Home | History | Annotate | Line # | Download | only in amdgpu
amdgpu_ttm.c revision 1.8
      1 /*	$NetBSD: amdgpu_ttm.c,v 1.8 2021/12/19 12:02:39 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright 2009 Jerome Glisse.
      5  * All Rights Reserved.
      6  *
      7  * Permission is hereby granted, free of charge, to any person obtaining a
      8  * copy of this software and associated documentation files (the
      9  * "Software"), to deal in the Software without restriction, including
     10  * without limitation the rights to use, copy, modify, merge, publish,
     11  * distribute, sub license, and/or sell copies of the Software, and to
     12  * permit persons to whom the Software is furnished to do so, subject to
     13  * the following conditions:
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
     18  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
     19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
     20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
     21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
     22  *
     23  * The above copyright notice and this permission notice (including the
     24  * next paragraph) shall be included in all copies or substantial portions
     25  * of the Software.
     26  *
     27  */
     28 /*
     29  * Authors:
     30  *    Jerome Glisse <glisse (at) freedesktop.org>
     31  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
     32  *    Dave Airlie
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ttm.c,v 1.8 2021/12/19 12:02:39 riastradh Exp $");
     37 
     38 #include <linux/dma-mapping.h>
     39 #include <linux/iommu.h>
     40 #include <linux/hmm.h>
     41 #include <linux/pagemap.h>
     42 #include <linux/sched/task.h>
     43 #include <linux/sched/mm.h>
     44 #include <linux/seq_file.h>
     45 #include <linux/slab.h>
     46 #include <linux/swap.h>
     47 #include <linux/swiotlb.h>
     48 #include <linux/dma-buf.h>
     49 #include <linux/sizes.h>
     50 
     51 #include <drm/ttm/ttm_bo_api.h>
     52 #include <drm/ttm/ttm_bo_driver.h>
     53 #include <drm/ttm/ttm_placement.h>
     54 #include <drm/ttm/ttm_module.h>
     55 #include <drm/ttm/ttm_page_alloc.h>
     56 
     57 #include <drm/drm_debugfs.h>
     58 #include <drm/amdgpu_drm.h>
     59 
     60 #include "amdgpu.h"
     61 #include "amdgpu_object.h"
     62 #include "amdgpu_trace.h"
     63 #include "amdgpu_amdkfd.h"
     64 #include "amdgpu_sdma.h"
     65 #include "amdgpu_ras.h"
     66 #include "bif/bif_4_1_d.h"
     67 
     68 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
     69 			     struct ttm_mem_reg *mem, unsigned num_pages,
     70 			     uint64_t offset, unsigned window,
     71 			     struct amdgpu_ring *ring,
     72 			     uint64_t *addr);
     73 
     74 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
     75 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
     76 
     77 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
     78 {
     79 	return 0;
     80 }
     81 
     82 /**
     83  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
     84  * memory request.
     85  *
     86  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
     87  * @type: The type of memory requested
     88  * @man: The memory type manager for each domain
     89  *
     90  * This is called by ttm_bo_init_mm() when a buffer object is being
     91  * initialized.
     92  */
     93 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
     94 				struct ttm_mem_type_manager *man)
     95 {
     96 	struct amdgpu_device *adev;
     97 
     98 	adev = amdgpu_ttm_adev(bdev);
     99 
    100 	switch (type) {
    101 	case TTM_PL_SYSTEM:
    102 		/* System memory */
    103 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
    104 		man->available_caching = TTM_PL_MASK_CACHING;
    105 		man->default_caching = TTM_PL_FLAG_CACHED;
    106 		break;
    107 	case TTM_PL_TT:
    108 		/* GTT memory  */
    109 		man->func = &amdgpu_gtt_mgr_func;
    110 		man->gpu_offset = adev->gmc.gart_start;
    111 		man->available_caching = TTM_PL_MASK_CACHING;
    112 		man->default_caching = TTM_PL_FLAG_CACHED;
    113 		man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
    114 		break;
    115 	case TTM_PL_VRAM:
    116 		/* "On-card" video ram */
    117 		man->func = &amdgpu_vram_mgr_func;
    118 		man->gpu_offset = adev->gmc.vram_start;
    119 		man->flags = TTM_MEMTYPE_FLAG_FIXED |
    120 			     TTM_MEMTYPE_FLAG_MAPPABLE;
    121 		man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
    122 		man->default_caching = TTM_PL_FLAG_WC;
    123 		break;
    124 	case AMDGPU_PL_GDS:
    125 	case AMDGPU_PL_GWS:
    126 	case AMDGPU_PL_OA:
    127 		/* On-chip GDS memory*/
    128 		man->func = &ttm_bo_manager_func;
    129 		man->gpu_offset = 0;
    130 		man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
    131 		man->available_caching = TTM_PL_FLAG_UNCACHED;
    132 		man->default_caching = TTM_PL_FLAG_UNCACHED;
    133 		break;
    134 	default:
    135 		DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
    136 		return -EINVAL;
    137 	}
    138 	return 0;
    139 }
    140 
    141 /**
    142  * amdgpu_evict_flags - Compute placement flags
    143  *
    144  * @bo: The buffer object to evict
    145  * @placement: Possible destination(s) for evicted BO
    146  *
    147  * Fill in placement data when ttm_bo_evict() is called
    148  */
    149 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
    150 				struct ttm_placement *placement)
    151 {
    152 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
    153 	struct amdgpu_bo *abo;
    154 	static const struct ttm_place placements = {
    155 		.fpfn = 0,
    156 		.lpfn = 0,
    157 		.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
    158 	};
    159 
    160 	/* Don't handle scatter gather BOs */
    161 	if (bo->type == ttm_bo_type_sg) {
    162 		placement->num_placement = 0;
    163 		placement->num_busy_placement = 0;
    164 		return;
    165 	}
    166 
    167 	/* Object isn't an AMDGPU object so ignore */
    168 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
    169 		placement->placement = &placements;
    170 		placement->busy_placement = &placements;
    171 		placement->num_placement = 1;
    172 		placement->num_busy_placement = 1;
    173 		return;
    174 	}
    175 
    176 	abo = ttm_to_amdgpu_bo(bo);
    177 	switch (bo->mem.mem_type) {
    178 	case AMDGPU_PL_GDS:
    179 	case AMDGPU_PL_GWS:
    180 	case AMDGPU_PL_OA:
    181 		placement->num_placement = 0;
    182 		placement->num_busy_placement = 0;
    183 		return;
    184 
    185 	case TTM_PL_VRAM:
    186 		if (!adev->mman.buffer_funcs_enabled) {
    187 			/* Move to system memory */
    188 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
    189 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
    190 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
    191 			   amdgpu_bo_in_cpu_visible_vram(abo)) {
    192 
    193 			/* Try evicting to the CPU inaccessible part of VRAM
    194 			 * first, but only set GTT as busy placement, so this
    195 			 * BO will be evicted to GTT rather than causing other
    196 			 * BOs to be evicted from VRAM
    197 			 */
    198 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
    199 							 AMDGPU_GEM_DOMAIN_GTT);
    200 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
    201 			abo->placements[0].lpfn = 0;
    202 			abo->placement.busy_placement = &abo->placements[1];
    203 			abo->placement.num_busy_placement = 1;
    204 		} else {
    205 			/* Move to GTT memory */
    206 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
    207 		}
    208 		break;
    209 	case TTM_PL_TT:
    210 	default:
    211 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
    212 		break;
    213 	}
    214 	*placement = abo->placement;
    215 }
    216 
    217 /**
    218  * amdgpu_verify_access - Verify access for a mmap call
    219  *
    220  * @bo:	The buffer object to map
    221  * @filp: The file pointer from the process performing the mmap
    222  *
    223  * This is called by ttm_bo_mmap() to verify whether a process
    224  * has the right to mmap a BO to their process space.
    225  */
    226 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
    227 {
    228 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
    229 
    230 	/*
    231 	 * Don't verify access for KFD BOs. They don't have a GEM
    232 	 * object associated with them.
    233 	 */
    234 	if (abo->kfd_bo)
    235 		return 0;
    236 
    237 	if (amdgpu_ttm_tt_get_usermm(bo->ttm))
    238 		return -EPERM;
    239 	return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
    240 					  filp->private_data);
    241 }
    242 
    243 /**
    244  * amdgpu_move_null - Register memory for a buffer object
    245  *
    246  * @bo: The bo to assign the memory to
    247  * @new_mem: The memory to be assigned.
    248  *
    249  * Assign the memory from new_mem to the memory of the buffer object bo.
    250  */
    251 static void amdgpu_move_null(struct ttm_buffer_object *bo,
    252 			     struct ttm_mem_reg *new_mem)
    253 {
    254 	struct ttm_mem_reg *old_mem = &bo->mem;
    255 
    256 	BUG_ON(old_mem->mm_node != NULL);
    257 	*old_mem = *new_mem;
    258 	new_mem->mm_node = NULL;
    259 }
    260 
    261 /**
    262  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
    263  *
    264  * @bo: The bo to assign the memory to.
    265  * @mm_node: Memory manager node for drm allocator.
    266  * @mem: The region where the bo resides.
    267  *
    268  */
    269 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
    270 				    struct drm_mm_node *mm_node,
    271 				    struct ttm_mem_reg *mem)
    272 {
    273 	uint64_t addr = 0;
    274 
    275 	if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
    276 		addr = mm_node->start << PAGE_SHIFT;
    277 		addr += bo->bdev->man[mem->mem_type].gpu_offset;
    278 	}
    279 	return addr;
    280 }
    281 
    282 /**
    283  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
    284  * @offset. It also modifies the offset to be within the drm_mm_node returned
    285  *
    286  * @mem: The region where the bo resides.
    287  * @offset: The offset that drm_mm_node is used for finding.
    288  *
    289  */
    290 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
    291 					       unsigned long *offset)
    292 {
    293 	struct drm_mm_node *mm_node = mem->mm_node;
    294 
    295 	while (*offset >= (mm_node->size << PAGE_SHIFT)) {
    296 		*offset -= (mm_node->size << PAGE_SHIFT);
    297 		++mm_node;
    298 	}
    299 	return mm_node;
    300 }
    301 
    302 /**
    303  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
    304  *
    305  * The function copies @size bytes from {src->mem + src->offset} to
    306  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
    307  * move and different for a BO to BO copy.
    308  *
    309  * @f: Returns the last fence if multiple jobs are submitted.
