Home | History | Annotate | Line # | Download | only in amdgpu
amdgpu_ttm.c revision 1.6
      1 /*	$NetBSD: amdgpu_ttm.c,v 1.6 2021/12/18 23:44:58 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2009 Jerome Glisse.
      5  * All Rights Reserved.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the
      9  * "Software"), to deal in the Software without restriction, including
     10  * without limitation the rights to use, copy, modify, merge, publish,
     11  * distribute, sub license, and/or sell copies of the Software, and to
     12  * permit persons to whom the Software is furnished to do so, subject to
     13  * the following conditions:
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     18  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
     19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
     22  *
     23  * The above copyright notice and this permission notice (including the
     24  * next paragraph) shall be included in all copies or substantial portions
     25  * of the Software.
     26  *
     27  */
     28 /*
     29  * Authors:
     30  *    Jerome Glisse <glisse (at) freedesktop.org>
     31  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
     32  *    Dave Airlie
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ttm.c,v 1.6 2021/12/18 23:44:58 riastradh Exp $");
     37 
     38 #include <linux/dma-mapping.h>
     39 #include <linux/iommu.h>
     40 #include <linux/hmm.h>
     41 #include <linux/pagemap.h>
     42 #include <linux/sched/task.h>
     43 #include <linux/sched/mm.h>
     44 #include <linux/seq_file.h>
     45 #include <linux/slab.h>
     46 #include <linux/swap.h>
     47 #include <linux/swiotlb.h>
     48 #include <linux/dma-buf.h>
     49 #include <linux/sizes.h>
     50 
     51 #include <drm/ttm/ttm_bo_api.h>
     52 #include <drm/ttm/ttm_bo_driver.h>
     53 #include <drm/ttm/ttm_placement.h>
     54 #include <drm/ttm/ttm_module.h>
     55 #include <drm/ttm/ttm_page_alloc.h>
     56 
     57 #include <drm/drm_debugfs.h>
     58 #include <drm/amdgpu_drm.h>
     59 
     60 #include "amdgpu.h"
     61 #include "amdgpu_object.h"
     62 #include "amdgpu_trace.h"
     63 #include "amdgpu_amdkfd.h"
     64 #include "amdgpu_sdma.h"
     65 #include "amdgpu_ras.h"
     66 #include "bif/bif_4_1_d.h"
     67 
     68 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
     69 			     struct ttm_mem_reg *mem, unsigned num_pages,
     70 			     uint64_t offset, unsigned window,
     71 			     struct amdgpu_ring *ring,
     72 			     uint64_t *addr);
     73 
     74 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
     75 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
     76 
     77 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
     78 {
     79 	return 0;
     80 }
     81 
     82 /**
     83  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
     84  * memory request.
     85  *
     86  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
     87  * @type: The type of memory requested
     88  * @man: The memory type manager for each domain
     89  *
     90  * This is called by ttm_bo_init_mm() when a buffer object is being
     91  * initialized.
     92  */
     93 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
     94 				struct ttm_mem_type_manager *man)
     95 {
     96 	struct amdgpu_device *adev;
     97 
     98 	adev = amdgpu_ttm_adev(bdev);
     99 
    100 	switch (type) {
    101 	case TTM_PL_SYSTEM:
    102 		/* System memory */
    103 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
    104 		man->available_caching = TTM_PL_MASK_CACHING;
    105 		man->default_caching = TTM_PL_FLAG_CACHED;
    106 		break;
    107 	case TTM_PL_TT:
    108 		/* GTT memory  */
    109 		man->func = &amdgpu_gtt_mgr_func;
    110 		man->gpu_offset = adev->gmc.gart_start;
    111 		man->available_caching = TTM_PL_MASK_CACHING;
    112 		man->default_caching = TTM_PL_FLAG_CACHED;
    113 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
    114 		break;
    115 	case TTM_PL_VRAM:
    116 		/* "On-card" video ram */
    117 		man->func = &amdgpu_vram_mgr_func;
    118 		man->gpu_offset = adev->gmc.vram_start;
    119 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
    120 			     TTM_MEMTYPE_FLAG_MAPPABLE;
    121 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
    122 		man->default_caching = TTM_PL_FLAG_WC;
    123 		break;
    124 	case AMDGPU_PL_GDS:
    125 	case AMDGPU_PL_GWS:
    126 	case AMDGPU_PL_OA:
    127 		/* On-chip GDS memory*/
    128 		man->func = &ttm_bo_manager_func;
    129 		man->gpu_offset = 0;
    130 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
    131 		man->available_caching = TTM_PL_FLAG_UNCACHED;
    132 		man->default_caching = TTM_PL_FLAG_UNCACHED;
    133 		break;
    134 	default:
    135 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
    136 		return -EINVAL;
    137 	}
    138 	return 0;
    139 }
    140 
    141 /**
    142  * amdgpu_evict_flags - Compute placement flags
    143  *
    144  * @bo: The buffer object to evict
    145  * @placement: Possible destination(s) for evicted BO
    146  *
    147  * Fill in placement data when ttm_bo_evict() is called
    148  */
    149 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
    150 				struct ttm_placement *placement)
    151 {
    152 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
    153 	struct amdgpu_bo *abo;
    154 	static const struct ttm_place placements = {
    155 		.fpfn = 0,
    156 		.lpfn = 0,
    157 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
    158 	};
    159 
    160 	/* Don't handle scatter gather BOs */
    161 	if (bo->type == ttm_bo_type_sg) {
    162 		placement->num_placement = 0;
    163 		placement->num_busy_placement = 0;
    164 		return;
    165 	}
    166 
    167 	/* Object isn't an AMDGPU object so ignore */
    168 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
    169 		placement->placement = &placements;
    170 		placement->busy_placement = &placements;
    171 		placement->num_placement = 1;
    172 		placement->num_busy_placement = 1;
    173 		return;
    174 	}
    175 
    176 	abo = ttm_to_amdgpu_bo(bo);
    177 	switch (bo->mem.mem_type) {
    178 	case AMDGPU_PL_GDS:
    179 	case AMDGPU_PL_GWS:
    180 	case AMDGPU_PL_OA:
    181 		placement->num_placement = 0;
    182 		placement->num_busy_placement = 0;
    183 		return;
    184 
    185 	case TTM_PL_VRAM:
    186 		if (!adev->mman.buffer_funcs_enabled) {
    187 			/* Move to system memory */
    188 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
    189 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
    190 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
    191 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
    192 
    193 			/* Try evicting to the CPU inaccessible part of VRAM
    194 			 * first, but only set GTT as busy placement, so this
    195 			 * BO will be evicted to GTT rather than causing other
    196 			 * BOs to be evicted from VRAM
    197 			 */
    198 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
    199 							 AMDGPU_GEM_DOMAIN_GTT);
    200 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
    201 			abo->placements[0].lpfn = 0;
    202 			abo->placement.busy_placement = &abo->placements[1];
    203 			abo->placement.num_busy_placement = 1;
    204 		} else {
    205 			/* Move to GTT memory */
    206 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
    207 		}
    208 		break;
    209 	case TTM_PL_TT:
    210 	default:
    211 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
    212 		break;
    213 	}
    214 	*placement = abo->placement;
    215 }
    216 
    217 /**
    218  * amdgpu_verify_access - Verify access for a mmap call
    219  *
    220  * @bo:	The buffer object to map
    221  * @filp: The file pointer from the process performing the mmap
    222  *
    223  * This is called by ttm_bo_mmap() to verify whether a process
    224  * has the right to mmap a BO to their process space.
    225  */
    226 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
    227 {
    228 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
    229 
    230 	/*
    231 	 * Don't verify access for KFD BOs. They don't have a GEM
    232 	 * object associated with them.
    233 	 */
    234 	if (abo->kfd_bo)
    235 		return 0;
    236 
    237 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
    238 		return -EPERM;
    239 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
    240 					  filp->private_data);
    241 }
    242 
    243 /**
    244  * amdgpu_move_null - Register memory for a buffer object
    245  *
    246  * @bo: The bo to assign the memory to
    247  * @new_mem: The memory to be assigned.
    248  *
    249  * Assign the memory from new_mem to the memory of the buffer object bo.
    250  */
    251 static void amdgpu_move_null(struct ttm_buffer_object *bo,
    252 			     struct ttm_mem_reg *new_mem)
    253 {
    254 	struct ttm_mem_reg *old_mem = &bo->mem;
    255 
    256 	BUG_ON(old_mem->mm_node != NULL);
    257 	*old_mem = *new_mem;
    258 	new_mem->mm_node = NULL;
    259 }
    260 
    261 /**
    262  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
    263  *
    264  * @bo: The bo to assign the memory to.
    265  * @mm_node: Memory manager node for drm allocator.
    266  * @mem: The region where the bo resides.
    267  *
    268  */
    269 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
    270 				    struct drm_mm_node *mm_node,
    271 				    struct ttm_mem_reg *mem)
    272 {
    273 	uint64_t addr = 0;
    274 
    275 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
    276 		addr = mm_node->start << PAGE_SHIFT;
    277 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
    278 	}
    279 	return addr;
    280 }
    281 
    282 /**
    283  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
    284  * @offset. It also modifies the offset to be within the drm_mm_node returned
    285  *
    286  * @mem: The region where the bo resides.
    287  * @offset: The offset that drm_mm_node is used for finding.
    288  *
    289  */
    290 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
    291 					       unsigned long *offset)
    292 {
    293 	struct drm_mm_node *mm_node = mem->mm_node;
    294 
    295 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
    296 		*offset -= (mm_node->size << PAGE_SHIFT);
    297 		++mm_node;
    298 	}
    299 	return mm_node;
    300 }
    301 
    302 /**
    303  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
    304  *
    305  * The function copies @size bytes from {src->mem + src->offset} to
    306  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
    307  * move and different for a BO to BO copy.
    308  *
    309  * @f: Returns the last fence if multiple jobs are submitted.
