amdgpu_ttm.c revision 1.9 1 /* $NetBSD: amdgpu_ttm.c,v 1.9 2021/12/19 12:21:29 riastradh Exp $ */
2
3 /*
4 * Copyright 2009 Jerome Glisse.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 *
27 */
28 /*
29 * Authors:
30 * Jerome Glisse <glisse (at) freedesktop.org>
31 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
32 * Dave Airlie
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: amdgpu_ttm.c,v 1.9 2021/12/19 12:21:29 riastradh Exp $");
37
38 #include <linux/dma-mapping.h>
39 #include <linux/iommu.h>
40 #include <linux/hmm.h>
41 #include <linux/pagemap.h>
42 #include <linux/sched/task.h>
43 #include <linux/sched/mm.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/swap.h>
47 #include <linux/swiotlb.h>
48 #include <linux/dma-buf.h>
49 #include <linux/sizes.h>
50
51 #include <drm/ttm/ttm_bo_api.h>
52 #include <drm/ttm/ttm_bo_driver.h>
53 #include <drm/ttm/ttm_placement.h>
54 #include <drm/ttm/ttm_module.h>
55 #include <drm/ttm/ttm_page_alloc.h>
56
57 #include <drm/drm_debugfs.h>
58 #include <drm/amdgpu_drm.h>
59
60 #include "amdgpu.h"
61 #include "amdgpu_object.h"
62 #include "amdgpu_trace.h"
63 #include "amdgpu_amdkfd.h"
64 #include "amdgpu_sdma.h"
65 #include "amdgpu_ras.h"
66 #include "bif/bif_4_1_d.h"
67
68 #include <linux/nbsd-namespace.h>
69
70 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
71 struct ttm_mem_reg *mem, unsigned num_pages,
72 uint64_t offset, unsigned window,
73 struct amdgpu_ring *ring,
74 uint64_t *addr);
75
76 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
77 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
78
79 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
80 {
81 return 0;
82 }
83
84 /**
85 * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
86 * memory request.
87 *
88 * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
89 * @type: The type of memory requested
90 * @man: The memory type manager for each domain
91 *
92 * This is called by ttm_bo_init_mm() when a buffer object is being
93 * initialized.
94 */
95 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
96 struct ttm_mem_type_manager *man)
97 {
98 struct amdgpu_device *adev;
99
100 adev = amdgpu_ttm_adev(bdev);
101
102 switch (type) {
103 case TTM_PL_SYSTEM:
104 /* System memory */
105 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
106 man->available_caching = TTM_PL_MASK_CACHING;
107 man->default_caching = TTM_PL_FLAG_CACHED;
108 break;
109 case TTM_PL_TT:
110 /* GTT memory */
111 man->func = &amdgpu_gtt_mgr_func;
112 man->gpu_offset = adev->gmc.gart_start;
113 man->available_caching = TTM_PL_MASK_CACHING;
114 man->default_caching = TTM_PL_FLAG_CACHED;
115 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
116 break;
117 case TTM_PL_VRAM:
118 /* "On-card" video ram */
119 man->func = &amdgpu_vram_mgr_func;
120 man->gpu_offset = adev->gmc.vram_start;
121 man->flags = TTM_MEMTYPE_FLAG_FIXED |
122 TTM_MEMTYPE_FLAG_MAPPABLE;
123 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
124 man->default_caching = TTM_PL_FLAG_WC;
125 break;
126 case AMDGPU_PL_GDS:
127 case AMDGPU_PL_GWS:
128 case AMDGPU_PL_OA:
129 /* On-chip GDS memory*/
130 man->func = &ttm_bo_manager_func;
131 man->gpu_offset = 0;
132 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
133 man->available_caching = TTM_PL_FLAG_UNCACHED;
134 man->default_caching = TTM_PL_FLAG_UNCACHED;
135 break;
136 default:
137 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
138 return -EINVAL;
139 }
140 return 0;
141 }
142
143 /**
144 * amdgpu_evict_flags - Compute placement flags
145 *
146 * @bo: The buffer object to evict
147 * @placement: Possible destination(s) for evicted BO
148 *
149 * Fill in placement data when ttm_bo_evict() is called
150 */
151 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
152 struct ttm_placement *placement)
153 {
154 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
155 struct amdgpu_bo *abo;
156 static const struct ttm_place placements = {
157 .fpfn = 0,
158 .lpfn = 0,
159 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
160 };
161
162 /* Don't handle scatter gather BOs */
163 if (bo->type == ttm_bo_type_sg) {
164 placement->num_placement = 0;
165 placement->num_busy_placement = 0;
166 return;
167 }
168
169 /* Object isn't an AMDGPU object so ignore */
170 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
171 placement->placement = &placements;
172 placement->busy_placement = &placements;
173 placement->num_placement = 1;
174 placement->num_busy_placement = 1;
175 return;
176 }
177
178 abo = ttm_to_amdgpu_bo(bo);
179 switch (bo->mem.mem_type) {
180 case AMDGPU_PL_GDS:
181 case AMDGPU_PL_GWS:
182 case AMDGPU_PL_OA:
183 placement->num_placement = 0;
184 placement->num_busy_placement = 0;
185 return;
186
187 case TTM_PL_VRAM:
188 if (!adev->mman.buffer_funcs_enabled) {
189 /* Move to system memory */
190 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
191 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
192 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
193 amdgpu_bo_in_cpu_visible_vram(abo)) {
194
195 /* Try evicting to the CPU inaccessible part of VRAM
196 * first, but only set GTT as busy placement, so this
197 * BO will be evicted to GTT rather than causing other
198 * BOs to be evicted from VRAM
199 */
200 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
201 AMDGPU_GEM_DOMAIN_GTT);
202 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
203 abo->placements[0].lpfn = 0;
204 abo->placement.busy_placement = &abo->placements[1];
205 abo->placement.num_busy_placement = 1;
206 } else {
207 /* Move to GTT memory */
208 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
209 }
210 break;
211 case TTM_PL_TT:
212 default:
213 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
214 break;
215 }
216 *placement = abo->placement;
217 }
218
219 /**
220 * amdgpu_verify_access - Verify access for a mmap call
221 *
222 * @bo: The buffer object to map
223 * @filp: The file pointer from the process performing the mmap
224 *
225 * This is called by ttm_bo_mmap() to verify whether a process
226 * has the right to mmap a BO to their process space.
227 */
228 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
229 {
230 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
231
232 /*
233 * Don't verify access for KFD BOs. They don't have a GEM
234 * object associated with them.
235 */
236 if (abo->kfd_bo)
237 return 0;
238
239 if (amdgpu_ttm_tt_get_usermm(bo->ttm))
240 return -EPERM;
241 #ifdef __NetBSD__
242 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
243 filp->f_data);
244 #else
245 return drm_vma_node_verify_access(&abo->tbo.base.vma_node,
246 filp->private_data);
247 #endif
248 }
249
250 /**
251 * amdgpu_move_null - Register memory for a buffer object
252 *
253 * @bo: The bo to assign the memory to
254 * @new_mem: The memory to be assigned.
255 *
256 * Assign the memory from new_mem to the memory of the buffer object bo.
257 */
258 static void amdgpu_move_null(struct ttm_buffer_object *bo,
259 struct ttm_mem_reg *new_mem)
260 {
261 struct ttm_mem_reg *old_mem = &bo->mem;
262
263 BUG_ON(old_mem->mm_node != NULL);
264 *old_mem = *new_mem;
265 new_mem->mm_node = NULL;
266 }
267
268 /**
269 * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
270 *
271 * @bo: The bo to assign the memory to.
272 * @mm_node: Memory manager node for drm allocator.
273 * @mem: The region where the bo resides.
274 *
275 */
276 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
277 struct drm_mm_node *mm_node,
278 struct ttm_mem_reg *mem)
279 {
280 uint64_t addr = 0;
281
282 if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
283 addr = mm_node->start << PAGE_SHIFT;
284 addr += bo->bdev->man[mem->mem_type].gpu_offset;
285 }
286 return addr;
287 }
288
289 /**
290 * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
291 * @offset. It also modifies the offset to be within the drm_mm_node returned
292 *
293 * @mem: The region where the bo resides.
294 * @offset: The offset that drm_mm_node is used for finding.
295 *
296 */
297 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
298 unsigned long *offset)
299 {
300 struct drm_mm_node *mm_node = mem->mm_node;
301
302 while (*offset >= (mm_node->size << PAGE_SHIFT)) {
303 *offset -= (mm_node->size << PAGE_SHIFT);
304 ++mm_node;
305 }
306 return mm_node;
307 }
308
309 /**
310 * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
311 *
312 * The function copies @size bytes from {src->mem + src->offset} to
313 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
314 * move and different for a BO to BO copy.
315 *
316 * @f: Returns the last fence if multiple jobs are submitted.
