vram related fields.
1839 *
1840 * This initializes all of the memory space pools that the TTM layer
1841 * will need such as the GTT space (system memory mapped to the device),
1842 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1843 * can be mapped per VMID.
1844 */
1845 int amdgpu_ttm_init(struct amdgpu_device *adev)
1846 {
1847 uint64_t gtt_size;
1848 int r;
1849 u64 vis_vram_limit;
1850 void *stolen_vga_buf;
1851
1852 mutex_init(&adev->mman.gtt_window_lock);
1853
1854 /* No others user of address space so set it to 0 */
1855 r = ttm_bo_device_init(&adev->mman.bdev,
1856 &amdgpu_bo_driver,
1857 #ifdef __NetBSD__
1858 adev->ddev->bst,
1859 adev->ddev->dmat,
1860 #else
1861 adev->ddev->anon_inode->i_mapping,
1862 #endif
1863 adev->ddev->vma_offset_manager,
1864 dma_addressing_limited(adev->dev));
1865 if (r) {
1866 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1867 return r;
1868 }
1869 adev->mman.initialized = true;
1870
1871 /* We opt to avoid OOM on system pages allocations */
1872 adev->mman.bdev.no_retry = true;
1873
1874 /* Initialize VRAM pool with all of VRAM divided into pages */
1875 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1876 adev->gmc.real_vram_size >> PAGE_SHIFT);
1877 if (r) {
1878 DRM_ERROR("Failed initializing VRAM heap.\n");
1879 return r;
1880 }
1881
1882 /* Reduce size of CPU-visible VRAM if requested */
1883 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1884 if (amdgpu_vis_vram_limit > 0 &&
1885 vis_vram_limit <= adev->gmc.visible_vram_size)
1886 adev->gmc.visible_vram_size = vis_vram_limit;
1887
1888 /* Change the size here instead of the init above so only lpfn is affected */
1889 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1890 #ifdef CONFIG_64BIT
1891 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1892 adev->gmc.visible_vram_size);
1893 #endif
1894
1895 /*
1896 *The reserved vram for firmware must be pinned to the specified
1897 *place on the VRAM, so reserve it early.
1898 */
1899 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1900 if (r) {
1901 return r;
1902 }
1903
1904 /*
1905 *The reserved vram for memory training must be pinned to the specified
1906 *place on the VRAM, so reserve it early.
1907 */
1908 r = amdgpu_ttm_training_reserve_vram_init(adev);
1909 if (r)
1910 return r;
1911
1912 /* allocate memory as required for VGA
1913 * This is used for VGA emulation and pre-OS scanout buffers to
1914 * avoid display artifacts while transitioning between pre-OS
1915 * and driver. */
1916 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1917 AMDGPU_GEM_DOMAIN_VRAM,
1918 &adev->stolen_vga_memory,
1919 NULL, &stolen_vga_buf);
1920 if (r)
1921 return r;
1922
1923 /*
1924 * reserve one TMR (64K) memory at the top of VRAM which holds
1925 * IP Discovery data and is protected by PSP.