    310  */
    311 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
    312 			       struct amdgpu_copy_mem *src,
    313 			       struct amdgpu_copy_mem *dst,
    314 			       uint64_t size,
    315 			       struct dma_resv *resv,
    316 			       struct dma_fence **f)
    317 {
    318 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
    319 	struct drm_mm_node *src_mm, *dst_mm;
    320 	uint64_t src_node_start, dst_node_start, src_node_size,
    321 		 dst_node_size, src_page_offset, dst_page_offset;
    322 	struct dma_fence *fence = NULL;
    323 	int r = 0;
    324 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
    325 					AMDGPU_GPU_PAGE_SIZE);
    326 
    327 	if (!adev->mman.buffer_funcs_enabled) {
    328 		DRM_ERROR("Trying to move memory with ring turned off.\n");
    329 		return -EINVAL;
    330 	}
    331 
    332 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
    333 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
    334 					     src->offset;
    335 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
    336 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
    337 
    338 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
    339 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
    340 					     dst->offset;
    341 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
    342 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
    343 
    344 	mutex_lock(&adev->mman.gtt_window_lock);
    345 
    346 	while (size) {
    347 		unsigned long cur_size;
    348 		uint64_t from = src_node_start, to = dst_node_start;
    349 		struct dma_fence *next;
    350 
    351 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
    352 		 * begins at an offset, then adjust the size accordingly
    353 		 */
    354 		cur_size = min3(min(src_node_size, dst_node_size), size,
    355 				GTT_MAX_BYTES);
    356 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
    357 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
    358 			cur_size -= max(src_page_offset, dst_page_offset);
    359 
    360 		/* Map only what needs to be accessed. Map src to window 0 and
    361 		 * dst to window 1
    362 		 */
    363 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
    364 			r = amdgpu_map_buffer(src->bo, src->mem,
    365 					PFN_UP(cur_size + src_page_offset),
    366 					src_node_start, 0, ring,
    367 					&from);
    368 			if (r)
    369 				goto error;
    370 			/* Adjust the offset because amdgpu_map_buffer returns
    371 			 * start of mapped page
    372 			 */
    373 			from += src_page_offset;
    374 		}
    375 
    376 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
    377 			r = amdgpu_map_buffer(dst->bo, dst->mem,
    378 					PFN_UP(cur_size + dst_page_offset),
    379 					dst_node_start, 1, ring,
    380 					&to);
    381 			if (r)
    382 				goto error;
    383 			to += dst_page_offset;
    384 		}
    385 
    386 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
    387 				       resv, &next, false, true);
    388 		if (r)
    389 			goto error;
    390 
    391 		dma_fence_put(fence);
    392 		fence = next;
    393 
    394 		size -= cur_size;
    395 		if (!size)
    396 			break;
    397 
    398 		src_node_size -= cur_size;
    399 		if (!src_node_size) {
    400 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
    401 							     src->mem);
    402 			src_node_size = (src_mm->size << PAGE_SHIFT);
    403 			src_page_offset = 0;
    404 		} else {
    405 			src_node_start += cur_size;
    406 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
    407 		}
    408 		dst_node_size -= cur_size;
    409 		if (!dst_node_size) {
    410 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
    411 							     dst->mem);
    412 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
    413 			dst_page_offset = 0;
    414 		} else {
    415 			dst_node_start += cur_size;
    416 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
    417 		}
    418 	}
    419 error:
    420 	mutex_unlock(&adev->mman.gtt_window_lock);
    421 	if (f)
    422 		*f = dma_fence_get(fence);
    423 	dma_fence_put(fence);
    424 	return r;
    425 }
    426 
    427 /**
    428  * amdgpu_move_blit - Copy an entire buffer to another buffer
    429  *
    430  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
    431  * help move buffers to and from VRAM.
    432  */
    433 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
    434 			    bool evict, bool no_wait_gpu,
    435 			    struct ttm_mem_reg *new_mem,
    436 			    struct ttm_mem_reg *old_mem)
    437 {
    438 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
    439 	struct amdgpu_copy_mem src, dst;
    440 	struct dma_fence *fence = NULL;
    441 	int r;
    442 
    443 	src.bo = bo;
    444 	dst.bo = bo;
    445 	src.mem = old_mem;
    446 	dst.mem = new_mem;
    447 	src.offset = 0;
    448 	dst.offset = 0;
    449 
    450 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
    451 				       new_mem->num_pages << PAGE_SHIFT,
    452 				       bo->base.resv, &fence);
    453 	if (r)
    454 		goto error;
    455 
    456 	/* clear the space being freed */
    457 	if (old_mem->mem_type == TTM_PL_VRAM &&
    458 	    (ttm_to_amdgpu_bo(bo)->flags &
    459 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
    460 		struct dma_fence *wipe_fence = NULL;
    461 
    462 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
    463 				       NULL, &wipe_fence);
    464 		if (r) {
    465 			goto error;
    466 		} else if (wipe_fence) {
    467 			dma_fence_put(fence);
    468 			fence = wipe_fence;
    469 		}
    470 	}
    471 
    472 	/* Always block for VM page tables before committing the new location */
    473 	if (bo->type == ttm_bo_type_kernel)
    474 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
    475 	else
    476 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
    477 	dma_fence_put(fence);
    478 	return r;
    479 
    480 error:
    481 	if (fence)
    482 		dma_fence_wait(fence, false);
    483 	dma_fence_put(fence);
    484 	return r;
    485 }
    486 
    487 /**
    488  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
    489  *
    490  * Called by amdgpu_bo_move().
    491  */
    492 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
    493 				struct ttm_operation_ctx *ctx,
    494 				struct ttm_mem_reg *new_mem)
    495 {
    496 	struct ttm_mem_reg *old_mem = &bo->mem;
    497 	struct ttm_mem_reg tmp_mem;
    498 	struct ttm_place placements;
    499 	struct ttm_placement placement;
    500 	int r;
    501 
    502 	/* create space/pages for new_mem in GTT space */
    503 	tmp_mem = *new_mem;
    504 	tmp_mem.mm_node = NULL;
    505 	placement.num_placement = 1;
    506 	placement.placement = &placements;
    507 	placement.num_busy_placement = 1;
    508 	placement.busy_placement = &placements;
    509 	placements.fpfn = 0;
    510 	placements.lpfn = 0;
    511 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
    512 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
    513 	if (unlikely(r)) {
    514 		pr_err("Failed to find GTT space for blit from VRAM\n");
    515 		return r;
    516 	}
    517 
    518 	/* set caching flags */
    519 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
    520 	if (unlikely(r)) {
    521 		goto out_cleanup;
    522 	}
    523 
    524 	/* Bind the memory to the GTT space */
    525 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
    526 	if (unlikely(r)) {
    527 		goto out_cleanup;
    528 	}
    529 
    530 	/* blit VRAM to GTT */
    531 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
    532 	if (unlikely(r)) {
    533 		goto out_cleanup;
    534 	}
    535 
    536 	/* move BO (in tmp_mem) to new_mem */
    537 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
    538 out_cleanup:
    539 	ttm_bo_mem_put(bo, &tmp_mem);
    540 	return r;
    541 }
    542 
    543 /**
    544  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
    545  *
    546  * Called by amdgpu_bo_move().
    547  */
    548 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
    549 				struct ttm_operation_ctx *ctx,
    550 				struct ttm_mem_reg *new_mem)
    551 {
    552 	struct ttm_mem_reg *old_mem = &bo->mem;
    553 	struct ttm_mem_reg tmp_mem;
    554 	struct ttm_placement placement;
    555 	struct ttm_place placements;
    556 	int r;
    557 
    558 	/* make space in GTT for old_mem buffer */
    559 	tmp_mem = *new_mem;
    560 	tmp_mem.mm_node = NULL;
    561 	placement.num_placement = 1;
    562 	placement.placement = &placements;
    563 	placement.num_busy_placement = 1;
    564 	placement.busy_placement = &placements;
    565 	placements.fpfn = 0;
    566 	placements.lpfn = 0;
    567 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
    568 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
    569 	if (unlikely(r)) {
    570 		pr_err("Failed to find GTT space for blit to VRAM\n");
    571 		return r;
    572 	}
    573 
    574 	/* move/bind old memory to GTT space */
    575 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
    576 	if (unlikely(r)) {
    577 		goto out_cleanup;
    578 	}
    579 
    580 	/* copy to VRAM */
    581 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
    582 	if (unlikely(r)) {
    583 		goto out_cleanup;
    584 	}
    585 out_cleanup:
    586 	ttm_bo_mem_put(bo, &tmp_mem);
    587 	return r;
    588 }
    589 
    590 /**
    591  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
    592  *
    593  * Called by amdgpu_bo_move()
    594  */
    595 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
    596 			       struct ttm_mem_reg *mem)
    597 {
    598 	struct drm_mm_node *nodes = mem->mm_node;
    599 
    600 	if (mem->mem_type == TTM_PL_SYSTEM ||
    601 	    mem->mem_type == TTM_PL_TT)
    602 		return true;
    603 	if (mem->mem_type != TTM_PL_VRAM)
    604 		return false;
    605 
    606 	/* ttm_mem_reg_ioremap only supports contiguous memory */
    607 	if (nodes->size != mem->num_pages)
    608 		return false;
    609 
    610 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
    611 		<= adev->gmc.visible_vram_size;
    612 }
    613 
    614 /**
    615  * amdgpu_bo_move - Move a buffer object to a new memory location
    616  *
    617  * Called by ttm_bo_handle_move_mem()
    618  */
    619 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
    620 			  struct ttm_operation_ctx *ctx,
    621 			  struct ttm_mem_reg *new_mem)
    622 {
    623 	struct amdgpu_device *adev;
    624 	struct amdgpu_bo *abo;
    625 	struct ttm_mem_reg *old_mem = &bo->mem;
    626 	int r;
    627 
    628 	/* Can't move a pinned BO */
    629 	abo = ttm_to_amdgpu_bo(bo);
    630 	if (WARN_ON_ONCE(abo->pin_count > 0))
    631 		return -EINVAL;
    632 
    633 	adev = amdgpu_ttm_adev(bo->bdev);
    634 
    635 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
    636 		amdgpu_move_null(bo, new_mem);
    637 		return 0;
    638 	}
    639 	if ((old_mem->mem_type == TTM_PL_TT &&
    640 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
    641 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
    642 	     new_mem->mem_type == TTM_PL_TT)) {
    643 		/* bind is enough */
    644 		amdgpu_move_null(bo, new_mem);
    645 		return 0;
    646 	}
    647 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
    648 	    old_mem->mem_type == AMDGPU_PL_GWS ||
    649 	    old_mem->mem_type == AMDGPU_PL_OA ||
    650 	    new_mem->mem_type == AMDGPU_PL_GDS ||
    651 	    new_mem->mem_type == AMDGPU_PL_GWS ||
    652 	    new_mem->mem_type == AMDGPU_PL_OA) {
    653 		/* Nothing to save here */
    654 		amdgpu_move_null(bo, new_mem);
    655 		return 0;
    656 	}
    657 
    658 	if (!adev->mman.buffer_funcs_enabled) {
    659 		r = -ENODEV;
    660 		goto memcpy;
    661 	}
    662 
    663 	if (old_mem->mem_type == TTM_PL_VRAM &&
    664 	    new_mem->mem_type == TTM_PL_SYSTEM) {
    665 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
    666 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
    667 		   new_mem->mem_type == TTM_PL_VRAM) {
    668 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
    669 	} else {
    670 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
    671 				     new_mem, old_mem);
    672 	}
    673 
    674 	if (r) {
    675 memcpy:
    676 		/* Check that all memory is CPU accessible */
    677 		if (!amdgpu_mem_visible(adev, old_mem) ||
    678 		    !amdgpu_mem_visible(adev, new_mem)) {
    679 			pr_err("Move buffer fallback to memcpy unavailable\n");
    680 			return r;
    681 		}
    682 
    683 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
    684 		if (r)
    685 			return r;
    686 	}
    687 
    688 	if (bo->type == ttm_bo_type_device &&
    689 	    new_mem->mem_type == TTM_PL_VRAM &&
    690 	    old_mem->mem_type != TTM_PL_VRAM) {
    691 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
    692 		 * accesses the BO after it's moved.