317 */
318 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
319 struct amdgpu_copy_mem *src,
320 struct amdgpu_copy_mem *dst,
321 uint64_t size,
322 struct dma_resv *resv,
323 struct dma_fence **f)
324 {
325 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
326 struct drm_mm_node *src_mm, *dst_mm;
327 uint64_t src_node_start, dst_node_start, src_node_size,
328 dst_node_size, src_page_offset, dst_page_offset;
329 struct dma_fence *fence = NULL;
330 int r = 0;
331 const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
332 AMDGPU_GPU_PAGE_SIZE);
333
334 if (!adev->mman.buffer_funcs_enabled) {
335 DRM_ERROR("Trying to move memory with ring turned off.\n");
336 return -EINVAL;
337 }
338
339 src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
340 src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
341 src->offset;
342 src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
343 src_page_offset = src_node_start & (PAGE_SIZE - 1);
344
345 dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
346 dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
347 dst->offset;
348 dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
349 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
350
351 mutex_lock(&adev->mman.gtt_window_lock);
352
353 while (size) {
354 unsigned long cur_size;
355 uint64_t from = src_node_start, to = dst_node_start;
356 struct dma_fence *next;
357
358 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
359 * begins at an offset, then adjust the size accordingly
360 */
361 cur_size = min3(min(src_node_size, dst_node_size), size,
362 GTT_MAX_BYTES);
363 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
364 cur_size + dst_page_offset > GTT_MAX_BYTES)
365 cur_size -= max(src_page_offset, dst_page_offset);
366
367 /* Map only what needs to be accessed. Map src to window 0 and
368 * dst to window 1
369 */
370 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
371 r = amdgpu_map_buffer(src->bo, src->mem,
372 PFN_UP(cur_size + src_page_offset),
373 src_node_start, 0, ring,
374 &from);
375 if (r)
376 goto error;
377 /* Adjust the offset because amdgpu_map_buffer returns
378 * start of mapped page
379 */
380 from += src_page_offset;
381 }
382
383 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
384 r = amdgpu_map_buffer(dst->bo, dst->mem,
385 PFN_UP(cur_size + dst_page_offset),
386 dst_node_start, 1, ring,
387 &to);
388 if (r)
389 goto error;
390 to += dst_page_offset;
391 }
392
393 r = amdgpu_copy_buffer(ring, from, to, cur_size,
394 resv, &next, false, true);
395 if (r)
396 goto error;
397
398 dma_fence_put(fence);
399 fence = next;
400
401 size -= cur_size;
402 if (!size)
403 break;
404
405 src_node_size -= cur_size;
406 if (!src_node_size) {
407 src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
408 src->mem);
409 src_node_size = (src_mm->size << PAGE_SHIFT);
410 src_page_offset = 0;
411 } else {
412 src_node_start += cur_size;
413 src_page_offset = src_node_start & (PAGE_SIZE - 1);
414 }
415 dst_node_size -= cur_size;
416 if (!dst_node_size) {
417 dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
418 dst->mem);
419 dst_node_size = (dst_mm->size << PAGE_SHIFT);
420 dst_page_offset = 0;
421 } else {
422 dst_node_start += cur_size;
423 dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
424 }
425 }
426 error:
427 mutex_unlock(&adev->mman.gtt_window_lock);
428 if (f)
429 *f = dma_fence_get(fence);
430 dma_fence_put(fence);
431 return r;
432 }
433
434 /**
435 * amdgpu_move_blit - Copy an entire buffer to another buffer
436 *
437 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
438 * help move buffers to and from VRAM.
439 */
440 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
441 bool evict, bool no_wait_gpu,
442 struct ttm_mem_reg *new_mem,
443 struct ttm_mem_reg *old_mem)
444 {
445 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
446 struct amdgpu_copy_mem src, dst;
447 struct dma_fence *fence = NULL;
448 int r;
449
450 src.bo = bo;
451 dst.bo = bo;
452 src.mem = old_mem;
453 dst.mem = new_mem;
454 src.offset = 0;
455 dst.offset = 0;
456
457 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
458 new_mem->num_pages << PAGE_SHIFT,
459 bo->base.resv, &fence);
460 if (r)
461 goto error;
462
463 /* clear the space being freed */
464 if (old_mem->mem_type == TTM_PL_VRAM &&
465 (ttm_to_amdgpu_bo(bo)->flags &
466 AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
467 struct dma_fence *wipe_fence = NULL;
468
469 r = amdgpu_fill_buffer(ttm_to_amdgpu_bo(bo), AMDGPU_POISON,
470 NULL, &wipe_fence);
471 if (r) {
472 goto error;
473 } else if (wipe_fence) {
474 dma_fence_put(fence);
475 fence = wipe_fence;
476 }
477 }
478
479 /* Always block for VM page tables before committing the new location */
480 if (bo->type == ttm_bo_type_kernel)
481 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
482 else
483 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
484 dma_fence_put(fence);
485 return r;
486
487 error:
488 if (fence)
489 dma_fence_wait(fence, false);
490 dma_fence_put(fence);
491 return r;
492 }
493
494 /**
495 * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
496 *
497 * Called by amdgpu_bo_move().
498 */
499 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
500 struct ttm_operation_ctx *ctx,
501 struct ttm_mem_reg *new_mem)
502 {
503 struct ttm_mem_reg *old_mem = &bo->mem;
504 struct ttm_mem_reg tmp_mem;
505 struct ttm_place placements;
506 struct ttm_placement placement;
507 int r;
508
509 /* create space/pages for new_mem in GTT space */
510 tmp_mem = *new_mem;
511 tmp_mem.mm_node = NULL;
512 placement.num_placement = 1;
513 placement.placement = &placements;
514 placement.num_busy_placement = 1;
515 placement.busy_placement = &placements;
516 placements.fpfn = 0;
517 placements.lpfn = 0;
518 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
519 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
520 if (unlikely(r)) {
521 pr_err("Failed to find GTT space for blit from VRAM\n");
522 return r;
523 }
524
525 /* set caching flags */
526 r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
527 if (unlikely(r)) {
528 goto out_cleanup;
529 }
530
531 /* Bind the memory to the GTT space */
532 r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
533 if (unlikely(r)) {
534 goto out_cleanup;
535 }
536
537 /* blit VRAM to GTT */
538 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
539 if (unlikely(r)) {
540 goto out_cleanup;
541 }
542
543 /* move BO (in tmp_mem) to new_mem */
544 r = ttm_bo_move_ttm(bo, ctx, new_mem);
545 out_cleanup:
546 ttm_bo_mem_put(bo, &tmp_mem);
547 return r;
548 }
549
550 /**
551 * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
552 *
553 * Called by amdgpu_bo_move().
554 */
555 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
556 struct ttm_operation_ctx *ctx,
557 struct ttm_mem_reg *new_mem)
558 {
559 struct ttm_mem_reg *old_mem = &bo->mem;
560 struct ttm_mem_reg tmp_mem;
561 struct ttm_placement placement;
562 struct ttm_place placements;
563 int r;
564
565 /* make space in GTT for old_mem buffer */
566 tmp_mem = *new_mem;
567 tmp_mem.mm_node = NULL;
568 placement.num_placement = 1;
569 placement.placement = &placements;
570 placement.num_busy_placement = 1;
571 placement.busy_placement = &placements;
572 placements.fpfn = 0;
573 placements.lpfn = 0;
574 placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
575 r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
576 if (unlikely(r)) {
577 pr_err("Failed to find GTT space for blit to VRAM\n");
578 return r;
579 }
580
581 /* move/bind old memory to GTT space */
582 r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
583 if (unlikely(r)) {
584 goto out_cleanup;
585 }
586
587 /* copy to VRAM */
588 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
589 if (unlikely(r)) {
590 goto out_cleanup;
591 }
592 out_cleanup:
593 ttm_bo_mem_put(bo, &tmp_mem);
594 return r;
595 }
596
597 /**
598 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
599 *
600 * Called by amdgpu_bo_move()
601 */
602 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
603 struct ttm_mem_reg *mem)
604 {
605 struct drm_mm_node *nodes = mem->mm_node;
606
607 if (mem->mem_type == TTM_PL_SYSTEM ||
608 mem->mem_type == TTM_PL_TT)
609 return true;
610 if (mem->mem_type != TTM_PL_VRAM)
611 return false;
612
613 /* ttm_mem_reg_ioremap only supports contiguous memory */
614 if (nodes->size != mem->num_pages)
615 return false;
616
617 return ((nodes->start + nodes->size) << PAGE_SHIFT)
618 <= adev->gmc.visible_vram_size;
619 }
620
621 /**
622 * amdgpu_bo_move - Move a buffer object to a new memory location
623 *
624 * Called by ttm_bo_handle_move_mem()
625 */
626 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
627 struct ttm_operation_ctx *ctx,
628 struct ttm_mem_reg *new_mem)
629 {
630 struct amdgpu_device *adev;
631 struct amdgpu_bo *abo;
632 struct ttm_mem_reg *old_mem = &bo->mem;
633 int r;
634
635 /* Can't move a pinned BO */
636 abo = ttm_to_amdgpu_bo(bo);
637 if (WARN_ON_ONCE(abo->pin_count > 0))
638 return -EINVAL;
639
640 adev = amdgpu_ttm_adev(bo->bdev);
641
642 if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
643 amdgpu_move_null(bo, new_mem);
644 return 0;
645 }
646 if ((old_mem->mem_type == TTM_PL_TT &&
647 new_mem->mem_type == TTM_PL_SYSTEM) ||
648 (old_mem->mem_type == TTM_PL_SYSTEM &&
649 new_mem->mem_type == TTM_PL_TT)) {
650 /* bind is enough */
651 amdgpu_move_null(bo, new_mem);
652 return 0;
653 }
654 if (old_mem->mem_type == AMDGPU_PL_GDS ||
655 old_mem->mem_type == AMDGPU_PL_GWS ||
656 old_mem->mem_type == AMDGPU_PL_OA ||
657 new_mem->mem_type == AMDGPU_PL_GDS ||
658 new_mem->mem_type == AMDGPU_PL_GWS ||
659 new_mem->mem_type == AMDGPU_PL_OA) {
660 /* Nothing to save here */
661 amdgpu_move_null(bo, new_mem);
662 return 0;
663 }
664
665 if (!adev->mman.buffer_funcs_enabled) {
666 r = -ENODEV;
667 goto memcpy;
668 }
669
670 if (old_mem->mem_type == TTM_PL_VRAM &&
671 new_mem->mem_type == TTM_PL_SYSTEM) {
672 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
673 } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
674 new_mem->mem_type == TTM_PL_VRAM) {
675 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
676 } else {
677 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
678 new_mem, old_mem);
679 }
680
681 if (r) {
682 memcpy:
683 /* Check that all memory is CPU accessible */
684 if (!amdgpu_mem_visible(adev, old_mem) ||
685 !amdgpu_mem_visible(adev, new_mem)) {
686 pr_err("Move buffer fallback to memcpy unavailable\n");
687 return r;
688 }
689
690 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
691 if (r)
692 return r;
693 }
694
695 if (bo->type == ttm_bo_type_device &&
696 new_mem->mem_type == TTM_PL_VRAM &&
697 old_mem->mem_type != TTM_PL_VRAM) {
698 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
699 * accesses the BO after it's moved.