1926 */
1927 r = amdgpu_bo_create_kernel_at(adev,
1928 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1929 DISCOVERY_TMR_SIZE,
1930 AMDGPU_GEM_DOMAIN_VRAM,
1931 &adev->discovery_memory,
1932 NULL);
1933 if (r)
1934 return r;
1935
1936 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1937 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1938
1939 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1940 * or whatever the user passed on module init */
1941 if (amdgpu_gtt_size == -1) {
1942 struct sysinfo si;
1943
1944 si_meminfo(&si);
1945 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1946 adev->gmc.mc_vram_size),
1947 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1948 }
1949 else
1950 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1951
1952 /* Initialize GTT memory pool */
1953 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1954 if (r) {
1955 DRM_ERROR("Failed initializing GTT heap.\n");
1956 return r;
1957 }
1958 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1959 (unsigned)(gtt_size / (1024 * 1024)));
1960
1961 /* Initialize various on-chip memory pools */
1962 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1963 adev->gds.gds_size);
1964 if (r) {
1965 DRM_ERROR("Failed initializing GDS heap.\n");
1966 return r;
1967 }
1968
1969 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1970 adev->gds.gws_size);
1971 if (r) {
1972 DRM_ERROR("Failed initializing gws heap.\n");
1973 return r;
1974 }
1975
1976 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1977 adev->gds.oa_size);
1978 if (r) {
1979 DRM_ERROR("Failed initializing oa heap.\n");
1980 return r;
1981 }
1982
1983 /* Register debugfs entries for amdgpu_ttm */
1984 r = amdgpu_ttm_debugfs_init(adev);
1985 if (r) {
1986 DRM_ERROR("Failed to init debugfs\n");
1987 return r;
1988 }
1989 return 0;
1990 }
1991
1992 /**
1993 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1994 */
1995 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1996 {
1997 void *stolen_vga_buf;
1998 /* return the VGA stolen memory (if any) back to VRAM */
1999 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2000 }
2001
2002 /**
2003 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2004 */
2005 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2006 {
2007 if (!adev->mman.initialized)
2008 return;
2009
2010 amdgpu_ttm_debugfs_fini(adev);
2011 amdgpu_ttm_training_reserve_vram_fini(adev);
2012 /* return the IP Discovery TMR memory back to VRAM */
2013 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2014 amdgpu_ttm_fw_reserve_vram_fini(adev);
2015
2016 if (adev->mman.aper_base_kaddr)
2017 iounmap(adev->mman.aper_base_kaddr);
2018 adev->mman.aper_base_kaddr = NULL;
2019
2020 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2021 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2022 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2023 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2024 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2025 ttm_bo_device_release(&adev->mman.bdev);
2026 adev->mman.initialized = false;
2027 DRM_INFO("amdgpu: ttm finalized\n");
2028 }
2029
2030 /**
2031 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2032 *
2033 * @adev: amdgpu_device pointer
2034 * @enable: true when we can use buffer functions.
2035 *
2036 * Enable/disable use of buffer functions during suspend/resume. This should
2037 * only be called at bootup or when userspace isn't running.
2038 */
2039 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2040 {
2041 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2042 uint64_t size;
2043 int r;
2044
2045 if (!adev->mman.initialized || adev->in_gpu_reset ||
2046 adev->mman.buffer_funcs_enabled == enable)
2047 return;
2048
2049 if (enable) {
2050 struct amdgpu_ring *ring;
2051 struct drm_gpu_scheduler *sched;
2052
2053 ring = adev->mman.buffer_funcs_ring;
2054 sched = &ring->sched;
2055 r = drm_sched_entity_init(&adev->mman.entity,
2056 DRM_SCHED_PRIORITY_KERNEL, &sched,
2057 1, NULL);
2058 if (r) {
2059 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2060 r);
2061 return;
2062 }
2063 } else {
2064 drm_sched_entity_destroy(&adev->mman.entity);
2065 dma_fence_put(man->move);
2066 man->move = NULL;
2067 }
2068
2069 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2070 if (enable)
2071 size = adev->gmc.real_vram_size;
2072 else
2073 size = adev->gmc.visible_vram_size;
2074 man->size = size >> PAGE_SHIFT;
2075 adev->mman.buffer_funcs_enabled = enable;
2076 }
2077
2078 #ifdef __NetBSD__
2079
2080 int
2081 amdgpu_mmap_object(struct drm_device *dev, off_t offset, size_t size,
