amdgpu_vm.c revision 1.3.6.3 1 /* $NetBSD: amdgpu_vm.c,v 1.3.6.3 2020/04/08 14:08:22 martin Exp $ */
2
3 /*
4 * Copyright 2008 Advanced Micro Devices, Inc.
5 * Copyright 2008 Red Hat Inc.
6 * Copyright 2009 Jerome Glisse.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 *
26 * Authors: Dave Airlie
27 * Alex Deucher
28 * Jerome Glisse
29 */
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: amdgpu_vm.c,v 1.3.6.3 2020/04/08 14:08:22 martin Exp $");
32
33 #include <drm/drmP.h>
34 #include <drm/amdgpu_drm.h>
35 #include "amdgpu.h"
36 #include "amdgpu_trace.h"
37
38 #include <linux/nbsd-namespace.h>
39
40 /*
41 * GPUVM
42 * GPUVM is similar to the legacy gart on older asics, however
43 * rather than there being a single global gart table
44 * for the entire GPU, there are multiple VM page tables active
45 * at any given time. The VM page tables can contain a mix
46 * vram pages and system memory pages and system memory pages
47 * can be mapped as snooped (cached system pages) or unsnooped
48 * (uncached system pages).
49 * Each VM has an ID associated with it and there is a page table
50 * associated with each VMID. When execting a command buffer,
51 * the kernel tells the the ring what VMID to use for that command
52 * buffer. VMIDs are allocated dynamically as commands are submitted.
53 * The userspace drivers maintain their own address space and the kernel
54 * sets up their pages tables accordingly when they submit their
55 * command buffers and a VMID is assigned.
56 * Cayman/Trinity support up to 8 active VMs at any given time;
57 * SI supports 16.
58 */
59
60 /**
61 * amdgpu_vm_num_pde - return the number of page directory entries
62 *
63 * @adev: amdgpu_device pointer
64 *
65 * Calculate the number of page directory entries (cayman+).
66 */
67 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
68 {
69 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
70 }
71
72 /**
73 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
74 *
75 * @adev: amdgpu_device pointer
76 *
77 * Calculate the size of the page directory in bytes (cayman+).
78 */
79 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
80 {
81 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
82 }
83
84 /**
85 * amdgpu_vm_get_bos - add the vm BOs to a validation list
86 *
87 * @vm: vm providing the BOs
88 * @head: head of validation list
89 *
90 * Add the page directory to the list of BOs to
91 * validate for command submission (cayman+).
92 */
93 struct amdgpu_bo_list_entry *amdgpu_vm_get_bos(struct amdgpu_device *adev,
94 struct amdgpu_vm *vm,
95 struct list_head *head)
96 {
97 struct amdgpu_bo_list_entry *list;
98 unsigned i, idx;
99
100 list = drm_malloc_ab(vm->max_pde_used + 2,
101 sizeof(struct amdgpu_bo_list_entry));
102 if (!list) {
103 return NULL;
104 }
105
106 /* add the vm page table to the list */
107 list[0].robj = vm->page_directory;
108 list[0].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
109 list[0].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
110 list[0].priority = 0;
111 list[0].tv.bo = &vm->page_directory->tbo;
112 list[0].tv.shared = true;
113 list_add(&list[0].tv.head, head);
114
115 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
116 if (!vm->page_tables[i].bo)
117 continue;
118
119 list[idx].robj = vm->page_tables[i].bo;
120 list[idx].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM;
121 list[idx].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM;
122 list[idx].priority = 0;
123 list[idx].tv.bo = &list[idx].robj->tbo;
124 list[idx].tv.shared = true;
125 list_add(&list[idx++].tv.head, head);
126 }
127
128 return list;
129 }
130
131 /**
132 * amdgpu_vm_grab_id - allocate the next free VMID
133 *
134 * @vm: vm to allocate id for
135 * @ring: ring we want to submit job to
136 * @sync: sync object where we add dependencies
137 *
138 * Allocate an id for the vm, adding fences to the sync obj as necessary.
139 *
140 * Global mutex must be locked!
141 */
142 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
143 struct amdgpu_sync *sync)
144 {
145 struct fence *best[AMDGPU_MAX_RINGS] = {};
146 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
147 struct amdgpu_device *adev = ring->adev;
148
149 unsigned choices[2] = {};
150 unsigned i;
151
152 /* check if the id is still valid */
153 if (vm_id->id) {
154 unsigned id = vm_id->id;
155 long owner;
156
157 owner = atomic_long_read(&adev->vm_manager.ids[id].owner);
158 if (owner == (long)vm) {
159 trace_amdgpu_vm_grab_id(vm_id->id, ring->idx);
160 return 0;
161 }
162 }
163
164 /* we definately need to flush */
165 vm_id->pd_gpu_addr = ~0ll;
166
167 /* skip over VMID 0, since it is the system VM */
168 for (i = 1; i < adev->vm_manager.nvm; ++i) {
169 struct fence *fence = adev->vm_manager.ids[i].active;
170 struct amdgpu_ring *fring;
171
172 if (fence == NULL) {
173 /* found a free one */
174 vm_id->id = i;
175 trace_amdgpu_vm_grab_id(i, ring->idx);
176 return 0;
177 }
178
179 fring = amdgpu_ring_from_fence(fence);
180 if (best[fring->idx] == NULL ||
181 fence_is_later(best[fring->idx], fence)) {
182 best[fring->idx] = fence;
183 choices[fring == ring ? 0 : 1] = i;
184 }
185 }
186
187 for (i = 0; i < 2; ++i) {
188 if (choices[i]) {
189 struct fence *fence;
190
191 fence = adev->vm_manager.ids[choices[i]].active;
192 vm_id->id = choices[i];
193
194 trace_amdgpu_vm_grab_id(choices[i], ring->idx);
195 return amdgpu_sync_fence(ring->adev, sync, fence);
196 }
197 }
198
199 /* should never happen */
200 BUG();
201 return -EINVAL;
202 }
203
204 /**
205 * amdgpu_vm_flush - hardware flush the vm
206 *
207 * @ring: ring to use for flush
208 * @vm: vm we want to flush
209 * @updates: last vm update that we waited for
210 *
211 * Flush the vm (cayman+).