700 */
701 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
702 }
703
704 /* update statistics */
705 atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
706 return 0;
707 }
708
709 /**
710 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
711 *
712 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
713 */
714 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
715 {
716 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
717 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
718 struct drm_mm_node *mm_node = mem->mm_node;
719
720 mem->bus.addr = NULL;
721 mem->bus.offset = 0;
722 mem->bus.size = mem->num_pages << PAGE_SHIFT;
723 mem->bus.base = 0;
724 mem->bus.is_iomem = false;
725 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
726 return -EINVAL;
727 switch (mem->mem_type) {
728 case TTM_PL_SYSTEM:
729 /* system memory */
730 return 0;
731 case TTM_PL_TT:
732 break;
733 case TTM_PL_VRAM:
734 mem->bus.offset = mem->start << PAGE_SHIFT;
735 /* check if it's visible */
736 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
737 return -EINVAL;
738 /* Only physically contiguous buffers apply. In a contiguous
739 * buffer, size of the first mm_node would match the number of
740 * pages in ttm_mem_reg.
741 */
742 if (adev->mman.aper_base_kaddr &&
743 (mm_node->size == mem->num_pages))
744 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
745 mem->bus.offset;
746
747 mem->bus.base = adev->gmc.aper_base;
748 mem->bus.is_iomem = true;
749 break;
750 default:
751 return -EINVAL;
752 }
753 return 0;
754 }
755
756 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
757 {
758 }
759
760 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
761 unsigned long page_offset)
762 {
763 struct drm_mm_node *mm;
764 unsigned long offset = (page_offset << PAGE_SHIFT);
765
766 mm = amdgpu_find_mm_node(&bo->mem, &offset);
767 return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
768 (offset >> PAGE_SHIFT);
769 }
770
771 /*
772 * TTM backend functions.
773 */
774 struct amdgpu_ttm_tt {
775 struct ttm_dma_tt ttm;
776 struct drm_gem_object *gobj;
777 u64 offset;
778 uint64_t userptr;
779 #ifdef __NetBSD__
780 struct proc *usertask;
781 #else
782 struct task_struct *usertask;
783 #endif
784 uint32_t userflags;
785 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
786 struct hmm_range *range;
787 #endif
788 };
789
790 #ifdef CONFIG_DRM_AMDGPU_USERPTR
791 /* flags used by HMM internal, not related to CPU/GPU PTE flags */
792 static const uint64_t hmm_range_flags[HMM_PFN_FLAG_MAX] = {
793 (1 << 0), /* HMM_PFN_VALID */
794 (1 << 1), /* HMM_PFN_WRITE */
795 0 /* HMM_PFN_DEVICE_PRIVATE */
796 };
797
798 static const uint64_t hmm_range_values[HMM_PFN_VALUE_MAX] = {
799 0xfffffffffffffffeUL, /* HMM_PFN_ERROR */
800 0, /* HMM_PFN_NONE */
801 0xfffffffffffffffcUL /* HMM_PFN_SPECIAL */
802 };
803
804 /**
805 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
806 * memory and start HMM tracking CPU page table update
807 *
808 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
809 * once afterwards to stop HMM tracking
810 */
811 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages)
812 {
813 struct ttm_tt *ttm = bo->tbo.ttm;
814 struct amdgpu_ttm_tt *gtt = (void *)ttm;
815 unsigned long start = gtt->userptr;
816 struct vm_area_struct *vma;
817 struct hmm_range *range;
818 unsigned long timeout;
819 struct mm_struct *mm;
820 unsigned long i;
821 int r = 0;
822
823 mm = bo->notifier.mm;
824 if (unlikely(!mm)) {
825 DRM_DEBUG_DRIVER("BO is not registered?\n");
826 return -EFAULT;
827 }
828
829 /* Another get_user_pages is running at the same time?? */
830 if (WARN_ON(gtt->range))
831 return -EFAULT;
832
833 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
834 return -ESRCH;
835
836 range = kzalloc(sizeof(*range), GFP_KERNEL);
837 if (unlikely(!range)) {
838 r = -ENOMEM;
839 goto out;
840 }
841 range->notifier = &bo->notifier;
842 range->flags = hmm_range_flags;
843 range->values = hmm_range_values;
844 range->pfn_shift = PAGE_SHIFT;
845 range->start = bo->notifier.interval_tree.start;
846 range->end = bo->notifier.interval_tree.last + 1;
847 range->default_flags = hmm_range_flags[HMM_PFN_VALID];
848 if (!amdgpu_ttm_tt_is_readonly(ttm))
849 range->default_flags |= range->flags[HMM_PFN_WRITE];
850
851 range->pfns = kvmalloc_array(ttm->num_pages, sizeof(*range->pfns),
852 GFP_KERNEL);
853 if (unlikely(!range->pfns)) {
854 r = -ENOMEM;
855 goto out_free_ranges;
856 }
857
858 down_read(&mm->mmap_sem);
859 vma = find_vma(mm, start);
860 if (unlikely(!vma || start < vma->vm_start)) {
861 r = -EFAULT;
862 goto out_unlock;
863 }
864 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
865 vma->vm_file)) {
866 r = -EPERM;
867 goto out_unlock;
868 }
869 up_read(&mm->mmap_sem);
870 timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
871
872 retry:
873 range->notifier_seq = mmu_interval_read_begin(&bo->notifier);
874
875 down_read(&mm->mmap_sem);
876 r = hmm_range_fault(range, 0);
877 up_read(&mm->mmap_sem);
878 if (unlikely(r <= 0)) {
879 /*
880 * FIXME: This timeout should encompass the retry from
881 * mmu_interval_read_retry() as well.
882 */
883 if ((r == 0 || r == -EBUSY) && !time_after(jiffies, timeout))
884 goto retry;
885 goto out_free_pfns;
886 }
887
888 for (i = 0; i < ttm->num_pages; i++) {
889 /* FIXME: The pages cannot be touched outside the notifier_lock */
890 pages[i] = hmm_device_entry_to_page(range, range->pfns[i]);
891 if (unlikely(!pages[i])) {
892 pr_err("Page fault failed for pfn[%lu] = 0x%llx\n",
893 i, range->pfns[i]);
894 r = -ENOMEM;
895
896 goto out_free_pfns;
897 }
898 }
899
900 gtt->range = range;
901 mmput(mm);
902
903 return 0;
904
905 out_unlock:
906 up_read(&mm->mmap_sem);
907 out_free_pfns:
908 kvfree(range->pfns);
909 out_free_ranges:
910 kfree(range);
911 out:
912 mmput(mm);
913 return r;
914 }
915
916 /**
917 * amdgpu_ttm_tt_userptr_range_done - stop HMM track the CPU page table change
918 * Check if the pages backing this ttm range have been invalidated
919 *
920 * Returns: true if pages are still valid
921 */
922 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm)
923 {
924 struct amdgpu_ttm_tt *gtt = (void *)ttm;
925 bool r = false;
926
927 if (!gtt || !gtt->userptr)
928 return false;
929
930 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%lx\n",
931 gtt->userptr, ttm->num_pages);
932
933 WARN_ONCE(!gtt->range || !gtt->range->pfns,
934 "No user pages to check\n");
935
936 if (gtt->range) {
937 /*
938 * FIXME: Must always hold notifier_lock for this, and must
939 * not ignore the return code.
940 */
941 r = mmu_interval_read_retry(gtt->range->notifier,
942 gtt->range->notifier_seq);
943 kvfree(gtt->range->pfns);
944 kfree(gtt->range);
945 gtt->range = NULL;
946 }
947
948 return !r;
949 }
950 #endif
951
952 /**
953 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
954 *
955 * Called by amdgpu_cs_list_validate(). This creates the page list
956 * that backs user memory and will ultimately be mapped into the device
957 * address space.
958 */
959 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
960 {
961 unsigned long i;
962
963 for (i = 0; i < ttm->num_pages; ++i)
964 ttm->pages[i] = pages ? pages[i] : NULL;
965 }
966
967 /**
968 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
969 *
970 * Called by amdgpu_ttm_backend_bind()
971 **/
972 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
973 {
974 #ifdef __NetBSD__ /* XXX amdgpu userptr */
975 return -ENODEV;
976 #else
977 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
978 struct amdgpu_ttm_tt *gtt = (void *)ttm;
979 unsigned nents;
980 int r;
981
982 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
983 enum dma_data_direction direction = write ?
984 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
985
986 /* Allocate an SG array and squash pages into it */
987 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
988 ttm->num_pages << PAGE_SHIFT,
989 GFP_KERNEL);
990 if (r)
991 goto release_sg;
992
993 /* Map SG to device */
994 r = -ENOMEM;
995 nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
996 if (nents != ttm->sg->nents)
997 goto release_sg;
998
999 /* convert SG to linear array of pages and dma addresses */
1000 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1001 gtt->ttm.dma_address, ttm->num_pages);
1002
1003 return 0;
1004
1005 release_sg:
1006 kfree(ttm->sg);
1007 return r;
1008 #endif
1009 }
1010
1011 /**
1012 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
1013 */
1014 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
1015 {
1016 #ifndef __NetBSD__ /* XXX amdgpu userptr */
1017 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1018 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1019
1020 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1021 enum dma_data_direction direction = write ?