2082 vm_prot_t prot, struct uvm_object **uobjp, voff_t *uoffsetp,
2083 struct file *file)
2084 {
2085 struct amdgpu_device *adev = dev->dev_private;
2086
2087 KASSERT(0 == (offset & (PAGE_SIZE - 1)));
2088
2089 if (__predict_false(adev == NULL)) /* XXX How?? */
2090 return -EINVAL;
2091
2092 if (__predict_false((offset >> PAGE_SHIFT) < DRM_FILE_PAGE_OFFSET))
2093 return -EINVAL;
2094
2095 return ttm_bo_mmap_object(&adev->mman.bdev, offset, size, prot,
2096 uobjp, uoffsetp, file);
2097 }
2098
2099 #else /* __NetBSD__ */
2100
2101 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2102 {
2103 struct drm_file *file_priv = filp->private_data;
2104 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2105
2106 if (adev == NULL)
2107 return -EINVAL;
2108
2109 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2110 }
2111
2112 #endif /* __NetBSD__ */
2113 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2114 struct ttm_mem_reg *mem, unsigned num_pages,
2115 uint64_t offset, unsigned window,
2116 struct amdgpu_ring *ring,
2117 uint64_t *addr)
2118 {
2119 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2120 struct amdgpu_device *adev = ring->adev;
2121 struct ttm_tt *ttm = bo->ttm;
2122 struct amdgpu_job *job;
2123 unsigned num_dw, num_bytes;
2124 dma_addr_t *dma_address;
2125 struct dma_fence *fence;
2126 uint64_t src_addr, dst_addr;
2127 uint64_t flags;
2128 int r;
2129
2130 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2131 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2132
2133 *addr = adev->gmc.gart_start;
2134 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2135 AMDGPU_GPU_PAGE_SIZE;
2136
2137 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2138 num_bytes = num_pages * 8;
2139
2140 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2141 if (r)
2142 return r;
2143
2144 src_addr = num_dw * 4;
2145 src_addr += job->ibs[0].gpu_addr;
2146
2147 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2148 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2149 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2150 dst_addr, num_bytes);
2151
2152 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2153 WARN_ON(job->ibs[0].length_dw > num_dw);
2154
2155 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT];
2156 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2157 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2158 &job->ibs[0].ptr[num_dw]);
2159 if (r)
2160 goto error_free;
2161
2162 r = amdgpu_job_submit(job, &adev->mman.entity,
2163 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2164 if (r)
2165 goto error_free;
2166
2167 dma_fence_put(fence);
2168
2169 return r;
2170
2171 error_free:
2172 amdgpu_job_free(job);
2173 return r;
2174 }
2175
2176 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2177 uint64_t dst_offset, uint32_t byte_count,
2178 struct dma_resv *resv,
2179 struct dma_fence **fence, bool direct_submit,
2180 bool vm_needs_flush)
2181 {
2182 struct amdgpu_device *adev = ring->adev;
2183 struct amdgpu_job *job;
2184
2185 uint32_t max_bytes;
2186 unsigned num_loops, num_dw;
2187 unsigned i;
2188 int r;
2189
2190 if (direct_submit && !ring->sched.ready) {
2191 DRM_ERROR("Trying to move memory with ring turned off.\n");
2192 return -EINVAL;
2193 }
2194
2195 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2196 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2197 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2198
2199 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2200 if (r)
2201 return r;
2202
2203 if (vm_needs_flush) {
2204 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2205 job->vm_needs_flush = true;
2206 }
2207 if (resv) {
2208 r = amdgpu_sync_resv(adev, &job->sync, resv,
2209 AMDGPU_FENCE_OWNER_UNDEFINED,
2210 false);
2211 if (r) {
2212 DRM_ERROR("sync failed (%d).\n", r);
2213 goto error_free;
2214 }
2215 }
2216
2217 for (i = 0; i < num_loops; i++) {
2218 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2219
2220 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2221 dst_offset, cur_size_in_bytes);
2222
2223 src_offset += cur_size_in_bytes;
2224 dst_offset += cur_size_in_bytes;
2225 byte_count -= cur_size_in_bytes;
2226 }
2227
2228 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2229 WARN_ON(job->ibs[0].length_dw > num_dw);
2230 if (direct_submit)
2231 r = amdgpu_job_submit_direct(job, ring, fence);
2232 else
2233 r = amdgpu_job_submit(job, &adev->mman.entity,
2234 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2235 if (r)
2236 goto error_free;
2237
2238 return r;
2239
2240 error_free:
2241 amdgpu_job_free(job);
2242 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2243 return r;