    693 		 */
    694 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
    695 	}
    696 
    697 	/* update statistics */
    698 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
    699 	return 0;
    700 }
    701 
    702 /**
    703  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
    704  *
    705  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
    706  */
    707 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
    708 {
    709 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
    710 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
    711 	struct drm_mm_node *mm_node = mem->mm_node;
    712 
    713 	mem->bus.addr = NULL;
    714 	mem->bus.offset = 0;
    715 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
    716 	mem->bus.base = 0;
    717 	mem->bus.is_iomem = false;
    718 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
    719 		return -EINVAL;
    720 	switch (mem->mem_type) {
    721 	case TTM_PL_SYSTEM:
    722 		/* system memory */
    723 		return 0;
    724 	case TTM_PL_TT:
    725 		break;
    726 	case TTM_PL_VRAM:
    727 		mem->bus.offset = mem->start << PAGE_SHIFT;
    728 		/* check if it's visible */
    729 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
    730 			return -EINVAL;
    731 		/* Only physically contiguous buffers apply. In a contiguous
    732 		 * buffer, size of the first mm_node would match the number of
    733 		 * pages in ttm_mem_reg.
    734 		 */
    735 		if (adev->mman.aper_base_kaddr &&
    736 		    (mm_node->size == mem->num_pages))
    737 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
    738 					mem->bus.offset;
    739 
    740 		mem->bus.base = adev->gmc.aper_base;
    741 		mem->bus.is_iomem = true;
    742 		break;
    743 	default:
    744 		return -EINVAL;
    745 	}
    746 	return 0;
    747 }
    748 
    749 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
    750 {
    751 }
    752 
    753 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
    754 					   unsigned long page_offset)
    755 {
    756 	struct drm_mm_node *mm;
    757 	unsigned long offset = (page_offset << PAGE_SHIFT);
    758 
    759 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
    760 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
    761 		(offset >> PAGE_SHIFT);
    762 }
    763 
    764 /*
    765  * TTM backend functions.
    766  */
    767 struct amdgpu_ttm_tt {
    768 	struct ttm_dma_tt	ttm;
    769 	struct drm_gem_object	*gobj;
    770 	u64			offset;
    771 	uint64_t		userptr;
    772 	struct task_struct	*usertask;
    773 	uint32_t		userflags;
    774 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
    775 	struct hmm_range	*range;
    776 #endif
    777 };
    778 
    779 #ifdef CONFIG_DRM_AMDGPU_USERPTR
    780 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
    781 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
    782 	(1 << 0), /* HMM_PFN_VALID */
    783 	(1 << 1), /* HMM_PFN_WRITE */
    784 	0 /* HMM_PFN_DEVICE_PRIVATE */
    785 };
    786 
    787 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
    788 	0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
    789 	0, /* HMM_PFN_NONE */
    790 	0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
    791 };
    792 
    793 /**
    794  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
    795  * memory and start HMM tracking CPU page table update
    796  *
    797  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
    798  * once afterwards to stop HMM tracking
    799  */
    800 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
    801 {
    802 	struct ttm_tt *ttm = bo->tbo.ttm;
    803 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
    804 	unsigned long start = gtt->userptr;
    805 	struct vm_area_struct *vma;
    806 	struct hmm_range *range;
    807 	unsigned long timeout;
    808 	struct mm_struct *mm;
    809 	unsigned long i;
    810 	int r = 0;
    811 
    812 	mm = bo->notifier.mm;
    813 	if (unlikely(!mm)) {
    814 		DRM_DEBUG_DRIVER("BO is not registered?\n");
    815 		return -EFAULT;
    816 	}
    817 
    818 	/* Another get_user_pages is running at the same time?? */
    819 	if (WARN_ON(gtt->range))
    820 		return -EFAULT;
    821 
    822 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
    823 		return -ESRCH;
    824 
    825 	range = kzalloc(sizeof(*range), GFP_KERNEL);
    826 	if (unlikely(!range)) {
    827 		r = -ENOMEM;
    828 		goto out;
    829 	}
    830 	range->notifier = &bo->notifier;
    831 	range->flags = hmm_range_flags;
    832 	range->values = hmm_range_values;
    833 	range->pfn_shift = PAGE_SHIFT;
    834 	range->start = bo->notifier.interval_tree.start;
    835 	range->end = bo->notifier.interval_tree.last + 1;
    836 	range->default_flags = hmm_range_flags[HMM_PFN_VALID];
    837 	if (!amdgpu_ttm_tt_is_readonly(ttm))
    838 		range->default_flags |= range->flags[HMM_PFN_WRITE];
    839 
    840 	range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
    841 				     GFP_KERNEL);
    842 	if (unlikely(!range->pfns)) {
    843 		r = -ENOMEM;
    844 		goto out_free_ranges;
    845 	}
    846 
    847 	down_read(&mm->mmap_sem);
    848 	vma = find_vma(mm, start);
    849 	if (unlikely(!vma || start < vma->vm_start)) {
    850 		r = -EFAULT;
    851 		goto out_unlock;
    852 	}
    853 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
    854 		vma->vm_file)) {
    855 		r = -EPERM;
    856 		goto out_unlock;
    857 	}
    858 	up_read(&mm->mmap_sem);
    859 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
    860 
    861 retry:
    862 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
    863 
    864 	down_read(&mm->mmap_sem);
    865 	r = hmm_range_fault(range, 0);
    866 	up_read(&mm->mmap_sem);
    867 	if (unlikely(r <= 0)) {
    868 		/*
    869 		 * FIXME: This timeout should encompass the retry from
    870 		 * mmu_interval_read_retry() as well.
    871 		 */
    872 		if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
    873 			goto retry;
    874 		goto out_free_pfns;
    875 	}
    876 
    877 	for (i = 0; i < ttm->num_pages; i++) {
    878 		/* FIXME: The pages cannot be touched outside the notifier_lock */
    879 		pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
    880 		if (unlikely(!pages[i])) {
    881 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
    882 			       i, range->pfns[i]);
    883 			r = -ENOMEM;
    884 
    885 			goto out_free_pfns;
    886 		}
    887 	}
    888 
    889 	gtt->range = range;
    890 	mmput(mm);
    891 
    892 	return 0;
    893 
    894 out_unlock:
    895 	up_read(&mm->mmap_sem);
    896 out_free_pfns:
    897 	kvfree(range->pfns);
    898 out_free_ranges:
    899 	kfree(range);
    900 out:
    901 	mmput(mm);
    902 	return r;
    903 }
    904 
    905 /**
    906  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
    907  * Check if the pages backing this ttm range have been invalidated
    908  *
    909  * Returns: true if pages are still valid
    910  */
    911 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
    912 {
    913 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
    914 	bool r = false;
    915 
    916 	if (!gtt || !gtt->userptr)
    917 		return false;
    918 
    919 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
    920 		gtt->userptr, ttm->num_pages);
    921 
    922 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
    923 		"No user pages to check\n");
    924 
    925 	if (gtt->range) {
    926 		/*
    927 		 * FIXME: Must always hold notifier_lock for this, and must
    928 		 * not ignore the return code.
    929 		 */
    930 		r = mmu_interval_read_retry(gtt->range->notifier,
    931 					 gtt->range->notifier_seq);
    932 		kvfree(gtt->range->pfns);
    933 		kfree(gtt->range);
    934 		gtt->range = NULL;
    935 	}
    936 
    937 	return !r;
    938 }
    939 #endif
    940 
    941 /**
    942  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
    943  *
    944  * Called by amdgpu_cs_list_validate(). This creates the page list
    945  * that backs user memory and will ultimately be mapped into the device
    946  * address space.
    947  */
    948 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
    949 {
    950 	unsigned long i;
    951 
    952 	for (i = 0; i < ttm->num_pages; ++i)
    953 		ttm->pages[i] = pages ? pages[i] : NULL;
    954 }
    955 
    956 /**
    957  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
    958  *
    959  * Called by amdgpu_ttm_backend_bind()
    960  **/
    961 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
    962 {
    963 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
    964 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
    965 	unsigned nents;
    966 	int r;
    967 
    968 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
    969 #ifndef __NetBSD__
    970 	enum dma_data_direction direction = write ?
    971 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
    972 #endif
    973 
    974 	/* Allocate an SG array and squash pages into it */
    975 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
    976 				      ttm->num_pages << PAGE_SHIFT,
    977 				      GFP_KERNEL);
    978 	if (r)
    979 		goto release_sg;
    980 
    981 	/* Map SG to device */
    982 	r = -ENOMEM;
    983 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
    984 	if (nents != ttm->sg->nents)
    985 		goto release_sg;
    986 
    987 	/* convert SG to linear array of pages and dma addresses */
    988 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
    989 					 gtt->ttm.dma_address, ttm->num_pages);
    990 
    991 	return 0;
    992 
    993 release_sg:
    994 	kfree(ttm->sg);
    995 	return r;
    996 #endif
    997 }
    998 
    999 /**
   1000  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
   1001  */
   1002 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
   1003 {
   1004 #ifdef __NetBSD__
   1005 	struct amdgpu_device *adev = amdgpu_get_adev(ttm->bdev);
   1006 	struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
   1007 	    ttm.ttm);
   1008 
   1009 	bus_dmamap_unload(adev->ddev->dmat, gtt->ttm.dma_address);
   1010 	uvm_vsunlock(gtt->usermm, (void *)(vaddr_t)gtt->userptr,
   1011 	    ttm->num_pages << PAGE_SHIFT);
   1012 #else
   1013 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1014 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1015 
   1016 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
   1017 	enum dma_data_direction direction = write ?
