amdgpu_vm.c revision 1.5 1 /* $NetBSD: amdgpu_vm.c,v 1.5 2021/12/18 23:44:58 riastradh Exp $ */
2
3 /*
4 * Copyright 2008 Advanced Micro Devices, Inc.
5 * Copyright 2008 Red Hat Inc.
6 * Copyright 2009 Jerome Glisse.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 *
26 * Authors: Dave Airlie
27 * Alex Deucher
28 * Jerome Glisse
29 */
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: amdgpu_vm.c,v 1.5 2021/12/18 23:44:58 riastradh Exp $");
32
33 #include <linux/dma-fence-array.h>
34 #include <linux/interval_tree_generic.h>
35 #include <linux/idr.h>
36
37 #include <drm/amdgpu_drm.h>
38 #include "amdgpu.h"
39 #include "amdgpu_trace.h"
40 #include "amdgpu_amdkfd.h"
41 #include "amdgpu_gmc.h"
42 #include "amdgpu_xgmi.h"
43
44 #include <linux/nbsd-namespace.h>
45 /**
46 * DOC: GPUVM
47 *
48 * GPUVM is similar to the legacy gart on older asics, however
49 * rather than there being a single global gart table
50 * for the entire GPU, there are multiple VM page tables active
51 * at any given time. The VM page tables can contain a mix
52 * vram pages and system memory pages and system memory pages
53 * can be mapped as snooped (cached system pages) or unsnooped
54 * (uncached system pages).
55 * Each VM has an ID associated with it and there is a page table
56 * associated with each VMID. When execting a command buffer,
57 * the kernel tells the the ring what VMID to use for that command
58 * buffer. VMIDs are allocated dynamically as commands are submitted.
59 * The userspace drivers maintain their own address space and the kernel
60 * sets up their pages tables accordingly when they submit their
61 * command buffers and a VMID is assigned.
62 * Cayman/Trinity support up to 8 active VMs at any given time;
63 * SI supports 16.
64 */
65
66 #define START(node) ((node)->start)
67 #define LAST(node) ((node)->last)
68
69 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
70 START, LAST, static, amdgpu_vm_it)
71
72 #undef START
73 #undef LAST
74
75 /**
76 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
77 */
78 struct amdgpu_prt_cb {
79
80 /**
81 * @adev: amdgpu device
82 */
83 struct amdgpu_device *adev;
84
85 /**
86 * @cb: callback
87 */
88 struct dma_fence_cb cb;
89 };
90
91 /**
92 * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
93 * happens while holding this lock anywhere to prevent deadlocks when
94 * an MMU notifier runs in reclaim-FS context.
95 */
96 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
97 {
98 mutex_lock(&vm->eviction_lock);
99 vm->saved_flags = memalloc_nofs_save();
100 }
101
102 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
103 {
104 if (mutex_trylock(&vm->eviction_lock)) {
105 vm->saved_flags = memalloc_nofs_save();
106 return 1;
107 }
108 return 0;
109 }
110
111 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
112 {
113 memalloc_nofs_restore(vm->saved_flags);
114 mutex_unlock(&vm->eviction_lock);
115 }
116
117 /**
118 * amdgpu_vm_level_shift - return the addr shift for each level
119 *
120 * @adev: amdgpu_device pointer
121 * @level: VMPT level
122 *
123 * Returns:
124 * The number of bits the pfn needs to be right shifted for a level.
125 */
126 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
127 unsigned level)
128 {
129 unsigned shift = 0xff;
130
131 switch (level) {
132 case AMDGPU_VM_PDB2:
133 case AMDGPU_VM_PDB1:
134 case AMDGPU_VM_PDB0:
135 shift = 9 * (AMDGPU_VM_PDB0 - level) +
136 adev->vm_manager.block_size;
137 break;
138 case AMDGPU_VM_PTB:
139 shift = 0;
140 break;
141 default:
142 dev_err(adev->dev, "the level%d isn't supported.\n", level);
143 }
144
145 return shift;
146 }
147
148 /**
149 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
150 *
151 * @adev: amdgpu_device pointer
152 * @level: VMPT level
153 *
154 * Returns:
155 * The number of entries in a page directory or page table.
156 */
157 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
158 unsigned level)
159 {
160 unsigned shift = amdgpu_vm_level_shift(adev,
161 adev->vm_manager.root_level);
162
163 if (level == adev->vm_manager.root_level)
164 /* For the root directory */
165 return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
166 >> shift;
167 else if (level != AMDGPU_VM_PTB)
168 /* Everything in between */
169 return 512;
170 else
171 /* For the page tables on the leaves */
172 return AMDGPU_VM_PTE_COUNT(adev);
173 }
174
175 /**
176 * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
177 *
178 * @adev: amdgpu_device pointer
179 *
180 * Returns:
181 * The number of entries in the root page directory which needs the ATS setting.