1022 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
1023
1024 /* double check that we don't free the table twice */
1025 if (!ttm->sg->sgl)
1026 return;
1027
1028 /* unmap the pages mapped to the device */
1029 dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
1030
1031 sg_free_table(ttm->sg);
1032
1033 #if IS_ENABLED(CONFIG_DRM_AMDGPU_USERPTR)
1034 if (gtt->range) {
1035 unsigned long i;
1036
1037 for (i = 0; i < ttm->num_pages; i++) {
1038 if (ttm->pages[i] !=
1039 hmm_device_entry_to_page(gtt->range,
1040 gtt->range->pfns[i]))
1041 break;
1042 }
1043
1044 WARN((i == ttm->num_pages), "Missing get_user_page_done\n");
1045 }
1046 #endif
1047 #endif
1048 }
1049
1050 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
1051 struct ttm_buffer_object *tbo,
1052 uint64_t flags)
1053 {
1054 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
1055 struct ttm_tt *ttm = tbo->ttm;
1056 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1057 int r;
1058
1059 if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
1060 uint64_t page_idx = 1;
1061
1062 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
1063 ttm->pages, gtt->ttm.dma_address, flags);
1064 if (r)
1065 goto gart_bind_fail;
1066
1067 /* Patch mtype of the second part BO */
1068 flags &= ~AMDGPU_PTE_MTYPE_VG10_MASK;
1069 flags |= AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
1070
1071 r = amdgpu_gart_bind(adev,
1072 gtt->offset + (page_idx << PAGE_SHIFT),
1073 ttm->num_pages - page_idx,
1074 &ttm->pages[page_idx],
1075 &(gtt->ttm.dma_address[page_idx]), flags);
1076 } else {
1077 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1078 ttm->pages, gtt->ttm.dma_address, flags);
1079 }
1080
1081 gart_bind_fail:
1082 if (r)
1083 DRM_ERROR("failed to bind %lu pages at 0x%08"PRIX64"\n",
1084 ttm->num_pages, gtt->offset);
1085
1086 return r;
1087 }
1088
1089 /**
1090 * amdgpu_ttm_backend_bind - Bind GTT memory
1091 *
1092 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
1093 * This handles binding GTT memory to the device address space.
1094 */
1095 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
1096 struct ttm_mem_reg *bo_mem)
1097 {
1098 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1099 struct amdgpu_ttm_tt *gtt = (void*)ttm;
1100 uint64_t flags;
1101 int r = 0;
1102
1103 if (gtt->userptr) {
1104 r = amdgpu_ttm_tt_pin_userptr(ttm);
1105 if (r) {
1106 DRM_ERROR("failed to pin userptr\n");
1107 return r;
1108 }
1109 }
1110 if (!ttm->num_pages) {
1111 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
1112 ttm->num_pages, bo_mem, ttm);
1113 }
1114
1115 if (bo_mem->mem_type == AMDGPU_PL_GDS ||
1116 bo_mem->mem_type == AMDGPU_PL_GWS ||
1117 bo_mem->mem_type == AMDGPU_PL_OA)
1118 return -EINVAL;
1119
1120 if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
1121 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
1122 return 0;
1123 }
1124
1125 /* compute PTE flags relevant to this BO memory */
1126 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
1127
1128 /* bind pages into GART page tables */
1129 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
1130 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
1131 ttm->pages, gtt->ttm.dma_address, flags);
1132
1133 if (r)
1134 DRM_ERROR("failed to bind %lu pages at 0x%08"PRIX64"\n",
1135 ttm->num_pages, gtt->offset);
1136 return r;
1137 }
1138
1139 /**
1140 * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1141 */
1142 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1143 {
1144 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1145 struct ttm_operation_ctx ctx = { false, false };
1146 struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1147 struct ttm_mem_reg tmp;
1148 struct ttm_placement placement;
1149 struct ttm_place placements;
1150 uint64_t addr, flags;
1151 int r;
1152
1153 if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1154 return 0;
1155
1156 addr = amdgpu_gmc_agp_addr(bo);
1157 if (addr != AMDGPU_BO_INVALID_OFFSET) {
1158 bo->mem.start = addr >> PAGE_SHIFT;
1159 } else {
1160
1161 /* allocate GART space */
1162 tmp = bo->mem;
1163 tmp.mm_node = NULL;
1164 placement.num_placement = 1;
1165 placement.placement = &placements;
1166 placement.num_busy_placement = 1;
1167 placement.busy_placement = &placements;
1168 placements.fpfn = 0;
1169 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1170 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1171 TTM_PL_FLAG_TT;
1172
1173 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1174 if (unlikely(r))
1175 return r;
1176
1177 /* compute PTE flags for this buffer object */
1178 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1179
1180 /* Bind pages */
1181 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1182 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1183 if (unlikely(r)) {
1184 ttm_bo_mem_put(bo, &tmp);
1185 return r;
1186 }
1187
1188 ttm_bo_mem_put(bo, &bo->mem);
1189 bo->mem = tmp;
1190 }
1191
1192 bo->offset = (bo->mem.start << PAGE_SHIFT) +
1193 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1194
1195 return 0;
1196 }
1197
1198 /**
1199 * amdgpu_ttm_recover_gart - Rebind GTT pages
1200 *
1201 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1202 * rebind GTT pages during a GPU reset.
1203 */
1204 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1205 {
1206 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1207 uint64_t flags;
1208 int r;
1209
1210 if (!tbo->ttm)
1211 return 0;
1212
1213 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1214 r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1215
1216 return r;
1217 }
1218
1219 /**
1220 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1221 *
1222 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1223 * ttm_tt_destroy().
1224 */
1225 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1226 {
1227 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1228 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1229 int r;
1230
1231 /* if the pages have userptr pinning then clear that first */
1232 if (gtt->userptr)
1233 amdgpu_ttm_tt_unpin_userptr(ttm);
1234
1235 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1236 return 0;
1237
1238 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1239 r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1240 if (r)
1241 DRM_ERROR("failed to unbind %lu pages at 0x%08"PRIX64"\n",
1242 gtt->ttm.ttm.num_pages, gtt->offset);
1243 return r;
1244 }
1245
1246 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1247 {
1248 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1249
1250 #ifndef __NetBSD__ /* XXX amdgpu userptr */
1251 if (gtt->usertask)
1252 put_task_struct(gtt->usertask);
1253 #endif
1254
1255 ttm_dma_tt_fini(>t->ttm);
1256 kfree(gtt);
1257 }
1258
1259 static struct ttm_backend_func amdgpu_backend_func = {
1260 .bind = &amdgpu_ttm_backend_bind,
1261 .unbind = &amdgpu_ttm_backend_unbind,
1262 .destroy = &amdgpu_ttm_backend_destroy,
1263 };
1264
1265 /**
1266 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1267 *
1268 * @bo: The buffer object to create a GTT ttm_tt object around
1269 *
1270 * Called by ttm_tt_create().
1271 */
1272 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1273 uint32_t page_flags)
1274 {
1275 struct amdgpu_ttm_tt *gtt;
1276
1277 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1278 if (gtt == NULL) {
1279 return NULL;
1280 }
1281 gtt->ttm.ttm.func = &amdgpu_backend_func;
1282 gtt->gobj = &bo->base;
1283
1284 /* allocate space for the uninitialized page entries */
1285 if (ttm_sg_tt_init(>t->ttm, bo, page_flags)) {
1286 kfree(gtt);
1287 return NULL;
1288 }
1289 return >t->ttm.ttm;
1290 }
1291
1292 /**
1293 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1294 *
1295 * Map the pages of a ttm_tt object to an address space visible
1296 * to the underlying device.
1297 */
1298 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1299 struct ttm_operation_ctx *ctx)
1300 {
1301 #ifndef __NetBSD__
1302 struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1303 #endif
1304 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1305
1306 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1307 if (gtt && gtt->userptr) {
1308 #ifdef __NetBSD__
1309 ttm->sg = NULL;
1310 #else
1311 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1312 if (!ttm->sg)
1313 return -ENOMEM;
1314 #endif
1315
1316 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1317 ttm->state = tt_unbound;
1318 return 0;
1319 }
1320
1321 if (ttm->page_flags & TTM_PAGE_FLAG_SG) {
1322 if (!ttm->sg) {
1323 struct dma_buf_attachment *attach;
1324 struct sg_table *sgt;
1325
1326 attach = gtt->gobj->import_attach;
1327 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1328 if (IS_ERR(sgt))
1329 return PTR_ERR(sgt);
1330
1331 ttm->sg = sgt;
1332 }
1333
1334 #ifdef __NetBSD__
1335 int r = drm_prime_bus_dmamap_load_sgt(ttm->bdev->dmat,
1336 gtt->ttm.dma_address, ttm->sg);
1337 if (r)
1338 return r;
1339 #else
1340 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1341 gtt->ttm.dma_address,
1342 ttm->num_pages);
1343 #endif
1344 ttm->state = tt_unbound;
1345 return 0;
1346 }
1347
1348 #ifdef __NetBSD__
1349 /* XXX errno NetBSD->Linux */
1350 return ttm_bus_dma_populate(>t->ttm);
1351 #else
1352 #ifdef CONFIG_SWIOTLB
1353 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1354 return ttm_dma_populate(>t->ttm, adev->dev, ctx);
1355 }
1356 #endif
1357
1358 /* fall back to generic helper to populate the page array
1359 * and map them to the device */
1360 return ttm_populate_and_map_pages(adev->dev, >t->ttm, ctx);
1361 #endif
1362 }
1363
1364 /**
1365 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1366 *
1367 * Unmaps pages of a ttm_tt object from the device address space and
1368 * unpopulates the page array backing it.