    310  */
    311 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
    312 			       struct amdgpu_copy_mem *src,
    313 			       struct amdgpu_copy_mem *dst,
    314 			       uint64_t size,
    315 			       struct dma_resv *resv,
    316 			       struct dma_fence **f)
    317 {
    318 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
    319 	struct drm_mm_node *src_mm, *dst_mm;
    320 	uint64_t src_node_start, dst_node_start, src_node_size,
    321 		 dst_node_size, src_page_offset, dst_page_offset;
    322 	struct dma_fence *fence = NULL;
    323 	int r = 0;
    324 	const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
    325 					AMDGPU_GPU_PAGE_SIZE);
    326 
    327 	if (!adev->mman.buffer_funcs_enabled) {
    328 		DRM_ERROR("Trying to move memory with ring turned off.\n");
    329 		return -EINVAL;
    330 	}
    331 
    332 	src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
    333 	src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
    334 					     src->offset;
    335 	src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
    336 	src_page_offset = src_node_start & (PAGE_SIZE - 1);
    337 
    338 	dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
    339 	dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
    340 					     dst->offset;
    341 	dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
    342 	dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
    343 
    344 	mutex_lock(&adev->mman.gtt_window_lock);
    345 
    346 	while (size) {
    347 		unsigned long cur_size;
    348 		uint64_t from = src_node_start, to = dst_node_start;
    349 		struct dma_fence *next;
    350 
    351 		/* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
    352 		 * begins at an offset, then adjust the size accordingly
    353 		 */
    354 		cur_size = min3(min(src_node_size, dst_node_size), size,
    355 				GTT_MAX_BYTES);
    356 		if (cur_size + src_page_offset > GTT_MAX_BYTES ||
    357 		    cur_size + dst_page_offset > GTT_MAX_BYTES)
    358 			cur_size -= max(src_page_offset, dst_page_offset);
    359 
    360 		/* Map only what needs to be accessed. Map src to window 0 and
    361 		 * dst to window 1
    362 		 */
    363 		if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
    364 			r = amdgpu_map_buffer(src->bo, src->mem,
    365 					PFN_UP(cur_size + src_page_offset),
    366 					src_node_start, 0, ring,
    367 					&from);
    368 			if (r)
    369 				goto error;
    370 			/* Adjust the offset because amdgpu_map_buffer returns
    371 			 * start of mapped page
    372 			 */
    373 			from += src_page_offset;
    374 		}
    375 
    376 		if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
    377 			r = amdgpu_map_buffer(dst->bo, dst->mem,
    378 					PFN_UP(cur_size + dst_page_offset),
    379 					dst_node_start, 1, ring,
    380 					&to);
    381 			if (r)
    382 				goto error;
    383 			to += dst_page_offset;
    384 		}
    385 
    386 		r = amdgpu_copy_buffer(ring, from, to, cur_size,
    387 				       resv, &next, false, true);
    388 		if (r)
    389 			goto error;
    390 
    391 		dma_fence_put(fence);
    392 		fence = next;
    393 
    394 		size -= cur_size;
    395 		if (!size)
    396 			break;
    397 
    398 		src_node_size -= cur_size;
    399 		if (!src_node_size) {
    400 			src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
    401 							     src->mem);
    402 			src_node_size = (src_mm->size << PAGE_SHIFT);
    403 			src_page_offset = 0;
    404 		} else {
    405 			src_node_start += cur_size;
    406 			src_page_offset = src_node_start & (PAGE_SIZE - 1);
    407 		}
    408 		dst_node_size -= cur_size;
    409 		if (!dst_node_size) {
    410 			dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
    411 							     dst->mem);
    412 			dst_node_size = (dst_mm->size << PAGE_SHIFT);
    413 			dst_page_offset = 0;
    414 		} else {
    415 			dst_node_start += cur_size;
    416 			dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
    417 		}
    418 	}
    419 error:
    420 	mutex_unlock(&adev->mman.gtt_window_lock);
    421 	if (f)
    422 		*f = dma_fence_get(fence);
    423 	dma_fence_put(fence);
    424 	return r;
    425 }
    426 
    427 /**
    428  * amdgpu_move_blit - Copy an entire buffer to another buffer
    429  *
    430  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
    431  * help move buffers to and from VRAM.
    432  */
    433 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
    434 			    bool evict, bool no_wait_gpu,
    435 			    struct ttm_mem_reg *new_mem,
    436 			    struct ttm_mem_reg *old_mem)
    437 {
    438 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
    439 	struct amdgpu_copy_mem src, dst;
    440 	struct dma_fence *fence = NULL;
    441 	int r;
    442 
    443 	src.bo = bo;
    444 	dst.bo = bo;
    445 	src.mem = old_mem;
    446 	dst.mem = new_mem;
    447 	src.offset = 0;
    448 	dst.offset = 0;
    449 
    450 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
    451 				       new_mem->num_pages << PAGE_SHIFT,
    452 				       bo->base.resv, &fence);
    453 	if (r)
    454 		goto error;
    455 
    456 	/* clear the space being freed */
    457 	if (old_mem->mem_type == TTM_PL_VRAM &&
    458 	    (ttm_to_amdgpu_bo(bo)->flags &
    459 	     AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
    460 		struct dma_fence *wipe_fence = NULL;
    461 
    462 		r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
    463 				       NULL, &wipe_fence);
    464 		if (r) {
    465 			goto error;
    466 		} else if (wipe_fence) {
    467 			dma_fence_put(fence);
    468 			fence = wipe_fence;
    469 		}
    470 	}
    471 
    472 	/* Always block for VM page tables before committing the new location */
    473 	if (bo->type == ttm_bo_type_kernel)
    474 		r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
    475 	else
    476 		r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
    477 	dma_fence_put(fence);
    478 	return r;
    479 
    480 error:
    481 	if (fence)
    482 		dma_fence_wait(fence, false);
    483 	dma_fence_put(fence);
    484 	return r;
    485 }
    486 
    487 /**
    488  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
    489  *
    490  * Called by amdgpu_bo_move().
    491  */
    492 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
    493 				struct ttm_operation_ctx *ctx,
    494 				struct ttm_mem_reg *new_mem)
    495 {
    496 	struct ttm_mem_reg *old_mem = &bo->mem;
    497 	struct ttm_mem_reg tmp_mem;
    498 	struct ttm_place placements;
    499 	struct ttm_placement placement;
    500 	int r;
    501 
    502 	/* create space/pages for new_mem in GTT space */
    503 	tmp_mem = *new_mem;
    504 	tmp_mem.mm_node = NULL;
    505 	placement.num_placement = 1;
    506 	placement.placement = &placements;
    507 	placement.num_busy_placement = 1;
    508 	placement.busy_placement = &placements;
    509 	placements.fpfn = 0;
    510 	placements.lpfn = 0;
    511 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
    512 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
    513 	if (unlikely(r)) {
    514 		pr_err("Failed to find GTT space for blit from VRAM\n");
    515 		return r;
    516 	}
    517 
    518 	/* set caching flags */
    519 	r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
    520 	if (unlikely(r)) {
    521 		goto out_cleanup;
    522 	}
    523 
    524 	/* Bind the memory to the GTT space */
    525 	r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
    526 	if (unlikely(r)) {
    527 		goto out_cleanup;
    528 	}
    529 
    530 	/* blit VRAM to GTT */
    531 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
    532 	if (unlikely(r)) {
    533 		goto out_cleanup;
    534 	}
    535 
    536 	/* move BO (in tmp_mem) to new_mem */
    537 	r = ttm_bo_move_ttm(bo, ctx, new_mem);
    538 out_cleanup:
    539 	ttm_bo_mem_put(bo, &tmp_mem);
    540 	return r;
    541 }
    542 
    543 /**
    544  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
    545  *
    546  * Called by amdgpu_bo_move().
    547  */
    548 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
    549 				struct ttm_operation_ctx *ctx,
    550 				struct ttm_mem_reg *new_mem)
    551 {
    552 	struct ttm_mem_reg *old_mem = &bo->mem;
    553 	struct ttm_mem_reg tmp_mem;
    554 	struct ttm_placement placement;
    555 	struct ttm_place placements;
    556 	int r;
    557 
    558 	/* make space in GTT for old_mem buffer */
    559 	tmp_mem = *new_mem;
    560 	tmp_mem.mm_node = NULL;
    561 	placement.num_placement = 1;
    562 	placement.placement = &placements;
    563 	placement.num_busy_placement = 1;
    564 	placement.busy_placement = &placements;
    565 	placements.fpfn = 0;
    566 	placements.lpfn = 0;
    567 	placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
    568 	r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
    569 	if (unlikely(r)) {
    570 		pr_err("Failed to find GTT space for blit to VRAM\n");
    571 		return r;
    572 	}
    573 
    574 	/* move/bind old memory to GTT space */
    575 	r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
    576 	if (unlikely(r)) {
    577 		goto out_cleanup;
    578 	}
    579 
    580 	/* copy to VRAM */
    581 	r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
    582 	if (unlikely(r)) {
    583 		goto out_cleanup;
    584 	}
    585 out_cleanup:
    586 	ttm_bo_mem_put(bo, &tmp_mem);
    587 	return r;
    588 }
    589 
    590 /**
    591  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
    592  *
    593  * Called by amdgpu_bo_move()
    594  */
    595 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
    596 			       struct ttm_mem_reg *mem)
    597 {
    598 	struct drm_mm_node *nodes = mem->mm_node;
    599 
    600 	if (mem->mem_type == TTM_PL_SYSTEM ||
    601 	    mem->mem_type == TTM_PL_TT)
    602 		return true;
    603 	if (mem->mem_type != TTM_PL_VRAM)
    604 		return false;
    605 
    606 	/* ttm_mem_reg_ioremap only supports contiguous memory */
    607 	if (nodes->size != mem->num_pages)
    608 		return false;
    609 
    610 	return ((nodes->start + nodes->size) << PAGE_SHIFT)
    611 		<= adev->gmc.visible_vram_size;
    612 }
    613 
    614 /**
    615  * amdgpu_bo_move - Move a buffer object to a new memory location
    616  *
    617  * Called by ttm_bo_handle_move_mem()
    618  */
    619 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
    620 			  struct ttm_operation_ctx *ctx,
    621 			  struct ttm_mem_reg *new_mem)
    622 {
    623 	struct amdgpu_device *adev;
    624 	struct amdgpu_bo *abo;
    625 	struct ttm_mem_reg *old_mem = &bo->mem;
    626 	int r;
    627 
    628 	/* Can't move a pinned BO */
    629 	abo = ttm_to_amdgpu_bo(bo);
    630 	if (WARN_ON_ONCE(abo->pin_count > 0))
    631 		return -EINVAL;
    632 
    633 	adev = amdgpu_ttm_adev(bo->bdev);
    634 
    635 	if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
    636 		amdgpu_move_null(bo, new_mem);
    637 		return 0;
    638 	}
    639 	if ((old_mem->mem_type == TTM_PL_TT &&
    640 	     new_mem->mem_type == TTM_PL_SYSTEM) ||
    641 	    (old_mem->mem_type == TTM_PL_SYSTEM &&
    642 	     new_mem->mem_type == TTM_PL_TT)) {
    643 		/* bind is enough */
    644 		amdgpu_move_null(bo, new_mem);
    645 		return 0;
    646 	}
    647 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
    648 	    old_mem->mem_type == AMDGPU_PL_GWS ||
    649 	    old_mem->mem_type == AMDGPU_PL_OA ||
    650 	    new_mem->mem_type == AMDGPU_PL_GDS ||
    651 	    new_mem->mem_type == AMDGPU_PL_GWS ||
    652 	    new_mem->mem_type == AMDGPU_PL_OA) {
    653 		/* Nothing to save here */
    654 		amdgpu_move_null(bo, new_mem);
    655 		return 0;
    656 	}
    657 
    658 	if (!adev->mman.buffer_funcs_enabled) {
    659 		r = -ENODEV;
    660 		goto memcpy;
    661 	}
    662 
    663 	if (old_mem->mem_type == TTM_PL_VRAM &&
    664 	    new_mem->mem_type == TTM_PL_SYSTEM) {
    665 		r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
    666 	} else if (old_mem->mem_type == TTM_PL_SYSTEM &&
    667 		   new_mem->mem_type == TTM_PL_VRAM) {
    668 		r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
    669 	} else {
    670 		r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
    671 				     new_mem, old_mem);
    672 	}
    673 
    674 	if (r) {
    675 memcpy:
    676 		/* Check that all memory is CPU accessible */
    677 		if (!amdgpu_mem_visible(adev, old_mem) ||
    678 		    !amdgpu_mem_visible(adev, new_mem)) {
    679 			pr_err("Move buffer fallback to memcpy unavailable\n");
    680 			return r;
    681 		}
    682 
    683 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
    684 		if (r)
    685 			return r;
    686 	}
    687 
    688 	if (bo->type == ttm_bo_type_device &&
    689 	    new_mem->mem_type == TTM_PL_VRAM &&
    690 	    old_mem->mem_type != TTM_PL_VRAM) {
    691 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
    692 		 * accesses the BO after it's moved.