212 *
213 * Global and local mutex must be locked!
214 */
215 void amdgpu_vm_flush(struct amdgpu_ring *ring,
216 struct amdgpu_vm *vm,
217 struct fence *updates)
218 {
219 uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory);
220 struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx];
221 struct fence *flushed_updates = vm_id->flushed_updates;
222 bool is_later;
223
224 if (!flushed_updates)
225 is_later = true;
226 else if (!updates)
227 is_later = false;
228 else
229 is_later = fence_is_later(updates, flushed_updates);
230
231 if (pd_addr != vm_id->pd_gpu_addr || is_later) {
232 trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id);
233 if (is_later) {
234 vm_id->flushed_updates = fence_get(updates);
235 fence_put(flushed_updates);
236 }
237 vm_id->pd_gpu_addr = pd_addr;
238 amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr);
239 }
240 }
241
242 /**
243 * amdgpu_vm_fence - remember fence for vm
244 *
245 * @adev: amdgpu_device pointer
246 * @vm: vm we want to fence
247 * @fence: fence to remember
248 *
249 * Fence the vm (cayman+).
250 * Set the fence used to protect page table and id.
251 *
252 * Global and local mutex must be locked!
253 */
254 void amdgpu_vm_fence(struct amdgpu_device *adev,
255 struct amdgpu_vm *vm,
256 struct fence *fence)
257 {
258 struct amdgpu_ring *ring = amdgpu_ring_from_fence(fence);
259 unsigned vm_id = vm->ids[ring->idx].id;
260
261 fence_put(adev->vm_manager.ids[vm_id].active);
262 adev->vm_manager.ids[vm_id].active = fence_get(fence);
263 atomic_long_set(&adev->vm_manager.ids[vm_id].owner, (long)vm);
264 }
265
266 /**
267 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
268 *
269 * @vm: requested vm
270 * @bo: requested buffer object
271 *
272 * Find @bo inside the requested vm (cayman+).
273 * Search inside the @bos vm list for the requested vm
274 * Returns the found bo_va or NULL if none is found
275 *
276 * Object has to be reserved!
277 */
278 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
279 struct amdgpu_bo *bo)
280 {
281 struct amdgpu_bo_va *bo_va;
282
283 list_for_each_entry(bo_va, &bo->va, bo_list) {
284 if (bo_va->vm == vm) {
285 return bo_va;
286 }
287 }
288 return NULL;
289 }
290
291 /**
292 * amdgpu_vm_update_pages - helper to call the right asic function
293 *
294 * @adev: amdgpu_device pointer
295 * @ib: indirect buffer to fill with commands
296 * @pe: addr of the page entry
297 * @addr: dst addr to write into pe
298 * @count: number of page entries to update
299 * @incr: increase next addr by incr bytes
300 * @flags: hw access flags
301 * @gtt_flags: GTT hw access flags
302 *
303 * Traces the parameters and calls the right asic functions
304 * to setup the page table using the DMA.
305 */
306 static void amdgpu_vm_update_pages(struct amdgpu_device *adev,
307 struct amdgpu_ib *ib,
308 uint64_t pe, uint64_t addr,
309 unsigned count, uint32_t incr,
310 uint32_t flags, uint32_t gtt_flags)
311 {
312 trace_amdgpu_vm_set_page(pe, addr, count, incr, flags);
313
314 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
315 uint64_t src = adev->gart.table_addr + (addr >> 12) * 8;
316 amdgpu_vm_copy_pte(adev, ib, pe, src, count);
317
318 } else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) {
319 amdgpu_vm_write_pte(adev, ib, pe, addr,
320 count, incr, flags);
321
322 } else {
323 amdgpu_vm_set_pte_pde(adev, ib, pe, addr,
324 count, incr, flags);
325 }
326 }
327
328 int amdgpu_vm_free_job(struct amdgpu_job *job)
329 {
330 int i;
331 for (i = 0; i < job->num_ibs; i++)
332 amdgpu_ib_free(job->adev, &job->ibs[i]);
333 kfree(job->ibs);
334 return 0;
335 }
336
337 /**
338 * amdgpu_vm_clear_bo - initially clear the page dir/table
339 *
340 * @adev: amdgpu_device pointer
341 * @bo: bo to clear
342 *
343 * need to reserve bo first before calling it.
