amdgpu_ttm.c revision 1.8 1 /* $NetBSD: amdgpu_ttm.c,v 1.8 2021/12/19 12:02:39 riastradh Exp $ */
2
3 /*
4 * Copyright 2009 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 *
27 */
28 /*
29 * Authors:
30 * Jerome Glisse <glisse (at) freedesktop.org>
31 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
32 * Dave Airlie
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ttm.c,v 1.8 2021/12/19 12:02:39 riastradh Exp $");
37
38 #include <linux/dma-mapping.h>
39 #include <linux/iommu.h>
40 #include <linux/hmm.h>
41 #include <linux/pagemap.h>
42 #include <linux/sched/task.h>
43 #include <linux/sched/mm.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/swap.h>
47 #include <linux/swiotlb.h>
48 #include <linux/dma-buf.h>
49 #include <linux/sizes.h>
50
51 #include <drm/ttm/ttm_bo_api.h>
52 #include <drm/ttm/ttm_bo_driver.h>
53 #include <drm/ttm/ttm_placement.h>
54 #include <drm/ttm/ttm_module.h>
55 #include <drm/ttm/ttm_page_alloc.h>
56
57 #include <drm/drm_debugfs.h>
58 #include <drm/amdgpu_drm.h>
59
60 #include "amdgpu.h"
61 #include "amdgpu_object.h"
62 #include "amdgpu_trace.h"
63 #include "amdgpu_amdkfd.h"
64 #include "amdgpu_sdma.h"
65 #include "amdgpu_ras.h"
66 #include "bif/bif_4_1_d.h"
67
68 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
69 struct ttm_mem_reg *mem, unsigned num_pages,
70 uint64_t offset, unsigned window,
71 struct amdgpu_ring *ring,
72 uint64_t *addr);
73
74 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
75 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
76
77 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
78 {
79 return 0;
80 }
81
82 /**
83 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
84 * memory request.
85 *
86 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
87 * @type: The type of memory requested
88 * @man: The memory type manager for each domain
89 *
90 * This is called by ttm_bo_init_mm() when a buffer object is being
91 * initialized.
92 */
93 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
94 struct ttm_mem_type_manager *man)
95 {
96 struct amdgpu_device *adev;
97
98 adev = amdgpu_ttm_adev(bdev);
99
100 switch (type) {
101 case TTM_PL_SYSTEM:
102 /* System memory */
103 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
104 man->available_caching = TTM_PL_MASK_CACHING;
105 man->default_caching = TTM_PL_FLAG_CACHED;
106 break;
107 case TTM_PL_TT:
108 /* GTT memory */
109 man->func = &amdgpu_gtt_mgr_func;
110 man->gpu_offset = adev->gmc.gart_start;
111 man->available_caching = TTM_PL_MASK_CACHING;
112 man->default_caching = TTM_PL_FLAG_CACHED;
113 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
114 break;
115 case TTM_PL_VRAM:
116 /* "On-card" video ram */
117 man->func = &amdgpu_vram_mgr_func;
118 man->gpu_offset = adev->gmc.vram_start;
119 man->flags = TTM_MEMTYPE_FLAG_FIXED |
120 TTM_MEMTYPE_FLAG_MAPPABLE;
121 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
122 man->default_caching = TTM_PL_FLAG_WC;
123 break;
124 case AMDGPU_PL_GDS:
125 case AMDGPU_PL_GWS:
126 case AMDGPU_PL_OA:
127 /* On-chip GDS memory*/
128 man->func = &ttm_bo_manager_func;
129 man->gpu_offset = 0;
130 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
131 man->available_caching = TTM_PL_FLAG_UNCACHED;
132 man->default_caching = TTM_PL_FLAG_UNCACHED;
133 break;
134 default:
135 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
136 return -EINVAL;
137 }
138 return 0;
139 }
140
141 /**
142 * amdgpu_evict_flags - Compute placement flags
143 *
144 * @bo: The buffer object to evict
145 * @placement: Possible destination(s) for evicted BO
146 *
147 * Fill in placement data when ttm_bo_evict() is called
148 */
149 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
150 struct ttm_placement *placement)
151 {
152 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
153 struct amdgpu_bo *abo;
154 static const struct ttm_place placements = {
155 .fpfn = 0,
156 .lpfn = 0,
157 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
158 };
159
160 /* Don't handle scatter gather BOs */
161 if (bo->type == ttm_bo_type_sg) {
162 placement->num_placement = 0;
163 placement->num_busy_placement = 0;
164 return;
165 }
166
167 /* Object isn't an AMDGPU object so ignore */
168 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
169 placement->placement = &placements;
170 placement->busy_placement = &placements;
171 placement->num_placement = 1;
172 placement->num_busy_placement = 1;
173 return;
174 }
175
176 abo = ttm_to_amdgpu_bo(bo);
177 switch (bo->mem.mem_type) {
178 case AMDGPU_PL_GDS:
179 case AMDGPU_PL_GWS:
180 case AMDGPU_PL_OA:
181 placement->num_placement = 0;
182 placement->num_busy_placement = 0;
183 return;
184
185 case TTM_PL_VRAM:
186 if (!adev->mman.buffer_funcs_enabled) {
187 /* Move to system memory */
188 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
189 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
190 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
191 amdgpu_bo_in_cpu_visible_vram(abo)) {
192
193 /* Try evicting to the CPU inaccessible part of VRAM
194 * first, but only set GTT as busy placement, so this
195 * BO will be evicted to GTT rather than causing other
196 * BOs to be evicted from VRAM
197 */
198 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
199 AMDGPU_GEM_DOMAIN_GTT);
200 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
201 abo->placements[0].lpfn = 0;
202 abo->placement.busy_placement = &abo->placements[1];
203 abo->placement.num_busy_placement = 1;
204 } else {
205 /* Move to GTT memory */
206 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
207 }
208 break;
209 case TTM_PL_TT:
210 default:
211 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
212 break;
213 }
214 *placement = abo->placement;
215 }
216
217 /**
218 * amdgpu_verify_access - Verify access for a mmap call
219 *
220 * @bo: The buffer object to map
221 * @filp: The file pointer from the process performing the mmap
222 *
223 * This is called by ttm_bo_mmap() to verify whether a process
224 * has the right to mmap a BO to their process space.
225 */
226 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
227 {
228 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
229
230 /*
231 * Don't verify access for KFD BOs. They don't have a GEM
232 * object associated with them.
233 */
234 if (abo->kfd_bo)
235 return 0;
236
237 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
238 return -EPERM;
239 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
240 filp->private_data);
241 }
242
243 /**
244 * amdgpu_move_null - Register memory for a buffer object
245 *
246 * @bo: The bo to assign the memory to
247 * @new_mem: The memory to be assigned.
248 *
249 * Assign the memory from new_mem to the memory of the buffer object bo.
250 */
251 static void amdgpu_move_null(struct ttm_buffer_object *bo,
252 struct ttm_mem_reg *new_mem)
253 {
254 struct ttm_mem_reg *old_mem = &bo->mem;
255
256 BUG_ON(old_mem->mm_node != NULL);
257 *old_mem = *new_mem;
258 new_mem->mm_node = NULL;
259 }
260
261 /**
262 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
263 *
264 * @bo: The bo to assign the memory to.
265 * @mm_node: Memory manager node for drm allocator.
266 * @mem: The region where the bo resides.
267 *
268 */
269 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
270 struct drm_mm_node *mm_node,
271 struct ttm_mem_reg *mem)
272 {
273 uint64_t addr = 0;
274
275 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
276 addr = mm_node->start << PAGE_SHIFT;
277 addr += bo->bdev->man[mem->mem_type].gpu_offset;
278 }
279 return addr;
280 }
281
282 /**
283 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
284 * @offset. It also modifies the offset to be within the drm_mm_node returned
285 *
286 * @mem: The region where the bo resides.
287 * @offset: The offset that drm_mm_node is used for finding.
288 *
289 */
290 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
291 unsigned long *offset)
292 {
293 struct drm_mm_node *mm_node = mem->mm_node;
294
295 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
296 *offset -= (mm_node->size << PAGE_SHIFT);
297 ++mm_node;
298 }
299 return mm_node;
300 }
301
302 /**
303 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
304 *
305 * The function copies @size bytes from {src->mem + src->offset} to
306 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
307 * move and different for a BO to BO copy.
308 *
309 * @f: Returns the last fence if multiple jobs are submitted.