    693 		 */
    694 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
    695 	}
    696 
    697 	/* update statistics */
    698 	atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
    699 	return 0;
    700 }
    701 
    702 /**
    703  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
    704  *
    705  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
    706  */
    707 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
    708 {
    709 	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
    710 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
    711 	struct drm_mm_node *mm_node = mem->mm_node;
    712 
    713 	mem->bus.addr = NULL;
    714 	mem->bus.offset = 0;
    715 	mem->bus.size = mem->num_pages << PAGE_SHIFT;
    716 	mem->bus.base = 0;
    717 	mem->bus.is_iomem = false;
    718 	if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
    719 		return -EINVAL;
    720 	switch (mem->mem_type) {
    721 	case TTM_PL_SYSTEM:
    722 		/* system memory */
    723 		return 0;
    724 	case TTM_PL_TT:
    725 		break;
    726 	case TTM_PL_VRAM:
    727 		mem->bus.offset = mem->start << PAGE_SHIFT;
    728 		/* check if it's visible */
    729 		if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
    730 			return -EINVAL;
    731 		/* Only physically contiguous buffers apply. In a contiguous
    732 		 * buffer, size of the first mm_node would match the number of
    733 		 * pages in ttm_mem_reg.
    734 		 */
    735 		if (adev->mman.aper_base_kaddr &&
    736 		    (mm_node->size == mem->num_pages))
    737 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
    738 					mem->bus.offset;
    739 
    740 		mem->bus.base = adev->gmc.aper_base;
    741 		mem->bus.is_iomem = true;
    742 		break;
    743 	default:
    744 		return -EINVAL;
    745 	}
    746 	return 0;
    747 }
    748 
    749 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
    750 {
    751 }
    752 
    753 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
    754 					   unsigned long page_offset)
    755 {
    756 	struct drm_mm_node *mm;
    757 	unsigned long offset = (page_offset << PAGE_SHIFT);
    758 
    759 	mm = amdgpu_find_mm_node(&bo->mem, &offset);
    760 	return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
    761 		(offset >> PAGE_SHIFT);
    762 }
    763 
    764 /*
    765  * TTM backend functions.
    766  */
    767 struct amdgpu_ttm_tt {
    768 	struct ttm_dma_tt	ttm;
    769 	struct drm_gem_object	*gobj;
    770 	u64			offset;
    771 	uint64_t		userptr;
    772 #ifdef __NetBSD__
    773 	struct proc		*usertask;
    774 #else
    775 	struct task_struct	*usertask;
    776 #endif
    777 	uint32_t		userflags;
    778 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
    779 	struct hmm_range	*range;
    780 #endif
    781 };
    782 
    783 #ifdef CONFIG_DRM_AMDGPU_USERPTR
    784 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
    785 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
    786 	(1 << 0), /* HMM_PFN_VALID */
    787 	(1 << 1), /* HMM_PFN_WRITE */
    788 	0 /* HMM_PFN_DEVICE_PRIVATE */
    789 };
    790 
    791 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
    792 	0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
    793 	0, /* HMM_PFN_NONE */
    794 	0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
    795 };
    796 
    797 /**
    798  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
    799  * memory and start HMM tracking CPU page table update
    800  *
    801  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
    802  * once afterwards to stop HMM tracking
    803  */
    804 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
    805 {
    806 	struct ttm_tt *ttm = bo->tbo.ttm;
    807 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
    808 	unsigned long start = gtt->userptr;
    809 	struct vm_area_struct *vma;
    810 	struct hmm_range *range;
    811 	unsigned long timeout;
    812 	struct mm_struct *mm;
    813 	unsigned long i;
    814 	int r = 0;
    815 
    816 	mm = bo->notifier.mm;
    817 	if (unlikely(!mm)) {
    818 		DRM_DEBUG_DRIVER("BO is not registered?\n");
    819 		return -EFAULT;
    820 	}
    821 
    822 	/* Another get_user_pages is running at the same time?? */
    823 	if (WARN_ON(gtt->range))
    824 		return -EFAULT;
    825 
    826 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
    827 		return -ESRCH;
    828 
    829 	range = kzalloc(sizeof(*range), GFP_KERNEL);
    830 	if (unlikely(!range)) {
    831 		r = -ENOMEM;
    832 		goto out;
    833 	}
    834 	range->notifier = &bo->notifier;
    835 	range->flags = hmm_range_flags;
    836 	range->values = hmm_range_values;
    837 	range->pfn_shift = PAGE_SHIFT;
    838 	range->start = bo->notifier.interval_tree.start;
    839 	range->end = bo->notifier.interval_tree.last + 1;
    840 	range->default_flags = hmm_range_flags[HMM_PFN_VALID];
    841 	if (!amdgpu_ttm_tt_is_readonly(ttm))
    842 		range->default_flags |= range->flags[HMM_PFN_WRITE];
    843 
    844 	range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
    845 				     GFP_KERNEL);
    846 	if (unlikely(!range->pfns)) {
    847 		r = -ENOMEM;
    848 		goto out_free_ranges;
    849 	}
    850 
    851 	down_read(&mm->mmap_sem);
    852 	vma = find_vma(mm, start);
    853 	if (unlikely(!vma || start < vma->vm_start)) {
    854 		r = -EFAULT;
    855 		goto out_unlock;
    856 	}
    857 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
    858 		vma->vm_file)) {
    859 		r = -EPERM;
    860 		goto out_unlock;
    861 	}
    862 	up_read(&mm->mmap_sem);
    863 	timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
    864 
    865 retry:
    866 	range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
    867 
    868 	down_read(&mm->mmap_sem);
    869 	r = hmm_range_fault(range, 0);
    870 	up_read(&mm->mmap_sem);
    871 	if (unlikely(r <= 0)) {
    872 		/*
    873 		 * FIXME: This timeout should encompass the retry from
    874 		 * mmu_interval_read_retry() as well.
    875 		 */
    876 		if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
    877 			goto retry;
    878 		goto out_free_pfns;
    879 	}
    880 
    881 	for (i = 0; i < ttm->num_pages; i++) {
    882 		/* FIXME: The pages cannot be touched outside the notifier_lock */
    883 		pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
    884 		if (unlikely(!pages[i])) {
    885 			pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
    886 			       i, range->pfns[i]);
    887 			r = -ENOMEM;
    888 
    889 			goto out_free_pfns;
    890 		}
    891 	}
    892 
    893 	gtt->range = range;
    894 	mmput(mm);
    895 
    896 	return 0;
    897 
    898 out_unlock:
    899 	up_read(&mm->mmap_sem);
    900 out_free_pfns:
    901 	kvfree(range->pfns);
    902 out_free_ranges:
    903 	kfree(range);
    904 out:
    905 	mmput(mm);
    906 	return r;
    907 }
    908 
    909 /**
    910  * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
    911  * Check if the pages backing this ttm range have been invalidated
    912  *
    913  * Returns: true if pages are still valid
    914  */
    915 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
    916 {
    917 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
    918 	bool r = false;
    919 
    920 	if (!gtt || !gtt->userptr)
    921 		return false;
    922 
    923 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
    924 		gtt->userptr, ttm->num_pages);
    925 
    926 	WARN_ONCE(!gtt->range || !gtt->range->pfns,
    927 		"No user pages to check\n");
    928 
    929 	if (gtt->range) {
    930 		/*
    931 		 * FIXME: Must always hold notifier_lock for this, and must
    932 		 * not ignore the return code.
    933 		 */
    934 		r = mmu_interval_read_retry(gtt->range->notifier,
    935 					 gtt->range->notifier_seq);
    936 		kvfree(gtt->range->pfns);
    937 		kfree(gtt->range);
    938 		gtt->range = NULL;
    939 	}
    940 
    941 	return !r;
    942 }
    943 #endif
    944 
    945 /**
    946  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
    947  *
    948  * Called by amdgpu_cs_list_validate(). This creates the page list
    949  * that backs user memory and will ultimately be mapped into the device
    950  * address space.
    951  */
    952 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
    953 {
    954 	unsigned long i;
    955 
    956 	for (i = 0; i < ttm->num_pages; ++i)
    957 		ttm->pages[i] = pages ? pages[i] : NULL;
    958 }
    959 
    960 /**
    961  * amdgpu_ttm_tt_pin_userptr - 	prepare the sg table with the user pages
    962  *
    963  * Called by amdgpu_ttm_backend_bind()
    964  **/
    965 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
    966 {
    967 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
    968 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
    969 	unsigned nents;
    970 	int r;
    971 
    972 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
    973 	enum dma_data_direction direction = write ?
    974 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
    975 
    976 	/* Allocate an SG array and squash pages into it */
    977 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
    978 				      ttm->num_pages << PAGE_SHIFT,
    979 				      GFP_KERNEL);
    980 	if (r)
    981 		goto release_sg;
    982 
    983 	/* Map SG to device */
    984 	r = -ENOMEM;
    985 	nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
    986 	if (nents != ttm->sg->nents)
    987 		goto release_sg;
    988 
    989 	/* convert SG to linear array of pages and dma addresses */
    990 	drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
    991 					 gtt->ttm.dma_address, ttm->num_pages);
    992 
    993 	return 0;
    994 
    995 release_sg:
    996 	kfree(ttm->sg);
    997 	return r;
    998 }
    999 
   1000 /**
   1001  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
   1002  */
   1003 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
   1004 {
   1005 #ifdef __NetBSD__
   1006 	struct amdgpu_device *adev = amdgpu_get_adev(ttm->bdev);
   1007 	struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
   1008 	    ttm.ttm);
   1009 
   1010 	bus_dmamap_unload(adev->ddev->dmat, gtt->ttm.dma_address);
   1011 	uvm_vsunlock(gtt->usermm, (void *)(vaddr_t)gtt->userptr,
   1012 	    ttm->num_pages << PAGE_SHIFT);
   1013 #else
   1014 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1015 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1016 
   1017 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
   1018 	enum dma_data_direction direction = write ?