344 */
345 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
346 struct amdgpu_bo *bo)
347 {
348 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
349 struct fence *fence = NULL;
350 struct amdgpu_ib *ib;
351 unsigned entries;
352 uint64_t addr;
353 int r;
354
355 r = reservation_object_reserve_shared(bo->tbo.resv);
356 if (r)
357 return r;
358
359 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
360 if (r)
361 goto error;
362
363 addr = amdgpu_bo_gpu_offset(bo);
364 entries = amdgpu_bo_size(bo) / 8;
365
366 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
367 if (!ib)
368 goto error;
369
370 r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, ib);
371 if (r)
372 goto error_free;
373
374 ib->length_dw = 0;
375
376 amdgpu_vm_update_pages(adev, ib, addr, 0, entries, 0, 0, 0);
377 amdgpu_vm_pad_ib(adev, ib);
378 WARN_ON(ib->length_dw > 64);
379 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
380 &amdgpu_vm_free_job,
381 AMDGPU_FENCE_OWNER_VM,
382 &fence);
383 if (!r)
384 amdgpu_bo_fence(bo, fence, true);
385 fence_put(fence);
386 if (amdgpu_enable_scheduler)
387 return 0;
388
389 error_free:
390 amdgpu_ib_free(adev, ib);
391 kfree(ib);
392
393 error:
394 return r;
395 }
396
397 /**
398 * amdgpu_vm_map_gart - get the physical address of a gart page
399 *
400 * @adev: amdgpu_device pointer
401 * @addr: the unmapped addr
402 *
403 * Look up the physical address of the page that the pte resolves
404 * to (cayman+).
405 * Returns the physical address of the page.
406 */
407 uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr)
408 {
409 uint64_t result;
410
411 /* page table offset */
412 result = adev->gart.pages_addr[addr >> PAGE_SHIFT];
413
414 /* in case cpu page size != gpu page size*/
415 result |= addr & (~PAGE_MASK);
416
417 return result;
418 }
419
420 /**
421 * amdgpu_vm_update_pdes - make sure that page directory is valid
422 *
423 * @adev: amdgpu_device pointer
424 * @vm: requested vm
425 * @start: start of GPU address range
426 * @end: end of GPU address range
427 *
428 * Allocates new page tables if necessary
429 * and updates the page directory (cayman+).
430 * Returns 0 for success, error for failure.
431 *
432 * Global and local mutex must be locked!
433 */
434 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
435 struct amdgpu_vm *vm)
436 {
437 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
438 struct amdgpu_bo *pd = vm->page_directory;
439 uint64_t pd_addr = amdgpu_bo_gpu_offset(pd);
440 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
441 uint64_t last_pde = ~0, last_pt = ~0;
442 unsigned count = 0, pt_idx, ndw;
443 struct amdgpu_ib *ib;
444 struct fence *fence = NULL;
445
446 int r;
447
448 /* padding, etc. */
449 ndw = 64;
450
451 /* assume the worst case */
452 ndw += vm->max_pde_used * 6;
453
454 /* update too big for an IB */
455 if (ndw > 0xfffff)
456 return -ENOMEM;
457
458 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
459 if (!ib)
460 return -ENOMEM;
461
462 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
463 if (r) {
464 kfree(ib);
465 return r;
466 }
467 ib->length_dw = 0;
468
469 /* walk over the address space and update the page directory */
470 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
471 struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo;
472 uint64_t pde, pt;
473
474 if (bo == NULL)
475 continue;
476
477 pt = amdgpu_bo_gpu_offset(bo);
478 if (vm->page_tables[pt_idx].addr == pt)
479 continue;
480 vm->page_tables[pt_idx].addr = pt;
481
482 pde = pd_addr + pt_idx * 8;
483 if (((last_pde + 8 * count) != pde) ||
484 ((last_pt + incr * count) != pt)) {
485
486 if (count) {
487 amdgpu_vm_update_pages(adev, ib, last_pde,
488 last_pt, count, incr,
489 AMDGPU_PTE_VALID, 0);
490 }
491
492 count = 1;
493 last_pde = pde;
494 last_pt = pt;
495 } else {
496 ++count;
497 }
498 }
499
500 if (count)
501 amdgpu_vm_update_pages(adev, ib, last_pde, last_pt, count,
502 incr, AMDGPU_PTE_VALID, 0);
503
504 if (ib->length_dw != 0) {
505 amdgpu_vm_pad_ib(adev, ib);
506 amdgpu_sync_resv(adev, &ib->sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM);
507 WARN_ON(ib->length_dw > ndw);
508 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
509 &amdgpu_vm_free_job,
510 AMDGPU_FENCE_OWNER_VM,
511 &fence);
512 if (r)
513 goto error_free;
514
515 amdgpu_bo_fence(pd, fence, true);
516 fence_put(vm->page_directory_fence);
517 vm->page_directory_fence = fence_get(fence);
518 fence_put(fence);
519 }
520
521 if (!amdgpu_enable_scheduler || ib->length_dw == 0) {
522 amdgpu_ib_free(adev, ib);
523 kfree(ib);
524 }
525
526 return 0;
527
528 error_free:
529 amdgpu_ib_free(adev, ib);
530 kfree(ib);
531 return r;
532 }
533
534 /**
535 * amdgpu_vm_frag_ptes - add fragment information to PTEs
536 *
537 * @adev: amdgpu_device pointer
538 * @ib: IB for the update
539 * @pe_start: first PTE to handle
540 * @pe_end: last PTE to handle
541 * @addr: addr those PTEs should point to
542 * @flags: hw mapping flags
543 * @gtt_flags: GTT hw mapping flags
544 *
545 * Global and local mutex must be locked!