1369 */
1370 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1371 {
1372 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1373 #ifndef __NetBSD__
1374 struct amdgpu_device *adev;
1375 #endif
1376
1377 if (gtt && gtt->userptr) {
1378 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1379 kfree(ttm->sg);
1380 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1381 return;
1382 }
1383
1384 if (ttm->sg && gtt->gobj->import_attach) {
1385 struct dma_buf_attachment *attach;
1386
1387 attach = gtt->gobj->import_attach;
1388 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1389 ttm->sg = NULL;
1390 return;
1391 }
1392
1393 if (ttm->page_flags & TTM_PAGE_FLAG_SG)
1394 return;
1395
1396 #ifdef __NetBSD__
1397 ttm_bus_dma_unpopulate(>t->ttm);
1398 return;
1399 #else
1400 adev = amdgpu_ttm_adev(ttm->bdev);
1401
1402 #ifdef CONFIG_SWIOTLB
1403 if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1404 ttm_dma_unpopulate(>t->ttm, adev->dev);
1405 return;
1406 }
1407 #endif
1408
1409 /* fall back to generic helper to unmap and unpopulate array */
1410 ttm_unmap_and_unpopulate_pages(adev->dev, >t->ttm);
1411 #endif /* __NetBSD__ */
1412 }
1413
1414 #ifdef __NetBSD__
1415 static void amdgpu_ttm_tt_swapout(struct ttm_tt *ttm)
1416 {
1417 struct amdgpu_ttm_tt *gtt = container_of(ttm, struct amdgpu_ttm_tt,
1418 ttm.ttm);
1419 struct ttm_dma_tt *ttm_dma = >t->ttm;
1420
1421 ttm_bus_dma_swapout(ttm_dma);
1422 }
1423
1424 static const struct uvm_pagerops amdgpu_uvm_ops = {
1425 .pgo_reference = &ttm_bo_uvm_reference,
1426 .pgo_detach = &ttm_bo_uvm_detach,
1427 .pgo_fault = &ttm_bo_uvm_fault,
1428 };
1429 #endif
1430
1431 /**
1432 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1433 * task
1434 *
1435 * @ttm: The ttm_tt object to bind this userptr object to
1436 * @addr: The address in the current tasks VM space to use
1437 * @flags: Requirements of userptr object.
1438 *
1439 * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1440 * to current task
1441 */
1442 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1443 uint32_t flags)
1444 {
1445 #ifdef __NetBSD__ /* XXX amdgpu userptr */
1446 return -ENODEV;
1447 #else
1448 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1449
1450 if (gtt == NULL)
1451 return -EINVAL;
1452
1453 gtt->userptr = addr;
1454 gtt->userflags = flags;
1455
1456 if (gtt->usertask)
1457 put_task_struct(gtt->usertask);
1458 gtt->usertask = current->group_leader;
1459 get_task_struct(gtt->usertask);
1460
1461 return 0;
1462 #endif
1463 }
1464
1465 /**
1466 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1467 */
1468 #ifdef __NetBSD__
1469 struct vmspace *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1470 #else
1471 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1472 #endif
1473 {
1474 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1475
1476 if (gtt == NULL)
1477 return NULL;
1478
1479 if (gtt->usertask == NULL)
1480 return NULL;
1481
1482 #ifdef __NetBSD__
1483 return gtt->usertask->p_vmspace;
1484 #else
1485 return gtt->usertask->mm;
1486 #endif
1487 }
1488
1489 /**
1490 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1491 * address range for the current task.
1492 *
1493 */
1494 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1495 unsigned long end)
1496 {
1497 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1498 unsigned long size;
1499
1500 if (gtt == NULL || !gtt->userptr)
1501 return false;
1502
1503 /* Return false if no part of the ttm_tt object lies within
1504 * the range
1505 */
1506 size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1507 if (gtt->userptr > end || gtt->userptr + size <= start)
1508 return false;
1509
1510 return true;
1511 }
1512
1513 /**
1514 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1515 */
1516 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1517 {
1518 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1519
1520 if (gtt == NULL || !gtt->userptr)
1521 return false;
1522
1523 return true;
1524 }
1525
1526 /**
1527 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1528 */
1529 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1530 {
1531 struct amdgpu_ttm_tt *gtt = (void *)ttm;
1532
1533 if (gtt == NULL)
1534 return false;
1535
1536 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1537 }
1538
1539 /**
1540 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1541 *
1542 * @ttm: The ttm_tt object to compute the flags for
1543 * @mem: The memory registry backing this ttm_tt object
1544 *
1545 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1546 */
1547 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1548 {
1549 uint64_t flags = 0;
1550
1551 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1552 flags |= AMDGPU_PTE_VALID;
1553
1554 if (mem && mem->mem_type == TTM_PL_TT) {
1555 flags |= AMDGPU_PTE_SYSTEM;
1556
1557 if (ttm->caching_state == tt_cached)
1558 flags |= AMDGPU_PTE_SNOOPED;
1559 }
1560
1561 return flags;
1562 }
1563
1564 /**
1565 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1566 *
1567 * @ttm: The ttm_tt object to compute the flags for
1568 * @mem: The memory registry backing this ttm_tt object
1569
1570 * Figure out the flags to use for a VM PTE (Page Table Entry).
1571 */
1572 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1573 struct ttm_mem_reg *mem)
1574 {
1575 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1576
1577 flags |= adev->gart.gart_pte_flags;
1578 flags |= AMDGPU_PTE_READABLE;
1579
1580 if (!amdgpu_ttm_tt_is_readonly(ttm))
1581 flags |= AMDGPU_PTE_WRITEABLE;
1582
1583 return flags;
1584 }
1585
1586 /**
1587 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1588 * object.
1589 *
1590 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1591 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1592 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1593 * used to clean out a memory space.
1594 */
1595 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1596 const struct ttm_place *place)
1597 {
1598 unsigned long num_pages = bo->mem.num_pages;
1599 struct drm_mm_node *node = bo->mem.mm_node;
1600 struct dma_resv_list *flist;
1601 struct dma_fence *f;
1602 int i;
1603
1604 if (bo->type == ttm_bo_type_kernel &&
1605 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1606 return false;
1607
1608 /* If bo is a KFD BO, check if the bo belongs to the current process.
1609 * If true, then return false as any KFD process needs all its BOs to
1610 * be resident to run successfully
1611 */
1612 #ifdef __NetBSD__ /* XXX amdgpu kfd */
1613 __USE(flist);
1614 __USE(f);
1615 __USE(i);
1616 #else
1617 flist = dma_resv_get_list(bo->base.resv);
1618 if (flist) {
1619 for (i = 0; i < flist->shared_count; ++i) {
1620 f = rcu_dereference_protected(flist->shared[i],
1621 dma_resv_held(bo->base.resv));
1622 if (amdkfd_fence_check_mm(f, current->mm))
1623 return false;
1624 }
1625 }
1626 #endif
1627
1628 switch (bo->mem.mem_type) {
1629 case TTM_PL_TT:
1630 return true;
1631
1632 case TTM_PL_VRAM:
1633 /* Check each drm MM node individually */
1634 while (num_pages) {
1635 if (place->fpfn < (node->start + node->size) &&
1636 !(place->lpfn && place->lpfn <= node->start))
1637 return true;
1638
1639 num_pages -= node->size;
1640 ++node;
1641 }
1642 return false;
1643
1644 default:
1645 break;
1646 }
1647
1648 return ttm_bo_eviction_valuable(bo, place);
1649 }
1650
1651 /**
1652 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1653 *
1654 * @bo: The buffer object to read/write
1655 * @offset: Offset into buffer object
1656 * @buf: Secondary buffer to write/read from
1657 * @len: Length in bytes of access
1658 * @write: true if writing
1659 *
1660 * This is used to access VRAM that backs a buffer object via MMIO
1661 * access for debugging purposes.
1662 */
1663 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1664 unsigned long offset,
1665 void *buf, int len, int write)
1666 {
1667 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1668 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1669 struct drm_mm_node *nodes;
1670 uint32_t value = 0;
1671 int ret = 0;
1672 uint64_t pos;
1673 unsigned long flags;
1674
1675 if (bo->mem.mem_type != TTM_PL_VRAM)
1676 return -EIO;
1677
1678 nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1679 pos = (nodes->start << PAGE_SHIFT) + offset;
1680
1681 while (len && pos < adev->gmc.mc_vram_size) {
1682 uint64_t aligned_pos = pos & ~(uint64_t)3;
1683 uint32_t bytes = 4 - (pos & 3);
1684 uint32_t shift = (pos & 3) * 8;
1685 uint32_t mask = 0xffffffff << shift;
1686
1687 if (len < bytes) {
1688 mask &= 0xffffffff >> (bytes - len) * 8;
1689 bytes = len;
1690 }
1691
1692 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1693 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1694 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1695 if (!write || mask != 0xffffffff)
1696 value = RREG32_NO_KIQ(mmMM_DATA);
1697 if (write) {
1698 value &= ~mask;
1699 value |= (*(uint32_t *)buf << shift) & mask;
1700 WREG32_NO_KIQ(mmMM_DATA, value);
1701 }
1702 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1703 if (!write) {
1704 value = (value & mask) >> shift;
1705 memcpy(buf, &value, bytes);
1706 }
1707
1708 ret += bytes;
1709 buf = (uint8_t *)buf + bytes;
1710 pos += bytes;
1711 len -= bytes;
1712 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1713 ++nodes;
1714 pos = (nodes->start << PAGE_SHIFT);
1715 }
1716 }
1717
1718 return ret;
1719 }
1720
1721 static struct ttm_bo_driver amdgpu_bo_driver = {
1722 .ttm_tt_create = &amdgpu_ttm_tt_create,
1723 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1724 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1725 #ifdef __NetBSD__
1726 .ttm_tt_swapout = &amdgpu_ttm_tt_swapout,
1727 .ttm_uvm_ops = &amdgpu_uvm_ops,
1728 #endif
1729 .invalidate_caches = &amdgpu_invalidate_caches,
1730 .init_mem_type = &amdgpu_init_mem_type,
1731 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1732 .evict_flags = &amdgpu_evict_flags,
1733 .move = &amdgpu_bo_move,
1734 .verify_access = &amdgpu_verify_access,
1735 .move_notify = &amdgpu_bo_move_notify,
1736 .release_notify = &amdgpu_bo_release_notify,
1737 .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1738 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1739 .io_mem_free = &amdgpu_ttm_io_mem_free,
1740 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1741 .access_memory = &amdgpu_ttm_access_memory,
1742 .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1743 };
1744
1745 /*
1746 * Firmware Reservation functions
1747 */
1748 /**
1749 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1750 *
1751 * @adev: amdgpu_device pointer
1752 *
1753 * free fw reserved vram if it has been reserved.