   1019 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
   1020 
   1021 	/* double check that we don't free the table twice */
   1022 	if (!ttm->sg->sgl)
   1023 		return;
   1024 
   1025 	/* unmap the pages mapped to the device */
   1026 	dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
   1027 
   1028 	sg_free_table(ttm->sg);
   1029 
   1030 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
   1031 	if (gtt->range) {
   1032 		unsigned long i;
   1033 
   1034 		for (i = 0; i < ttm->num_pages; i++) {
   1035 			if (ttm->pages[i] !=
   1036 				hmm_device_entry_to_page(gtt->range,
   1037 					      gtt->range->pfns[i]))
   1038 				break;
   1039 		}
   1040 
   1041 		WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
   1042 	}
   1043 #endif
   1044 #endif
   1045 }
   1046 
   1047 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
   1048 				struct ttm_buffer_object *tbo,
   1049 				uint64_t flags)
   1050 {
   1051 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
   1052 	struct ttm_tt *ttm = tbo->ttm;
   1053 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1054 	int r;
   1055 
   1056 	if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
   1057 		uint64_t page_idx = 1;
   1058 
   1059 		r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
   1060 				ttm->pages, gtt->ttm.dma_address, flags);
   1061 		if (r)
   1062 			goto gart_bind_fail;
   1063 
   1064 		/* Patch mtype of the second part BO */
   1065 		flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
   1066 		flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
   1067 
   1068 		r = amdgpu_gart_bind(adev,
   1069 				gtt->offset + (page_idx << PAGE_SHIFT),
   1070 				ttm->num_pages - page_idx,
   1071 				&ttm->pages[page_idx],
   1072 				&(gtt->ttm.dma_address[page_idx]), flags);
   1073 	} else {
   1074 		r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
   1075 				     ttm->pages, gtt->ttm.dma_address, flags);
   1076 	}
   1077 
   1078 gart_bind_fail:
   1079 	if (r)
   1080 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
   1081 			  ttm->num_pages, gtt->offset);
   1082 
   1083 	return r;
   1084 }
   1085 
   1086 /**
   1087  * amdgpu_ttm_backend_bind - Bind GTT memory
   1088  *
   1089  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
   1090  * This handles binding GTT memory to the device address space.
   1091  */
   1092 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
   1093 				   struct ttm_mem_reg *bo_mem)
   1094 {
   1095 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1096 	struct amdgpu_ttm_tt *gtt = (void*)ttm;
   1097 	uint64_t flags;
   1098 	int r = 0;
   1099 
   1100 	if (gtt->userptr) {
   1101 		r = amdgpu_ttm_tt_pin_userptr(ttm);
   1102 		if (r) {
   1103 			DRM_ERROR("failed to pin userptr\n");
   1104 			return r;
   1105 		}
   1106 	}
   1107 	if (!ttm->num_pages) {
   1108 		WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
   1109 		     ttm->num_pages, bo_mem, ttm);
   1110 	}
   1111 
   1112 	if (bo_mem->mem_type == AMDGPU_PL_GDS ||
   1113 	    bo_mem->mem_type == AMDGPU_PL_GWS ||
   1114 	    bo_mem->mem_type == AMDGPU_PL_OA)
   1115 		return -EINVAL;
   1116 
   1117 	if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
   1118 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
   1119 		return 0;
   1120 	}
   1121 
   1122 	/* compute PTE flags relevant to this BO memory */
   1123 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
   1124 
   1125 	/* bind pages into GART page tables */
   1126 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
   1127 	r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
   1128 		ttm->pages, gtt->ttm.dma_address, flags);
   1129 
   1130 	if (r)
   1131 		DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
   1132 			  ttm->num_pages, gtt->offset);
   1133 	return r;
   1134 }
   1135 
   1136 /**
   1137  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
   1138  */
   1139 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
   1140 {
   1141 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
   1142 	struct ttm_operation_ctx ctx = { false, false };
   1143 	struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
   1144 	struct ttm_mem_reg tmp;
   1145 	struct ttm_placement placement;
   1146 	struct ttm_place placements;
   1147 	uint64_t addr, flags;
   1148 	int r;
   1149 
   1150 	if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
   1151 		return 0;
   1152 
   1153 	addr = amdgpu_gmc_agp_addr(bo);
   1154 	if (addr != AMDGPU_BO_INVALID_OFFSET) {
   1155 		bo->mem.start = addr >> PAGE_SHIFT;
   1156 	} else {
   1157 
   1158 		/* allocate GART space */
   1159 		tmp = bo->mem;
   1160 		tmp.mm_node = NULL;
   1161 		placement.num_placement = 1;
   1162 		placement.placement = &placements;
   1163 		placement.num_busy_placement = 1;
   1164 		placement.busy_placement = &placements;
   1165 		placements.fpfn = 0;
   1166 		placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
   1167 		placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
   1168 			TTM_PL_FLAG_TT;
   1169 
   1170 		r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
   1171 		if (unlikely(r))
   1172 			return r;
   1173 
   1174 		/* compute PTE flags for this buffer object */
   1175 		flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
   1176 
   1177 		/* Bind pages */
   1178 		gtt->offset = (u64)tmp.start << PAGE_SHIFT;
   1179 		r = amdgpu_ttm_gart_bind(adev, bo, flags);
   1180 		if (unlikely(r)) {
   1181 			ttm_bo_mem_put(bo, &tmp);
   1182 			return r;
   1183 		}
   1184 
   1185 		ttm_bo_mem_put(bo, &bo->mem);
   1186 		bo->mem = tmp;
   1187 	}
   1188 
   1189 	bo->offset = (bo->mem.start << PAGE_SHIFT) +
   1190 		bo->bdev->man[bo->mem.mem_type].gpu_offset;
   1191 
   1192 	return 0;
   1193 }
   1194 
   1195 /**
   1196  * amdgpu_ttm_recover_gart - Rebind GTT pages
   1197  *
   1198  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
   1199  * rebind GTT pages during a GPU reset.
   1200  */
   1201 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
   1202 {
   1203 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
   1204 	uint64_t flags;
   1205 	int r;
   1206 
   1207 	if (!tbo->ttm)
   1208 		return 0;
   1209 
   1210 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
   1211 	r = amdgpu_ttm_gart_bind(adev, tbo, flags);
   1212 
   1213 	return r;
   1214 }
   1215 
   1216 /**
   1217  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
   1218  *
   1219  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
   1220  * ttm_tt_destroy().
   1221  */
   1222 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
   1223 {
   1224 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1225 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1226 	int r;
   1227 
   1228 	/* if the pages have userptr pinning then clear that first */
   1229 	if (gtt->userptr)
   1230 		amdgpu_ttm_tt_unpin_userptr(ttm);
   1231 
   1232 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
   1233 		return 0;
   1234 
   1235 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
   1236 	r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
   1237 	if (r)
   1238 		DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
   1239 			  gtt->ttm.ttm.num_pages, gtt->offset);
   1240 	return r;
   1241 }
   1242 
   1243 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
   1244 {
   1245 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1246 
   1247 	if (gtt->usertask)
   1248 		put_task_struct(gtt->usertask);
   1249 
   1250 	ttm_dma_tt_fini(&gtt->ttm);
   1251 	kfree(gtt);
   1252 }
   1253 
   1254 static struct ttm_backend_func amdgpu_backend_func = {
   1255 	.bind = &amdgpu_ttm_backend_bind,
   1256 	.unbind = &amdgpu_ttm_backend_unbind,
   1257 	.destroy = &amdgpu_ttm_backend_destroy,
   1258 };
   1259 
   1260 /**
   1261  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
   1262  *
   1263  * @bo: The buffer object to create a GTT ttm_tt object around
   1264  *
   1265  * Called by ttm_tt_create().
   1266  */
   1267 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
   1268 					   uint32_t page_flags)
   1269 {
   1270 	struct amdgpu_ttm_tt *gtt;
   1271 
   1272 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
   1273 	if (gtt == NULL) {
   1274 		return NULL;
   1275 	}
   1276 	gtt->ttm.ttm.func = &amdgpu_backend_func;
   1277 	gtt->gobj = &bo->base;
   1278 
   1279 	/* allocate space for the uninitialized page entries */
   1280 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
   1281 		kfree(gtt);
   1282 		return NULL;
   1283 	}
   1284 	return &gtt->ttm.ttm;
   1285 }
   1286 
   1287 /**
   1288  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
   1289  *
   1290  * Map the pages of a ttm_tt object to an address space visible
   1291  * to the underlying device.
   1292  */
   1293 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
   1294 			struct ttm_operation_ctx *ctx)
   1295 {
   1296 #ifndef __NetBSD__
   1297 	struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
   1298 #endif
   1299 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1300 
   1301 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
   1302 	if (gtt && gtt->userptr) {
   1303 #ifdef __NetBSD__
   1304 		ttm->sg = NULL;
   1305 #else
   1306 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
   1307 		if (!ttm->sg)
   1308 			return -ENOMEM;
   1309 #endif
   1310 
   1311 		ttm->page_flags |= TTM_PAGE_FLAG_SG;
   1312 		ttm->state = tt_unbound;
   1313 		return 0;
   1314 	}
   1315 
   1316 	if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
   1317 		if (!ttm->sg) {
   1318 			struct dma_buf_attachment *attach;
   1319 			struct sg_table *sgt;
   1320 
   1321 			attach = gtt->gobj->import_attach;
   1322 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
   1323 			if (IS_ERR(sgt))
   1324 				return PTR_ERR(sgt);
   1325 
   1326 			ttm->sg = sgt;
   1327 		}
   1328 
   1329 #ifdef __NetBSD__
   1330 		r = drm_prime_bus_dmamap_load_sgt(ttm->bdev->dmat,
   1331 		    gtt->ttm.dma_address, ttm->sg);
   1332 		if (r)
   1333 			return r;
   1334 #else
   1335 		drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
   1336 						 gtt->ttm.dma_address,
   1337 						 ttm->num_pages);
   1338 #endif
   1339 		ttm->state = tt_unbound;
   1340 		return 0;
   1341 	}
   1342 
   1343 #ifdef __NetBSD__
   1344 	/* XXX errno NetBSD->Linux */
   1345 	return ttm_bus_dma_populate(&gtt->ttm);
   1346 #else
   1347 #ifdef CONFIG_SWIOTLB
   1348 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
   1349 		return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
   1350 	}
   1351 #endif
   1352 
   1353 	/* fall back to generic helper to populate the page array
   1354 	 * and map them to the device */
   1355 	return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
   1356 #endif
   1357 }
   1358 
   1359 /**
   1360  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
   1361  *
   1362  * Unmaps pages of a ttm_tt object from the device address space and
   1363  * unpopulates the page array backing it.