546 */
547 static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev,
548 struct amdgpu_ib *ib,
549 uint64_t pe_start, uint64_t pe_end,
550 uint64_t addr, uint32_t flags,
551 uint32_t gtt_flags)
552 {
553 /**
554 * The MC L1 TLB supports variable sized pages, based on a fragment
555 * field in the PTE. When this field is set to a non-zero value, page
556 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
557 * flags are considered valid for all PTEs within the fragment range
558 * and corresponding mappings are assumed to be physically contiguous.
559 *
560 * The L1 TLB can store a single PTE for the whole fragment,
561 * significantly increasing the space available for translation
562 * caching. This leads to large improvements in throughput when the
563 * TLB is under pressure.
564 *
565 * The L2 TLB distributes small and large fragments into two
566 * asymmetric partitions. The large fragment cache is significantly
567 * larger. Thus, we try to use large fragments wherever possible.
568 * Userspace can support this by aligning virtual base address and
569 * allocation size to the fragment size.
570 */
571
572 /* SI and newer are optimized for 64KB */
573 uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB;
574 uint64_t frag_align = 0x80;
575
576 uint64_t frag_start = ALIGN(pe_start, frag_align);
577 uint64_t frag_end = pe_end & ~(frag_align - 1);
578
579 unsigned count;
580
581 /* system pages are non continuously */
582 if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) ||
583 (frag_start >= frag_end)) {
584
585 count = (pe_end - pe_start) / 8;
586 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
587 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
588 return;
589 }
590
591 /* handle the 4K area at the beginning */
592 if (pe_start != frag_start) {
593 count = (frag_start - pe_start) / 8;
594 amdgpu_vm_update_pages(adev, ib, pe_start, addr, count,
595 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
596 addr += AMDGPU_GPU_PAGE_SIZE * count;
597 }
598
599 /* handle the area in the middle */
600 count = (frag_end - frag_start) / 8;
601 amdgpu_vm_update_pages(adev, ib, frag_start, addr, count,
602 AMDGPU_GPU_PAGE_SIZE, flags | frag_flags,
603 gtt_flags);
604
605 /* handle the 4K area at the end */
606 if (frag_end != pe_end) {
607 addr += AMDGPU_GPU_PAGE_SIZE * count;
608 count = (pe_end - frag_end) / 8;
609 amdgpu_vm_update_pages(adev, ib, frag_end, addr, count,
610 AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags);
611 }
612 }
613
614 /**
615 * amdgpu_vm_update_ptes - make sure that page tables are valid
616 *
617 * @adev: amdgpu_device pointer
618 * @vm: requested vm
619 * @start: start of GPU address range
620 * @end: end of GPU address range
621 * @dst: destination address to map to
622 * @flags: mapping flags
623 *
624 * Update the page tables in the range @start - @end (cayman+).
625 *
626 * Global and local mutex must be locked!
627 */
628 static int amdgpu_vm_update_ptes(struct amdgpu_device *adev,
629 struct amdgpu_vm *vm,
630 struct amdgpu_ib *ib,
631 uint64_t start, uint64_t end,
632 uint64_t dst, uint32_t flags,
633 uint32_t gtt_flags)
634 {
635 uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
636 uint64_t last_pte = ~0, last_dst = ~0;
637 void *owner = AMDGPU_FENCE_OWNER_VM;
638 unsigned count = 0;
639 uint64_t addr;
640
641 /* sync to everything on unmapping */
642 if (!(flags & AMDGPU_PTE_VALID))
643 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
644
645 /* walk over the address space and update the page tables */
646 for (addr = start; addr < end; ) {
647 uint64_t pt_idx = addr >> amdgpu_vm_block_size;
648 struct amdgpu_bo *pt = vm->page_tables[pt_idx].bo;
649 unsigned nptes;
650 uint64_t pte;
651 int r;
652
653 amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv, owner);
654 r = reservation_object_reserve_shared(pt->tbo.resv);
655 if (r)
656 return r;
657
658 if ((addr & ~mask) == (end & ~mask))
659 nptes = end - addr;
660 else
661 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
662
663 pte = amdgpu_bo_gpu_offset(pt);
664 pte += (addr & mask) * 8;
665
666 if ((last_pte + 8 * count) != pte) {
667
668 if (count) {
669 amdgpu_vm_frag_ptes(adev, ib, last_pte,
670 last_pte + 8 * count,
671 last_dst, flags,
672 gtt_flags);
673 }
674
675 count = nptes;
676 last_pte = pte;
677 last_dst = dst;
678 } else {
679 count += nptes;
680 }
681
682 addr += nptes;
683 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
684 }
685
686 if (count) {
687 amdgpu_vm_frag_ptes(adev, ib, last_pte,
688 last_pte + 8 * count,
689 last_dst, flags, gtt_flags);
690 }
691
692 return 0;
693 }
694
695 /**
696 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
697 *
698 * @adev: amdgpu_device pointer
699 * @vm: requested vm
700 * @mapping: mapped range and flags to use for the update
701 * @addr: addr to set the area to
702 * @gtt_flags: flags as they are used for GTT
703 * @fence: optional resulting fence
704 *
705 * Fill in the page table entries for @mapping.