1754 */
1755 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1756 {
1757 amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1758 NULL, &adev->fw_vram_usage.va);
1759 }
1760
1761 /**
1762 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1763 *
1764 * @adev: amdgpu_device pointer
1765 *
1766 * create bo vram reservation from fw.
1767 */
1768 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1769 {
1770 uint64_t vram_size = adev->gmc.visible_vram_size;
1771
1772 adev->fw_vram_usage.va = NULL;
1773 adev->fw_vram_usage.reserved_bo = NULL;
1774
1775 if (adev->fw_vram_usage.size == 0 ||
1776 adev->fw_vram_usage.size > vram_size)
1777 return 0;
1778
1779 return amdgpu_bo_create_kernel_at(adev,
1780 adev->fw_vram_usage.start_offset,
1781 adev->fw_vram_usage.size,
1782 AMDGPU_GEM_DOMAIN_VRAM,
1783 &adev->fw_vram_usage.reserved_bo,
1784 &adev->fw_vram_usage.va);
1785 }
1786
1787 /*
1788 * Memoy training reservation functions
1789 */
1790
1791 /**
1792 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1793 *
1794 * @adev: amdgpu_device pointer
1795 *
1796 * free memory training reserved vram if it has been reserved.
1797 */
1798 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1799 {
1800 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1801
1802 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1803 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1804 ctx->c2p_bo = NULL;
1805
1806 return 0;
1807 }
1808
1809 static u64 amdgpu_ttm_training_get_c2p_offset(u64 vram_size)
1810 {
1811 if ((vram_size & (SZ_1M - 1)) < (SZ_4K + 1) )
1812 vram_size -= SZ_1M;
1813
1814 return ALIGN(vram_size, SZ_1M);
1815 }
1816
1817 /**
1818 * amdgpu_ttm_training_reserve_vram_init - create bo vram reservation from memory training
1819 *
1820 * @adev: amdgpu_device pointer
1821 *
1822 * create bo vram reservation from memory training.
1823 */
1824 static int amdgpu_ttm_training_reserve_vram_init(struct amdgpu_device *adev)
1825 {
1826 int ret;
1827 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1828
1829 memset(ctx, 0, sizeof(*ctx));
1830 if (!adev->fw_vram_usage.mem_train_support) {
1831 DRM_DEBUG("memory training does not support!\n");
1832 return 0;
1833 }
1834
1835 ctx->c2p_train_data_offset = amdgpu_ttm_training_get_c2p_offset(adev->gmc.mc_vram_size);
1836 ctx->p2c_train_data_offset = (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1837 ctx->train_data_size = GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1838
1839 DRM_DEBUG("train_data_size:%"PRIx64",p2c_train_data_offset:%"PRIx64",c2p_train_data_offset:%"PRIx64".\n",
1840 ctx->train_data_size,
1841 ctx->p2c_train_data_offset,
1842 ctx->c2p_train_data_offset);
1843
1844 ret = amdgpu_bo_create_kernel_at(adev,
1845 ctx->c2p_train_data_offset,
1846 ctx->train_data_size,
1847 AMDGPU_GEM_DOMAIN_VRAM,
1848 &ctx->c2p_bo,
1849 NULL);
1850 if (ret) {
1851 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1852 amdgpu_ttm_training_reserve_vram_fini(adev);
1853 return ret;
1854 }
1855
1856 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1857 return 0;
1858 }
1859
1860 /**
1861 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1862 * gtt/vram related fields.
1863 *
1864 * This initializes all of the memory space pools that the TTM layer
1865 * will need such as the GTT space (system memory mapped to the device),
1866 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1867 * can be mapped per VMID.
1868 */
1869 int amdgpu_ttm_init(struct amdgpu_device *adev)
1870 {
1871 uint64_t gtt_size;
1872 int r;
1873 u64 vis_vram_limit;
1874 void *stolen_vga_buf;
1875
1876 mutex_init(&adev->mman.gtt_window_lock);
1877
1878 /* No others user of address space so set it to 0 */
1879 r = ttm_bo_device_init(&adev->mman.bdev,
1880 &amdgpu_bo_driver,
1881 #ifdef __NetBSD__
1882 adev->ddev->bst,
1883 adev->ddev->dmat,
1884 #else
1885 adev->ddev->anon_inode->i_mapping,
1886 #endif
1887 adev->ddev->vma_offset_manager,
1888 dma_addressing_limited(adev->dev));
1889 if (r) {
1890 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1891 return r;
1892 }
1893 adev->mman.initialized = true;
1894
1895 /* We opt to avoid OOM on system pages allocations */
1896 adev->mman.bdev.no_retry = true;
1897
1898 /* Initialize VRAM pool with all of VRAM divided into pages */
1899 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1900 adev->gmc.real_vram_size >> PAGE_SHIFT);
1901 if (r) {
1902 DRM_ERROR("Failed initializing VRAM heap.\n");
1903 return r;
1904 }
1905
1906 /* Reduce size of CPU-visible VRAM if requested */
1907 vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1908 if (amdgpu_vis_vram_limit > 0 &&
1909 vis_vram_limit <= adev->gmc.visible_vram_size)
1910 adev->gmc.visible_vram_size = vis_vram_limit;
1911
1912 /* Change the size here instead of the init above so only lpfn is affected */
1913 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1914 #ifdef __NetBSD__
1915 #ifdef _LP64
1916 if (bus_space_map(adev->gmc.aper_tag, adev->gmc.aper_base,
1917 adev->gmc.visible_vram_size,
1918 BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_PREFETCHABLE,
1919 &adev->mman.aper_base_handle)) {
1920 return -EIO;
1921 }
1922 adev->mman.aper_base_kaddr = bus_space_vaddr(adev->gmc.aper_tag,
1923 adev->mman.aper_base_handle);
1924 KASSERT(adev->mman.aper_base_kaddr != NULL);
1925 #endif /* _LP64 */
1926 #else /* __NetBSD__ */
1927 #ifdef CONFIG_64BIT
1928 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1929 adev->gmc.visible_vram_size);
1930 #endif
1931 #endif
1932
1933 /*
1934 *The reserved vram for firmware must be pinned to the specified
1935 *place on the VRAM, so reserve it early.
1936 */
1937 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1938 if (r) {
1939 return r;
1940 }
1941
1942 /*
1943 *The reserved vram for memory training must be pinned to the specified
1944 *place on the VRAM, so reserve it early.
1945 */
1946 r = amdgpu_ttm_training_reserve_vram_init(adev);
1947 if (r)
1948 return r;
1949
1950 /* allocate memory as required for VGA
1951 * This is used for VGA emulation and pre-OS scanout buffers to
1952 * avoid display artifacts while transitioning between pre-OS
1953 * and driver. */
1954 r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1955 AMDGPU_GEM_DOMAIN_VRAM,
1956 &adev->stolen_vga_memory,
1957 NULL, &stolen_vga_buf);
1958 if (r)
1959 return r;
1960
1961 /*
1962 * reserve one TMR (64K) memory at the top of VRAM which holds
1963 * IP Discovery data and is protected by PSP.
1964 */
1965 r = amdgpu_bo_create_kernel_at(adev,
1966 adev->gmc.real_vram_size - DISCOVERY_TMR_SIZE,
1967 DISCOVERY_TMR_SIZE,
1968 AMDGPU_GEM_DOMAIN_VRAM,
1969 &adev->discovery_memory,
1970 NULL);
1971 if (r)
1972 return r;
1973
1974 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1975 (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1976
1977 /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1978 * or whatever the user passed on module init */
1979 if (amdgpu_gtt_size == -1) {
1980 struct sysinfo si;
1981
1982 si_meminfo(&si);
1983 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1984 adev->gmc.mc_vram_size),
1985 ((uint64_t)si.totalram * si.mem_unit * 3/4));
1986 }
1987 else
1988 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1989
1990 /* Initialize GTT memory pool */
1991 r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1992 if (r) {
1993 DRM_ERROR("Failed initializing GTT heap.\n");
1994 return r;
1995 }
1996 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1997 (unsigned)(gtt_size / (1024 * 1024)));
1998
1999 /* Initialize various on-chip memory pools */
2000 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
2001 adev->gds.gds_size);
2002 if (r) {
2003 DRM_ERROR("Failed initializing GDS heap.\n");
2004 return r;
2005 }
2006
2007 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
2008 adev->gds.gws_size);
2009 if (r) {
2010 DRM_ERROR("Failed initializing gws heap.\n");
2011 return r;
2012 }
2013
2014 r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
2015 adev->gds.oa_size);
2016 if (r) {
2017 DRM_ERROR("Failed initializing oa heap.\n");
2018 return r;
2019 }
2020
2021 /* Register debugfs entries for amdgpu_ttm */
2022 r = amdgpu_ttm_debugfs_init(adev);
2023 if (r) {
2024 DRM_ERROR("Failed to init debugfs\n");
2025 return r;
2026 }
2027 return 0;
2028 }
2029
2030 /**
2031 * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
2032 */
2033 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
2034 {
2035 void *stolen_vga_buf;
2036 /* return the VGA stolen memory (if any) back to VRAM */
2037 amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, &stolen_vga_buf);
2038 }
2039
2040 /**
2041 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2042 */
2043 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2044 {
2045 if (!adev->mman.initialized)
2046 return;
2047
2048 amdgpu_ttm_debugfs_fini(adev);
2049 amdgpu_ttm_training_reserve_vram_fini(adev);
2050 /* return the IP Discovery TMR memory back to VRAM */
2051 amdgpu_bo_free_kernel(&adev->discovery_memory, NULL, NULL);
2052 amdgpu_ttm_fw_reserve_vram_fini(adev);
2053
2054 #ifdef __NetBSD__
2055 if (adev->mman.aper_base_handle) {
2056 bus_space_unmap(adev->gmc.aper_tag,
2057 adev->mman.aper_base_handle, adev->gmc.visible_vram_size);
2058 }
2059 #else
2060 if (adev->mman.aper_base_kaddr)
2061 iounmap(adev->mman.aper_base_kaddr);
2062 #endif
2063 adev->mman.aper_base_kaddr = NULL;
2064
2065 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
2066 ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
2067 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
2068 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
2069 ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
2070 ttm_bo_device_release(&adev->mman.bdev);
2071 adev->mman.initialized = false;
2072 DRM_INFO("amdgpu: ttm finalized\n");
2073 }
2074
2075 /**
2076 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2077 *
2078 * @adev: amdgpu_device pointer
2079 * @enable: true when we can use buffer functions.