   1018 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
   1019 
   1020 	/* double check that we don't free the table twice */
   1021 	if (!ttm->sg->sgl)
   1022 		return;
   1023 
   1024 	/* unmap the pages mapped to the device */
   1025 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
   1026 
   1027 	sg_free_table(ttm->sg);
   1028 
   1029 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
   1030 	if (gtt->range) {
   1031 		unsigned long i;
   1032 
   1033 		for (i = 0; i < ttm->num_pages; i++) {
   1034 			if (ttm->pages[i] !=
   1035 				hmm_device_entry_to_page(gtt->range,
   1036 					      gtt->range->pfns[i]))
   1037 				break;
   1038 		}
   1039 
   1040 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
   1041 	}
   1042 #endif
   1043 #endif
   1044 }
   1045 
   1046 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
   1047 				struct ttm_buffer_object *tbo,
   1048 				uint64_t flags)
   1049 {
   1050 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
   1051 	struct ttm_tt *ttm = tbo->ttm;
   1052 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1053 	int r;
   1054 
   1055 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
   1056 		uint64_t page_idx = 1;
   1057 
   1058 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
   1059 				ttm->pages, gtt->ttm.dma_address, flags);
   1060 		if (r)
   1061 			goto gart_bind_fail;
   1062 
   1063 		/* Patch mtype of the second part BO */
   1064 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
   1065 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
   1066 
   1067 		r = amdgpu_gart_bind(adev,
   1068 				gtt->offset + (page_idx << PAGE_SHIFT),
   1069 				ttm->num_pages - page_idx,
   1070 				&ttm->pages[page_idx],
   1071 				&(gtt->ttm.dma_address[page_idx]), flags);
   1072 	} else {
   1073 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
   1074 				     ttm->pages, gtt->ttm.dma_address, flags);
   1075 	}
   1076 
   1077 gart_bind_fail:
   1078 	if (r)
   1079 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
   1080 			  ttm->num_pages, gtt->offset);
   1081 
   1082 	return r;
   1083 }
   1084 
   1085 /**
   1086  * amdgpu_ttm_backend_bind - Bind GTT memory
   1087  *
   1088  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
   1089  * This handles binding GTT memory to the device address space.
   1090  */
   1091 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
   1092 				   struct ttm_mem_reg *bo_mem)
   1093 {
   1094 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1095 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
   1096 	uint64_t flags;
   1097 	int r = 0;
   1098 
   1099 	if (gtt->userptr) {
   1100 		r = amdgpu_ttm_tt_pin_userptr(ttm);
   1101 		if (r) {
   1102 			DRM_ERROR("failed to pin userptr\n");
   1103 			return r;
   1104 		}
   1105 	}
   1106 	if (!ttm->num_pages) {
   1107 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
   1108 		     ttm->num_pages, bo_mem, ttm);
   1109 	}
   1110 
   1111 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
   1112 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
   1113 	    bo_mem->mem_type == AMDGPU_PL_OA)
   1114 		return -EINVAL;
   1115 
   1116 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
   1117 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
   1118 		return 0;
   1119 	}
   1120 
   1121 	/* compute PTE flags relevant to this BO memory */
   1122 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
   1123 
   1124 	/* bind pages into GART page tables */
   1125 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
   1126 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
   1127 		ttm->pages, gtt->ttm.dma_address, flags);
   1128 
   1129 	if (r)
   1130 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
   1131 			  ttm->num_pages, gtt->offset);
   1132 	return r;
   1133 }
   1134 
   1135 /**
   1136  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
   1137  */
   1138 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
   1139 {
   1140 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
   1141 	struct ttm_operation_ctx ctx = { false, false };
   1142 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
   1143 	struct ttm_mem_reg tmp;
   1144 	struct ttm_placement placement;
   1145 	struct ttm_place placements;
   1146 	uint64_t addr, flags;
   1147 	int r;
   1148 
   1149 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
   1150 		return 0;
   1151 
   1152 	addr = amdgpu_gmc_agp_addr(bo);
   1153 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
   1154 		bo->mem.start = addr >> PAGE_SHIFT;
   1155 	} else {
   1156 
   1157 		/* allocate GART space */
   1158 		tmp = bo->mem;
   1159 		tmp.mm_node = NULL;
   1160 		placement.num_placement = 1;
   1161 		placement.placement = &placements;
   1162 		placement.num_busy_placement = 1;
   1163 		placement.busy_placement = &placements;
   1164 		placements.fpfn = 0;
   1165 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
   1166 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
   1167 			TTM_PL_FLAG_TT;
   1168 
   1169 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
   1170 		if (unlikely(r))
   1171 			return r;
   1172 
   1173 		/* compute PTE flags for this buffer object */
   1174 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
   1175 
   1176 		/* Bind pages */
   1177 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
   1178 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
   1179 		if (unlikely(r)) {
   1180 			ttm_bo_mem_put(bo, &tmp);
   1181 			return r;
   1182 		}
   1183 
   1184 		ttm_bo_mem_put(bo, &bo->mem);
   1185 		bo->mem = tmp;
   1186 	}
   1187 
   1188 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
   1189 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
   1190 
   1191 	return 0;
   1192 }
   1193 
   1194 /**
   1195  * amdgpu_ttm_recover_gart - Rebind GTT pages
   1196  *
   1197  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
   1198  * rebind GTT pages during a GPU reset.
   1199  */
   1200 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
   1201 {
   1202 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
   1203 	uint64_t flags;
   1204 	int r;
   1205 
   1206 	if (!tbo->ttm)
   1207 		return 0;
   1208 
   1209 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
   1210 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
   1211 
   1212 	return r;
   1213 }
   1214 
   1215 /**
   1216  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
   1217  *
   1218  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
   1219  * ttm_tt_destroy().
   1220  */
   1221 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
   1222 {
   1223 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1224 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1225 	int r;
   1226 
   1227 	/* if the pages have userptr pinning then clear that first */
   1228 	if (gtt->userptr)
   1229 		amdgpu_ttm_tt_unpin_userptr(ttm);
   1230 
   1231 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
   1232 		return 0;
   1233 
   1234 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
   1235 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
   1236 	if (r)
   1237 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
   1238 			  gtt->ttm.ttm.num_pages, gtt->offset);
   1239 	return r;
   1240 }
   1241 
   1242 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
   1243 {
   1244 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1245 
   1246 	if (gtt->usertask)
   1247 		put_task_struct(gtt->usertask);
   1248 
   1249 	ttm_dma_tt_fini(&gtt->ttm);
   1250 	kfree(gtt);
   1251 }
   1252 
   1253 static struct ttm_backend_func amdgpu_backend_func = {
   1254 	.bind = &amdgpu_ttm_backend_bind,
   1255 	.unbind = &amdgpu_ttm_backend_unbind,
   1256 	.destroy = &amdgpu_ttm_backend_destroy,
   1257 };
   1258 
   1259 /**
   1260  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
   1261  *
   1262  * @bo: The buffer object to create a GTT ttm_tt object around
   1263  *
   1264  * Called by ttm_tt_create().
   1265  */
   1266 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
   1267 					   uint32_t page_flags)
   1268 {
   1269 	struct amdgpu_ttm_tt *gtt;
   1270 
   1271 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
   1272 	if (gtt == NULL) {
   1273 		return NULL;
   1274 	}
   1275 	gtt->ttm.ttm.func = &amdgpu_backend_func;
   1276 	gtt->gobj = &bo->base;
   1277 
   1278 	/* allocate space for the uninitialized page entries */
   1279 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
   1280 		kfree(gtt);
   1281 		return NULL;
   1282 	}
   1283 	return &gtt->ttm.ttm;
   1284 }
   1285 
   1286 /**
   1287  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
   1288  *
   1289  * Map the pages of a ttm_tt object to an address space visible
   1290  * to the underlying device.
   1291  */
   1292 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
   1293 			struct ttm_operation_ctx *ctx)
   1294 {
   1295 #ifndef __NetBSD__
   1296 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1297 #endif
   1298 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1299 
   1300 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
   1301 	if (gtt && gtt->userptr) {
   1302 #ifdef __NetBSD__
   1303 		ttm->sg = NULL;
   1304 #else
   1305 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
   1306 		if (!ttm->sg)
   1307 			return -ENOMEM;
   1308 #endif
   1309 
   1310 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
   1311 		ttm->state = tt_unbound;
   1312 		return 0;
   1313 	}
   1314 
   1315 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
   1316 		if (!ttm->sg) {
   1317 			struct dma_buf_attachment *attach;
   1318 			struct sg_table *sgt;
   1319 
   1320 			attach = gtt->gobj->import_attach;
   1321 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
   1322 			if (IS_ERR(sgt))
   1323 				return PTR_ERR(sgt);
   1324 
   1325 			ttm->sg = sgt;
   1326 		}
   1327 
   1328 #ifdef __NetBSD__
   1329 		r = drm_prime_bus_dmamap_load_sgt(ttm->bdev->dmat,
   1330 		    gtt->ttm.dma_address, ttm->sg);
   1331 		if (r)
   1332 			return r;
   1333 #else
   1334 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
   1335 						 gtt->ttm.dma_address,
   1336 						 ttm->num_pages);
   1337 #endif
   1338 		ttm->state = tt_unbound;
   1339 		return 0;
   1340 	}
   1341 
   1342 #ifdef __NetBSD__
   1343 	/* XXX errno NetBSD->Linux */
   1344 	return ttm_bus_dma_populate(&gtt->ttm);
   1345 #else
   1346 #ifdef CONFIG_SWIOTLB
   1347 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
   1348 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
   1349 	}
   1350 #endif
   1351 
   1352 	/* fall back to generic helper to populate the page array
   1353 	 * and map them to the device */
   1354 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
   1355 #endif
   1356 }
   1357 
   1358 /**
   1359  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
   1360  *
   1361  * Unmaps pages of a ttm_tt object from the device address space and
   1362  * unpopulates the page array backing it.