   1364  */
   1365 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
   1366 {
   1367 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1368 #ifndef __NetBSD__
   1369 	struct amdgpu_device *adev;
   1370 #endif
   1371 
   1372 	if (gtt && gtt->userptr) {
   1373 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
   1374 		kfree(ttm->sg);
   1375 		ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
   1376 		return;
   1377 	}
   1378 
   1379 	if (ttm->sg && gtt->gobj->import_attach) {
   1380 		struct dma_buf_attachment *attach;
   1381 
   1382 		attach = gtt->gobj->import_attach;
   1383 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
   1384 		ttm->sg = NULL;
   1385 		return;
   1386 	}
   1387 
   1388 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
   1389 		return;
   1390 
   1391 #ifdef __NetBSD__
   1392 	ttm_bus_dma_unpopulate(&gtt->ttm);
   1393 	return;
   1394 #else
   1395 	adev = amdgpu_ttm_adev(ttm->bdev);
   1396 
   1397 #ifdef CONFIG_SWIOTLB
   1398 	if (adev->need_swiotlb && swiotlb_nr_tbl()) {
   1399 		ttm_dma_unpopulate(&gtt->ttm, adev->dev);
   1400 		return;
   1401 	}
   1402 #endif
   1403 
   1404 	/* fall back to generic helper to unmap and unpopulate array */
   1405 	ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
   1406 #endif	/* __NetBSD__ */
   1407 }
   1408 
   1409 #ifdef __NetBSD__
   1410 static void amdgpu_ttm_tt_swapout(struct ttm_tt *ttm)
   1411 {
   1412 	struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
   1413 	    ttm.ttm);
   1414 	struct ttm_dma_tt *ttm_dma = &gtt->ttm;
   1415 
   1416 	ttm_bus_dma_swapout(ttm_dma);
   1417 }
   1418 
   1419 static const struct uvm_pagerops amdgpu_uvm_ops = {
   1420 	.pgo_reference = &ttm_bo_uvm_reference,
   1421 	.pgo_detach = &ttm_bo_uvm_detach,
   1422 	.pgo_fault = &ttm_bo_uvm_fault,
   1423 };
   1424 #endif
   1425 
   1426 /**
   1427  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
   1428  * task
   1429  *
   1430  * @ttm: The ttm_tt object to bind this userptr object to
   1431  * @addr:  The address in the current tasks VM space to use
   1432  * @flags: Requirements of userptr object.
   1433  *
   1434  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
   1435  * to current task
   1436  */
   1437 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
   1438 			      uint32_t flags)
   1439 {
   1440 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1441 
   1442 	if (gtt == NULL)
   1443 		return -EINVAL;
   1444 
   1445 	gtt->userptr = addr;
   1446 	gtt->userflags = flags;
   1447 
   1448 	if (gtt->usertask)
   1449 		put_task_struct(gtt->usertask);
   1450 	gtt->usertask = current->group_leader;
   1451 	get_task_struct(gtt->usertask);
   1452 
   1453 	return 0;
   1454 }
   1455 
   1456 /**
   1457  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
   1458  */
   1459 #ifdef __NetBSD__
   1460 struct vmspace *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
   1461 #else
   1462 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
   1463 #endif
   1464 {
   1465 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1466 
   1467 	if (gtt == NULL)
   1468 		return NULL;
   1469 
   1470 	if (gtt->usertask == NULL)
   1471 		return NULL;
   1472 
   1473 #ifdef __NetBSD__
   1474 	return gtt->usertask->p_vmspace;
   1475 #else
   1476 	return gtt->usertask->mm;
   1477 #endif
   1478 }
   1479 
   1480 /**
   1481  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
   1482  * address range for the current task.
   1483  *
   1484  */
   1485 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
   1486 				  unsigned long end)
   1487 {
   1488 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1489 	unsigned long size;
   1490 
   1491 	if (gtt == NULL || !gtt->userptr)
   1492 		return false;
   1493 
   1494 	/* Return false if no part of the ttm_tt object lies within
   1495 	 * the range
   1496 	 */
   1497 	size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
   1498 	if (gtt->userptr > end || gtt->userptr + size <= start)
   1499 		return false;
   1500 
   1501 	return true;
   1502 }
   1503 
   1504 /**
   1505  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
   1506  */
   1507 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
   1508 {
   1509 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1510 
   1511 	if (gtt == NULL || !gtt->userptr)
   1512 		return false;
   1513 
   1514 	return true;
   1515 }
   1516 
   1517 /**
   1518  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
   1519  */
   1520 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
   1521 {
   1522 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
   1523 
   1524 	if (gtt == NULL)
   1525 		return false;
   1526 
   1527 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
   1528 }
   1529 
   1530 /**
   1531  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
   1532  *
   1533  * @ttm: The ttm_tt object to compute the flags for
   1534  * @mem: The memory registry backing this ttm_tt object
   1535  *
   1536  * Figure out the flags to use for a VM PDE (Page Directory Entry).
   1537  */
   1538 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
   1539 {
   1540 	uint64_t flags = 0;
   1541 
   1542 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
   1543 		flags |= AMDGPU_PTE_VALID;
   1544 
   1545 	if (mem && mem->mem_type == TTM_PL_TT) {
   1546 		flags |= AMDGPU_PTE_SYSTEM;
   1547 
   1548 		if (ttm->caching_state == tt_cached)
   1549 			flags |= AMDGPU_PTE_SNOOPED;
   1550 	}
   1551 
   1552 	return flags;
   1553 }
   1554 
   1555 /**
   1556  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
   1557  *
   1558  * @ttm: The ttm_tt object to compute the flags for
   1559  * @mem: The memory registry backing this ttm_tt object
   1560 
   1561  * Figure out the flags to use for a VM PTE (Page Table Entry).
   1562  */
   1563 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
   1564 				 struct ttm_mem_reg *mem)
   1565 {
   1566 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
   1567 
   1568 	flags |= adev->gart.gart_pte_flags;
   1569 	flags |= AMDGPU_PTE_READABLE;
   1570 
   1571 	if (!amdgpu_ttm_tt_is_readonly(ttm))
   1572 		flags |= AMDGPU_PTE_WRITEABLE;
   1573 
   1574 	return flags;
   1575 }
   1576 
   1577 /**
   1578  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
   1579  * object.
   1580  *
   1581  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
   1582  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
   1583  * it can find space for a new object and by ttm_bo_force_list_clean() which is
   1584  * used to clean out a memory space.
   1585  */
   1586 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
   1587 					    const struct ttm_place *place)
   1588 {
   1589 	unsigned long num_pages = bo->mem.num_pages;
   1590 	struct drm_mm_node *node = bo->mem.mm_node;
   1591 	struct dma_resv_list *flist;
   1592 	struct dma_fence *f;
   1593 	int i;
   1594 
   1595 	if (bo->type == ttm_bo_type_kernel &&
   1596 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
   1597 		return false;
   1598 
   1599 	/* If bo is a KFD BO, check if the bo belongs to the current process.
   1600 	 * If true, then return false as any KFD process needs all its BOs to
   1601 	 * be resident to run successfully
   1602 	 */
   1603 	flist = dma_resv_get_list(bo->base.resv);
   1604 	if (flist) {
   1605 		for (i = 0; i < flist->shared_count; ++i) {
   1606 			f = rcu_dereference_protected(flist->shared[i],
   1607 				dma_resv_held(bo->base.resv));
   1608 			if (amdkfd_fence_check_mm(f, current->mm))
   1609 				return false;
   1610 		}
   1611 	}
   1612 
   1613 	switch (bo->mem.mem_type) {
   1614 	case TTM_PL_TT:
   1615 		return true;
   1616 
   1617 	case TTM_PL_VRAM:
   1618 		/* Check each drm MM node individually */
   1619 		while (num_pages) {
   1620 			if (place->fpfn < (node->start + node->size) &&
   1621 			    !(place->lpfn && place->lpfn <= node->start))
   1622 				return true;
   1623 
   1624 			num_pages -= node->size;
   1625 			++node;
   1626 		}
   1627 		return false;
   1628 
   1629 	default:
   1630 		break;
   1631 	}
   1632 
   1633 	return ttm_bo_eviction_valuable(bo, place);
   1634 }
   1635 
   1636 /**
   1637  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
   1638  *
   1639  * @bo:  The buffer object to read/write
   1640  * @offset:  Offset into buffer object
   1641  * @buf:  Secondary buffer to write/read from
   1642  * @len: Length in bytes of access
   1643  * @write:  true if writing
   1644  *
   1645  * This is used to access VRAM that backs a buffer object via MMIO
   1646  * access for debugging purposes.
   1647  */
   1648 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
   1649 				    unsigned long offset,
   1650 				    void *buf, int len, int write)
   1651 {
   1652 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
   1653 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
   1654 	struct drm_mm_node *nodes;
   1655 	uint32_t value = 0;
   1656 	int ret = 0;
   1657 	uint64_t pos;
   1658 	unsigned long flags;
   1659 
   1660 	if (bo->mem.mem_type != TTM_PL_VRAM)
   1661 		return -EIO;
   1662 
   1663 	nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
   1664 	pos = (nodes->start << PAGE_SHIFT) + offset;
   1665 
   1666 	while (len && pos < adev->gmc.mc_vram_size) {
   1667 		uint64_t aligned_pos = pos & ~(uint64_t)3;
   1668 		uint32_t bytes = 4 - (pos & 3);
   1669 		uint32_t shift = (pos & 3) * 8;
   1670 		uint32_t mask = 0xffffffff << shift;
   1671 
   1672 		if (len < bytes) {
   1673 			mask &= 0xffffffff >> (bytes - len) * 8;
   1674 			bytes = len;
   1675 		}
   1676 
   1677 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
   1678 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
   1679 		WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
   1680 		if (!write || mask != 0xffffffff)
   1681 			value = RREG32_NO_KIQ(mmMM_DATA);
   1682 		if (write) {
   1683 			value &= ~mask;
   1684 			value |= (*(uint32_t *)buf << shift) & mask;
   1685 			WREG32_NO_KIQ(mmMM_DATA, value);
   1686 		}
   1687 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
   1688 		if (!write) {
   1689 			value = (value & mask) >> shift;
   1690 			memcpy(buf, &value, bytes);
   1691 		}
   1692 
   1693 		ret += bytes;
   1694 		buf = (uint8_t *)buf + bytes;
   1695 		pos += bytes;
   1696 		len -= bytes;
   1697 		if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
   1698 			++nodes;
   1699 			pos = (nodes->start << PAGE_SHIFT);
   1700 		}
   1701 	}
   1702 
   1703 	return ret;
   1704 }
   1705 
   1706 static struct ttm_bo_driver amdgpu_bo_driver = {
   1707 	.ttm_tt_create = &amdgpu_ttm_tt_create,
   1708 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
   1709 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
   1710 #ifdef __NetBSD__
   1711 	.ttm_tt_swapout = &amdgpu_ttm_tt_swapout,
   1712 	.ttm_uvm_ops = &amdgpu_uvm_ops,
   1713 #endif
   1714 	.invalidate_caches = &amdgpu_invalidate_caches,
   1715 	.init_mem_type = &amdgpu_init_mem_type,
   1716 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
   1717 	.evict_flags = &amdgpu_evict_flags,
   1718 	.move = &amdgpu_bo_move,
   1719 	.verify_access = &amdgpu_verify_access,
   1720 	.move_notify = &amdgpu_bo_move_notify,
   1721 	.release_notify = &amdgpu_bo_release_notify,
   1722 	.fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
   1723 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
   1724 	.io_mem_free = &amdgpu_ttm_io_mem_free,
   1725 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
   1726 	.access_memory = &amdgpu_ttm_access_memory,
   1727 	.del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
   1728 };
   1729 
   1730 /*
   1731  * Firmware Reservation functions
   1732  */
   1733 /**
   1734  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
   1735  *
   1736  * @adev: amdgpu_device pointer
   1737  *
   1738  * free fw reserved vram if it has been reserved.