310 */
311 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
312 struct amdgpu_copy_mem *src,
313 struct amdgpu_copy_mem *dst,
314 uint64_t size,
315 struct dma_resv *resv,
316 struct dma_fence **f)
317 {
318 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
319 struct drm_mm_node *src_mm, *dst_mm;
320 uint64_t src_node_start, dst_node_start, src_node_size,
321 dst_node_size, src_page_offset, dst_page_offset;
322 struct dma_fence *fence = NULL;
323 int r = 0;
324 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
325 AMDGPU_GPU_PAGE_SIZE);
326
327 if (!adev->mman.buffer_funcs_enabled) {
328 DRM_ERROR("Trying to move memory with ring turned off.\n");
329 return -EINVAL;
330 }
331
332 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
333 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
334 src->offset;
335 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
336 src_page_offset = src_node_start & (PAGE_SIZE - 1);
337
338 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
339 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
340 dst->offset;
341 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
342 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
343
344 mutex_lock(&adev->mman.gtt_window_lock);
345
346 while (size) {
347 unsigned long cur_size;
348 uint64_t from = src_node_start, to = dst_node_start;
349 struct dma_fence *next;
350
351 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
352 * begins at an offset, then adjust the size accordingly
353 */
354 cur_size = min3(min(src_node_size, dst_node_size), size,
355 GTT_MAX_BYTES);
356 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
357 cur_size + dst_page_offset > GTT_MAX_BYTES)
358 cur_size -= max(src_page_offset, dst_page_offset);
359
360 /* Map only what needs to be accessed. Map src to window 0 and
361 * dst to window 1
362 */
363 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
364 r = amdgpu_map_buffer(src->bo, src->mem,
365 PFN_UP(cur_size + src_page_offset),
366 src_node_start, 0, ring,
367 &from);
368 if (r)
369 goto error;
370 /* Adjust the offset because amdgpu_map_buffer returns
371 * start of mapped page
372 */
373 from += src_page_offset;
374 }
375
376 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
377 r = amdgpu_map_buffer(dst->bo, dst->mem,
378 PFN_UP(cur_size + dst_page_offset),
379 dst_node_start, 1, ring,
380 &to);
381 if (r)
382 goto error;
383 to += dst_page_offset;
384 }
385
386 r = amdgpu_copy_buffer(ring, from, to, cur_size,
387 resv, &next, false, true);
388 if (r)
389 goto error;
390
391 dma_fence_put(fence);
392 fence = next;
393
394 size -= cur_size;
395 if (!size)
396 break;
397
398 src_node_size -= cur_size;
399 if (!src_node_size) {
400 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
401 src->mem);
402 src_node_size = (src_mm->size << PAGE_SHIFT);
403 src_page_offset = 0;
404 } else {
405 src_node_start += cur_size;
406 src_page_offset = src_node_start & (PAGE_SIZE - 1);
407 }
408 dst_node_size -= cur_size;
409 if (!dst_node_size) {
410 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
411 dst->mem);
412 dst_node_size = (dst_mm->size << PAGE_SHIFT);
413 dst_page_offset = 0;
414 } else {
415 dst_node_start += cur_size;
416 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
417 }
418 }
419 error:
420 mutex_unlock(&adev->mman.gtt_window_lock);
421 if (f)
422 *f = dma_fence_get(fence);
423 dma_fence_put(fence);
424 return r;
425 }
426
427 /**
428 * amdgpu_move_blit - Copy an entire buffer to another buffer
429 *
430 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
431 * help move buffers to and from VRAM.
432 */
433 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
434 bool evict, bool no_wait_gpu,
435 struct ttm_mem_reg *new_mem,
436 struct ttm_mem_reg *old_mem)
437 {
438 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
439 struct amdgpu_copy_mem src, dst;
440 struct dma_fence *fence = NULL;
441 int r;
442
443 src.bo = bo;
444 dst.bo = bo;
445 src.mem = old_mem;
446 dst.mem = new_mem;
447 src.offset = 0;
448 dst.offset = 0;
449
450 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
451 new_mem->num_pages << PAGE_SHIFT,
452 bo->base.resv, &fence);
453 if (r)
454 goto error;
455
456 /* clear the space being freed */
457 if (old_mem->mem_type == TTM_PL_VRAM &&
458 (ttm_to_amdgpu_bo(bo)->flags &
459 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
460 struct dma_fence *wipe_fence = NULL;
461
462 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
463 NULL, &wipe_fence);
464 if (r) {
465 goto error;
466 } else if (wipe_fence) {
467 dma_fence_put(fence);
468 fence = wipe_fence;
469 }
470 }
471
472 /* Always block for VM page tables before committing the new location */
473 if (bo->type == ttm_bo_type_kernel)
474 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
475 else
476 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
477 dma_fence_put(fence);
478 return r;
479
480 error:
481 if (fence)
482 dma_fence_wait(fence, false);
483 dma_fence_put(fence);
484 return r;
485 }
486
487 /**
488 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
489 *
490 * Called by amdgpu_bo_move().
491 */
492 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
493 struct ttm_operation_ctx *ctx,
494 struct ttm_mem_reg *new_mem)
495 {
496 struct ttm_mem_reg *old_mem = &bo->mem;
497 struct ttm_mem_reg tmp_mem;
498 struct ttm_place placements;
499 struct ttm_placement placement;
500 int r;
501
502 /* create space/pages for new_mem in GTT space */
503 tmp_mem = *new_mem;
504 tmp_mem.mm_node = NULL;
505 placement.num_placement = 1;
506 placement.placement = &placements;
507 placement.num_busy_placement = 1;
508 placement.busy_placement = &placements;
509 placements.fpfn = 0;
510 placements.lpfn = 0;
511 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
512 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
513 if (unlikely(r)) {
514 pr_err("Failed to find GTT space for blit from VRAM\n");
515 return r;
516 }
517
518 /* set caching flags */
519 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
520 if (unlikely(r)) {
521 goto out_cleanup;
522 }
523
524 /* Bind the memory to the GTT space */
525 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
526 if (unlikely(r)) {
527 goto out_cleanup;
528 }
529
530 /* blit VRAM to GTT */
531 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
532 if (unlikely(r)) {
533 goto out_cleanup;
534 }
535
536 /* move BO (in tmp_mem) to new_mem */
537 r = ttm_bo_move_ttm(bo, ctx, new_mem);
538 out_cleanup:
539 ttm_bo_mem_put(bo, &tmp_mem);
540 return r;
541 }
542
543 /**
544 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
545 *
546 * Called by amdgpu_bo_move().
547 */
548 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
549 struct ttm_operation_ctx *ctx,
550 struct ttm_mem_reg *new_mem)
551 {
552 struct ttm_mem_reg *old_mem = &bo->mem;
553 struct ttm_mem_reg tmp_mem;
554 struct ttm_placement placement;
555 struct ttm_place placements;
556 int r;
557
558 /* make space in GTT for old_mem buffer */
559 tmp_mem = *new_mem;
560 tmp_mem.mm_node = NULL;
561 placement.num_placement = 1;
562 placement.placement = &placements;
563 placement.num_busy_placement = 1;
564 placement.busy_placement = &placements;
565 placements.fpfn = 0;
566 placements.lpfn = 0;
567 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
568 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
569 if (unlikely(r)) {
570 pr_err("Failed to find GTT space for blit to VRAM\n");
571 return r;
572 }
573
574 /* move/bind old memory to GTT space */
575 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
576 if (unlikely(r)) {
577 goto out_cleanup;
578 }
579
580 /* copy to VRAM */
581 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
582 if (unlikely(r)) {
583 goto out_cleanup;
584 }
585 out_cleanup:
586 ttm_bo_mem_put(bo, &tmp_mem);
587 return r;
588 }
589
590 /**
591 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
592 *
593 * Called by amdgpu_bo_move()
594 */
595 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
596 struct ttm_mem_reg *mem)
597 {
598 struct drm_mm_node *nodes = mem->mm_node;
599
600 if (mem->mem_type == TTM_PL_SYSTEM ||
601 mem->mem_type == TTM_PL_TT)
602 return true;
603 if (mem->mem_type != TTM_PL_VRAM)
604 return false;
605
606 /* ttm_mem_reg_ioremap only supports contiguous memory */
607 if (nodes->size != mem->num_pages)
608 return false;
609
610 return ((nodes->start + nodes->size) << PAGE_SHIFT)
611 <= adev->gmc.visible_vram_size;
612 }
613
614 /**
615 * amdgpu_bo_move - Move a buffer object to a new memory location
616 *
617 * Called by ttm_bo_handle_move_mem()
618 */
619 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
620 struct ttm_operation_ctx *ctx,
621 struct ttm_mem_reg *new_mem)
622 {
623 struct amdgpu_device *adev;
624 struct amdgpu_bo *abo;
625 struct ttm_mem_reg *old_mem = &bo->mem;
626 int r;
627
628 /* Can't move a pinned BO */
629 abo = ttm_to_amdgpu_bo(bo);
630 if (WARN_ON_ONCE(abo->pin_count > 0))
631 return -EINVAL;
632
633 adev = amdgpu_ttm_adev(bo->bdev);
634
635 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
636 amdgpu_move_null(bo, new_mem);
637 return 0;
638 }
639 if ((old_mem->mem_type == TTM_PL_TT &&
640 new_mem->mem_type == TTM_PL_SYSTEM) ||
641 (old_mem->mem_type == TTM_PL_SYSTEM &&
642 new_mem->mem_type == TTM_PL_TT)) {
643 /* bind is enough */
644 amdgpu_move_null(bo, new_mem);
645 return 0;
646 }
647 if (old_mem->mem_type == AMDGPU_PL_GDS ||
648 old_mem->mem_type == AMDGPU_PL_GWS ||
649 old_mem->mem_type == AMDGPU_PL_OA ||
650 new_mem->mem_type == AMDGPU_PL_GDS ||
651 new_mem->mem_type == AMDGPU_PL_GWS ||
652 new_mem->mem_type == AMDGPU_PL_OA) {
653 /* Nothing to save here */
654 amdgpu_move_null(bo, new_mem);
655 return 0;
656 }
657
658 if (!adev->mman.buffer_funcs_enabled) {
659 r = -ENODEV;
660 goto memcpy;
661 }
662
663 if (old_mem->mem_type == TTM_PL_VRAM &&
664 new_mem->mem_type == TTM_PL_SYSTEM) {
665 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
666 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
667 new_mem->mem_type == TTM_PL_VRAM) {
668 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
669 } else {
670 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
671 new_mem, old_mem);
672 }
673
674 if (r) {
675 memcpy:
676 /* Check that all memory is CPU accessible */
677 if (!amdgpu_mem_visible(adev, old_mem) ||
678 !amdgpu_mem_visible(adev, new_mem)) {
679 pr_err("Move buffer fallback to memcpy unavailable\n");
680 return r;
681 }
682
683 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
684 if (r)
685 return r;
686 }
687
688 if (bo->type == ttm_bo_type_device &&
689 new_mem->mem_type == TTM_PL_VRAM &&
690 old_mem->mem_type != TTM_PL_VRAM) {
691 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
692 * accesses the BO after it's moved.