   1363  */
   1364 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
   1365 {
   1366 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1367 #ifndef __NetBSD__
   1368 	struct amdgpu_device *adev;
   1369 #endif
   1370 
   1371 	if (gtt && gtt->userptr) {
   1372 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
   1373 		kfree(ttm->sg);
   1374 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
   1375 		return;
   1376 	}
   1377 
   1378 	if (ttm->sg && gtt->gobj->import_attach) {
   1379 		struct dma_buf_attachment *attach;
   1380 
   1381 		attach = gtt->gobj->import_attach;
   1382 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
   1383 		ttm->sg = NULL;
   1384 		return;
   1385 	}
   1386 
   1387 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
   1388 		return;
   1389 
   1390 #ifdef __NetBSD__
   1391 	ttm_bus_dma_unpopulate(&gtt->ttm);
   1392 	return;
   1393 #else
   1394 	adev = amdgpu_ttm_adev(ttm->bdev);
   1395 
   1396 #ifdef CONFIG_SWIOTLB
   1397 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
   1398 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
   1399 		return;
   1400 	}
   1401 #endif
   1402 
   1403 	/* fall back to generic helper to unmap and unpopulate array */
   1404 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
   1405 #endif	/* __NetBSD__ */
   1406 }
   1407 
   1408 #ifdef __NetBSD__
   1409 static void amdgpu_ttm_tt_swapout(struct ttm_tt *ttm)
   1410 {
   1411 	struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
   1412 	    ttm.ttm);
   1413 	struct ttm_dma_tt *ttm_dma = &gtt->ttm;
   1414 
   1415 	ttm_bus_dma_swapout(ttm_dma);
   1416 }
   1417 
   1418 static const struct uvm_pagerops amdgpu_uvm_ops = {
   1419 	.pgo_reference = &ttm_bo_uvm_reference,
   1420 	.pgo_detach = &ttm_bo_uvm_detach,
   1421 	.pgo_fault = &ttm_bo_uvm_fault,
   1422 };
   1423 #endif
   1424 
   1425 /**
   1426  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
   1427  * task
   1428  *
   1429  * @ttm: The ttm_tt object to bind this userptr object to
   1430  * @addr:  The address in the current tasks VM space to use
   1431  * @flags: Requirements of userptr object.
   1432  *
   1433  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
   1434  * to current task
   1435  */
   1436 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
   1437 			      uint32_t flags)
   1438 {
   1439 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1440 
   1441 	if (gtt == NULL)
   1442 		return -EINVAL;
   1443 
   1444 	gtt->userptr = addr;
   1445 	gtt->userflags = flags;
   1446 
   1447 	if (gtt->usertask)
   1448 		put_task_struct(gtt->usertask);
   1449 	gtt->usertask = current->group_leader;
   1450 	get_task_struct(gtt->usertask);
   1451 
   1452 	return 0;
   1453 }
   1454 
   1455 /**
   1456  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
   1457  */
   1458 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
   1459 {
   1460 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1461 
   1462 	if (gtt == NULL)
   1463 		return NULL;
   1464 
   1465 	if (gtt->usertask == NULL)
   1466 		return NULL;
   1467 
   1468 	return gtt->usertask->mm;
   1469 }
   1470 
   1471 /**
   1472  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
   1473  * address range for the current task.
   1474  *
   1475  */
   1476 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
   1477 				  unsigned long end)
   1478 {
   1479 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1480 	unsigned long size;
   1481 
   1482 	if (gtt == NULL || !gtt->userptr)
   1483 		return false;
   1484 
   1485 	/* Return false if no part of the ttm_tt object lies within
   1486 	 * the range
   1487 	 */
   1488 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
   1489 	if (gtt->userptr > end || gtt->userptr + size <= start)
   1490 		return false;
   1491 
   1492 	return true;
   1493 }
   1494 
   1495 /**
   1496  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
   1497  */
   1498 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
   1499 {
   1500 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1501 
   1502 	if (gtt == NULL || !gtt->userptr)
   1503 		return false;
   1504 
   1505 	return true;
   1506 }
   1507 
   1508 /**
   1509  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
   1510  */
   1511 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
   1512 {
   1513 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1514 
   1515 	if (gtt == NULL)
   1516 		return false;
   1517 
   1518 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
   1519 }
   1520 
   1521 /**
   1522  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
   1523  *
   1524  * @ttm: The ttm_tt object to compute the flags for
   1525  * @mem: The memory registry backing this ttm_tt object
   1526  *
   1527  * Figure out the flags to use for a VM PDE (Page Directory Entry).
   1528  */
   1529 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
   1530 {
   1531 	uint64_t flags = 0;
   1532 
   1533 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
   1534 		flags |= AMDGPU_PTE_VALID;
   1535 
   1536 	if (mem && mem->mem_type == TTM_PL_TT) {
   1537 		flags |= AMDGPU_PTE_SYSTEM;
   1538 
   1539 		if (ttm->caching_state == tt_cached)
   1540 			flags |= AMDGPU_PTE_SNOOPED;
   1541 	}
   1542 
   1543 	return flags;
   1544 }
   1545 
   1546 /**
   1547  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
   1548  *
   1549  * @ttm: The ttm_tt object to compute the flags for
   1550  * @mem: The memory registry backing this ttm_tt object
   1551 
   1552  * Figure out the flags to use for a VM PTE (Page Table Entry).
   1553  */
   1554 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
   1555 				 struct ttm_mem_reg *mem)
   1556 {
   1557 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
   1558 
   1559 	flags |= adev->gart.gart_pte_flags;
   1560 	flags |= AMDGPU_PTE_READABLE;
   1561 
   1562 	if (!amdgpu_ttm_tt_is_readonly(ttm))
   1563 		flags |= AMDGPU_PTE_WRITEABLE;
   1564 
   1565 	return flags;
   1566 }
   1567 
   1568 /**
   1569  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
   1570  * object.
   1571  *
   1572  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
   1573  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
   1574  * it can find space for a new object and by ttm_bo_force_list_clean() which is
   1575  * used to clean out a memory space.
   1576  */
   1577 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
   1578 					    const struct ttm_place *place)
   1579 {
   1580 	unsigned long num_pages = bo->mem.num_pages;
   1581 	struct drm_mm_node *node = bo->mem.mm_node;
   1582 	struct dma_resv_list *flist;
   1583 	struct dma_fence *f;
   1584 	int i;
   1585 
   1586 	if (bo->type == ttm_bo_type_kernel &&
   1587 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
   1588 		return false;
   1589 
   1590 	/* If bo is a KFD BO, check if the bo belongs to the current process.
   1591 	 * If true, then return false as any KFD process needs all its BOs to
   1592 	 * be resident to run successfully
   1593 	 */
   1594 	flist = dma_resv_get_list(bo->base.resv);
   1595 	if (flist) {
   1596 		for (i = 0; i < flist->shared_count; ++i) {
   1597 			f = rcu_dereference_protected(flist->shared[i],
   1598 				dma_resv_held(bo->base.resv));
   1599 			if (amdkfd_fence_check_mm(f, current->mm))
   1600 				return false;
   1601 		}
   1602 	}
   1603 
   1604 	switch (bo->mem.mem_type) {
   1605 	case TTM_PL_TT:
   1606 		return true;
   1607 
   1608 	case TTM_PL_VRAM:
   1609 		/* Check each drm MM node individually */
   1610 		while (num_pages) {
   1611 			if (place->fpfn < (node->start + node->size) &&
   1612 			    !(place->lpfn && place->lpfn <= node->start))
   1613 				return true;
   1614 
   1615 			num_pages -= node->size;
   1616 			++node;
   1617 		}
   1618 		return false;
   1619 
   1620 	default:
   1621 		break;
   1622 	}
   1623 
   1624 	return ttm_bo_eviction_valuable(bo, place);
   1625 }
   1626 
   1627 /**
   1628  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
   1629  *
   1630  * @bo:  The buffer object to read/write
   1631  * @offset:  Offset into buffer object
   1632  * @buf:  Secondary buffer to write/read from
   1633  * @len: Length in bytes of access
   1634  * @write:  true if writing
   1635  *
   1636  * This is used to access VRAM that backs a buffer object via MMIO
   1637  * access for debugging purposes.
   1638  */
   1639 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
   1640 				    unsigned long offset,
   1641 				    void *buf, int len, int write)
   1642 {
   1643 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
   1644 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
   1645 	struct drm_mm_node *nodes;
   1646 	uint32_t value = 0;
   1647 	int ret = 0;
   1648 	uint64_t pos;
   1649 	unsigned long flags;
   1650 
   1651 	if (bo->mem.mem_type != TTM_PL_VRAM)
   1652 		return -EIO;
   1653 
   1654 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
   1655 	pos = (nodes->start << PAGE_SHIFT) + offset;
   1656 
   1657 	while (len && pos < adev->gmc.mc_vram_size) {
   1658 		uint64_t aligned_pos = pos & ~(uint64_t)3;
   1659 		uint32_t bytes = 4 - (pos & 3);
   1660 		uint32_t shift = (pos & 3) * 8;
   1661 		uint32_t mask = 0xffffffff << shift;
   1662 
   1663 		if (len < bytes) {
   1664 			mask &= 0xffffffff >> (bytes - len) * 8;
   1665 			bytes = len;
   1666 		}
   1667 
   1668 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
   1669 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
   1670 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
   1671 		if (!write || mask != 0xffffffff)
   1672 			value = RREG32_NO_KIQ(mmMM_DATA);
   1673 		if (write) {
   1674 			value &= ~mask;
   1675 			value |= (*(uint32_t *)buf << shift) & mask;
   1676 			WREG32_NO_KIQ(mmMM_DATA, value);
   1677 		}
   1678 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
   1679 		if (!write) {
   1680 			value = (value & mask) >> shift;
   1681 			memcpy(buf, &value, bytes);
   1682 		}
   1683 
   1684 		ret += bytes;
   1685 		buf = (uint8_t *)buf + bytes;
   1686 		pos += bytes;
   1687 		len -= bytes;
   1688 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
   1689 			++nodes;
   1690 			pos = (nodes->start << PAGE_SHIFT);
   1691 		}
   1692 	}
   1693 
   1694 	return ret;
   1695 }
   1696 
   1697 static struct ttm_bo_driver amdgpu_bo_driver = {
   1698 	.ttm_tt_create = &amdgpu_ttm_tt_create,
   1699 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
   1700 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
   1701 #ifdef __NetBSD__
   1702 	.ttm_tt_swapout = &amdgpu_ttm_tt_swapout,
   1703 	.ttm_uvm_ops = &amdgpu_uvm_ops,
   1704 #endif
   1705 	.invalidate_caches = &amdgpu_invalidate_caches,
   1706 	.init_mem_type = &amdgpu_init_mem_type,
   1707 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
   1708 	.evict_flags = &amdgpu_evict_flags,
   1709 	.move = &amdgpu_bo_move,
   1710 	.verify_access = &amdgpu_verify_access,
   1711 	.move_notify = &amdgpu_bo_move_notify,
   1712 	.release_notify = &amdgpu_bo_release_notify,
   1713 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
   1714 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
   1715 	.io_mem_free = &amdgpu_ttm_io_mem_free,
   1716 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
   1717 	.access_memory = &amdgpu_ttm_access_memory,
   1718 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
   1719 };
   1720 
   1721 /*
   1722  * Firmware Reservation functions
   1723  */
   1724 /**
   1725  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
   1726  *
   1727  * @adev: amdgpu_device pointer
   1728  *
   1729  * free fw reserved vram if it has been reserved.