   1739  */
   1740 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
   1741 {
   1742 	amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
   1743 		NULL, &adev->fw_vram_usage.va);
   1744 }
   1745 
   1746 /**
   1747  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
   1748  *
   1749  * @adev: amdgpu_device pointer
   1750  *
   1751  * create bo vram reservation from fw.
   1752  */
   1753 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
   1754 {
   1755 	uint64_t vram_size = adev->gmc.visible_vram_size;
   1756 
   1757 	adev->fw_vram_usage.va = NULL;
   1758 	adev->fw_vram_usage.reserved_bo = NULL;
   1759 
   1760 	if (adev->fw_vram_usage.size == 0 ||
   1761 	    adev->fw_vram_usage.size > vram_size)
   1762 		return 0;
   1763 
   1764 	return amdgpu_bo_create_kernel_at(adev,
   1765 					  adev->fw_vram_usage.start_offset,
   1766 					  adev->fw_vram_usage.size,
   1767 					  AMDGPU_GEM_DOMAIN_VRAM,
   1768 					  &adev->fw_vram_usage.reserved_bo,
   1769 					  &adev->fw_vram_usage.va);
   1770 }
   1771 
   1772 /*
   1773  * Memoy training reservation functions
   1774  */
   1775 
   1776 /**
   1777  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
   1778  *
   1779  * @adev: amdgpu_device pointer
   1780  *
   1781  * free memory training reserved vram if it has been reserved.
   1782  */
   1783 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
   1784 {
   1785 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
   1786 
   1787 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
   1788 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
   1789 	ctx->c2p_bo = NULL;
   1790 
   1791 	return 0;
   1792 }
   1793 
   1794 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
   1795 {
   1796        if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
   1797                vram_size -= SZ_1M;
   1798 
   1799        return ALIGN(vram_size, SZ_1M);
   1800 }
   1801 
   1802 /**
   1803  * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
   1804  *
   1805  * @adev: amdgpu_device pointer
   1806  *
   1807  * create bo vram reservation from memory training.
   1808  */
   1809 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
   1810 {
   1811 	int ret;
   1812 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
   1813 
   1814 	memset(ctx, 0, sizeof(*ctx));
   1815 	if (!adev->fw_vram_usage.mem_train_support) {
   1816 		DRM_DEBUG("memory training does not support!\n");
   1817 		return 0;
   1818 	}
   1819 
   1820 	ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
   1821 	ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
   1822 	ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
   1823 
   1824 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
   1825 		  ctx->train_data_size,
   1826 		  ctx->p2c_train_data_offset,
   1827 		  ctx->c2p_train_data_offset);
   1828 
   1829 	ret = amdgpu_bo_create_kernel_at(adev,
   1830 					 ctx->c2p_train_data_offset,
   1831 					 ctx->train_data_size,
   1832 					 AMDGPU_GEM_DOMAIN_VRAM,
   1833 					 &ctx->c2p_bo,
   1834 					 NULL);
   1835 	if (ret) {
   1836 		DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
   1837 		amdgpu_ttm_training_reserve_vram_fini(adev);
   1838 		return ret;
   1839 	}
   1840 
   1841 	ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
   1842 	return 0;
   1843 }
   1844 
   1845 /**
   1846  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
   1847  * gtt/vram related fields.
   1848  *
   1849  * This initializes all of the memory space pools that the TTM layer
   1850  * will need such as the GTT space (system memory mapped to the device),
   1851  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
   1852  * can be mapped per VMID.
   1853  */
   1854 int amdgpu_ttm_init(struct amdgpu_device *adev)
   1855 {
   1856 	uint64_t gtt_size;
   1857 	int r;
   1858 	u64 vis_vram_limit;
   1859 	void *stolen_vga_buf;
   1860 
   1861 	mutex_init(&adev->mman.gtt_window_lock);
   1862 
   1863 	/* No others user of address space so set it to 0 */
   1864 	r = ttm_bo_device_init(&adev->mman.bdev,
   1865 			       &amdgpu_bo_driver,
   1866 #ifdef __NetBSD__
   1867 			       adev->ddev->bst,
   1868 			       adev->ddev->dmat,
   1869 #else
   1870 			       adev->ddev->anon_inode->i_mapping,
   1871 #endif
   1872 			       adev->ddev->vma_offset_manager,
   1873 			       dma_addressing_limited(adev->dev));
   1874 	if (r) {
   1875 		DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
   1876 		return r;
   1877 	}
   1878 	adev->mman.initialized = true;
   1879 
   1880 	/* We opt to avoid OOM on system pages allocations */
   1881 	adev->mman.bdev.no_retry = true;
   1882 
   1883 	/* Initialize VRAM pool with all of VRAM divided into pages */
   1884 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
   1885 				adev->gmc.real_vram_size >> PAGE_SHIFT);
   1886 	if (r) {
   1887 		DRM_ERROR("Failed initializing VRAM heap.\n");
   1888 		return r;
   1889 	}
   1890 
   1891 	/* Reduce size of CPU-visible VRAM if requested */
   1892 	vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
   1893 	if (amdgpu_vis_vram_limit > 0 &&
   1894 	    vis_vram_limit <= adev->gmc.visible_vram_size)
   1895 		adev->gmc.visible_vram_size = vis_vram_limit;
   1896 
   1897 	/* Change the size here instead of the init above so only lpfn is affected */
   1898 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
   1899 #ifdef CONFIG_64BIT
   1900 	adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
   1901 						adev->gmc.visible_vram_size);
   1902 #endif
   1903 
   1904 	/*
   1905 	 *The reserved vram for firmware must be pinned to the specified
   1906 	 *place on the VRAM, so reserve it early.
   1907 	 */
   1908 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
   1909 	if (r) {
   1910 		return r;
   1911 	}
   1912 
   1913 	/*
   1914 	 *The reserved vram for memory training must be pinned to the specified
   1915 	 *place on the VRAM, so reserve it early.
   1916 	 */
   1917 	r = amdgpu_ttm_training_reserve_vram_init(adev);
   1918 	if (r)
   1919 		return r;
   1920 
   1921 	/* allocate memory as required for VGA
   1922 	 * This is used for VGA emulation and pre-OS scanout buffers to
   1923 	 * avoid display artifacts while transitioning between pre-OS
   1924 	 * and driver.  */
   1925 	r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
   1926 				    AMDGPU_GEM_DOMAIN_VRAM,
   1927 				    &adev->stolen_vga_memory,
   1928 				    NULL, &stolen_vga_buf);
   1929 	if (r)
   1930 		return r;
   1931 
   1932 	/*
   1933 	 * reserve one TMR (64K) memory at the top of VRAM which holds
   1934 	 * IP Discovery data and is protected by PSP.
   1935 	 */
   1936 	r = amdgpu_bo_create_kernel_at(adev,
   1937 				       adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
   1938 				       DISCOVERY_TMR_SIZE,
   1939 				       AMDGPU_GEM_DOMAIN_VRAM,
   1940 				       &adev->discovery_memory,
   1941 				       NULL);
   1942 	if (r)
   1943 		return r;
   1944 
   1945 	DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
   1946 		 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
   1947 
   1948 	/* Compute GTT size, either bsaed on 3/4th the size of RAM size
   1949 	 * or whatever the user passed on module init */
   1950 	if (amdgpu_gtt_size == -1) {
   1951 		struct sysinfo si;
   1952 
   1953 		si_meminfo(&si);
   1954 		gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
   1955 			       adev->gmc.mc_vram_size),
   1956 			       ((uint64_t)si.totalram * si.mem_unit * 3/4));
   1957 	}
   1958 	else
   1959 		gtt_size = (uint64_t)amdgpu_gtt_size << 20;
   1960 
   1961 	/* Initialize GTT memory pool */
   1962 	r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
   1963 	if (r) {
   1964 		DRM_ERROR("Failed initializing GTT heap.\n");
   1965 		return r;
   1966 	}
   1967 	DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
   1968 		 (unsigned)(gtt_size / (1024 * 1024)));
   1969 
   1970 	/* Initialize various on-chip memory pools */
   1971 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
   1972 			   adev->gds.gds_size);
   1973 	if (r) {
   1974 		DRM_ERROR("Failed initializing GDS heap.\n");
   1975 		return r;
   1976 	}
   1977 
   1978 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
   1979 			   adev->gds.gws_size);
   1980 	if (r) {
   1981 		DRM_ERROR("Failed initializing gws heap.\n");
   1982 		return r;
   1983 	}
   1984 
   1985 	r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
   1986 			   adev->gds.oa_size);
   1987 	if (r) {
   1988 		DRM_ERROR("Failed initializing oa heap.\n");
   1989 		return r;
   1990 	}
   1991 
   1992 	/* Register debugfs entries for amdgpu_ttm */
   1993 	r = amdgpu_ttm_debugfs_init(adev);
   1994 	if (r) {
   1995 		DRM_ERROR("Failed to init debugfs\n");
   1996 		return r;
   1997 	}
   1998 	return 0;
   1999 }
   2000 
   2001 /**
   2002  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
   2003  */
   2004 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
   2005 {
   2006 	void *stolen_vga_buf;
   2007 	/* return the VGA stolen memory (if any) back to VRAM */
   2008 	amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
   2009 }
   2010 
   2011 /**
   2012  * amdgpu_ttm_fini - De-initialize the TTM memory pools
   2013  */
   2014 void amdgpu_ttm_fini(struct amdgpu_device *adev)
   2015 {
   2016 	if (!adev->mman.initialized)
   2017 		return;
   2018 
   2019 	amdgpu_ttm_debugfs_fini(adev);
   2020 	amdgpu_ttm_training_reserve_vram_fini(adev);
   2021 	/* return the IP Discovery TMR memory back to VRAM */
   2022 	amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
   2023 	amdgpu_ttm_fw_reserve_vram_fini(adev);
   2024 
   2025 	if (adev->mman.aper_base_kaddr)
   2026 		iounmap(adev->mman.aper_base_kaddr);
   2027 	adev->mman.aper_base_kaddr = NULL;
   2028 
   2029 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
   2030 	ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
   2031 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
   2032 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
   2033 	ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
   2034 	ttm_bo_device_release(&adev->mman.bdev);
   2035 	adev->mman.initialized = false;
   2036 	DRM_INFO("amdgpu: ttm finalized\n");
   2037 }
   2038 
   2039 /**
   2040  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
   2041  *
   2042  * @adev: amdgpu_device pointer
   2043  * @enable: true when we can use buffer functions.