693 */
694 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
695 }
696
697 /* update statistics */
698 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
699 return 0;
700 }
701
702 /**
703 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
704 *
705 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
706 */
707 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
708 {
709 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
710 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
711 struct drm_mm_node *mm_node = mem->mm_node;
712
713 mem->bus.addr = NULL;
714 mem->bus.offset = 0;
715 mem->bus.size = mem->num_pages << PAGE_SHIFT;
716 mem->bus.base = 0;
717 mem->bus.is_iomem = false;
718 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
719 return -EINVAL;
720 switch (mem->mem_type) {
721 case TTM_PL_SYSTEM:
722 /* system memory */
723 return 0;
724 case TTM_PL_TT:
725 break;
726 case TTM_PL_VRAM:
727 mem->bus.offset = mem->start << PAGE_SHIFT;
728 /* check if it's visible */
729 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
730 return -EINVAL;
731 /* Only physically contiguous buffers apply. In a contiguous
732 * buffer, size of the first mm_node would match the number of
733 * pages in ttm_mem_reg.
734 */
735 if (adev->mman.aper_base_kaddr &&
736 (mm_node->size == mem->num_pages))
737 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
738 mem->bus.offset;
739
740 mem->bus.base = adev->gmc.aper_base;
741 mem->bus.is_iomem = true;
742 break;
743 default:
744 return -EINVAL;
745 }
746 return 0;
747 }
748
749 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
750 {
751 }
752
753 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
754 unsigned long page_offset)
755 {
756 struct drm_mm_node *mm;
757 unsigned long offset = (page_offset << PAGE_SHIFT);
758
759 mm = amdgpu_find_mm_node(&bo->mem, &offset);
760 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
761 (offset >> PAGE_SHIFT);
762 }
763
764 /*
765 * TTM backend functions.
766 */
767 struct amdgpu_ttm_tt {
768 struct ttm_dma_tt ttm;
769 struct drm_gem_object *gobj;
770 u64 offset;
771 uint64_t userptr;
772 #ifdef __NetBSD__
773 struct proc *usertask;
774 #else
775 struct task_struct *usertask;
776 #endif
777 uint32_t userflags;
778 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
779 struct hmm_range *range;
780 #endif
781 };
782
783 #ifdef CONFIG_DRM_AMDGPU_USERPTR
784 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
785 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
786 (1 << 0), /* HMM_PFN_VALID */
787 (1 << 1), /* HMM_PFN_WRITE */
788 0 /* HMM_PFN_DEVICE_PRIVATE */
789 };
790
791 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
792 0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
793 0, /* HMM_PFN_NONE */
794 0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
795 };
796
797 /**
798 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
799 * memory and start HMM tracking CPU page table update
800 *
801 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
802 * once afterwards to stop HMM tracking
803 */
804 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
805 {
806 struct ttm_tt *ttm = bo->tbo.ttm;
807 struct amdgpu_ttm_tt *gtt = (void *)ttm;
808 unsigned long start = gtt->userptr;
809 struct vm_area_struct *vma;
810 struct hmm_range *range;
811 unsigned long timeout;
812 struct mm_struct *mm;
813 unsigned long i;
814 int r = 0;
815
816 mm = bo->notifier.mm;
817 if (unlikely(!mm)) {
818 DRM_DEBUG_DRIVER("BO is not registered?\n");
819 return -EFAULT;
820 }
821
822 /* Another get_user_pages is running at the same time?? */
823 if (WARN_ON(gtt->range))
824 return -EFAULT;
825
826 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
827 return -ESRCH;
828
829 range = kzalloc(sizeof(*range), GFP_KERNEL);
830 if (unlikely(!range)) {
831 r = -ENOMEM;
832 goto out;
833 }
834 range->notifier = &bo->notifier;
835 range->flags = hmm_range_flags;
836 range->values = hmm_range_values;
837 range->pfn_shift = PAGE_SHIFT;
838 range->start = bo->notifier.interval_tree.start;
839 range->end = bo->notifier.interval_tree.last + 1;
840 range->default_flags = hmm_range_flags[HMM_PFN_VALID];
841 if (!amdgpu_ttm_tt_is_readonly(ttm))
842 range->default_flags |= range->flags[HMM_PFN_WRITE];
843
844 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
845 GFP_KERNEL);
846 if (unlikely(!range->pfns)) {
847 r = -ENOMEM;
848 goto out_free_ranges;
849 }
850
851 down_read(&mm->mmap_sem);
852 vma = find_vma(mm, start);
853 if (unlikely(!vma || start < vma->vm_start)) {
854 r = -EFAULT;
855 goto out_unlock;
856 }
857 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
858 vma->vm_file)) {
859 r = -EPERM;
860 goto out_unlock;
861 }
862 up_read(&mm->mmap_sem);
863 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
864
865 retry:
866 range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
867
868 down_read(&mm->mmap_sem);
869 r = hmm_range_fault(range, 0);
870 up_read(&mm->mmap_sem);
871 if (unlikely(r <= 0)) {
872 /*
873 * FIXME: This timeout should encompass the retry from
874 * mmu_interval_read_retry() as well.
875 */
876 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
877 goto retry;
878 goto out_free_pfns;
879 }
880
881 for (i = 0; i < ttm->num_pages; i++) {
882 /* FIXME: The pages cannot be touched outside the notifier_lock */
883 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
884 if (unlikely(!pages[i])) {
885 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
886 i, range->pfns[i]);
887 r = -ENOMEM;
888
889 goto out_free_pfns;
890 }
891 }
892
893 gtt->range = range;
894 mmput(mm);
895
896 return 0;
897
898 out_unlock:
899 up_read(&mm->mmap_sem);
900 out_free_pfns:
901 kvfree(range->pfns);
902 out_free_ranges:
903 kfree(range);
904 out:
905 mmput(mm);
906 return r;
907 }
908
909 /**
910 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
911 * Check if the pages backing this ttm range have been invalidated
912 *
913 * Returns: true if pages are still valid
914 */
915 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
916 {
917 struct amdgpu_ttm_tt *gtt = (void *)ttm;
918 bool r = false;
919
920 if (!gtt || !gtt->userptr)
921 return false;
922
923 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
924 gtt->userptr, ttm->num_pages);
925
926 WARN_ONCE(!gtt->range || !gtt->range->pfns,
927 "No user pages to check\n");
928
929 if (gtt->range) {
930 /*
931 * FIXME: Must always hold notifier_lock for this, and must
932 * not ignore the return code.
933 */
934 r = mmu_interval_read_retry(gtt->range->notifier,
935 gtt->range->notifier_seq);
936 kvfree(gtt->range->pfns);
937 kfree(gtt->range);
938 gtt->range = NULL;
939 }
940
941 return !r;
942 }
943 #endif
944
945 /**
946 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
947 *
948 * Called by amdgpu_cs_list_validate(). This creates the page list
949 * that backs user memory and will ultimately be mapped into the device
950 * address space.
951 */
952 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
953 {
954 unsigned long i;
955
956 for (i = 0; i < ttm->num_pages; ++i)
957 ttm->pages[i] = pages ? pages[i] : NULL;
958 }
959
960 /**
961 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
962 *
963 * Called by amdgpu_ttm_backend_bind()
964 **/
965 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
966 {
967 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
968 struct amdgpu_ttm_tt *gtt = (void *)ttm;
969 unsigned nents;
970 int r;
971
972 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
973 enum dma_data_direction direction = write ?