   1730  */
   1731 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
   1732 {
   1733 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
   1734 		NULL, &adev->fw_vram_usage.va);
   1735 }
   1736 
   1737 /**
   1738  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
   1739  *
   1740  * @adev: amdgpu_device pointer
   1741  *
   1742  * create bo vram reservation from fw.
   1743  */
   1744 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
   1745 {
   1746 	uint64_t vram_size = adev->gmc.visible_vram_size;
   1747 
   1748 	adev->fw_vram_usage.va = NULL;
   1749 	adev->fw_vram_usage.reserved_bo = NULL;
   1750 
   1751 	if (adev->fw_vram_usage.size == 0 ||
   1752 	    adev->fw_vram_usage.size > vram_size)
   1753 		return 0;
   1754 
   1755 	return amdgpu_bo_create_kernel_at(adev,
   1756 					  adev->fw_vram_usage.start_offset,
   1757 					  adev->fw_vram_usage.size,
   1758 					  AMDGPU_GEM_DOMAIN_VRAM,
   1759 					  &adev->fw_vram_usage.reserved_bo,
   1760 					  &adev->fw_vram_usage.va);
   1761 }
   1762 
   1763 /*
   1764  * Memoy training reservation functions
   1765  */
   1766 
   1767 /**
   1768  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
   1769  *
   1770  * @adev: amdgpu_device pointer
   1771  *
   1772  * free memory training reserved vram if it has been reserved.
   1773  */
   1774 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
   1775 {
   1776 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
   1777 
   1778 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
   1779 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
   1780 	ctx->c2p_bo = NULL;
   1781 
   1782 	return 0;
   1783 }
   1784 
   1785 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
   1786 {
   1787        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
   1788                vram_size -= SZ_1M;
   1789 
   1790        return ALIGN(vram_size, SZ_1M);
   1791 }
   1792 
   1793 /**
   1794  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
   1795  *
   1796  * @adev: amdgpu_device pointer
   1797  *
   1798  * create bo vram reservation from memory training.
   1799  */
   1800 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
   1801 {
   1802 	int ret;
   1803 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
   1804 
   1805 	memset(ctx, 0, sizeof(*ctx));
   1806 	if (!adev->fw_vram_usage.mem_train_support) {
   1807 		DRM_DEBUG("memory training does not support!\n");
   1808 		return 0;
   1809 	}
   1810 
   1811 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
   1812 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
   1813 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
   1814 
   1815 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
   1816 		  ctx->train_data_size,
   1817 		  ctx->p2c_train_data_offset,
   1818 		  ctx->c2p_train_data_offset);
   1819 
   1820 	ret = amdgpu_bo_create_kernel_at(adev,
   1821 					 ctx->c2p_train_data_offset,
   1822 					 ctx->train_data_size,
   1823 					 AMDGPU_GEM_DOMAIN_VRAM,
   1824 					 &ctx->c2p_bo,
   1825 					 NULL);
   1826 	if (ret) {
   1827 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
   1828 		amdgpu_ttm_training_reserve_vram_fini(adev);
   1829 		return ret;
   1830 	}
   1831 
   1832 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
   1833 	return 0;
   1834 }
   1835 
   1836 /**
   1837  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
   1838  * gtt/vram related fields.
   1839  *
   1840  * This initializes all of the memory space pools that the TTM layer
   1841  * will need such as the GTT space (system memory mapped to the device),
   1842  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
   1843  * can be mapped per VMID.
   1844  */
   1845 int amdgpu_ttm_init(struct amdgpu_device *adev)
   1846 {
   1847 	uint64_t gtt_size;
   1848 	int r;
   1849 	u64 vis_vram_limit;
   1850 	void *stolen_vga_buf;
   1851 
   1852 	mutex_init(&adev->mman.gtt_window_lock);
   1853 
   1854 	/* No others user of address space so set it to 0 */
   1855 	r = ttm_bo_device_init(&adev->mman.bdev,
   1856 			       &amdgpu_bo_driver,
   1857 #ifdef __NetBSD__
   1858 			       adev->ddev->bst,
   1859 			       adev->ddev->dmat,
   1860 #else
   1861 			       adev->ddev->anon_inode->i_mapping,
   1862 #endif
   1863 			       adev->ddev->vma_offset_manager,
   1864 			       dma_addressing_limited(adev->dev));
   1865 	if (r) {
   1866 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
   1867 		return r;
   1868 	}
   1869 	adev->mman.initialized = true;
   1870 
   1871 	/* We opt to avoid OOM on system pages allocations */
   1872 	adev->mman.bdev.no_retry = true;
   1873 
   1874 	/* Initialize VRAM pool with all of VRAM divided into pages */
   1875 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
   1876 				adev->gmc.real_vram_size >> PAGE_SHIFT);
   1877 	if (r) {
   1878 		DRM_ERROR("Failed initializing VRAM heap.\n");
   1879 		return r;
   1880 	}
   1881 
   1882 	/* Reduce size of CPU-visible VRAM if requested */
   1883 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
   1884 	if (amdgpu_vis_vram_limit > 0 &&
   1885 	    vis_vram_limit <= adev->gmc.visible_vram_size)
   1886 		adev->gmc.visible_vram_size = vis_vram_limit;
   1887 
   1888 	/* Change the size here instead of the init above so only lpfn is affected */
   1889 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
   1890 #ifdef CONFIG_64BIT
   1891 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
   1892 						adev->gmc.visible_vram_size);
   1893 #endif
   1894 
   1895 	/*
   1896 	 *The reserved vram for firmware must be pinned to the specified
   1897 	 *place on the VRAM, so reserve it early.
   1898 	 */
   1899 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
   1900 	if (r) {
   1901 		return r;
   1902 	}
   1903 
   1904 	/*
   1905 	 *The reserved vram for memory training must be pinned to the specified
   1906 	 *place on the VRAM, so reserve it early.
   1907 	 */
   1908 	r = amdgpu_ttm_training_reserve_vram_init(adev);
   1909 	if (r)
   1910 		return r;
   1911 
   1912 	/* allocate memory as required for VGA
   1913 	 * This is used for VGA emulation and pre-OS scanout buffers to
   1914 	 * avoid display artifacts while transitioning between pre-OS
   1915 	 * and driver.  */
   1916 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
   1917 				    AMDGPU_GEM_DOMAIN_VRAM,
   1918 				    &adev->stolen_vga_memory,
   1919 				    NULL, &stolen_vga_buf);
   1920 	if (r)
   1921 		return r;
   1922 
   1923 	/*
   1924 	 * reserve one TMR (64K) memory at the top of VRAM which holds
   1925 	 * IP Discovery data and is protected by PSP.
   1926 	 */
   1927 	r = amdgpu_bo_create_kernel_at(adev,
   1928 				       adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
   1929 				       DISCOVERY_TMR_SIZE,
   1930 				       AMDGPU_GEM_DOMAIN_VRAM,
   1931 				       &adev->discovery_memory,
   1932 				       NULL);
   1933 	if (r)
   1934 		return r;
   1935 
   1936 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
   1937 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
   1938 
   1939 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
   1940 	 * or whatever the user passed on module init */
   1941 	if (amdgpu_gtt_size == -1) {
   1942 		struct sysinfo si;
   1943 
   1944 		si_meminfo(&si);
   1945 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
   1946 			       adev->gmc.mc_vram_size),
   1947 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
   1948 	}
   1949 	else
   1950 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
   1951 
   1952 	/* Initialize GTT memory pool */
   1953 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
   1954 	if (r) {
   1955 		DRM_ERROR("Failed initializing GTT heap.\n");
   1956 		return r;
   1957 	}
   1958 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
   1959 		 (unsigned)(gtt_size / (1024 * 1024)));
   1960 
   1961 	/* Initialize various on-chip memory pools */
   1962 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
   1963 			   adev->gds.gds_size);
   1964 	if (r) {
   1965 		DRM_ERROR("Failed initializing GDS heap.\n");
   1966 		return r;
   1967 	}
   1968 
   1969 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
   1970 			   adev->gds.gws_size);
   1971 	if (r) {
   1972 		DRM_ERROR("Failed initializing gws heap.\n");
   1973 		return r;
   1974 	}
   1975 
   1976 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
   1977 			   adev->gds.oa_size);
   1978 	if (r) {
   1979 		DRM_ERROR("Failed initializing oa heap.\n");
   1980 		return r;
   1981 	}
   1982 
   1983 	/* Register debugfs entries for amdgpu_ttm */
   1984 	r = amdgpu_ttm_debugfs_init(adev);
   1985 	if (r) {
   1986 		DRM_ERROR("Failed to init debugfs\n");
   1987 		return r;
   1988 	}
   1989 	return 0;
   1990 }
   1991 
   1992 /**
   1993  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
   1994  */
   1995 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
   1996 {
   1997 	void *stolen_vga_buf;
   1998 	/* return the VGA stolen memory (if any) back to VRAM */
   1999 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
   2000 }
   2001 
   2002 /**
   2003  * amdgpu_ttm_fini - De-initialize the TTM memory pools
   2004  */
   2005 void amdgpu_ttm_fini(struct amdgpu_device *adev)
   2006 {
   2007 	if (!adev->mman.initialized)
   2008 		return;
   2009 
   2010 	amdgpu_ttm_debugfs_fini(adev);
   2011 	amdgpu_ttm_training_reserve_vram_fini(adev);
   2012 	/* return the IP Discovery TMR memory back to VRAM */
   2013 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
   2014 	amdgpu_ttm_fw_reserve_vram_fini(adev);
   2015 
   2016 	if (adev->mman.aper_base_kaddr)
   2017 		iounmap(adev->mman.aper_base_kaddr);
   2018 	adev->mman.aper_base_kaddr = NULL;
   2019 
   2020 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
   2021 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
   2022 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
   2023 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
   2024 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
   2025 	ttm_bo_device_release(&adev->mman.bdev);
   2026 	adev->mman.initialized = false;
   2027 	DRM_INFO("amdgpu: ttm finalized\n");
   2028 }
   2029 
   2030 /**
   2031  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
   2032  *
   2033  * @adev: amdgpu_device pointer
   2034  * @enable: true when we can use buffer functions.