706 * Returns 0 for success, -EINVAL for failure.
707 *
708 * Object have to be reserved and mutex must be locked!
709 */
710 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
711 struct amdgpu_vm *vm,
712 struct amdgpu_bo_va_mapping *mapping,
713 uint64_t addr, uint32_t gtt_flags,
714 struct fence **fence)
715 {
716 struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring;
717 unsigned nptes, ncmds, ndw;
718 uint32_t flags = gtt_flags;
719 struct amdgpu_ib *ib;
720 struct fence *f = NULL;
721 int r;
722
723 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
724 * but in case of something, we filter the flags in first place
725 */
726 if (!(mapping->flags & AMDGPU_PTE_READABLE))
727 flags &= ~AMDGPU_PTE_READABLE;
728 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
729 flags &= ~AMDGPU_PTE_WRITEABLE;
730
731 trace_amdgpu_vm_bo_update(mapping);
732
733 nptes = mapping->it.last - mapping->it.start + 1;
734
735 /*
736 * reserve space for one command every (1 << BLOCK_SIZE)
737 * entries or 2k dwords (whatever is smaller)
738 */
739 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
740
741 /* padding, etc. */
742 ndw = 64;
743
744 if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) {
745 /* only copy commands needed */
746 ndw += ncmds * 7;
747
748 } else if (flags & AMDGPU_PTE_SYSTEM) {
749 /* header for write data commands */
750 ndw += ncmds * 4;
751
752 /* body of write data command */
753 ndw += nptes * 2;
754
755 } else {
756 /* set page commands needed */
757 ndw += ncmds * 10;
758
759 /* two extra commands for begin/end of fragment */
760 ndw += 2 * 10;
761 }
762
763 /* update too big for an IB */
764 if (ndw > 0xfffff)
765 return -ENOMEM;
766
767 ib = kzalloc(sizeof(struct amdgpu_ib), GFP_KERNEL);
768 if (!ib)
769 return -ENOMEM;
770
771 r = amdgpu_ib_get(ring, NULL, ndw * 4, ib);
772 if (r) {
773 kfree(ib);
774 return r;
775 }
776
777 ib->length_dw = 0;
778
779 r = amdgpu_vm_update_ptes(adev, vm, ib, mapping->it.start,
780 mapping->it.last + 1, addr + mapping->offset,
781 flags, gtt_flags);
782
783 if (r) {
784 amdgpu_ib_free(adev, ib);
785 kfree(ib);
786 return r;
787 }
788
789 amdgpu_vm_pad_ib(adev, ib);
790 WARN_ON(ib->length_dw > ndw);
791 r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, ib, 1,
792 &amdgpu_vm_free_job,
793 AMDGPU_FENCE_OWNER_VM,
794 &f);
795 if (r)
796 goto error_free;
797
798 amdgpu_bo_fence(vm->page_directory, f, true);
799 if (fence) {
800 fence_put(*fence);
801 *fence = fence_get(f);
802 }
803 fence_put(f);
804 if (!amdgpu_enable_scheduler) {
805 amdgpu_ib_free(adev, ib);
806 kfree(ib);
807 }
808 return 0;
809
810 error_free:
811 amdgpu_ib_free(adev, ib);
812 kfree(ib);
813 return r;
814 }
815
816 /**
817 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
818 *
819 * @adev: amdgpu_device pointer
820 * @bo_va: requested BO and VM object
821 * @mem: ttm mem
822 *
823 * Fill in the page table entries for @bo_va.
824 * Returns 0 for success, -EINVAL for failure.
825 *
826 * Object have to be reserved and mutex must be locked!
827 */
828 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
829 struct amdgpu_bo_va *bo_va,
830 struct ttm_mem_reg *mem)
831 {
832 struct amdgpu_vm *vm = bo_va->vm;
833 struct amdgpu_bo_va_mapping *mapping;
834 uint32_t flags;
835 uint64_t addr;
836 int r;
837
838 if (mem) {
839 addr = (u64)mem->start << PAGE_SHIFT;
840 if (mem->mem_type != TTM_PL_TT)
841 addr += adev->vm_manager.vram_base_offset;
842 } else {
843 addr = 0;
844 }
845
846 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
847
848 spin_lock(&vm->status_lock);
849 if (!list_empty(&bo_va->vm_status))
850 list_splice_init(&bo_va->valids, &bo_va->invalids);
851 spin_unlock(&vm->status_lock);
852
853 list_for_each_entry(mapping, &bo_va->invalids, list) {
854 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr,
855 flags, &bo_va->last_pt_update);
856 if (r)
857 return r;
858 }
859
860 if (trace_amdgpu_vm_bo_mapping_enabled()) {
861 list_for_each_entry(mapping, &bo_va->valids, list)
862 trace_amdgpu_vm_bo_mapping(mapping);
863
864 list_for_each_entry(mapping, &bo_va->invalids, list)
865 trace_amdgpu_vm_bo_mapping(mapping);
866 }
867
868 spin_lock(&vm->status_lock);
869 list_splice_init(&bo_va->invalids, &bo_va->valids);
870 list_del_init(&bo_va->vm_status);
871 if (!mem)
872 list_add(&bo_va->vm_status, &vm->cleared);
873 spin_unlock(&vm->status_lock);
874
875 return 0;
876 }
877
878 /**
879 * amdgpu_vm_clear_freed - clear freed BOs in the PT
880 *
881 * @adev: amdgpu_device pointer
882 * @vm: requested vm
883 *
884 * Make sure all freed BOs are cleared in the PT.