974 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
975
976 /* Allocate an SG array and squash pages into it */
977 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
978 ttm->num_pages << PAGE_SHIFT,
979 GFP_KERNEL);
980 if (r)
981 goto release_sg;
982
983 /* Map SG to device */
984 r = -ENOMEM;
985 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
986 if (nents != ttm->sg->nents)
987 goto release_sg;
988
989 /* convert SG to linear array of pages and dma addresses */
990 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
991 gtt->ttm.dma_address, ttm->num_pages);
992
993 return 0;
994
995 release_sg:
996 kfree(ttm->sg);
997 return r;
998 }
999
1000 /**
1001 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1002 */
1003 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1004 {
1005 #ifdef __NetBSD__
1006 struct amdgpu_device *adev = amdgpu_get_adev(ttm->bdev);
1007 struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
1008 ttm.ttm);
1009
1010 bus_dmamap_unload(adev->ddev->dmat, gtt->ttm.dma_address);
1011 uvm_vsunlock(gtt->usermm, (void *)(vaddr_t)gtt->userptr,
1012 ttm->num_pages << PAGE_SHIFT);
1013 #else
1014 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1015 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1016
1017 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1018 enum dma_data_direction direction = write ?
1019 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1020
1021 /* double check that we don't free the table twice */
1022 if (!ttm->sg->sgl)
1023 return;
1024
1025 /* unmap the pages mapped to the device */
1026 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1027
1028 sg_free_table(ttm->sg);
1029
1030 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1031 if (gtt->range) {
1032 unsigned long i;
1033
1034 for (i = 0; i < ttm->num_pages; i++) {
1035 if (ttm->pages[i] !=
1036 hmm_device_entry_to_page(gtt->range,
1037 gtt->range->pfns[i]))
1038 break;
1039 }
1040
1041 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1042 }
1043 #endif
1044 #endif
1045 }
1046
1047 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1048 struct ttm_buffer_object *tbo,
1049 uint64_t flags)
1050 {
1051 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1052 struct ttm_tt *ttm = tbo->ttm;
1053 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1054 int r;
1055
1056 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1057 uint64_t page_idx = 1;
1058
1059 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1060 ttm->pages, gtt->ttm.dma_address, flags);
1061 if (r)
1062 goto gart_bind_fail;
1063
1064 /* Patch mtype of the second part BO */
1065 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1066 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1067
1068 r = amdgpu_gart_bind(adev,
1069 gtt->offset + (page_idx << PAGE_SHIFT),
1070 ttm->num_pages - page_idx,
1071 &ttm->pages[page_idx],
1072 &(gtt->ttm.dma_address[page_idx]), flags);
1073 } else {
1074 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1075 ttm->pages, gtt->ttm.dma_address, flags);
1076 }
1077
1078 gart_bind_fail:
1079 if (r)
1080 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1081 ttm->num_pages, gtt->offset);
1082
1083 return r;
1084 }
1085
1086 /**
1087 * amdgpu_ttm_backend_bind - Bind GTT memory
1088 *
1089 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1090 * This handles binding GTT memory to the device address space.
1091 */
1092 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1093 struct ttm_mem_reg *bo_mem)
1094 {
1095 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1096 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1097 uint64_t flags;
1098 int r = 0;
1099
1100 if (gtt->userptr) {
1101 r = amdgpu_ttm_tt_pin_userptr(ttm);
1102 if (r) {
1103 DRM_ERROR("failed to pin userptr\n");
1104 return r;
1105 }
1106 }
1107 if (!ttm->num_pages) {
1108 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1109 ttm->num_pages, bo_mem, ttm);
1110 }
1111
1112 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1113 bo_mem->mem_type == AMDGPU_PL_GWS ||
1114 bo_mem->mem_type == AMDGPU_PL_OA)
1115 return -EINVAL;
1116
1117 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1118 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1119 return 0;
1120 }
1121
1122 /* compute PTE flags relevant to this BO memory */
1123 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1124
1125 /* bind pages into GART page tables */
1126 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1127 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1128 ttm->pages, gtt->ttm.dma_address, flags);
1129
1130 if (r)
1131 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
1132 ttm->num_pages, gtt->offset);
1133 return r;
1134 }
1135
1136 /**
1137 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1138 */
1139 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1140 {
1141 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1142 struct ttm_operation_ctx ctx = { false, false };
1143 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1144 struct ttm_mem_reg tmp;
1145 struct ttm_placement placement;
1146 struct ttm_place placements;
1147 uint64_t addr, flags;
1148 int r;
1149
1150 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1151 return 0;
1152
1153 addr = amdgpu_gmc_agp_addr(bo);
1154 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1155 bo->mem.start = addr >> PAGE_SHIFT;
1156 } else {
1157
1158 /* allocate GART space */
1159 tmp = bo->mem;
1160 tmp.mm_node = NULL;
1161 placement.num_placement = 1;
1162 placement.placement = &placements;
1163 placement.num_busy_placement = 1;
1164 placement.busy_placement = &placements;
1165 placements.fpfn = 0;
1166 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1167 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1168 TTM_PL_FLAG_TT;
1169
1170 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1171 if (unlikely(r))
1172 return r;
1173
1174 /* compute PTE flags for this buffer object */
1175 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1176
1177 /* Bind pages */
1178 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1179 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1180 if (unlikely(r)) {
1181 ttm_bo_mem_put(bo, &tmp);
1182 return r;
1183 }
1184
1185 ttm_bo_mem_put(bo, &bo->mem);
1186 bo->mem = tmp;
1187 }
1188
1189 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1190 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1191
1192 return 0;
1193 }
1194
1195 /**
1196 * amdgpu_ttm_recover_gart - Rebind GTT pages
1197 *
1198 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1199 * rebind GTT pages during a GPU reset.
1200 */
1201 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1202 {
1203 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1204 uint64_t flags;
1205 int r;
1206
1207 if (!tbo->ttm)
1208 return 0;
1209
1210 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1211 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1212
1213 return r;
1214 }
1215
1216 /**
1217 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1218 *
1219 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1220 * ttm_tt_destroy().
1221 */
1222 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1223 {
1224 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1225 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1226 int r;
1227
1228 /* if the pages have userptr pinning then clear that first */
1229 if (gtt->userptr)
1230 amdgpu_ttm_tt_unpin_userptr(ttm);
1231
1232 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1233 return 0;
1234
1235 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1236 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1237 if (r)
1238 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1239 gtt->ttm.ttm.num_pages, gtt->offset);
1240 return r;
1241 }
1242
1243 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1244 {
1245 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1246
1247 if (gtt->usertask)
1248 put_task_struct(gtt->usertask);
1249
1250 ttm_dma_tt_fini(>t->ttm);
1251 kfree(gtt);
1252 }
1253
1254 static struct ttm_backend_func amdgpu_backend_func = {
1255 .bind = &amdgpu_ttm_backend_bind,
1256 .unbind = &amdgpu_ttm_backend_unbind,
1257 .destroy = &amdgpu_ttm_backend_destroy,
1258 };
1259
1260 /**
1261 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1262 *
1263 * @bo: The buffer object to create a GTT ttm_tt object around
1264 *
1265 * Called by ttm_tt_create().
1266 */
1267 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1268 uint32_t page_flags)
1269 {
1270 struct amdgpu_ttm_tt *gtt;
1271
1272 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1273 if (gtt == NULL) {
1274 return NULL;
1275 }
1276 gtt->ttm.ttm.func = &amdgpu_backend_func;
1277 gtt->gobj = &bo->base;
1278
1279 /* allocate space for the uninitialized page entries */
1280 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) {
1281 kfree(gtt);
1282 return NULL;
1283 }
1284 return >t->ttm.ttm;
1285 }
1286
1287 /**
1288 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1289 *
1290 * Map the pages of a ttm_tt object to an address space visible
1291 * to the underlying device.
1292 */
1293 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1294 struct ttm_operation_ctx *ctx)
1295 {
1296 #ifndef __NetBSD__
1297 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1298 #endif
1299 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1300
1301 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1302 if (gtt && gtt->userptr) {
1303 #ifdef __NetBSD__
1304 ttm->sg = NULL;
1305 #else
1306 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1307 if (!ttm->sg)
1308 return -ENOMEM;
1309 #endif
1310
1311 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1312 ttm->state = tt_unbound;
1313 return 0;
1314 }
1315
1316 if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1317 if (!ttm->sg) {
1318 struct dma_buf_attachment *attach;
1319 struct sg_table *sgt;
1320
1321 attach = gtt->gobj->import_attach;
1322 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1323 if (IS_ERR(sgt))
1324 return PTR_ERR(sgt);
1325
1326 ttm->sg = sgt;
1327 }
1328
1329 #ifdef __NetBSD__
1330 r = drm_prime_bus_dmamap_load_sgt(ttm->bdev->dmat,
1331 gtt->ttm.dma_address, ttm->sg);
1332 if (r)
1333 return r;
1334 #else
1335 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1336 gtt->ttm.dma_address,
1337 ttm->num_pages);
1338 #endif
1339 ttm->state = tt_unbound;
1340 return 0;
1341 }
1342
1343 #ifdef __NetBSD__
1344 /* XXX errno NetBSD->Linux */
1345 return ttm_bus_dma_populate(>t->ttm);
1346 #else
1347 #ifdef CONFIG_SWIOTLB
1348 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1349 return ttm_dma_populate(>t->ttm, adev->dev, ctx);
1350 }
1351 #endif
1352
1353 /* fall back to generic helper to populate the page array
1354 * and map them to the device */
1355 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx);
1356 #endif
1357 }
1358
1359 /**
1360 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1361 *
1362 * Unmaps pages of a ttm_tt object from the device address space and
1363 * unpopulates the page array backing it.