   2035  *
   2036  * Enable/disable use of buffer functions during suspend/resume. This should
   2037  * only be called at bootup or when userspace isn't running.
   2038  */
   2039 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
   2040 {
   2041 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
   2042 	uint64_t size;
   2043 	int r;
   2044 
   2045 	if (!adev->mman.initialized || adev->in_gpu_reset ||
   2046 	    adev->mman.buffer_funcs_enabled == enable)
   2047 		return;
   2048 
   2049 	if (enable) {
   2050 		struct amdgpu_ring *ring;
   2051 		struct drm_gpu_scheduler *sched;
   2052 
   2053 		ring = adev->mman.buffer_funcs_ring;
   2054 		sched = &ring->sched;
   2055 		r = drm_sched_entity_init(&adev->mman.entity,
   2056 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
   2057 					  1, NULL);
   2058 		if (r) {
   2059 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
   2060 				  r);
   2061 			return;
   2062 		}
   2063 	} else {
   2064 		drm_sched_entity_destroy(&adev->mman.entity);
   2065 		dma_fence_put(man->move);
   2066 		man->move = NULL;
   2067 	}
   2068 
   2069 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
   2070 	if (enable)
   2071 		size = adev->gmc.real_vram_size;
   2072 	else
   2073 		size = adev->gmc.visible_vram_size;
   2074 	man->size = size >> PAGE_SHIFT;
   2075 	adev->mman.buffer_funcs_enabled = enable;
   2076 }
   2077 
   2078 #ifdef __NetBSD__
   2079 
   2080 int
   2081 amdgpu_mmap_object(struct drm_device *dev, off_t offset, size_t size,
   2082     vm_prot_t prot, struct uvm_object **uobjp, voff_t *uoffsetp,
   2083     struct file *file)
   2084 {
   2085 	struct amdgpu_device *adev = dev->dev_private;
   2086 
   2087 	KASSERT(0 == (offset & (PAGE_SIZE - 1)));
   2088 
   2089 	if (__predict_false(adev == NULL))	/* XXX How?? */
   2090 		return -EINVAL;
   2091 
   2092 	if (__predict_false((offset >> PAGE_SHIFT) < DRM_FILE_PAGE_OFFSET))
   2093 		return -EINVAL;
   2094 
   2095 	return ttm_bo_mmap_object(&adev->mman.bdev, offset, size, prot,
   2096 	    uobjp, uoffsetp, file);
   2097 }
   2098 
   2099 #else  /* __NetBSD__ */
   2100 
   2101 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
   2102 {
   2103 	struct drm_file *file_priv = filp->private_data;
   2104 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
   2105 
   2106 	if (adev == NULL)
   2107 		return -EINVAL;
   2108 
   2109 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
   2110 }
   2111 
   2112 #endif	/* __NetBSD__ */
   2113 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
   2114 			     struct ttm_mem_reg *mem, unsigned num_pages,
   2115 			     uint64_t offset, unsigned window,
   2116 			     struct amdgpu_ring *ring,
   2117 			     uint64_t *addr)
   2118 {
   2119 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
   2120 	struct amdgpu_device *adev = ring->adev;
   2121 	struct ttm_tt *ttm = bo->ttm;
   2122 	struct amdgpu_job *job;
   2123 	unsigned num_dw, num_bytes;
   2124 	dma_addr_t *dma_address;
   2125 	struct dma_fence *fence;
   2126 	uint64_t src_addr, dst_addr;
   2127 	uint64_t flags;
   2128 	int r;
   2129 
   2130 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
   2131 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
   2132 
   2133 	*addr = adev->gmc.gart_start;
   2134 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
   2135 		AMDGPU_GPU_PAGE_SIZE;
   2136 
   2137 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
   2138 	num_bytes = num_pages * 8;
   2139 
   2140 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
   2141 	if (r)
   2142 		return r;
   2143 
   2144 	src_addr = num_dw * 4;
   2145 	src_addr += job->ibs[0].gpu_addr;
   2146 
   2147 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
   2148 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
   2149 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
   2150 				dst_addr, num_bytes);
   2151 
   2152 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
   2153 	WARN_ON(job->ibs[0].length_dw > num_dw);
   2154 
   2155 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
   2156 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
   2157 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
   2158 			    &job->ibs[0].ptr[num_dw]);
   2159 	if (r)
   2160 		goto error_free;
   2161 
   2162 	r = amdgpu_job_submit(job, &adev->mman.entity,
   2163 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
   2164 	if (r)
   2165 		goto error_free;
   2166 
   2167 	dma_fence_put(fence);
   2168 
   2169 	return r;
   2170 
   2171 error_free:
   2172 	amdgpu_job_free(job);
   2173 	return r;
   2174 }
   2175 
   2176 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
   2177 		       uint64_t dst_offset, uint32_t byte_count,
   2178 		       struct dma_resv *resv,
   2179 		       struct dma_fence **fence, bool direct_submit,
   2180 		       bool vm_needs_flush)
   2181 {
   2182 	struct amdgpu_device *adev = ring->adev;
   2183 	struct amdgpu_job *job;
   2184 
   2185 	uint32_t max_bytes;
   2186 	unsigned num_loops, num_dw;
   2187 	unsigned i;
   2188 	int r;
   2189 
   2190 	if (direct_submit && !ring->sched.ready) {
   2191 		DRM_ERROR("Trying to move memory with ring turned off.\n");
   2192 		return -EINVAL;
   2193 	}
   2194 
   2195 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
   2196 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
   2197 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
   2198 
   2199 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
   2200 	if (r)
   2201 		return r;
   2202 
   2203 	if (vm_needs_flush) {
   2204 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
   2205 		job->vm_needs_flush = true;
   2206 	}
   2207 	if (resv) {
   2208 		r = amdgpu_sync_resv(adev, &job->sync, resv,
   2209 				     AMDGPU_FENCE_OWNER_UNDEFINED,
   2210 				     false);
   2211 		if (r) {
   2212 			DRM_ERROR("sync failed (%d).\n", r);
   2213 			goto error_free;
   2214 		}
   2215 	}
   2216 
   2217 	for (i = 0; i < num_loops; i++) {
   2218 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
   2219 
   2220 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
   2221 					dst_offset, cur_size_in_bytes);
   2222 
   2223 		src_offset += cur_size_in_bytes;
   2224 		dst_offset += cur_size_in_bytes;
   2225 		byte_count -= cur_size_in_bytes;
   2226 	}
   2227 
   2228 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
   2229 	WARN_ON(job->ibs[0].length_dw > num_dw);
   2230 	if (direct_submit)
   2231 		r = amdgpu_job_submit_direct(job, ring, fence);
   2232 	else
   2233 		r = amdgpu_job_submit(job, &adev->mman.entity,
   2234 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
   2235 	if (r)
   2236 		goto error_free;
   2237 
   2238 	return r;
   2239 
   2240 error_free:
   2241 	amdgpu_job_free(job);
   2242 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
   2243 	return r;
   2244 }
   2245 
   2246 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
   2247 		       uint32_t src_data,
   2248 		       struct dma_resv *resv,
   2249 		       struct dma_fence **fence)
   2250 {
   2251 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
   2252 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
   2253 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
   2254 
   2255 	struct drm_mm_node *mm_node;
   2256 	unsigned long num_pages;
   2257 	unsigned int num_loops, num_dw;
   2258 
   2259 	struct amdgpu_job *job;
   2260 	int r;
   2261 
   2262 	if (!adev->mman.buffer_funcs_enabled) {
   2263 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
   2264 		return -EINVAL;
   2265 	}
   2266 
   2267 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
   2268 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
   2269 		if (r)
   2270 			return r;
   2271 	}
   2272 
   2273 	num_pages = bo->tbo.num_pages;
   2274 	mm_node = bo->tbo.mem.mm_node;
   2275 	num_loops = 0;
   2276 	while (num_pages) {
   2277 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
   2278 
   2279 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
   2280 		num_pages -= mm_node->size;
   2281 		++mm_node;
   2282 	}
   2283 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
   2284 
   2285 	/* for IB padding */
   2286 	num_dw += 64;
   2287 
   2288 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
   2289 	if (r)
   2290 		return r;
   2291 
   2292 	if (resv) {
   2293 		r = amdgpu_sync_resv(adev, &job->sync, resv,
   2294 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
   2295 		if (r) {
   2296 			DRM_ERROR("sync failed (%d).\n", r);
   2297 			goto error_free;
   2298 		}
   2299 	}
   2300 
   2301 	num_pages = bo->tbo.num_pages;
   2302 	mm_node = bo->tbo.mem.mm_node;
   2303 
   2304 	while (num_pages) {
   2305 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
   2306 		uint64_t dst_addr;
   2307 
   2308 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
   2309 		while (byte_count) {
   2310 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
   2311 							   max_bytes);
   2312 
   2313 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
   2314 						dst_addr, cur_size_in_bytes);
   2315 
   2316 			dst_addr += cur_size_in_bytes;
   2317 			byte_count -= cur_size_in_bytes;
   2318 		}
   2319 
   2320 		num_pages -= mm_node->size;
   2321 		++mm_node;
   2322 	}
   2323 
   2324 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
   2325 	WARN_ON(job->ibs[0].length_dw > num_dw);
   2326 	r = amdgpu_job_submit(job, &adev->mman.entity,
   2327 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
   2328 	if (r)
   2329 		goto error_free;
   2330 
   2331 	return 0;
   2332 
   2333 error_free:
   2334 	amdgpu_job_free(job);
   2335 	return r;
   2336 }
   2337 
   2338 #if defined(CONFIG_DEBUG_FS)
   2339 
   2340 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
   2341 {
   2342 	struct drm_info_node *node = (struct drm_info_node *)m->private;
   2343 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
   2344 	struct drm_device *dev = node->minor->dev;
   2345 	struct amdgpu_device *adev = dev->dev_private;
   2346 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
   2347 	struct drm_printer p = drm_seq_file_printer(m);
   2348 
   2349 	man->func->debug(man, &p);
   2350 	return 0;
   2351 }
   2352 
   2353 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
   2354 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
   2355 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
   2356 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
   2357 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
   2358 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
   2359 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
   2360 #ifdef CONFIG_SWIOTLB
   2361 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
   2362 #endif
   2363 };
   2364 
   2365 /**
   2366  * amdgpu_ttm_vram_read - Linear read access to VRAM
   2367  *
   2368  * Accesses VRAM via MMIO for debugging purposes.