885 * Returns 0 for success.
886 *
887 * PTs have to be reserved and mutex must be locked!
888 */
889 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
890 struct amdgpu_vm *vm)
891 {
892 struct amdgpu_bo_va_mapping *mapping;
893 int r;
894
895 spin_lock(&vm->freed_lock);
896 while (!list_empty(&vm->freed)) {
897 mapping = list_first_entry(&vm->freed,
898 struct amdgpu_bo_va_mapping, list);
899 list_del(&mapping->list);
900 spin_unlock(&vm->freed_lock);
901 r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL);
902 kfree(mapping);
903 if (r)
904 return r;
905
906 spin_lock(&vm->freed_lock);
907 }
908 spin_unlock(&vm->freed_lock);
909
910 return 0;
911
912 }
913
914 /**
915 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
916 *
917 * @adev: amdgpu_device pointer
918 * @vm: requested vm
919 *
920 * Make sure all invalidated BOs are cleared in the PT.
921 * Returns 0 for success.
922 *
923 * PTs have to be reserved and mutex must be locked!
924 */
925 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
926 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
927 {
928 struct amdgpu_bo_va *bo_va = NULL;
929 int r = 0;
930
931 spin_lock(&vm->status_lock);
932 while (!list_empty(&vm->invalidated)) {
933 bo_va = list_first_entry(&vm->invalidated,
934 struct amdgpu_bo_va, vm_status);
935 spin_unlock(&vm->status_lock);
936 mutex_lock(&bo_va->mutex);
937 r = amdgpu_vm_bo_update(adev, bo_va, NULL);
938 mutex_unlock(&bo_va->mutex);
939 if (r)
940 return r;
941
942 spin_lock(&vm->status_lock);
943 }
944 spin_unlock(&vm->status_lock);
945
946 if (bo_va)
947 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
948
949 return r;
950 }
951
952 /**
953 * amdgpu_vm_bo_add - add a bo to a specific vm
954 *
955 * @adev: amdgpu_device pointer
956 * @vm: requested vm
957 * @bo: amdgpu buffer object
958 *
959 * Add @bo into the requested vm (cayman+).
960 * Add @bo to the list of bos associated with the vm
961 * Returns newly added bo_va or NULL for failure
962 *
963 * Object has to be reserved!
964 */
965 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
966 struct amdgpu_vm *vm,
967 struct amdgpu_bo *bo)
968 {
969 struct amdgpu_bo_va *bo_va;
970
971 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
972 if (bo_va == NULL) {
973 return NULL;
974 }
975 bo_va->vm = vm;
976 bo_va->bo = bo;
977 bo_va->ref_count = 1;
978 INIT_LIST_HEAD(&bo_va->bo_list);
979 INIT_LIST_HEAD(&bo_va->valids);
980 INIT_LIST_HEAD(&bo_va->invalids);
981 INIT_LIST_HEAD(&bo_va->vm_status);
982 mutex_init(&bo_va->mutex);
983 list_add_tail(&bo_va->bo_list, &bo->va);
984
985 return bo_va;
986 }
987
988 /**
989 * amdgpu_vm_bo_map - map bo inside a vm
990 *
991 * @adev: amdgpu_device pointer
992 * @bo_va: bo_va to store the address
993 * @saddr: where to map the BO
994 * @offset: requested offset in the BO
995 * @flags: attributes of pages (read/write/valid/etc.)
996 *
997 * Add a mapping of the BO at the specefied addr into the VM.
998 * Returns 0 for success, error for failure.
999 *
1000 * Object has to be reserved and unreserved outside!