1364 */
1365 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1366 {
1367 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1368 #ifndef __NetBSD__
1369 struct amdgpu_device *adev;
1370 #endif
1371
1372 if (gtt && gtt->userptr) {
1373 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1374 kfree(ttm->sg);
1375 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1376 return;
1377 }
1378
1379 if (ttm->sg && gtt->gobj->import_attach) {
1380 struct dma_buf_attachment *attach;
1381
1382 attach = gtt->gobj->import_attach;
1383 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1384 ttm->sg = NULL;
1385 return;
1386 }
1387
1388 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1389 return;
1390
1391 #ifdef __NetBSD__
1392 ttm_bus_dma_unpopulate(>t->ttm);
1393 return;
1394 #else
1395 adev = amdgpu_ttm_adev(ttm->bdev);
1396
1397 #ifdef CONFIG_SWIOTLB
1398 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1399 ttm_dma_unpopulate(>t->ttm, adev->dev);
1400 return;
1401 }
1402 #endif
1403
1404 /* fall back to generic helper to unmap and unpopulate array */
1405 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm);
1406 #endif /* __NetBSD__ */
1407 }
1408
1409 #ifdef __NetBSD__
1410 static void amdgpu_ttm_tt_swapout(struct ttm_tt *ttm)
1411 {
1412 struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
1413 ttm.ttm);
1414 struct ttm_dma_tt *ttm_dma = >t->ttm;
1415
1416 ttm_bus_dma_swapout(ttm_dma);
1417 }
1418
1419 static const struct uvm_pagerops amdgpu_uvm_ops = {
1420 .pgo_reference = &ttm_bo_uvm_reference,
1421 .pgo_detach = &ttm_bo_uvm_detach,
1422 .pgo_fault = &ttm_bo_uvm_fault,
1423 };
1424 #endif
1425
1426 /**
1427 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1428 * task
1429 *
1430 * @ttm: The ttm_tt object to bind this userptr object to
1431 * @addr: The address in the current tasks VM space to use
1432 * @flags: Requirements of userptr object.
1433 *
1434 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1435 * to current task
1436 */
1437 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1438 uint32_t flags)
1439 {
1440 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1441
1442 if (gtt == NULL)
1443 return -EINVAL;
1444
1445 gtt->userptr = addr;
1446 gtt->userflags = flags;
1447
1448 if (gtt->usertask)
1449 put_task_struct(gtt->usertask);
1450 gtt->usertask = current->group_leader;
1451 get_task_struct(gtt->usertask);
1452
1453 return 0;
1454 }
1455
1456 /**
1457 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1458 */
1459 #ifdef __NetBSD__
1460 struct vmspace *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1461 #else
1462 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1463 #endif
1464 {
1465 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1466
1467 if (gtt == NULL)
1468 return NULL;
1469
1470 if (gtt->usertask == NULL)
1471 return NULL;
1472
1473 #ifdef __NetBSD__
1474 return gtt->usertask->p_vmspace;
1475 #else
1476 return gtt->usertask->mm;
1477 #endif
1478 }
1479
1480 /**
1481 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1482 * address range for the current task.
1483 *
1484 */
1485 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1486 unsigned long end)
1487 {
1488 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1489 unsigned long size;
1490
1491 if (gtt == NULL || !gtt->userptr)
1492 return false;
1493
1494 /* Return false if no part of the ttm_tt object lies within
1495 * the range
1496 */
1497 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1498 if (gtt->userptr > end || gtt->userptr + size <= start)
1499 return false;
1500
1501 return true;
1502 }
1503
1504 /**
1505 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1506 */
1507 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1508 {
1509 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1510
1511 if (gtt == NULL || !gtt->userptr)
1512 return false;
1513
1514 return true;
1515 }
1516
1517 /**
1518 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1519 */
1520 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1521 {
1522 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1523
1524 if (gtt == NULL)
1525 return false;
1526
1527 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1528 }
1529
1530 /**
1531 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1532 *
1533 * @ttm: The ttm_tt object to compute the flags for
1534 * @mem: The memory registry backing this ttm_tt object
1535 *
1536 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1537 */
1538 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1539 {
1540 uint64_t flags = 0;
1541
1542 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1543 flags |= AMDGPU_PTE_VALID;
1544
1545 if (mem && mem->mem_type == TTM_PL_TT) {
1546 flags |= AMDGPU_PTE_SYSTEM;
1547
1548 if (ttm->caching_state == tt_cached)
1549 flags |= AMDGPU_PTE_SNOOPED;
1550 }
1551
1552 return flags;
1553 }
1554
1555 /**
1556 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1557 *
1558 * @ttm: The ttm_tt object to compute the flags for
1559 * @mem: The memory registry backing this ttm_tt object
1560
1561 * Figure out the flags to use for a VM PTE (Page Table Entry).
1562 */
1563 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1564 struct ttm_mem_reg *mem)
1565 {
1566 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1567
1568 flags |= adev->gart.gart_pte_flags;
1569 flags |= AMDGPU_PTE_READABLE;
1570
1571 if (!amdgpu_ttm_tt_is_readonly(ttm))
1572 flags |= AMDGPU_PTE_WRITEABLE;
1573
1574 return flags;
1575 }
1576
1577 /**
1578 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1579 * object.
1580 *
1581 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1582 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1583 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1584 * used to clean out a memory space.
1585 */
1586 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1587 const struct ttm_place *place)
1588 {
1589 unsigned long num_pages = bo->mem.num_pages;
1590 struct drm_mm_node *node = bo->mem.mm_node;
1591 struct dma_resv_list *flist;
1592 struct dma_fence *f;
1593 int i;
1594
1595 if (bo->type == ttm_bo_type_kernel &&
1596 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1597 return false;
1598
1599 /* If bo is a KFD BO, check if the bo belongs to the current process.
1600 * If true, then return false as any KFD process needs all its BOs to
1601 * be resident to run successfully
1602 */
1603 flist = dma_resv_get_list(bo->base.resv);
1604 if (flist) {
1605 for (i = 0; i < flist->shared_count; ++i) {
1606 f = rcu_dereference_protected(flist->shared[i],
1607 dma_resv_held(bo->base.resv));
1608 if (amdkfd_fence_check_mm(f, current->mm))
1609 return false;
1610 }
1611 }
1612
1613 switch (bo->mem.mem_type) {
1614 case TTM_PL_TT:
1615 return true;
1616
1617 case TTM_PL_VRAM:
1618 /* Check each drm MM node individually */
1619 while (num_pages) {
1620 if (place->fpfn < (node->start + node->size) &&
1621 !(place->lpfn && place->lpfn <= node->start))
1622 return true;
1623
1624 num_pages -= node->size;
1625 ++node;
1626 }
1627 return false;
1628
1629 default:
1630 break;
1631 }
1632
1633 return ttm_bo_eviction_valuable(bo, place);
1634 }
1635
1636 /**
1637 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1638 *
1639 * @bo: The buffer object to read/write
1640 * @offset: Offset into buffer object
1641 * @buf: Secondary buffer to write/read from
1642 * @len: Length in bytes of access
1643 * @write: true if writing
1644 *
1645 * This is used to access VRAM that backs a buffer object via MMIO
1646 * access for debugging purposes.
1647 */
1648 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1649 unsigned long offset,
1650 void *buf, int len, int write)
1651 {
1652 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1653 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1654 struct drm_mm_node *nodes;
1655 uint32_t value = 0;
1656 int ret = 0;
1657 uint64_t pos;
1658 unsigned long flags;
1659
1660 if (bo->mem.mem_type != TTM_PL_VRAM)
1661 return -EIO;
1662
1663 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1664 pos = (nodes->start << PAGE_SHIFT) + offset;
1665
1666 while (len && pos < adev->gmc.mc_vram_size) {
1667 uint64_t aligned_pos = pos & ~(uint64_t)3;
1668 uint32_t bytes = 4 - (pos & 3);
1669 uint32_t shift = (pos & 3) * 8;
1670 uint32_t mask = 0xffffffff << shift;
1671
1672 if (len < bytes) {
1673 mask &= 0xffffffff >> (bytes - len) * 8;
1674 bytes = len;
1675 }
1676
1677 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1678 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1679 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1680 if (!write || mask != 0xffffffff)
1681 value = RREG32_NO_KIQ(mmMM_DATA);
1682 if (write) {
1683 value &= ~mask;
1684 value |= (*(uint32_t *)buf << shift) & mask;
1685 WREG32_NO_KIQ(mmMM_DATA, value);
1686 }
1687 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1688 if (!write) {
1689 value = (value & mask) >> shift;
1690 memcpy(buf, &value, bytes);
1691 }
1692
1693 ret += bytes;
1694 buf = (uint8_t *)buf + bytes;
1695 pos += bytes;
1696 len -= bytes;
1697 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1698 ++nodes;
1699 pos = (nodes->start << PAGE_SHIFT);
1700 }
1701 }
1702
1703 return ret;
1704 }
1705
1706 static struct ttm_bo_driver amdgpu_bo_driver = {
1707 .ttm_tt_create = &amdgpu_ttm_tt_create,
1708 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1709 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1710 #ifdef __NetBSD__
1711 .ttm_tt_swapout = &amdgpu_ttm_tt_swapout,
1712 .ttm_uvm_ops = &amdgpu_uvm_ops,
1713 #endif
1714 .invalidate_caches = &amdgpu_invalidate_caches,
1715 .init_mem_type = &amdgpu_init_mem_type,
1716 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1717 .evict_flags = &amdgpu_evict_flags,
1718 .move = &amdgpu_bo_move,
1719 .verify_access = &amdgpu_verify_access,
1720 .move_notify = &amdgpu_bo_move_notify,
1721 .release_notify = &amdgpu_bo_release_notify,
1722 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1723 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1724 .io_mem_free = &amdgpu_ttm_io_mem_free,
1725 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1726 .access_memory = &amdgpu_ttm_access_memory,
1727 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1728 };
1729
1730 /*
1731 * Firmware Reservation functions
1732 */
1733 /**
1734 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1735 *
1736 * @adev: amdgpu_device pointer
1737 *
1738 * free fw reserved vram if it has been reserved.