2244 }
2245
2246 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2247 uint32_t src_data,
2248 struct dma_resv *resv,
2249 struct dma_fence **fence)
2250 {
2251 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2252 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2253 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2254
2255 struct drm_mm_node *mm_node;
2256 unsigned long num_pages;
2257 unsigned int num_loops, num_dw;
2258
2259 struct amdgpu_job *job;
2260 int r;
2261
2262 if (!adev->mman.buffer_funcs_enabled) {
2263 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2264 return -EINVAL;
2265 }
2266
2267 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2268 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2269 if (r)
2270 return r;
2271 }
2272
2273 num_pages = bo->tbo.num_pages;
2274 mm_node = bo->tbo.mem.mm_node;
2275 num_loops = 0;
2276 while (num_pages) {
2277 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2278
2279 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2280 num_pages -= mm_node->size;
2281 ++mm_node;
2282 }
2283 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2284
2285 /* for IB padding */
2286 num_dw += 64;
2287
2288 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2289 if (r)
2290 return r;
2291
2292 if (resv) {
2293 r = amdgpu_sync_resv(adev, &job->sync, resv,
2294 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2295 if (r) {
2296 DRM_ERROR("sync failed (%d).\n", r);
2297 goto error_free;
2298 }
2299 }
2300
2301 num_pages = bo->tbo.num_pages;
2302 mm_node = bo->tbo.mem.mm_node;
2303
2304 while (num_pages) {
2305 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2306 uint64_t dst_addr;
2307
2308 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2309 while (byte_count) {
2310 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2311 max_bytes);
2312
2313 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2314 dst_addr, cur_size_in_bytes);
2315
2316 dst_addr += cur_size_in_bytes;
2317 byte_count -= cur_size_in_bytes;
2318 }
2319
2320 num_pages -= mm_node->size;
2321 ++mm_node;
2322 }
2323
2324 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2325 WARN_ON(job->ibs[0].length_dw > num_dw);
2326 r = amdgpu_job_submit(job, &adev->mman.entity,
2327 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2328 if (r)
2329 goto error_free;
2330
2331 return 0;
2332
2333 error_free:
2334 amdgpu_job_free(job);
2335 return r;
2336 }
2337
2338 #if defined(CONFIG_DEBUG_FS)
2339
2340 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2341 {
2342 struct drm_info_node *node = (struct drm_info_node *)m->private;
2343 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2344 struct drm_device *dev = node->minor->dev;
2345 struct amdgpu_device *adev = dev->dev_private;
2346 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2347 struct drm_printer p = drm_seq_file_printer(m);
2348
2349 man->func->debug(man, &p);
2350 return 0;
2351 }
2352
2353 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2354 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2355 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2356 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2357 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2358 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2359 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2360 #ifdef CONFIG_SWIOTLB
2361 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2362 #endif
2363 };
2364
2365 /**
2366 * amdgpu_ttm_vram_read - Linear read access to VRAM
2367 *
2368 * Accesses VRAM via MMIO for debugging purposes.
2369 */
2370 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2371 size_t size, loff_t *pos)
2372 {
2373 struct amdgpu_device *adev = file_inode(f)->i_private;
2374 ssize_t result = 0;
2375 int r;
2376
2377 if (size & 0x3 || *pos & 0x3)
2378 return -EINVAL;
2379
2380 if (*pos >= adev->gmc.mc_vram_size)
2381 return -ENXIO;
2382
2383 while (size) {
2384 unsigned long flags;
2385 uint32_t value;
2386
2387 if (*pos >= adev->gmc.mc_vram_size)
2388 return result;
2389
2390 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2391 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2392 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2393 value = RREG32_NO_KIQ(mmMM_DATA);
2394 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2395
2396 r = put_user(value, (uint32_t *)buf);
2397 if (r)
2398 return r;
2399
2400 result += 4;
2401 buf += 4;
2402 *pos += 4;
2403 size -= 4;
2404 }
2405
2406 return result;
2407 }
2408
2409 /**
2410 * amdgpu_ttm_vram_write - Linear write access to VRAM
2411 *
2412 * Accesses VRAM via MMIO for debugging purposes.