182 */
183 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
184 {
185 unsigned shift;
186
187 shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
188 return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
189 }
190
191 /**
192 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
193 *
194 * @adev: amdgpu_device pointer
195 * @level: VMPT level
196 *
197 * Returns:
198 * The mask to extract the entry number of a PD/PT from an address.
199 */
200 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
201 unsigned int level)
202 {
203 if (level <= adev->vm_manager.root_level)
204 return 0xffffffff;
205 else if (level != AMDGPU_VM_PTB)
206 return 0x1ff;
207 else
208 return AMDGPU_VM_PTE_COUNT(adev) - 1;
209 }
210
211 /**
212 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
213 *
214 * @adev: amdgpu_device pointer
215 * @level: VMPT level
216 *
217 * Returns:
218 * The size of the BO for a page directory or page table in bytes.
219 */
220 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
221 {
222 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
223 }
224
225 /**
226 * amdgpu_vm_bo_evicted - vm_bo is evicted
227 *
228 * @vm_bo: vm_bo which is evicted
229 *
230 * State for PDs/PTs and per VM BOs which are not at the location they should
231 * be.
232 */
233 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
234 {
235 struct amdgpu_vm *vm = vm_bo->vm;
236 struct amdgpu_bo *bo = vm_bo->bo;
237
238 vm_bo->moved = true;
239 if (bo->tbo.type == ttm_bo_type_kernel)
240 list_move(&vm_bo->vm_status, &vm->evicted);
241 else
242 list_move_tail(&vm_bo->vm_status, &vm->evicted);
243 }
244
245 /**
246 * amdgpu_vm_bo_relocated - vm_bo is reloacted
247 *
248 * @vm_bo: vm_bo which is relocated
249 *
250 * State for PDs/PTs which needs to update their parent PD.
251 */
252 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
253 {
254 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
255 }
256
257 /**
258 * amdgpu_vm_bo_moved - vm_bo is moved
259 *
260 * @vm_bo: vm_bo which is moved
261 *
262 * State for per VM BOs which are moved, but that change is not yet reflected
263 * in the page tables.
264 */
265 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
266 {
267 list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
268 }
269
270 /**
271 * amdgpu_vm_bo_idle - vm_bo is idle
272 *
273 * @vm_bo: vm_bo which is now idle
274 *
275 * State for PDs/PTs and per VM BOs which have gone through the state machine
276 * and are now idle.
277 */
278 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
279 {
280 list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
281 vm_bo->moved = false;
282 }
283
284 /**
285 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
286 *
287 * @vm_bo: vm_bo which is now invalidated
288 *
289 * State for normal BOs which are invalidated and that change not yet reflected
290 * in the PTs.
291 */
292 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
293 {
294 spin_lock(&vm_bo->vm->invalidated_lock);
295 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
296 spin_unlock(&vm_bo->vm->invalidated_lock);
297 }
298
299 /**
300 * amdgpu_vm_bo_done - vm_bo is done
301 *
302 * @vm_bo: vm_bo which is now done
303 *
304 * State for normal BOs which are invalidated and that change has been updated
305 * in the PTs.
306 */
307 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
308 {
309 spin_lock(&vm_bo->vm->invalidated_lock);
310 list_del_init(&vm_bo->vm_status);
311 spin_unlock(&vm_bo->vm->invalidated_lock);
312 }
313
314 /**
315 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
316 *
317 * @base: base structure for tracking BO usage in a VM
318 * @vm: vm to which bo is to be added
319 * @bo: amdgpu buffer object
320 *
321 * Initialize a bo_va_base structure and add it to the appropriate lists
322 *
323 */
324 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
325 struct amdgpu_vm *vm,
326 struct amdgpu_bo *bo)
327 {
328 base->vm = vm;
329 base->bo = bo;
330 base->next = NULL;
331 INIT_LIST_HEAD(&base->vm_status);
332
333 if (!bo)
334 return;
335 base->next = bo->vm_bo;
336 bo->vm_bo = base;
337
338 if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
339 return;
340
341 vm->bulk_moveable = false;
342 if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
343 amdgpu_vm_bo_relocated(base);
344 else
345 amdgpu_vm_bo_idle(base);
346
347 if (bo->preferred_domains &
348 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
349 return;
350
351 /*
352 * we checked all the prerequisites, but it looks like this per vm bo
353 * is currently evicted. add the bo to the evicted list to make sure it
354 * is validated on next vm use to avoid fault.
355 * */
356 amdgpu_vm_bo_evicted(base);
357 }
358
359 /**
360 * amdgpu_vm_pt_parent - get the parent page directory
361 *
362 * @pt: child page table
363 *
364 * Helper to get the parent entry for the child page table. NULL if we are at
365 * the root page directory.