1739 */
1740 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1741 {
1742 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1743 NULL, &adev->fw_vram_usage.va);
1744 }
1745
1746 /**
1747 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1748 *
1749 * @adev: amdgpu_device pointer
1750 *
1751 * create bo vram reservation from fw.
1752 */
1753 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1754 {
1755 uint64_t vram_size = adev->gmc.visible_vram_size;
1756
1757 adev->fw_vram_usage.va = NULL;
1758 adev->fw_vram_usage.reserved_bo = NULL;
1759
1760 if (adev->fw_vram_usage.size == 0 ||
1761 adev->fw_vram_usage.size > vram_size)
1762 return 0;
1763
1764 return amdgpu_bo_create_kernel_at(adev,
1765 adev->fw_vram_usage.start_offset,
1766 adev->fw_vram_usage.size,
1767 AMDGPU_GEM_DOMAIN_VRAM,
1768 &adev->fw_vram_usage.reserved_bo,
1769 &adev->fw_vram_usage.va);
1770 }
1771
1772 /*
1773 * Memoy training reservation functions
1774 */
1775
1776 /**
1777 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1778 *
1779 * @adev: amdgpu_device pointer
1780 *
1781 * free memory training reserved vram if it has been reserved.
1782 */
1783 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1784 {
1785 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1786
1787 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1788 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1789 ctx->c2p_bo = NULL;
1790
1791 return 0;
1792 }
1793
1794 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1795 {
1796 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1797 vram_size -= SZ_1M;
1798
1799 return ALIGN(vram_size, SZ_1M);
1800 }
1801
1802 /**
1803 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1804 *
1805 * @adev: amdgpu_device pointer
1806 *
1807 * create bo vram reservation from memory training.
1808 */
1809 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1810 {
1811 int ret;
1812 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1813
1814 memset(ctx, 0, sizeof(*ctx));
1815 if (!adev->fw_vram_usage.mem_train_support) {
1816 DRM_DEBUG("memory training does not support!\n");
1817 return 0;
1818 }
1819
1820 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1821 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1822 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1823
1824 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1825 ctx->train_data_size,
1826 ctx->p2c_train_data_offset,
1827 ctx->c2p_train_data_offset);
1828
1829 ret = amdgpu_bo_create_kernel_at(adev,
1830 ctx->c2p_train_data_offset,
1831 ctx->train_data_size,
1832 AMDGPU_GEM_DOMAIN_VRAM,
1833 &ctx->c2p_bo,
1834 NULL);
1835 if (ret) {
1836 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1837 amdgpu_ttm_training_reserve_vram_fini(adev);
1838 return ret;
1839 }
1840
1841 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1842 return 0;
1843 }
1844
1845 /**
1846 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1847 * gtt/vram related fields.
1848 *
1849 * This initializes all of the memory space pools that the TTM layer
1850 * will need such as the GTT space (system memory mapped to the device),
1851 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1852 * can be mapped per VMID.
1853 */
1854 int amdgpu_ttm_init(struct amdgpu_device *adev)
1855 {
1856 uint64_t gtt_size;
1857 int r;
1858 u64 vis_vram_limit;
1859 void *stolen_vga_buf;
1860
1861 mutex_init(&adev->mman.gtt_window_lock);
1862
1863 /* No others user of address space so set it to 0 */
1864 r = ttm_bo_device_init(&adev->mman.bdev,
1865 &amdgpu_bo_driver,
1866 #ifdef __NetBSD__
1867 adev->ddev->bst,
1868 adev->ddev->dmat,
1869 #else
1870 adev->ddev->anon_inode->i_mapping,
1871 #endif
1872 adev->ddev->vma_offset_manager,
1873 dma_addressing_limited(adev->dev));
1874 if (r) {
1875 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1876 return r;
1877 }
1878 adev->mman.initialized = true;
1879
1880 /* We opt to avoid OOM on system pages allocations */
1881 adev->mman.bdev.no_retry = true;
1882
1883 /* Initialize VRAM pool with all of VRAM divided into pages */
1884 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1885 adev->gmc.real_vram_size >> PAGE_SHIFT);
1886 if (r) {
1887 DRM_ERROR("Failed initializing VRAM heap.\n");
1888 return r;
1889 }
1890
1891 /* Reduce size of CPU-visible VRAM if requested */
1892 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1893 if (amdgpu_vis_vram_limit > 0 &&
1894 vis_vram_limit <= adev->gmc.visible_vram_size)
1895 adev->gmc.visible_vram_size = vis_vram_limit;
1896
1897 /* Change the size here instead of the init above so only lpfn is affected */
1898 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1899 #ifdef CONFIG_64BIT
1900 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1901 adev->gmc.visible_vram_size);
1902 #endif
1903
1904 /*
1905 *The reserved vram for firmware must be pinned to the specified
1906 *place on the VRAM, so reserve it early.
1907 */
1908 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1909 if (r) {
1910 return r;
1911 }
1912
1913 /*
1914 *The reserved vram for memory training must be pinned to the specified
1915 *place on the VRAM, so reserve it early.
1916 */
1917 r = amdgpu_ttm_training_reserve_vram_init(adev);
1918 if (r)
1919 return r;
1920
1921 /* allocate memory as required for VGA
1922 * This is used for VGA emulation and pre-OS scanout buffers to
1923 * avoid display artifacts while transitioning between pre-OS
1924 * and driver. */
1925 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1926 AMDGPU_GEM_DOMAIN_VRAM,
1927 &adev->stolen_vga_memory,
1928 NULL, &stolen_vga_buf);
1929 if (r)
1930 return r;
1931
1932 /*
1933 * reserve one TMR (64K) memory at the top of VRAM which holds
1934 * IP Discovery data and is protected by PSP.
1935 */
1936 r = amdgpu_bo_create_kernel_at(adev,
1937 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1938 DISCOVERY_TMR_SIZE,
1939 AMDGPU_GEM_DOMAIN_VRAM,
1940 &adev->discovery_memory,
1941 NULL);
1942 if (r)
1943 return r;
1944
1945 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1946 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1947
1948 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1949 * or whatever the user passed on module init */
1950 if (amdgpu_gtt_size == -1) {
1951 struct sysinfo si;
1952
1953 si_meminfo(&si);
1954 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1955 adev->gmc.mc_vram_size),
1956 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1957 }
1958 else
1959 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1960
1961 /* Initialize GTT memory pool */
1962 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1963 if (r) {
1964 DRM_ERROR("Failed initializing GTT heap.\n");
1965 return r;
1966 }
1967 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1968 (unsigned)(gtt_size / (1024 * 1024)));
1969
1970 /* Initialize various on-chip memory pools */
1971 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1972 adev->gds.gds_size);
1973 if (r) {
1974 DRM_ERROR("Failed initializing GDS heap.\n");
1975 return r;
1976 }
1977
1978 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1979 adev->gds.gws_size);
1980 if (r) {
1981 DRM_ERROR("Failed initializing gws heap.\n");
1982 return r;
1983 }
1984
1985 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1986 adev->gds.oa_size);
1987 if (r) {
1988 DRM_ERROR("Failed initializing oa heap.\n");
1989 return r;
1990 }
1991
1992 /* Register debugfs entries for amdgpu_ttm */
1993 r = amdgpu_ttm_debugfs_init(adev);
1994 if (r) {
1995 DRM_ERROR("Failed to init debugfs\n");
1996 return r;
1997 }
1998 return 0;
1999 }
2000
2001 /**
2002 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2003 */
2004 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2005 {
2006 void *stolen_vga_buf;
2007 /* return the VGA stolen memory (if any) back to VRAM */
2008 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2009 }
2010
2011 /**
2012 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2013 */
2014 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2015 {
2016 if (!adev->mman.initialized)
2017 return;
2018
2019 amdgpu_ttm_debugfs_fini(adev);
2020 amdgpu_ttm_training_reserve_vram_fini(adev);
2021 /* return the IP Discovery TMR memory back to VRAM */
2022 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2023 amdgpu_ttm_fw_reserve_vram_fini(adev);
2024
2025 if (adev->mman.aper_base_kaddr)
2026 iounmap(adev->mman.aper_base_kaddr);
2027 adev->mman.aper_base_kaddr = NULL;
2028
2029 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2030 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2031 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2032 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2033 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2034 ttm_bo_device_release(&adev->mman.bdev);
2035 adev->mman.initialized = false;
2036 DRM_INFO("amdgpu: ttm finalized\n");
2037 }
2038
2039 /**
2040 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2041 *
2042 * @adev: amdgpu_device pointer
2043 * @enable: true when we can use buffer functions.