   2044  *
   2045  * Enable/disable use of buffer functions during suspend/resume. This should
   2046  * only be called at bootup or when userspace isn't running.
   2047  */
   2048 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
   2049 {
   2050 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
   2051 	uint64_t size;
   2052 	int r;
   2053 
   2054 	if (!adev->mman.initialized || adev->in_gpu_reset ||
   2055 	    adev->mman.buffer_funcs_enabled == enable)
   2056 		return;
   2057 
   2058 	if (enable) {
   2059 		struct amdgpu_ring *ring;
   2060 		struct drm_gpu_scheduler *sched;
   2061 
   2062 		ring = adev->mman.buffer_funcs_ring;
   2063 		sched = &ring->sched;
   2064 		r = drm_sched_entity_init(&adev->mman.entity,
   2065 				          DRM_SCHED_PRIORITY_KERNEL, &sched,
   2066 					  1, NULL);
   2067 		if (r) {
   2068 			DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
   2069 				  r);
   2070 			return;
   2071 		}
   2072 	} else {
   2073 		drm_sched_entity_destroy(&adev->mman.entity);
   2074 		dma_fence_put(man->move);
   2075 		man->move = NULL;
   2076 	}
   2077 
   2078 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
   2079 	if (enable)
   2080 		size = adev->gmc.real_vram_size;
   2081 	else
   2082 		size = adev->gmc.visible_vram_size;
   2083 	man->size = size >> PAGE_SHIFT;
   2084 	adev->mman.buffer_funcs_enabled = enable;
   2085 }
   2086 
   2087 #ifdef __NetBSD__
   2088 
   2089 int
   2090 amdgpu_mmap_object(struct drm_device *dev, off_t offset, size_t size,
   2091     vm_prot_t prot, struct uvm_object **uobjp, voff_t *uoffsetp,
   2092     struct file *file)
   2093 {
   2094 	struct amdgpu_device *adev = dev->dev_private;
   2095 
   2096 	KASSERT(0 == (offset & (PAGE_SIZE - 1)));
   2097 
   2098 	if (__predict_false(adev == NULL))	/* XXX How?? */
   2099 		return -EINVAL;
   2100 
   2101 	if (__predict_false((offset >> PAGE_SHIFT) < DRM_FILE_PAGE_OFFSET))
   2102 		return -EINVAL;
   2103 
   2104 	return ttm_bo_mmap_object(&adev->mman.bdev, offset, size, prot,
   2105 	    uobjp, uoffsetp, file);
   2106 }
   2107 
   2108 #else  /* __NetBSD__ */
   2109 
   2110 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
   2111 {
   2112 	struct drm_file *file_priv = filp->private_data;
   2113 	struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
   2114 
   2115 	if (adev == NULL)
   2116 		return -EINVAL;
   2117 
   2118 	return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
   2119 }
   2120 
   2121 #endif	/* __NetBSD__ */
   2122 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
   2123 			     struct ttm_mem_reg *mem, unsigned num_pages,
   2124 			     uint64_t offset, unsigned window,
   2125 			     struct amdgpu_ring *ring,
   2126 			     uint64_t *addr)
   2127 {
   2128 	struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
   2129 	struct amdgpu_device *adev = ring->adev;
   2130 	struct ttm_tt *ttm = bo->ttm;
   2131 	struct amdgpu_job *job;
   2132 	unsigned num_dw, num_bytes;
   2133 	dma_addr_t *dma_address;
   2134 	struct dma_fence *fence;
   2135 	uint64_t src_addr, dst_addr;
   2136 	uint64_t flags;
   2137 	int r;
   2138 
   2139 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
   2140 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
   2141 
   2142 	*addr = adev->gmc.gart_start;
   2143 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
   2144 		AMDGPU_GPU_PAGE_SIZE;
   2145 
   2146 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
   2147 	num_bytes = num_pages * 8;
   2148 
   2149 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
   2150 	if (r)
   2151 		return r;
   2152 
   2153 	src_addr = num_dw * 4;
   2154 	src_addr += job->ibs[0].gpu_addr;
   2155 
   2156 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
   2157 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
   2158 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
   2159 				dst_addr, num_bytes);
   2160 
   2161 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
   2162 	WARN_ON(job->ibs[0].length_dw > num_dw);
   2163 
   2164 	dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
   2165 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
   2166 	r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
   2167 			    &job->ibs[0].ptr[num_dw]);
   2168 	if (r)
   2169 		goto error_free;
   2170 
   2171 	r = amdgpu_job_submit(job, &adev->mman.entity,
   2172 			      AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
   2173 	if (r)
   2174 		goto error_free;
   2175 
   2176 	dma_fence_put(fence);
   2177 
   2178 	return r;
   2179 
   2180 error_free:
   2181 	amdgpu_job_free(job);
   2182 	return r;
   2183 }
   2184 
   2185 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
   2186 		       uint64_t dst_offset, uint32_t byte_count,
   2187 		       struct dma_resv *resv,
   2188 		       struct dma_fence **fence, bool direct_submit,
   2189 		       bool vm_needs_flush)
   2190 {
   2191 	struct amdgpu_device *adev = ring->adev;
   2192 	struct amdgpu_job *job;
   2193 
   2194 	uint32_t max_bytes;
   2195 	unsigned num_loops, num_dw;
   2196 	unsigned i;
   2197 	int r;
   2198 
   2199 	if (direct_submit && !ring->sched.ready) {
   2200 		DRM_ERROR("Trying to move memory with ring turned off.\n");
   2201 		return -EINVAL;
   2202 	}
   2203 
   2204 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
   2205 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
   2206 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
   2207 
   2208 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
   2209 	if (r)
   2210 		return r;
   2211 
   2212 	if (vm_needs_flush) {
   2213 		job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
   2214 		job->vm_needs_flush = true;
   2215 	}
   2216 	if (resv) {
   2217 		r = amdgpu_sync_resv(adev, &job->sync, resv,
   2218 				     AMDGPU_FENCE_OWNER_UNDEFINED,
   2219 				     false);
   2220 		if (r) {
   2221 			DRM_ERROR("sync failed (%d).\n", r);
   2222 			goto error_free;
   2223 		}
   2224 	}
   2225 
   2226 	for (i = 0; i < num_loops; i++) {
   2227 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
   2228 
   2229 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
   2230 					dst_offset, cur_size_in_bytes);
   2231 
   2232 		src_offset += cur_size_in_bytes;
   2233 		dst_offset += cur_size_in_bytes;
   2234 		byte_count -= cur_size_in_bytes;
   2235 	}
   2236 
   2237 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
   2238 	WARN_ON(job->ibs[0].length_dw > num_dw);
   2239 	if (direct_submit)
   2240 		r = amdgpu_job_submit_direct(job, ring, fence);
   2241 	else
   2242 		r = amdgpu_job_submit(job, &adev->mman.entity,
   2243 				      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
   2244 	if (r)
   2245 		goto error_free;
   2246 
   2247 	return r;
   2248 
   2249 error_free:
   2250 	amdgpu_job_free(job);
   2251 	DRM_ERROR("Error scheduling IBs (%d)\n", r);
   2252 	return r;
   2253 }
   2254 
   2255 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
   2256 		       uint32_t src_data,
   2257 		       struct dma_resv *resv,
   2258 		       struct dma_fence **fence)
   2259 {
   2260 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
   2261 	uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
   2262 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
   2263 
   2264 	struct drm_mm_node *mm_node;
   2265 	unsigned long num_pages;
   2266 	unsigned int num_loops, num_dw;
   2267 
   2268 	struct amdgpu_job *job;
   2269 	int r;
   2270 
   2271 	if (!adev->mman.buffer_funcs_enabled) {
   2272 		DRM_ERROR("Trying to clear memory with ring turned off.\n");
   2273 		return -EINVAL;
   2274 	}
   2275 
   2276 	if (bo->tbo.mem.mem_type == TTM_PL_TT) {
   2277 		r = amdgpu_ttm_alloc_gart(&bo->tbo);
   2278 		if (r)
   2279 			return r;
   2280 	}
   2281 
   2282 	num_pages = bo->tbo.num_pages;
   2283 	mm_node = bo->tbo.mem.mm_node;
   2284 	num_loops = 0;
   2285 	while (num_pages) {
   2286 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
   2287 
   2288 		num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
   2289 		num_pages -= mm_node->size;
   2290 		++mm_node;
   2291 	}
   2292 	num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
   2293 
   2294 	/* for IB padding */
   2295 	num_dw += 64;
   2296 
   2297 	r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
   2298 	if (r)
   2299 		return r;
   2300 
   2301 	if (resv) {
   2302 		r = amdgpu_sync_resv(adev, &job->sync, resv,
   2303 				     AMDGPU_FENCE_OWNER_UNDEFINED, false);
   2304 		if (r) {
   2305 			DRM_ERROR("sync failed (%d).\n", r);
   2306 			goto error_free;
   2307 		}
   2308 	}
   2309 
   2310 	num_pages = bo->tbo.num_pages;
   2311 	mm_node = bo->tbo.mem.mm_node;
   2312 
   2313 	while (num_pages) {
   2314 		uint64_t byte_count = mm_node->size << PAGE_SHIFT;
   2315 		uint64_t dst_addr;
   2316 
   2317 		dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
   2318 		while (byte_count) {
   2319 			uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
   2320 							   max_bytes);
   2321 
   2322 			amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
   2323 						dst_addr, cur_size_in_bytes);
   2324 
   2325 			dst_addr += cur_size_in_bytes;
   2326 			byte_count -= cur_size_in_bytes;
   2327 		}
   2328 
   2329 		num_pages -= mm_node->size;
   2330 		++mm_node;
   2331 	}
   2332 
   2333 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
   2334 	WARN_ON(job->ibs[0].length_dw > num_dw);
   2335 	r = amdgpu_job_submit(job, &adev->mman.entity,
   2336 			      AMDGPU_FENCE_OWNER_UNDEFINED, fence);
   2337 	if (r)
   2338 		goto error_free;
   2339 
   2340 	return 0;
   2341 
   2342 error_free:
   2343 	amdgpu_job_free(job);
   2344 	return r;
   2345 }
   2346 
   2347 #if defined(CONFIG_DEBUG_FS)
   2348 
   2349 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
   2350 {
   2351 	struct drm_info_node *node = (struct drm_info_node *)m->private;
   2352 	unsigned ttm_pl = (uintptr_t)node->info_ent->data;
   2353 	struct drm_device *dev = node->minor->dev;
   2354 	struct amdgpu_device *adev = dev->dev_private;
   2355 	struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
   2356 	struct drm_printer p = drm_seq_file_printer(m);
   2357 
   2358 	man->func->debug(man, &p);
   2359 	return 0;
   2360 }
   2361 
   2362 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
   2363 	{"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
   2364 	{"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
   2365 	{"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
   2366 	{"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
   2367 	{"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
   2368 	{"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
   2369 #ifdef CONFIG_SWIOTLB
   2370 	{"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
   2371 #endif
   2372 };
   2373 
   2374 /**
   2375  * amdgpu_ttm_vram_read - Linear read access to VRAM
   2376  *
   2377  * Accesses VRAM via MMIO for debugging purposes.