2413 */
2414 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2415 size_t size, loff_t *pos)
2416 {
2417 struct amdgpu_device *adev = file_inode(f)->i_private;
2418 ssize_t result = 0;
2419 int r;
2420
2421 if (size & 0x3 || *pos & 0x3)
2422 return -EINVAL;
2423
2424 if (*pos >= adev->gmc.mc_vram_size)
2425 return -ENXIO;
2426
2427 while (size) {
2428 unsigned long flags;
2429 uint32_t value;
2430
2431 if (*pos >= adev->gmc.mc_vram_size)
2432 return result;
2433
2434 r = get_user(value, (uint32_t *)buf);
2435 if (r)
2436 return r;
2437
2438 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2439 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2440 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2441 WREG32_NO_KIQ(mmMM_DATA, value);
2442 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2443
2444 result += 4;
2445 buf += 4;
2446 *pos += 4;
2447 size -= 4;
2448 }
2449
2450 return result;
2451 }
2452
2453 static const struct file_operations amdgpu_ttm_vram_fops = {
2454 .owner = THIS_MODULE,
2455 .read = amdgpu_ttm_vram_read,
2456 .write = amdgpu_ttm_vram_write,
2457 .llseek = default_llseek,
2458 };
2459
2460 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2461
2462 /**
2463 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2464 */
2465 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2466 size_t size, loff_t *pos)
2467 {
2468 struct amdgpu_device *adev = file_inode(f)->i_private;
2469 ssize_t result = 0;
2470 int r;
2471
2472 while (size) {
2473 loff_t p = *pos / PAGE_SIZE;
2474 unsigned off = *pos & ~PAGE_MASK;
2475 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2476 struct page *page;
2477 void *ptr;
2478
2479 if (p >= adev->gart.num_cpu_pages)
2480 return result;
2481
2482 page = adev->gart.pages[p];
2483 if (page) {
2484 ptr = kmap(page);
2485 ptr += off;
2486
2487 r = copy_to_user(buf, ptr, cur_size);
2488 kunmap(adev->gart.pages[p]);
2489 } else
2490 r = clear_user(buf, cur_size);
2491
2492 if (r)
2493 return -EFAULT;
2494
2495 result += cur_size;
2496 buf += cur_size;
2497 *pos += cur_size;
2498 size -= cur_size;
2499 }
2500
2501 return result;
2502 }
2503
2504 static const struct file_operations amdgpu_ttm_gtt_fops = {
2505 .owner = THIS_MODULE,
2506 .read = amdgpu_ttm_gtt_read,
2507 .llseek = default_llseek
2508 };
2509
2510 #endif
2511
2512 /**
2513 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2514 *
2515 * This function is used to read memory that has been mapped to the
2516 * GPU and the known addresses are not physical addresses but instead
2517 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2518 */
2519 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2520 size_t size, loff_t *pos)
2521 {
2522 struct amdgpu_device *adev = file_inode(f)->i_private;
2523 struct iommu_domain *dom;
2524 ssize_t result = 0;
2525 int r;
2526
2527 /* retrieve the IOMMU domain if any for this device */
2528 dom = iommu_get_domain_for_dev(adev->dev);
2529
2530 while (size) {
2531 phys_addr_t addr = *pos & PAGE_MASK;
2532 loff_t off = *pos & ~PAGE_MASK;
2533 size_t bytes = PAGE_SIZE - off;
2534 unsigned long pfn;
2535 struct page *p;
2536 void *ptr;
2537
2538 bytes = bytes < size ? bytes : size;
2539
2540 /* Translate the bus address to a physical address. If
2541 * the domain is NULL it means there is no IOMMU active
2542 * and the address translation is the identity
2543 */
2544 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2545
2546 pfn = addr >> PAGE_SHIFT;
2547 if (!pfn_valid(pfn))
2548 return -EPERM;
2549
2550 p = pfn_to_page(pfn);