   2369  */
   2370 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
   2371 				    size_t size, loff_t *pos)
   2372 {
   2373 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2374 	ssize_t result = 0;
   2375 	int r;
   2376 
   2377 	if (size & 0x3 || *pos & 0x3)
   2378 		return -EINVAL;
   2379 
   2380 	if (*pos >= adev->gmc.mc_vram_size)
   2381 		return -ENXIO;
   2382 
   2383 	while (size) {
   2384 		unsigned long flags;
   2385 		uint32_t value;
   2386 
   2387 		if (*pos >= adev->gmc.mc_vram_size)
   2388 			return result;
   2389 
   2390 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
   2391 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
   2392 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
   2393 		value = RREG32_NO_KIQ(mmMM_DATA);
   2394 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
   2395 
   2396 		r = put_user(value, (uint32_t *)buf);
   2397 		if (r)
   2398 			return r;
   2399 
   2400 		result += 4;
   2401 		buf += 4;
   2402 		*pos += 4;
   2403 		size -= 4;
   2404 	}
   2405 
   2406 	return result;
   2407 }
   2408 
   2409 /**
   2410  * amdgpu_ttm_vram_write - Linear write access to VRAM
   2411  *
   2412  * Accesses VRAM via MMIO for debugging purposes.
   2413  */
   2414 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
   2415 				    size_t size, loff_t *pos)
   2416 {
   2417 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2418 	ssize_t result = 0;
   2419 	int r;
   2420 
   2421 	if (size & 0x3 || *pos & 0x3)
   2422 		return -EINVAL;
   2423 
   2424 	if (*pos >= adev->gmc.mc_vram_size)
   2425 		return -ENXIO;
   2426 
   2427 	while (size) {
   2428 		unsigned long flags;
   2429 		uint32_t value;
   2430 
   2431 		if (*pos >= adev->gmc.mc_vram_size)
   2432 			return result;
   2433 
   2434 		r = get_user(value, (uint32_t *)buf);
   2435 		if (r)
   2436 			return r;
   2437 
   2438 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
   2439 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
   2440 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
   2441 		WREG32_NO_KIQ(mmMM_DATA, value);
   2442 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
   2443 
   2444 		result += 4;
   2445 		buf += 4;
   2446 		*pos += 4;
   2447 		size -= 4;
   2448 	}
   2449 
   2450 	return result;
   2451 }
   2452 
   2453 static const struct file_operations amdgpu_ttm_vram_fops = {
   2454 	.owner = THIS_MODULE,
   2455 	.read = amdgpu_ttm_vram_read,
   2456 	.write = amdgpu_ttm_vram_write,
   2457 	.llseek = default_llseek,
   2458 };
   2459 
   2460 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
   2461 
   2462 /**
   2463  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
   2464  */
   2465 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
   2466 				   size_t size, loff_t *pos)
   2467 {
   2468 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2469 	ssize_t result = 0;
   2470 	int r;
   2471 
   2472 	while (size) {
   2473 		loff_t p = *pos / PAGE_SIZE;
   2474 		unsigned off = *pos & ~PAGE_MASK;
   2475 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
   2476 		struct page *page;
   2477 		void *ptr;
   2478 
   2479 		if (p >= adev->gart.num_cpu_pages)
   2480 			return result;
   2481 
   2482 		page = adev->gart.pages[p];
   2483 		if (page) {
   2484 			ptr = kmap(page);
   2485 			ptr += off;
   2486 
   2487 			r = copy_to_user(buf, ptr, cur_size);
   2488 			kunmap(adev->gart.pages[p]);
   2489 		} else
   2490 			r = clear_user(buf, cur_size);
   2491 
   2492 		if (r)
   2493 			return -EFAULT;
   2494 
   2495 		result += cur_size;
   2496 		buf += cur_size;
   2497 		*pos += cur_size;
   2498 		size -= cur_size;
   2499 	}
   2500 
   2501 	return result;
   2502 }
   2503 
   2504 static const struct file_operations amdgpu_ttm_gtt_fops = {
   2505 	.owner = THIS_MODULE,
   2506 	.read = amdgpu_ttm_gtt_read,
   2507 	.llseek = default_llseek
   2508 };
   2509 
   2510 #endif
   2511 
   2512 /**
   2513  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
   2514  *
   2515  * This function is used to read memory that has been mapped to the
   2516  * GPU and the known addresses are not physical addresses but instead
   2517  * bus addresses (e.g., what you'd put in an IB or ring buffer).
   2518  */
   2519 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
   2520 				 size_t size, loff_t *pos)
   2521 {
   2522 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2523 	struct iommu_domain *dom;
   2524 	ssize_t result = 0;
   2525 	int r;
   2526 
   2527 	/* retrieve the IOMMU domain if any for this device */
   2528 	dom = iommu_get_domain_for_dev(adev->dev);
   2529 
   2530 	while (size) {
   2531 		phys_addr_t addr = *pos & PAGE_MASK;
   2532 		loff_t off = *pos & ~PAGE_MASK;
   2533 		size_t bytes = PAGE_SIZE - off;
   2534 		unsigned long pfn;
   2535 		struct page *p;
   2536 		void *ptr;
   2537 
   2538 		bytes = bytes < size ? bytes : size;
   2539 
   2540 		/* Translate the bus address to a physical address.  If
   2541 		 * the domain is NULL it means there is no IOMMU active
   2542 		 * and the address translation is the identity
   2543 		 */
   2544 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
   2545 
   2546 		pfn = addr >> PAGE_SHIFT;
   2547 		if (!pfn_valid(pfn))
   2548 			return -EPERM;
   2549 
   2550 		p = pfn_to_page(pfn);
   2551 		if (p->mapping != adev->mman.bdev.dev_mapping)
   2552 			return -EPERM;
   2553 
   2554 		ptr = kmap(p);
   2555 		r = copy_to_user(buf, ptr + off, bytes);
   2556 		kunmap(p);
   2557 		if (r)
   2558 			return -EFAULT;
   2559 
   2560 		size -= bytes;
   2561 		*pos += bytes;
   2562 		result += bytes;
   2563 	}
   2564 
   2565 	return result;
   2566 }
   2567 
   2568 /**
   2569  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
   2570  *
   2571  * This function is used to write memory that has been mapped to the
   2572  * GPU and the known addresses are not physical addresses but instead
   2573  * bus addresses (e.g., what you'd put in an IB or ring buffer).
   2574  */
   2575 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
   2576 				 size_t size, loff_t *pos)
   2577 {
   2578 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2579 	struct iommu_domain *dom;
   2580 	ssize_t result = 0;
   2581 	int r;
   2582 
   2583 	dom = iommu_get_domain_for_dev(adev->dev);
   2584 
   2585 	while (size) {
   2586 		phys_addr_t addr = *pos & PAGE_MASK;
   2587 		loff_t off = *pos & ~PAGE_MASK;
   2588 		size_t bytes = PAGE_SIZE - off;
   2589 		unsigned long pfn;
   2590 		struct page *p;
   2591 		void *ptr;
   2592 
   2593 		bytes = bytes < size ? bytes : size;
   2594 
   2595 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
   2596 
   2597 		pfn = addr >> PAGE_SHIFT;
   2598 		if (!pfn_valid(pfn))
   2599 			return -EPERM;
   2600 
   2601 		p = pfn_to_page(pfn);
   2602 		if (p->mapping != adev->mman.bdev.dev_mapping)
   2603 			return -EPERM;
   2604 
   2605 		ptr = kmap(p);
   2606 		r = copy_from_user(ptr + off, buf, bytes);
   2607 		kunmap(p);
   2608 		if (r)
   2609 			return -EFAULT;
   2610 
   2611 		size -= bytes;
   2612 		*pos += bytes;
   2613 		result += bytes;
   2614 	}
   2615 
   2616 	return result;
   2617 }
   2618 
   2619 static const struct file_operations amdgpu_ttm_iomem_fops = {
   2620 	.owner = THIS_MODULE,
   2621 	.read = amdgpu_iomem_read,
   2622 	.write = amdgpu_iomem_write,
   2623 	.llseek = default_llseek
   2624 };
   2625 
   2626 static const struct {
   2627 	char *name;
   2628 	const struct file_operations *fops;
   2629 	int domain;
   2630 } ttm_debugfs_entries[] = {
   2631 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
   2632 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
   2633 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
   2634 #endif
   2635 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
   2636 };
   2637 
   2638 #endif
   2639 
   2640 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
   2641 {
   2642 #if defined(CONFIG_DEBUG_FS)
   2643 	unsigned count;
   2644 
   2645 	struct drm_minor *minor = adev->ddev->primary;
   2646 	struct dentry *ent, *root = minor->debugfs_root;
   2647 
   2648 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
   2649 		ent = debugfs_create_file(
   2650 				ttm_debugfs_entries[count].name,
   2651 				S_IFREG | S_IRUGO, root,
   2652 				adev,
   2653 				ttm_debugfs_entries[count].fops);
   2654 		if (IS_ERR(ent))
   2655 			return PTR_ERR(ent);
   2656 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
   2657 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
   2658 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
   2659 			i_size_write(ent->d_inode, adev->gmc.gart_size);
   2660 		adev->mman.debugfs_entries[count] = ent;
   2661 	}
   2662 
   2663 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
   2664 
   2665 #ifdef CONFIG_SWIOTLB
   2666 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
   2667 		--count;
   2668 #endif
   2669 
   2670 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
   2671 #else
   2672 	return 0;
   2673 #endif
   2674 }
   2675 
   2676 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
   2677 {
   2678 #if defined(CONFIG_DEBUG_FS)
   2679 	unsigned i;
   2680 
   2681 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
   2682 		debugfs_remove(adev->mman.debugfs_entries[i]);
   2683 #endif
   2684 }
   2685