   2378  */
   2379 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
   2380 				    size_t size, loff_t *pos)
   2381 {
   2382 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2383 	ssize_t result = 0;
   2384 	int r;
   2385 
   2386 	if (size & 0x3 || *pos & 0x3)
   2387 		return -EINVAL;
   2388 
   2389 	if (*pos >= adev->gmc.mc_vram_size)
   2390 		return -ENXIO;
   2391 
   2392 	while (size) {
   2393 		unsigned long flags;
   2394 		uint32_t value;
   2395 
   2396 		if (*pos >= adev->gmc.mc_vram_size)
   2397 			return result;
   2398 
   2399 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
   2400 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
   2401 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
   2402 		value = RREG32_NO_KIQ(mmMM_DATA);
   2403 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
   2404 
   2405 		r = put_user(value, (uint32_t *)buf);
   2406 		if (r)
   2407 			return r;
   2408 
   2409 		result += 4;
   2410 		buf += 4;
   2411 		*pos += 4;
   2412 		size -= 4;
   2413 	}
   2414 
   2415 	return result;
   2416 }
   2417 
   2418 /**
   2419  * amdgpu_ttm_vram_write - Linear write access to VRAM
   2420  *
   2421  * Accesses VRAM via MMIO for debugging purposes.
   2422  */
   2423 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
   2424 				    size_t size, loff_t *pos)
   2425 {
   2426 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2427 	ssize_t result = 0;
   2428 	int r;
   2429 
   2430 	if (size & 0x3 || *pos & 0x3)
   2431 		return -EINVAL;
   2432 
   2433 	if (*pos >= adev->gmc.mc_vram_size)
   2434 		return -ENXIO;
   2435 
   2436 	while (size) {
   2437 		unsigned long flags;
   2438 		uint32_t value;
   2439 
   2440 		if (*pos >= adev->gmc.mc_vram_size)
   2441 			return result;
   2442 
   2443 		r = get_user(value, (uint32_t *)buf);
   2444 		if (r)
   2445 			return r;
   2446 
   2447 		spin_lock_irqsave(&adev->mmio_idx_lock, flags);
   2448 		WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
   2449 		WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
   2450 		WREG32_NO_KIQ(mmMM_DATA, value);
   2451 		spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
   2452 
   2453 		result += 4;
   2454 		buf += 4;
   2455 		*pos += 4;
   2456 		size -= 4;
   2457 	}
   2458 
   2459 	return result;
   2460 }
   2461 
   2462 static const struct file_operations amdgpu_ttm_vram_fops = {
   2463 	.owner = THIS_MODULE,
   2464 	.read = amdgpu_ttm_vram_read,
   2465 	.write = amdgpu_ttm_vram_write,
   2466 	.llseek = default_llseek,
   2467 };
   2468 
   2469 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
   2470 
   2471 /**
   2472  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
   2473  */
   2474 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
   2475 				   size_t size, loff_t *pos)
   2476 {
   2477 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2478 	ssize_t result = 0;
   2479 	int r;
   2480 
   2481 	while (size) {
   2482 		loff_t p = *pos / PAGE_SIZE;
   2483 		unsigned off = *pos & ~PAGE_MASK;
   2484 		size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
   2485 		struct page *page;
   2486 		void *ptr;
   2487 
   2488 		if (p >= adev->gart.num_cpu_pages)
   2489 			return result;
   2490 
   2491 		page = adev->gart.pages[p];
   2492 		if (page) {
   2493 			ptr = kmap(page);
   2494 			ptr += off;
   2495 
   2496 			r = copy_to_user(buf, ptr, cur_size);
   2497 			kunmap(adev->gart.pages[p]);
   2498 		} else
   2499 			r = clear_user(buf, cur_size);
   2500 
   2501 		if (r)
   2502 			return -EFAULT;
   2503 
   2504 		result += cur_size;
   2505 		buf += cur_size;
   2506 		*pos += cur_size;
   2507 		size -= cur_size;
   2508 	}
   2509 
   2510 	return result;
   2511 }
   2512 
   2513 static const struct file_operations amdgpu_ttm_gtt_fops = {
   2514 	.owner = THIS_MODULE,
   2515 	.read = amdgpu_ttm_gtt_read,
   2516 	.llseek = default_llseek
   2517 };
   2518 
   2519 #endif
   2520 
   2521 /**
   2522  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
   2523  *
   2524  * This function is used to read memory that has been mapped to the
   2525  * GPU and the known addresses are not physical addresses but instead
   2526  * bus addresses (e.g., what you'd put in an IB or ring buffer).
   2527  */
   2528 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
   2529 				 size_t size, loff_t *pos)
   2530 {
   2531 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2532 	struct iommu_domain *dom;
   2533 	ssize_t result = 0;
   2534 	int r;
   2535 
   2536 	/* retrieve the IOMMU domain if any for this device */
   2537 	dom = iommu_get_domain_for_dev(adev->dev);
   2538 
   2539 	while (size) {
   2540 		phys_addr_t addr = *pos & PAGE_MASK;
   2541 		loff_t off = *pos & ~PAGE_MASK;
   2542 		size_t bytes = PAGE_SIZE - off;
   2543 		unsigned long pfn;
   2544 		struct page *p;
   2545 		void *ptr;
   2546 
   2547 		bytes = bytes < size ? bytes : size;
   2548 
   2549 		/* Translate the bus address to a physical address.  If
   2550 		 * the domain is NULL it means there is no IOMMU active
   2551 		 * and the address translation is the identity
   2552 		 */
   2553 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
   2554 
   2555 		pfn = addr >> PAGE_SHIFT;
   2556 		if (!pfn_valid(pfn))
   2557 			return -EPERM;
   2558 
   2559 		p = pfn_to_page(pfn);
   2560 		if (p->mapping != adev->mman.bdev.dev_mapping)
   2561 			return -EPERM;
   2562 
   2563 		ptr = kmap(p);
   2564 		r = copy_to_user(buf, ptr + off, bytes);
   2565 		kunmap(p);
   2566 		if (r)
   2567 			return -EFAULT;
   2568 
   2569 		size -= bytes;
   2570 		*pos += bytes;
   2571 		result += bytes;
   2572 	}
   2573 
   2574 	return result;
   2575 }
   2576 
   2577 /**
   2578  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
   2579  *
   2580  * This function is used to write memory that has been mapped to the
   2581  * GPU and the known addresses are not physical addresses but instead
   2582  * bus addresses (e.g., what you'd put in an IB or ring buffer).
   2583  */
   2584 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
   2585 				 size_t size, loff_t *pos)
   2586 {
   2587 	struct amdgpu_device *adev = file_inode(f)->i_private;
   2588 	struct iommu_domain *dom;
   2589 	ssize_t result = 0;
   2590 	int r;
   2591 
   2592 	dom = iommu_get_domain_for_dev(adev->dev);
   2593 
   2594 	while (size) {
   2595 		phys_addr_t addr = *pos & PAGE_MASK;
   2596 		loff_t off = *pos & ~PAGE_MASK;
   2597 		size_t bytes = PAGE_SIZE - off;
   2598 		unsigned long pfn;
   2599 		struct page *p;
   2600 		void *ptr;
   2601 
   2602 		bytes = bytes < size ? bytes : size;
   2603 
   2604 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
   2605 
   2606 		pfn = addr >> PAGE_SHIFT;
   2607 		if (!pfn_valid(pfn))
   2608 			return -EPERM;
   2609 
   2610 		p = pfn_to_page(pfn);
   2611 		if (p->mapping != adev->mman.bdev.dev_mapping)
   2612 			return -EPERM;
   2613 
   2614 		ptr = kmap(p);
   2615 		r = copy_from_user(ptr + off, buf, bytes);
   2616 		kunmap(p);
   2617 		if (r)
   2618 			return -EFAULT;
   2619 
   2620 		size -= bytes;
   2621 		*pos += bytes;
   2622 		result += bytes;
   2623 	}
   2624 
   2625 	return result;
   2626 }
   2627 
   2628 static const struct file_operations amdgpu_ttm_iomem_fops = {
   2629 	.owner = THIS_MODULE,
   2630 	.read = amdgpu_iomem_read,
   2631 	.write = amdgpu_iomem_write,
   2632 	.llseek = default_llseek
   2633 };
   2634 
   2635 static const struct {
   2636 	char *name;
   2637 	const struct file_operations *fops;
   2638 	int domain;
   2639 } ttm_debugfs_entries[] = {
   2640 	{ "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
   2641 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
   2642 	{ "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
   2643 #endif
   2644 	{ "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
   2645 };
   2646 
   2647 #endif
   2648 
   2649 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
   2650 {
   2651 #if defined(CONFIG_DEBUG_FS)
   2652 	unsigned count;
   2653 
   2654 	struct drm_minor *minor = adev->ddev->primary;
   2655 	struct dentry *ent, *root = minor->debugfs_root;
   2656 
   2657 	for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
   2658 		ent = debugfs_create_file(
   2659 				ttm_debugfs_entries[count].name,
   2660 				S_IFREG | S_IRUGO, root,
   2661 				adev,
   2662 				ttm_debugfs_entries[count].fops);
   2663 		if (IS_ERR(ent))
   2664 			return PTR_ERR(ent);
   2665 		if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
   2666 			i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
   2667 		else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
   2668 			i_size_write(ent->d_inode, adev->gmc.gart_size);
   2669 		adev->mman.debugfs_entries[count] = ent;
   2670 	}
   2671 
   2672 	count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
   2673 
   2674 #ifdef CONFIG_SWIOTLB
   2675 	if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
   2676 		--count;
   2677 #endif
   2678 
   2679 	return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
   2680 #else
   2681 	return 0;
   2682 #endif
   2683 }
   2684 
   2685 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
   2686 {
   2687 #if defined(CONFIG_DEBUG_FS)
   2688 	unsigned i;
   2689 
   2690 	for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
   2691 		debugfs_remove(adev->mman.debugfs_entries[i]);
   2692 #endif
   2693 }
   2694