2080 *
2081 * Enable/disable use of buffer functions during suspend/resume. This should
2082 * only be called at bootup or when userspace isn't running.
2083 */
2084 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2085 {
2086 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
2087 uint64_t size;
2088 int r;
2089
2090 if (!adev->mman.initialized || adev->in_gpu_reset ||
2091 adev->mman.buffer_funcs_enabled == enable)
2092 return;
2093
2094 if (enable) {
2095 struct amdgpu_ring *ring;
2096 struct drm_gpu_scheduler *sched;
2097
2098 ring = adev->mman.buffer_funcs_ring;
2099 sched = &ring->sched;
2100 r = drm_sched_entity_init(&adev->mman.entity,
2101 DRM_SCHED_PRIORITY_KERNEL, &sched,
2102 1, NULL);
2103 if (r) {
2104 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2105 r);
2106 return;
2107 }
2108 } else {
2109 drm_sched_entity_destroy(&adev->mman.entity);
2110 dma_fence_put(man->move);
2111 man->move = NULL;
2112 }
2113
2114 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2115 if (enable)
2116 size = adev->gmc.real_vram_size;
2117 else
2118 size = adev->gmc.visible_vram_size;
2119 man->size = size >> PAGE_SHIFT;
2120 adev->mman.buffer_funcs_enabled = enable;
2121 }
2122
2123 #ifdef __NetBSD__
2124
2125 int
2126 amdgpu_mmap_object(struct drm_device *dev, off_t offset, size_t size,
2127 vm_prot_t prot, struct uvm_object **uobjp, voff_t *uoffsetp,
2128 struct file *file)
2129 {
2130 struct amdgpu_device *adev = dev->dev_private;
2131
2132 KASSERT(0 == (offset & (PAGE_SIZE - 1)));
2133
2134 if (__predict_false(adev == NULL)) /* XXX How?? */
2135 return -EINVAL;
2136
2137 return ttm_bo_mmap_object(&adev->mman.bdev, offset, size, prot,
2138 uobjp, uoffsetp, file);
2139 }
2140
2141 #else /* __NetBSD__ */
2142
2143 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
2144 {
2145 struct drm_file *file_priv = filp->private_data;
2146 struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
2147
2148 if (adev == NULL)
2149 return -EINVAL;
2150
2151 return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
2152 }
2153
2154 #endif /* __NetBSD__ */
2155 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
2156 struct ttm_mem_reg *mem, unsigned num_pages,
2157 uint64_t offset, unsigned window,
2158 struct amdgpu_ring *ring,
2159 uint64_t *addr)
2160 {
2161 struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
2162 struct amdgpu_device *adev = ring->adev;
2163 struct ttm_tt *ttm = bo->ttm;
2164 struct amdgpu_job *job;
2165 unsigned num_dw, num_bytes;
2166 dma_addr_t *dma_address;
2167 struct dma_fence *fence;
2168 uint64_t src_addr, dst_addr;
2169 uint64_t flags;
2170 int r;
2171
2172 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
2173 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
2174
2175 *addr = adev->gmc.gart_start;
2176 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
2177 AMDGPU_GPU_PAGE_SIZE;
2178
2179 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
2180 num_bytes = num_pages * 8;
2181
2182 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
2183 if (r)
2184 return r;
2185
2186 src_addr = num_dw * 4;
2187 src_addr += job->ibs[0].gpu_addr;
2188
2189 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
2190 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
2191 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
2192 dst_addr, num_bytes);
2193
2194 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2195 WARN_ON(job->ibs[0].length_dw > num_dw);
2196
2197 #ifdef __NetBSD__
2198 __USE(dma_address);
2199 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2200 r = amdgpu_gart_map(adev, 0, num_pages, offset, gtt->ttm.dma_address,
2201 flags, &job->ibs[0].ptr[num_dw]);
2202 #else
2203 dma_address = >t->ttm.dma_address[offset >> PAGE_SHIFT];
2204 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
2205 r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
2206 &job->ibs[0].ptr[num_dw]);
2207 #endif
2208 if (r)
2209 goto error_free;
2210
2211 r = amdgpu_job_submit(job, &adev->mman.entity,
2212 AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
2213 if (r)
2214 goto error_free;
2215
2216 dma_fence_put(fence);
2217
2218 return r;
2219
2220 error_free:
2221 amdgpu_job_free(job);
2222 return r;
2223 }
2224
2225 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2226 uint64_t dst_offset, uint32_t byte_count,
2227 struct dma_resv *resv,
2228 struct dma_fence **fence, bool direct_submit,
2229 bool vm_needs_flush)
2230 {
2231 struct amdgpu_device *adev = ring->adev;
2232 struct amdgpu_job *job;
2233
2234 uint32_t max_bytes;
2235 unsigned num_loops, num_dw;
2236 unsigned i;
2237 int r;
2238
2239 if (direct_submit && !ring->sched.ready) {
2240 DRM_ERROR("Trying to move memory with ring turned off.\n");
2241 return -EINVAL;
2242 }
2243
2244 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2245 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2246 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2247
2248 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2249 if (r)
2250 return r;
2251
2252 if (vm_needs_flush) {
2253 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
2254 job->vm_needs_flush = true;
2255 }
2256 if (resv) {
2257 r = amdgpu_sync_resv(adev, &job->sync, resv,
2258 AMDGPU_FENCE_OWNER_UNDEFINED,
2259 false);
2260 if (r) {
2261 DRM_ERROR("sync failed (%d).\n", r);
2262 goto error_free;
2263 }
2264 }
2265
2266 for (i = 0; i < num_loops; i++) {
2267 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2268
2269 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2270 dst_offset, cur_size_in_bytes);
2271
2272 src_offset += cur_size_in_bytes;
2273 dst_offset += cur_size_in_bytes;
2274 byte_count -= cur_size_in_bytes;
2275 }
2276
2277 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2278 WARN_ON(job->ibs[0].length_dw > num_dw);
2279 if (direct_submit)
2280 r = amdgpu_job_submit_direct(job, ring, fence);
2281 else
2282 r = amdgpu_job_submit(job, &adev->mman.entity,
2283 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2284 if (r)
2285 goto error_free;
2286
2287 return r;
2288
2289 error_free:
2290 amdgpu_job_free(job);
2291 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2292 return r;
2293 }
2294
2295 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2296 uint32_t src_data,
2297 struct dma_resv *resv,
2298 struct dma_fence **fence)
2299 {
2300 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2301 uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2302 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2303
2304 struct drm_mm_node *mm_node;
2305 unsigned long num_pages;
2306 unsigned int num_loops, num_dw;
2307
2308 struct amdgpu_job *job;
2309 int r;
2310
2311 if (!adev->mman.buffer_funcs_enabled) {
2312 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2313 return -EINVAL;
2314 }
2315
2316 if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2317 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2318 if (r)
2319 return r;
2320 }
2321
2322 num_pages = bo->tbo.num_pages;
2323 mm_node = bo->tbo.mem.mm_node;
2324 num_loops = 0;
2325 while (num_pages) {
2326 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2327
2328 num_loops += DIV_ROUND_UP_ULL(byte_count, max_bytes);
2329 num_pages -= mm_node->size;
2330 ++mm_node;
2331 }
2332 num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2333
2334 /* for IB padding */
2335 num_dw += 64;
2336
2337 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2338 if (r)
2339 return r;
2340
2341 if (resv) {
2342 r = amdgpu_sync_resv(adev, &job->sync, resv,
2343 AMDGPU_FENCE_OWNER_UNDEFINED, false);
2344 if (r) {
2345 DRM_ERROR("sync failed (%d).\n", r);
2346 goto error_free;
2347 }
2348 }
2349
2350 num_pages = bo->tbo.num_pages;
2351 mm_node = bo->tbo.mem.mm_node;
2352
2353 while (num_pages) {
2354 uint64_t byte_count = mm_node->size << PAGE_SHIFT;
2355 uint64_t dst_addr;
2356
2357 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2358 while (byte_count) {
2359 uint32_t cur_size_in_bytes = min_t(uint64_t, byte_count,
2360 max_bytes);
2361
2362 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2363 dst_addr, cur_size_in_bytes);
2364
2365 dst_addr += cur_size_in_bytes;
2366 byte_count -= cur_size_in_bytes;
2367 }
2368
2369 num_pages -= mm_node->size;
2370 ++mm_node;
2371 }
2372
2373 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2374 WARN_ON(job->ibs[0].length_dw > num_dw);
2375 r = amdgpu_job_submit(job, &adev->mman.entity,
2376 AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2377 if (r)
2378 goto error_free;
2379
2380 return 0;
2381
2382 error_free:
2383 amdgpu_job_free(job);
2384 return r;
2385 }
2386
2387 #if defined(CONFIG_DEBUG_FS)
2388
2389 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2390 {
2391 struct drm_info_node *node = (struct drm_info_node *)m->private;
2392 unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2393 struct drm_device *dev = node->minor->dev;
2394 struct amdgpu_device *adev = dev->dev_private;
2395 struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2396 struct drm_printer p = drm_seq_file_printer(m);
2397
2398 man->func->debug(man, &p);
2399 return 0;
2400 }
2401
2402 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2403 {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2404 {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2405 {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2406 {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2407 {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2408 {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2409 #ifdef CONFIG_SWIOTLB
2410 {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2411 #endif
2412 };
2413
2414 /**
2415 * amdgpu_ttm_vram_read - Linear read access to VRAM
2416 *
2417 * Accesses VRAM via MMIO for debugging purposes.