1001 */
1002 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1003 struct amdgpu_bo_va *bo_va,
1004 uint64_t saddr, uint64_t offset,
1005 uint64_t size, uint32_t flags)
1006 {
1007 struct amdgpu_bo_va_mapping *mapping;
1008 struct amdgpu_vm *vm = bo_va->vm;
1009 struct interval_tree_node *it;
1010 unsigned last_pfn, pt_idx;
1011 uint64_t eaddr;
1012 int r;
1013
1014 /* validate the parameters */
1015 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1016 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1017 return -EINVAL;
1018
1019 /* make sure object fit at this offset */
1020 eaddr = saddr + size - 1;
1021 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1022 return -EINVAL;
1023
1024 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1025 if (last_pfn >= adev->vm_manager.max_pfn) {
1026 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1027 last_pfn, adev->vm_manager.max_pfn);
1028 return -EINVAL;
1029 }
1030
1031 saddr /= AMDGPU_GPU_PAGE_SIZE;
1032 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1033
1034 spin_lock(&vm->it_lock);
1035 it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1036 spin_unlock(&vm->it_lock);
1037 if (it) {
1038 struct amdgpu_bo_va_mapping *tmp;
1039 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1040 /* bo and tmp overlap, invalid addr */
1041 dev_err(adev->dev, "bo %p va 0x%010"PRIx64"-0x%010"PRIx64" conflict with "
1042 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1043 tmp->it.start, tmp->it.last + 1);
1044 r = -EINVAL;
1045 goto error;
1046 }
1047
1048 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1049 if (!mapping) {
1050 r = -ENOMEM;
1051 goto error;
1052 }
1053
1054 INIT_LIST_HEAD(&mapping->list);
1055 mapping->it.start = saddr;
1056 mapping->it.last = eaddr;
1057 mapping->offset = offset;
1058 mapping->flags = flags;
1059
1060 mutex_lock(&bo_va->mutex);
1061 list_add(&mapping->list, &bo_va->invalids);
1062 mutex_unlock(&bo_va->mutex);
1063 spin_lock(&vm->it_lock);
1064 interval_tree_insert(&mapping->it, &vm->va);
1065 spin_unlock(&vm->it_lock);
1066 trace_amdgpu_vm_bo_map(bo_va, mapping);
1067
1068 /* Make sure the page tables are allocated */
1069 saddr >>= amdgpu_vm_block_size;
1070 eaddr >>= amdgpu_vm_block_size;
1071
1072 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1073
1074 if (eaddr > vm->max_pde_used)
1075 vm->max_pde_used = eaddr;
1076
1077 /* walk over the address space and allocate the page tables */
1078 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1079 struct reservation_object *resv = vm->page_directory->tbo.resv;
1080 struct amdgpu_bo *pt;
1081
1082 if (vm->page_tables[pt_idx].bo)
1083 continue;
1084
1085 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1086 AMDGPU_GPU_PAGE_SIZE, true,
1087 AMDGPU_GEM_DOMAIN_VRAM,
1088 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1089 NULL, resv, &pt);
1090 if (r)
1091 goto error_free;
1092
1093 /* Keep a reference to the page table to avoid freeing
1094 * them up in the wrong order.
1095 */
1096 pt->parent = amdgpu_bo_ref(vm->page_directory);
1097
1098 r = amdgpu_vm_clear_bo(adev, pt);
1099 if (r) {
1100 amdgpu_bo_unref(&pt);
1101 goto error_free;
1102 }
1103
1104 vm->page_tables[pt_idx].addr = 0;
1105 vm->page_tables[pt_idx].bo = pt;
1106 }
1107
1108 return 0;
1109
1110 error_free:
1111 list_del(&mapping->list);
1112 spin_lock(&vm->it_lock);
1113 interval_tree_remove(&mapping->it, &vm->va);
1114 spin_unlock(&vm->it_lock);
1115 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1116 kfree(mapping);
1117
1118 error:
1119 return r;
1120 }
1121
1122 /**
1123 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1124 *
1125 * @adev: amdgpu_device pointer
1126 * @bo_va: bo_va to remove the address from
1127 * @saddr: where to the BO is mapped
1128 *
1129 * Remove a mapping of the BO at the specefied addr from the VM.
1130 * Returns 0 for success, error for failure.
1131 *
1132 * Object has to be reserved and unreserved outside!
1133 */
1134 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1135 struct amdgpu_bo_va *bo_va,
1136 uint64_t saddr)
1137 {
1138 struct amdgpu_bo_va_mapping *mapping;
1139 struct amdgpu_vm *vm = bo_va->vm;
1140 bool valid = true;
1141
1142 saddr /= AMDGPU_GPU_PAGE_SIZE;
1143 mutex_lock(&bo_va->mutex);
1144 list_for_each_entry(mapping, &bo_va->valids, list) {
1145 if (mapping->it.start == saddr)
1146 break;
1147 }
1148
1149 if (&mapping->list == &bo_va->valids) {
1150 valid = false;
1151
1152 list_for_each_entry(mapping, &bo_va->invalids, list) {
1153 if (mapping->it.start == saddr)
1154 break;
1155 }
1156
1157 if (&mapping->list == &bo_va->invalids) {
1158 mutex_unlock(&bo_va->mutex);
1159 return -ENOENT;
1160 }
1161 }
1162 mutex_unlock(&bo_va->mutex);
1163 list_del(&mapping->list);
1164 spin_lock(&vm->it_lock);
1165 interval_tree_remove(&mapping->it, &vm->va);
1166 spin_unlock(&vm->it_lock);
1167 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1168
1169 if (valid) {
1170 spin_lock(&vm->freed_lock);
1171 list_add(&mapping->list, &vm->freed);
1172 spin_unlock(&vm->freed_lock);
1173 } else {
1174 kfree(mapping);
1175 }
1176
1177 return 0;
1178 }
1179
1180 /**
1181 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1182 *
1183 * @adev: amdgpu_device pointer
1184 * @bo_va: requested bo_va
1185 *
1186 * Remove @bo_va->bo from the requested vm (cayman+).
1187 *
1188 * Object have to be reserved!