2044 *
2045 * Enable/disable use of buffer functions during suspend/resume. This should
2046 * only be called at bootup or when userspace isn't running.
2047 */
2048 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2049 {
2050 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2051 uint64_t size;
2052 int r;
2053
2054 if (!adev->mman.initialized || adev->in_gpu_reset ||
2055 adev->mman.buffer_funcs_enabled == enable)
2056 return;
2057
2058 if (enable) {
2059 struct amdgpu_ring *ring;
2060 struct drm_gpu_scheduler *sched;
2061
2062 ring = adev->mman.buffer_funcs_ring;
2063 sched = &ring->sched;
2064 r = drm_sched_entity_init(&adev->mman.entity,
2065 DRM_SCHED_PRIORITY_KERNEL, &sched,
2066 1, NULL);
2067 if (r) {
2068 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2069 r);
2070 return;
2071 }
2072 } else {
2073 drm_sched_entity_destroy(&adev->mman.entity);
2074 dma_fence_put(man->move);
2075 man->move = NULL;
2076 }
2077
2078 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2079 if (enable)
2080 size = adev->gmc.real_vram_size;
2081 else
2082 size = adev->gmc.visible_vram_size;
2083 man->size = size >> PAGE_SHIFT;
2084 adev->mman.buffer_funcs_enabled = enable;
2085 }
2086
2087 #ifdef __NetBSD__
2088
2089 int
2090 amdgpu_mmap_object(struct drm_device *dev, off_t offset, size_t size,
2091 vm_prot_t prot, struct uvm_object **uobjp, voff_t *uoffsetp,
2092 struct file *file)
2093 {
2094 struct amdgpu_device *adev = dev->dev_private;
2095
2096 KASSERT(0 == (offset & (PAGE_SIZE - 1)));
2097
2098 if (__predict_false(adev == NULL)) /* XXX How?? */
2099 return -EINVAL;
2100
2101 if (__predict_false((offset >> PAGE_SHIFT) < DRM_FILE_PAGE_OFFSET))
2102 return -EINVAL;
2103
2104 return ttm_bo_mmap_object(&adev->mman.bdev, offset, size, prot,
2105 uobjp, uoffsetp, file);
2106 }
2107
2108 #else /* __NetBSD__ */
2109
2110 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2111 {
2112 struct drm_file *file_priv = filp->private_data;
2113 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2114
2115 if (adev == NULL)
2116 return -EINVAL;
2117
2118 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2119 }
2120
2121 #endif /* __NetBSD__ */
2122 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2123 struct ttm_mem_reg *mem, unsigned num_pages,
2124 uint64_t offset, unsigned window,
2125 struct amdgpu_ring *ring,
2126 uint64_t *addr)
2127 {
2128 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2129 struct amdgpu_device *adev = ring->adev;
2130 struct ttm_tt *ttm = bo->ttm;
2131 struct amdgpu_job *job;
2132 unsigned num_dw, num_bytes;
2133 dma_addr_t *dma_address;
2134 struct dma_fence *fence;
2135 uint64_t src_addr, dst_addr;
2136 uint64_t flags;
2137 int r;
2138
2139 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2140 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2141
2142 *addr = adev->gmc.gart_start;
2143 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2144 AMDGPU_GPU_PAGE_SIZE;
2145
2146 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2147 num_bytes = num_pages * 8;
2148
2149 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2150 if (r)
2151 return r;
2152
2153 src_addr = num_dw * 4;
2154 src_addr += job->ibs[0].gpu_addr;
2155
2156 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2157 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2158 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2159 dst_addr, num_bytes);
2160
2161 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2162 WARN_ON(job->ibs[0].length_dw > num_dw);
2163
2164 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT];
2165 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2166 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2167 &job->ibs[0].ptr[num_dw]);
2168 if (r)
2169 goto error_free;
2170
2171 r = amdgpu_job_submit(job, &adev->mman.entity,
2172 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2173 if (r)
2174 goto error_free;
2175
2176 dma_fence_put(fence);
2177
2178 return r;
2179
2180 error_free:
2181 amdgpu_job_free(job);
2182 return r;
2183 }
2184
2185 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2186 uint64_t dst_offset, uint32_t byte_count,
2187 struct dma_resv *resv,
2188 struct dma_fence **fence, bool direct_submit,
2189 bool vm_needs_flush)
2190 {
2191 struct amdgpu_device *adev = ring->adev;
2192 struct amdgpu_job *job;
2193
2194 uint32_t max_bytes;
2195 unsigned num_loops, num_dw;
2196 unsigned i;
2197 int r;
2198
2199 if (direct_submit && !ring->sched.ready) {
2200 DRM_ERROR("Trying to move memory with ring turned off.\n");
2201 return -EINVAL;
2202 }
2203
2204 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2205 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2206 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2207
2208 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2209 if (r)
2210 return r;
2211
2212 if (vm_needs_flush) {
2213 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2214 job->vm_needs_flush = true;
2215 }
2216 if (resv) {
2217 r = amdgpu_sync_resv(adev, &job->sync, resv,
2218 AMDGPU_FENCE_OWNER_UNDEFINED,
2219 false);
2220 if (r) {
2221 DRM_ERROR("sync failed (%d).\n", r);
2222 goto error_free;
2223 }
2224 }
2225
2226 for (i = 0; i < num_loops; i++) {
2227 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2228
2229 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2230 dst_offset, cur_size_in_bytes);
2231
2232 src_offset += cur_size_in_bytes;
2233 dst_offset += cur_size_in_bytes;
2234 byte_count -= cur_size_in_bytes;
2235 }
2236
2237 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2238 WARN_ON(job->ibs[0].length_dw > num_dw);
2239 if (direct_submit)
2240 r = amdgpu_job_submit_direct(job, ring, fence);
2241 else
2242 r = amdgpu_job_submit(job, &adev->mman.entity,
2243 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2244 if (r)
2245 goto error_free;
2246
2247 return r;
2248
2249 error_free:
2250 amdgpu_job_free(job);
2251 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2252 return r;
2253 }
2254
2255 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2256 uint32_t src_data,
2257 struct dma_resv *resv,
2258 struct dma_fence **fence)
2259 {
2260 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2261 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2262 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2263
2264 struct drm_mm_node *mm_node;
2265 unsigned long num_pages;
2266 unsigned int num_loops, num_dw;
2267
2268 struct amdgpu_job *job;
2269 int r;
2270
2271 if (!adev->mman.buffer_funcs_enabled) {
2272 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2273 return -EINVAL;
2274 }
2275
2276 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2277 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2278 if (r)
2279 return r;
2280 }
2281
2282 num_pages = bo->tbo.num_pages;
2283 mm_node = bo->tbo.mem.mm_node;
2284 num_loops = 0;
2285 while (num_pages) {
2286 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2287
2288 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2289 num_pages -= mm_node->size;
2290 ++mm_node;
2291 }
2292 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2293
2294 /* for IB padding */
2295 num_dw += 64;
2296
2297 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2298 if (r)
2299 return r;
2300
2301 if (resv) {
2302 r = amdgpu_sync_resv(adev, &job->sync, resv,
2303 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2304 if (r) {
2305 DRM_ERROR("sync failed (%d).\n", r);
2306 goto error_free;
2307 }
2308 }
2309
2310 num_pages = bo->tbo.num_pages;
2311 mm_node = bo->tbo.mem.mm_node;
2312
2313 while (num_pages) {
2314 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2315 uint64_t dst_addr;
2316
2317 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2318 while (byte_count) {
2319 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2320 max_bytes);
2321
2322 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2323 dst_addr, cur_size_in_bytes);
2324
2325 dst_addr += cur_size_in_bytes;
2326 byte_count -= cur_size_in_bytes;
2327 }
2328
2329 num_pages -= mm_node->size;
2330 ++mm_node;
2331 }
2332
2333 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2334 WARN_ON(job->ibs[0].length_dw > num_dw);
2335 r = amdgpu_job_submit(job, &adev->mman.entity,
2336 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2337 if (r)
2338 goto error_free;
2339
2340 return 0;
2341
2342 error_free:
2343 amdgpu_job_free(job);
2344 return r;
2345 }
2346
2347 #if defined(CONFIG_DEBUG_FS)
2348
2349 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2350 {
2351 struct drm_info_node *node = (struct drm_info_node *)m->private;
2352 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2353 struct drm_device *dev = node->minor->dev;
2354 struct amdgpu_device *adev = dev->dev_private;
2355 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2356 struct drm_printer p = drm_seq_file_printer(m);
2357
2358 man->func->debug(man, &p);
2359 return 0;
2360 }
2361
2362 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2363 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2364 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2365 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2366 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2367 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2368 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2369 #ifdef CONFIG_SWIOTLB
2370 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2371 #endif
2372 };
2373
2374 /**
2375 * amdgpu_ttm_vram_read - Linear read access to VRAM
2376 *
2377 * Accesses VRAM via MMIO for debugging purposes.