2551 if (p->mapping != adev->mman.bdev.dev_mapping)
2552 return -EPERM;
2553
2554 ptr = kmap(p);
2555 r = copy_to_user(buf, ptr + off, bytes);
2556 kunmap(p);
2557 if (r)
2558 return -EFAULT;
2559
2560 size -= bytes;
2561 *pos += bytes;
2562 result += bytes;
2563 }
2564
2565 return result;
2566 }
2567
2568 /**
2569 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2570 *
2571 * This function is used to write memory that has been mapped to the
2572 * GPU and the known addresses are not physical addresses but instead
2573 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2574 */
2575 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2576 size_t size, loff_t *pos)
2577 {
2578 struct amdgpu_device *adev = file_inode(f)->i_private;
2579 struct iommu_domain *dom;
2580 ssize_t result = 0;
2581 int r;
2582
2583 dom = iommu_get_domain_for_dev(adev->dev);
2584
2585 while (size) {
2586 phys_addr_t addr = *pos & PAGE_MASK;
2587 loff_t off = *pos & ~PAGE_MASK;
2588 size_t bytes = PAGE_SIZE - off;
2589 unsigned long pfn;
2590 struct page *p;
2591 void *ptr;
2592
2593 bytes = bytes < size ? bytes : size;
2594
2595 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2596
2597 pfn = addr >> PAGE_SHIFT;
2598 if (!pfn_valid(pfn))
2599 return -EPERM;
2600
2601 p = pfn_to_page(pfn);
2602 if (p->mapping != adev->mman.bdev.dev_mapping)
2603 return -EPERM;
2604
2605 ptr = kmap(p);
2606 r = copy_from_user(ptr + off, buf, bytes);
2607 kunmap(p);
2608 if (r)
2609 return -EFAULT;
2610
2611 size -= bytes;
2612 *pos += bytes;
2613 result += bytes;
2614 }
2615
2616 return result;
2617 }
2618
2619 static const struct file_operations amdgpu_ttm_iomem_fops = {
2620 .owner = THIS_MODULE,
2621 .read = amdgpu_iomem_read,
2622 .write = amdgpu_iomem_write,
2623 .llseek = default_llseek
2624 };
2625
2626 static const struct {
2627 char *name;
2628 const struct file_operations *fops;
2629 int domain;
2630 } ttm_debugfs_entries[] = {
2631 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2632 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2633 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2634 #endif
2635 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2636 };
2637
2638 #endif
2639
2640 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2641 {
2642 #if defined(CONFIG_DEBUG_FS)
2643 unsigned count;
2644
2645 struct drm_minor *minor = adev->ddev->primary;
2646 struct dentry *ent, *root = minor->debugfs_root;
2647
2648 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2649 ent = debugfs_create_file(
2650 ttm_debugfs_entries[count].name,
2651 S_IFREG | S_IRUGO, root,
2652 adev,
2653 ttm_debugfs_entries[count].fops);
2654 if (IS_ERR(ent))
2655 return PTR_ERR(ent);
2656 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2657 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2658 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2659 i_size_write(ent->d_inode, adev->gmc.gart_size);
2660 adev->mman.debugfs_entries[count] = ent;
2661 }
2662
2663 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2664
2665 #ifdef CONFIG_SWIOTLB
2666 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2667 --count;
2668 #endif
2669
2670 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2671 #else
2672 return 0;
2673 #endif
2674 }
2675
2676 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2677 {
2678 #if defined(CONFIG_DEBUG_FS)
2679 unsigned i;
2680
2681 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2682 debugfs_remove(adev->mman.debugfs_entries[i]);
2683 #endif
2684 }
2685