1189 */
1190 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1191 struct amdgpu_bo_va *bo_va)
1192 {
1193 struct amdgpu_bo_va_mapping *mapping, *next;
1194 struct amdgpu_vm *vm = bo_va->vm;
1195
1196 list_del(&bo_va->bo_list);
1197
1198 spin_lock(&vm->status_lock);
1199 list_del(&bo_va->vm_status);
1200 spin_unlock(&vm->status_lock);
1201
1202 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1203 list_del(&mapping->list);
1204 spin_lock(&vm->it_lock);
1205 interval_tree_remove(&mapping->it, &vm->va);
1206 spin_unlock(&vm->it_lock);
1207 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1208 spin_lock(&vm->freed_lock);
1209 list_add(&mapping->list, &vm->freed);
1210 spin_unlock(&vm->freed_lock);
1211 }
1212 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1213 list_del(&mapping->list);
1214 spin_lock(&vm->it_lock);
1215 interval_tree_remove(&mapping->it, &vm->va);
1216 spin_unlock(&vm->it_lock);
1217 kfree(mapping);
1218 }
1219 fence_put(bo_va->last_pt_update);
1220 mutex_destroy(&bo_va->mutex);
1221 kfree(bo_va);
1222 }
1223
1224 /**
1225 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1226 *
1227 * @adev: amdgpu_device pointer
1228 * @vm: requested vm
1229 * @bo: amdgpu buffer object
1230 *
1231 * Mark @bo as invalid (cayman+).
1232 */
1233 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1234 struct amdgpu_bo *bo)
1235 {
1236 struct amdgpu_bo_va *bo_va;
1237
1238 list_for_each_entry(bo_va, &bo->va, bo_list) {
1239 spin_lock(&bo_va->vm->status_lock);
1240 if (list_empty(&bo_va->vm_status))
1241 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1242 spin_unlock(&bo_va->vm->status_lock);
1243 }
1244 }
1245
1246 /**
1247 * amdgpu_vm_init - initialize a vm instance
1248 *
1249 * @adev: amdgpu_device pointer
1250 * @vm: requested vm
1251 *
1252 * Init @vm fields (cayman+).
1253 */
1254 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1255 {
1256 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1257 AMDGPU_VM_PTE_COUNT * 8);
1258 unsigned pd_size, pd_entries;
1259 int i, r;
1260
1261 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1262 vm->ids[i].id = 0;
1263 vm->ids[i].flushed_updates = NULL;
1264 }
1265 #ifdef __NetBSD__
1266 interval_tree_init(&vm->va);
1267 #else
1268 vm->va = RB_ROOT;
1269 #endif
1270 spin_lock_init(&vm->status_lock);
1271 INIT_LIST_HEAD(&vm->invalidated);
1272 INIT_LIST_HEAD(&vm->cleared);
1273 INIT_LIST_HEAD(&vm->freed);
1274 spin_lock_init(&vm->it_lock);
1275 spin_lock_init(&vm->freed_lock);
1276 pd_size = amdgpu_vm_directory_size(adev);
1277 pd_entries = amdgpu_vm_num_pdes(adev);
1278
1279 /* allocate page table array */
1280 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1281 if (vm->page_tables == NULL) {
1282 DRM_ERROR("Cannot allocate memory for page table array\n");
1283 return -ENOMEM;
1284 }
1285
1286 vm->page_directory_fence = NULL;
1287
1288 r = amdgpu_bo_create(adev, pd_size, align, true,
1289 AMDGPU_GEM_DOMAIN_VRAM,
1290 AMDGPU_GEM_CREATE_NO_CPU_ACCESS,
1291 NULL, NULL, &vm->page_directory);
1292 if (r)
1293 return r;
1294 r = amdgpu_bo_reserve(vm->page_directory, false);
1295 if (r) {
1296 amdgpu_bo_unref(&vm->page_directory);
1297 vm->page_directory = NULL;
1298 return r;
1299 }
1300 r = amdgpu_vm_clear_bo(adev, vm->page_directory);
1301 amdgpu_bo_unreserve(vm->page_directory);
1302 if (r) {
1303 amdgpu_bo_unref(&vm->page_directory);
1304 vm->page_directory = NULL;
1305 return r;
1306 }
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * amdgpu_vm_fini - tear down a vm instance
1313 *
1314 * @adev: amdgpu_device pointer
1315 * @vm: requested vm
1316 *
1317 * Tear down @vm (cayman+).
1318 * Unbind the VM and remove all bos from the vm bo list
1319 */
1320 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1321 {
1322 struct amdgpu_bo_va_mapping *mapping, *tmp;
1323 int i;
1324
1325 if (!RB_EMPTY_ROOT(&vm->va)) {
1326 dev_err(adev->dev, "still active bo inside vm\n");
1327 }
1328 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1329 list_del(&mapping->list);
1330 interval_tree_remove(&mapping->it, &vm->va);
1331 kfree(mapping);
1332 }
1333 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1334 list_del(&mapping->list);
1335 kfree(mapping);
1336 }
1337
1338 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++)
1339 amdgpu_bo_unref(&vm->page_tables[i].bo);
1340 drm_free_large(vm->page_tables);
1341
1342 amdgpu_bo_unref(&vm->page_directory);
1343 fence_put(vm->page_directory_fence);
1344 for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
1345 unsigned id = vm->ids[i].id;
1346
1347 atomic_long_cmpxchg(&adev->vm_manager.ids[id].owner,
1348 (long)vm, 0);
1349 fence_put(vm->ids[i].flushed_updates);
1350 }
1351
1352 }
1353
1354 /**
1355 * amdgpu_vm_manager_fini - cleanup VM manager
1356 *
1357 * @adev: amdgpu_device pointer
1358 *
1359 * Cleanup the VM manager and free resources.
1360 */
1361 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1362 {
1363 unsigned i;
1364
1365 for (i = 0; i < AMDGPU_NUM_VM; ++i)
1366 fence_put(adev->vm_manager.ids[i].active);
1367 }
1368