2378 */
2379 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2380 size_t size, loff_t *pos)
2381 {
2382 struct amdgpu_device *adev = file_inode(f)->i_private;
2383 ssize_t result = 0;
2384 int r;
2385
2386 if (size & 0x3 || *pos & 0x3)
2387 return -EINVAL;
2388
2389 if (*pos >= adev->gmc.mc_vram_size)
2390 return -ENXIO;
2391
2392 while (size) {
2393 unsigned long flags;
2394 uint32_t value;
2395
2396 if (*pos >= adev->gmc.mc_vram_size)
2397 return result;
2398
2399 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2400 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2401 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2402 value = RREG32_NO_KIQ(mmMM_DATA);
2403 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2404
2405 r = put_user(value, (uint32_t *)buf);
2406 if (r)
2407 return r;
2408
2409 result += 4;
2410 buf += 4;
2411 *pos += 4;
2412 size -= 4;
2413 }
2414
2415 return result;
2416 }
2417
2418 /**
2419 * amdgpu_ttm_vram_write - Linear write access to VRAM
2420 *
2421 * Accesses VRAM via MMIO for debugging purposes.
2422 */
2423 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2424 size_t size, loff_t *pos)
2425 {
2426 struct amdgpu_device *adev = file_inode(f)->i_private;
2427 ssize_t result = 0;
2428 int r;
2429
2430 if (size & 0x3 || *pos & 0x3)
2431 return -EINVAL;
2432
2433 if (*pos >= adev->gmc.mc_vram_size)
2434 return -ENXIO;
2435
2436 while (size) {
2437 unsigned long flags;
2438 uint32_t value;
2439
2440 if (*pos >= adev->gmc.mc_vram_size)
2441 return result;
2442
2443 r = get_user(value, (uint32_t *)buf);
2444 if (r)
2445 return r;
2446
2447 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2448 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2449 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2450 WREG32_NO_KIQ(mmMM_DATA, value);
2451 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2452
2453 result += 4;
2454 buf += 4;
2455 *pos += 4;
2456 size -= 4;
2457 }
2458
2459 return result;
2460 }
2461
2462 static const struct file_operations amdgpu_ttm_vram_fops = {
2463 .owner = THIS_MODULE,
2464 .read = amdgpu_ttm_vram_read,
2465 .write = amdgpu_ttm_vram_write,
2466 .llseek = default_llseek,
2467 };
2468
2469 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2470
2471 /**
2472 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2473 */
2474 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2475 size_t size, loff_t *pos)
2476 {
2477 struct amdgpu_device *adev = file_inode(f)->i_private;
2478 ssize_t result = 0;
2479 int r;
2480
2481 while (size) {
2482 loff_t p = *pos / PAGE_SIZE;
2483 unsigned off = *pos & ~PAGE_MASK;
2484 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2485 struct page *page;
2486 void *ptr;
2487
2488 if (p >= adev->gart.num_cpu_pages)
2489 return result;
2490
2491 page = adev->gart.pages[p];
2492 if (page) {
2493 ptr = kmap(page);
2494 ptr += off;
2495
2496 r = copy_to_user(buf, ptr, cur_size);
2497 kunmap(adev->gart.pages[p]);
2498 } else
2499 r = clear_user(buf, cur_size);
2500
2501 if (r)
2502 return -EFAULT;
2503
2504 result += cur_size;
2505 buf += cur_size;
2506 *pos += cur_size;
2507 size -= cur_size;
2508 }
2509
2510 return result;
2511 }
2512
2513 static const struct file_operations amdgpu_ttm_gtt_fops = {
2514 .owner = THIS_MODULE,
2515 .read = amdgpu_ttm_gtt_read,
2516 .llseek = default_llseek
2517 };
2518
2519 #endif
2520
2521 /**
2522 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2523 *
2524 * This function is used to read memory that has been mapped to the
2525 * GPU and the known addresses are not physical addresses but instead
2526 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2527 */
2528 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2529 size_t size, loff_t *pos)
2530 {
2531 struct amdgpu_device *adev = file_inode(f)->i_private;
2532 struct iommu_domain *dom;
2533 ssize_t result = 0;
2534 int r;
2535
2536 /* retrieve the IOMMU domain if any for this device */
2537 dom = iommu_get_domain_for_dev(adev->dev);
2538
2539 while (size) {
2540 phys_addr_t addr = *pos & PAGE_MASK;
2541 loff_t off = *pos & ~PAGE_MASK;
2542 size_t bytes = PAGE_SIZE - off;
2543 unsigned long pfn;
2544 struct page *p;
2545 void *ptr;
2546
2547 bytes = bytes < size ? bytes : size;
2548
2549 /* Translate the bus address to a physical address. If
2550 * the domain is NULL it means there is no IOMMU active
2551 * and the address translation is the identity
2552 */
2553 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2554
2555 pfn = addr >> PAGE_SHIFT;
2556 if (!pfn_valid(pfn))
2557 return -EPERM;
2558
2559 p = pfn_to_page(pfn);
2560 if (p->mapping != adev->mman.bdev.dev_mapping)
2561 return -EPERM;
2562
2563 ptr = kmap(p);
2564 r = copy_to_user(buf, ptr + off, bytes);
2565 kunmap(p);
2566 if (r)
2567 return -EFAULT;
2568
2569 size -= bytes;
2570 *pos += bytes;
2571 result += bytes;
2572 }
2573
2574 return result;
2575 }
2576
2577 /**
2578 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2579 *
2580 * This function is used to write memory that has been mapped to the
2581 * GPU and the known addresses are not physical addresses but instead
2582 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2583 */
2584 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2585 size_t size, loff_t *pos)
2586 {
2587 struct amdgpu_device *adev = file_inode(f)->i_private;
2588 struct iommu_domain *dom;
2589 ssize_t result = 0;
2590 int r;
2591
2592 dom = iommu_get_domain_for_dev(adev->dev);
2593
2594 while (size) {
2595 phys_addr_t addr = *pos & PAGE_MASK;
2596 loff_t off = *pos & ~PAGE_MASK;
2597 size_t bytes = PAGE_SIZE - off;
2598 unsigned long pfn;
2599 struct page *p;
2600 void *ptr;
2601
2602 bytes = bytes < size ? bytes : size;
2603
2604 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2605
2606 pfn = addr >> PAGE_SHIFT;
2607 if (!pfn_valid(pfn))
2608 return -EPERM;
2609
2610 p = pfn_to_page(pfn);
2611 if (p->mapping != adev->mman.bdev.dev_mapping)
2612 return -EPERM;
2613
2614 ptr = kmap(p);
2615 r = copy_from_user(ptr + off, buf, bytes);
2616 kunmap(p);
2617 if (r)
2618 return -EFAULT;
2619
2620 size -= bytes;
2621 *pos += bytes;
2622 result += bytes;
2623 }
2624
2625 return result;
2626 }
2627
2628 static const struct file_operations amdgpu_ttm_iomem_fops = {
2629 .owner = THIS_MODULE,
2630 .read = amdgpu_iomem_read,
2631 .write = amdgpu_iomem_write,
2632 .llseek = default_llseek
2633 };
2634
2635 static const struct {
2636 char *name;
2637 const struct file_operations *fops;
2638 int domain;
2639 } ttm_debugfs_entries[] = {
2640 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2641 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2642 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2643 #endif
2644 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2645 };
2646
2647 #endif
2648
2649 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2650 {
2651 #if defined(CONFIG_DEBUG_FS)
2652 unsigned count;
2653
2654 struct drm_minor *minor = adev->ddev->primary;
2655 struct dentry *ent, *root = minor->debugfs_root;
2656
2657 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2658 ent = debugfs_create_file(
2659 ttm_debugfs_entries[count].name,
2660 S_IFREG | S_IRUGO, root,
2661 adev,
2662 ttm_debugfs_entries[count].fops);
2663 if (IS_ERR(ent))
2664 return PTR_ERR(ent);
2665 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2666 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2667 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2668 i_size_write(ent->d_inode, adev->gmc.gart_size);
2669 adev->mman.debugfs_entries[count] = ent;
2670 }
2671
2672 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2673
2674 #ifdef CONFIG_SWIOTLB
2675 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2676 --count;
2677 #endif
2678
2679 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2680 #else
2681 return 0;
2682 #endif
2683 }
2684
2685 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2686 {
2687 #if defined(CONFIG_DEBUG_FS)
2688 unsigned i;
2689
2690 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2691 debugfs_remove(adev->mman.debugfs_entries[i]);
2692 #endif
2693 }
2694