2418 */
2419 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2420 size_t size, loff_t *pos)
2421 {
2422 struct amdgpu_device *adev = file_inode(f)->i_private;
2423 ssize_t result = 0;
2424 int r;
2425
2426 if (size & 0x3 || *pos & 0x3)
2427 return -EINVAL;
2428
2429 if (*pos >= adev->gmc.mc_vram_size)
2430 return -ENXIO;
2431
2432 while (size) {
2433 unsigned long flags;
2434 uint32_t value;
2435
2436 if (*pos >= adev->gmc.mc_vram_size)
2437 return result;
2438
2439 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2440 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2441 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2442 value = RREG32_NO_KIQ(mmMM_DATA);
2443 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2444
2445 r = put_user(value, (uint32_t *)buf);
2446 if (r)
2447 return r;
2448
2449 result += 4;
2450 buf += 4;
2451 *pos += 4;
2452 size -= 4;
2453 }
2454
2455 return result;
2456 }
2457
2458 /**
2459 * amdgpu_ttm_vram_write - Linear write access to VRAM
2460 *
2461 * Accesses VRAM via MMIO for debugging purposes.
2462 */
2463 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2464 size_t size, loff_t *pos)
2465 {
2466 struct amdgpu_device *adev = file_inode(f)->i_private;
2467 ssize_t result = 0;
2468 int r;
2469
2470 if (size & 0x3 || *pos & 0x3)
2471 return -EINVAL;
2472
2473 if (*pos >= adev->gmc.mc_vram_size)
2474 return -ENXIO;
2475
2476 while (size) {
2477 unsigned long flags;
2478 uint32_t value;
2479
2480 if (*pos >= adev->gmc.mc_vram_size)
2481 return result;
2482
2483 r = get_user(value, (uint32_t *)buf);
2484 if (r)
2485 return r;
2486
2487 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2488 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2489 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2490 WREG32_NO_KIQ(mmMM_DATA, value);
2491 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2492
2493 result += 4;
2494 buf += 4;
2495 *pos += 4;
2496 size -= 4;
2497 }
2498
2499 return result;
2500 }
2501
2502 static const struct file_operations amdgpu_ttm_vram_fops = {
2503 .owner = THIS_MODULE,
2504 .read = amdgpu_ttm_vram_read,
2505 .write = amdgpu_ttm_vram_write,
2506 .llseek = default_llseek,
2507 };
2508
2509 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2510
2511 /**
2512 * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2513 */
2514 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2515 size_t size, loff_t *pos)
2516 {
2517 struct amdgpu_device *adev = file_inode(f)->i_private;
2518 ssize_t result = 0;
2519 int r;
2520
2521 while (size) {
2522 loff_t p = *pos / PAGE_SIZE;
2523 unsigned off = *pos & ~PAGE_MASK;
2524 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2525 struct page *page;
2526 void *ptr;
2527
2528 if (p >= adev->gart.num_cpu_pages)
2529 return result;
2530
2531 page = adev->gart.pages[p];
2532 if (page) {
2533 ptr = kmap(page);
2534 ptr += off;
2535
2536 r = copy_to_user(buf, ptr, cur_size);
2537 kunmap(adev->gart.pages[p]);
2538 } else
2539 r = clear_user(buf, cur_size);
2540
2541 if (r)
2542 return -EFAULT;
2543
2544 result += cur_size;
2545 buf += cur_size;
2546 *pos += cur_size;
2547 size -= cur_size;
2548 }
2549
2550 return result;
2551 }
2552
2553 static const struct file_operations amdgpu_ttm_gtt_fops = {
2554 .owner = THIS_MODULE,
2555 .read = amdgpu_ttm_gtt_read,
2556 .llseek = default_llseek
2557 };
2558
2559 #endif
2560
2561 /**
2562 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2563 *
2564 * This function is used to read memory that has been mapped to the
2565 * GPU and the known addresses are not physical addresses but instead
2566 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2567 */
2568 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2569 size_t size, loff_t *pos)
2570 {
2571 struct amdgpu_device *adev = file_inode(f)->i_private;
2572 struct iommu_domain *dom;
2573 ssize_t result = 0;
2574 int r;
2575
2576 /* retrieve the IOMMU domain if any for this device */
2577 dom = iommu_get_domain_for_dev(adev->dev);
2578
2579 while (size) {
2580 phys_addr_t addr = *pos & PAGE_MASK;
2581 loff_t off = *pos & ~PAGE_MASK;
2582 size_t bytes = PAGE_SIZE - off;
2583 unsigned long pfn;
2584 struct page *p;
2585 void *ptr;
2586
2587 bytes = bytes < size ? bytes : size;
2588
2589 /* Translate the bus address to a physical address. If
2590 * the domain is NULL it means there is no IOMMU active
2591 * and the address translation is the identity
2592 */
2593 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2594
2595 pfn = addr >> PAGE_SHIFT;
2596 if (!pfn_valid(pfn))
2597 return -EPERM;
2598
2599 p = pfn_to_page(pfn);
2600 if (p->mapping != adev->mman.bdev.dev_mapping)
2601 return -EPERM;
2602
2603 ptr = kmap(p);
2604 r = copy_to_user(buf, ptr + off, bytes);
2605 kunmap(p);
2606 if (r)
2607 return -EFAULT;
2608
2609 size -= bytes;
2610 *pos += bytes;
2611 result += bytes;
2612 }
2613
2614 return result;
2615 }
2616
2617 /**
2618 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2619 *
2620 * This function is used to write memory that has been mapped to the
2621 * GPU and the known addresses are not physical addresses but instead
2622 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2623 */
2624 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2625 size_t size, loff_t *pos)
2626 {
2627 struct amdgpu_device *adev = file_inode(f)->i_private;
2628 struct iommu_domain *dom;
2629 ssize_t result = 0;
2630 int r;
2631
2632 dom = iommu_get_domain_for_dev(adev->dev);
2633
2634 while (size) {
2635 phys_addr_t addr = *pos & PAGE_MASK;
2636 loff_t off = *pos & ~PAGE_MASK;
2637 size_t bytes = PAGE_SIZE - off;
2638 unsigned long pfn;
2639 struct page *p;
2640 void *ptr;
2641
2642 bytes = bytes < size ? bytes : size;
2643
2644 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2645
2646 pfn = addr >> PAGE_SHIFT;
2647 if (!pfn_valid(pfn))
2648 return -EPERM;
2649
2650 p = pfn_to_page(pfn);
2651 if (p->mapping != adev->mman.bdev.dev_mapping)
2652 return -EPERM;
2653
2654 ptr = kmap(p);
2655 r = copy_from_user(ptr + off, buf, bytes);
2656 kunmap(p);
2657 if (r)
2658 return -EFAULT;
2659
2660 size -= bytes;
2661 *pos += bytes;
2662 result += bytes;
2663 }
2664
2665 return result;
2666 }
2667
2668 static const struct file_operations amdgpu_ttm_iomem_fops = {
2669 .owner = THIS_MODULE,
2670 .read = amdgpu_iomem_read,
2671 .write = amdgpu_iomem_write,
2672 .llseek = default_llseek
2673 };
2674
2675 static const struct {
2676 char *name;
2677 const struct file_operations *fops;
2678 int domain;
2679 } ttm_debugfs_entries[] = {
2680 { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2681 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2682 { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2683 #endif
2684 { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2685 };
2686
2687 #endif
2688
2689 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2690 {
2691 #if defined(CONFIG_DEBUG_FS)
2692 unsigned count;
2693
2694 struct drm_minor *minor = adev->ddev->primary;
2695 struct dentry *ent, *root = minor->debugfs_root;
2696
2697 for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2698 ent = debugfs_create_file(
2699 ttm_debugfs_entries[count].name,
2700 S_IFREG | S_IRUGO, root,
2701 adev,
2702 ttm_debugfs_entries[count].fops);
2703 if (IS_ERR(ent))
2704 return PTR_ERR(ent);
2705 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2706 i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2707 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2708 i_size_write(ent->d_inode, adev->gmc.gart_size);
2709 adev->mman.debugfs_entries[count] = ent;
2710 }
2711
2712 count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2713
2714 #ifdef CONFIG_SWIOTLB
2715 if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2716 --count;
2717 #endif
2718
2719 return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2720 #else
2721 return 0;
2722 #endif
2723 }
2724
2725 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2726 {
2727 #if defined(CONFIG_DEBUG_FS)
2728 unsigned i;
2729
2730 for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2731 debugfs_remove(adev->mman.debugfs_entries[i]);
2732 #endif
2733 }
2734