366 */
367 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
368 {
369 struct amdgpu_bo *parent = pt->base.bo->parent;
370
371 if (!parent)
372 return NULL;
373
374 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
375 }
376
377 /*
378 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
379 */
380 struct amdgpu_vm_pt_cursor {
381 uint64_t pfn;
382 struct amdgpu_vm_pt *parent;
383 struct amdgpu_vm_pt *entry;
384 unsigned level;
385 };
386
387 /**
388 * amdgpu_vm_pt_start - start PD/PT walk
389 *
390 * @adev: amdgpu_device pointer
391 * @vm: amdgpu_vm structure
392 * @start: start address of the walk
393 * @cursor: state to initialize
394 *
395 * Initialize a amdgpu_vm_pt_cursor to start a walk.
396 */
397 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
398 struct amdgpu_vm *vm, uint64_t start,
399 struct amdgpu_vm_pt_cursor *cursor)
400 {
401 cursor->pfn = start;
402 cursor->parent = NULL;
403 cursor->entry = &vm->root;
404 cursor->level = adev->vm_manager.root_level;
405 }
406
407 /**
408 * amdgpu_vm_pt_descendant - go to child node
409 *
410 * @adev: amdgpu_device pointer
411 * @cursor: current state
412 *
413 * Walk to the child node of the current node.
414 * Returns:
415 * True if the walk was possible, false otherwise.
416 */
417 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
418 struct amdgpu_vm_pt_cursor *cursor)
419 {
420 unsigned mask, shift, idx;
421
422 if (!cursor->entry->entries)
423 return false;
424
425 BUG_ON(!cursor->entry->base.bo);
426 mask = amdgpu_vm_entries_mask(adev, cursor->level);
427 shift = amdgpu_vm_level_shift(adev, cursor->level);
428
429 ++cursor->level;
430 idx = (cursor->pfn >> shift) & mask;
431 cursor->parent = cursor->entry;
432 cursor->entry = &cursor->entry->entries[idx];
433 return true;
434 }
435
436 /**
437 * amdgpu_vm_pt_sibling - go to sibling node
438 *
439 * @adev: amdgpu_device pointer
440 * @cursor: current state
441 *
442 * Walk to the sibling node of the current node.
443 * Returns:
444 * True if the walk was possible, false otherwise.
445 */
446 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
447 struct amdgpu_vm_pt_cursor *cursor)
448 {
449 unsigned shift, num_entries;
450
451 /* Root doesn't have a sibling */
452 if (!cursor->parent)
453 return false;
454
455 /* Go to our parents and see if we got a sibling */
456 shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
457 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
458
459 if (cursor->entry == &cursor->parent->entries[num_entries - 1])
460 return false;
461
462 cursor->pfn += 1ULL << shift;
463 cursor->pfn &= ~((1ULL << shift) - 1);
464 ++cursor->entry;
465 return true;
466 }
467
468 /**
469 * amdgpu_vm_pt_ancestor - go to parent node
470 *
471 * @cursor: current state
472 *
473 * Walk to the parent node of the current node.
474 * Returns:
475 * True if the walk was possible, false otherwise.
476 */
477 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
478 {
479 if (!cursor->parent)
480 return false;
481
482 --cursor->level;
483 cursor->entry = cursor->parent;
484 cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
485 return true;
486 }
487
488 /**
489 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
490 *
491 * @adev: amdgpu_device pointer
492 * @cursor: current state
493 *
494 * Walk the PD/PT tree to the next node.
495 */
496 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
497 struct amdgpu_vm_pt_cursor *cursor)
498 {
499 /* First try a newborn child */
500 if (amdgpu_vm_pt_descendant(adev, cursor))
501 return;
502
503 /* If that didn't worked try to find a sibling */
504 while (!amdgpu_vm_pt_sibling(adev, cursor)) {
505 /* No sibling, go to our parents and grandparents */
506 if (!amdgpu_vm_pt_ancestor(cursor)) {
507 cursor->pfn = ~0ll;
508 return;
509 }
510 }
511 }
512
513 /**
514 * amdgpu_vm_pt_first_dfs - start a deep first search
515 *
516 * @adev: amdgpu_device structure
517 * @vm: amdgpu_vm structure
518 * @start: optional cursor to start with
519 * @cursor: state to initialize
520 *
521 * Starts a deep first traversal of the PD/PT tree.
522 */
523 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
524 struct amdgpu_vm *vm,
525 struct amdgpu_vm_pt_cursor *start,
526 struct amdgpu_vm_pt_cursor *cursor)
527 {
528 if (start)
529 *cursor = *start;
530 else
531 amdgpu_vm_pt_start(adev, vm, 0, cursor);
532 while (amdgpu_vm_pt_descendant(adev, cursor));
533 }
534
535 /**
536 * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
537 *
538 * @start: starting point for the search
539 * @entry: current entry
540 *
541 * Returns:
542 * True when the search should continue, false otherwise.
543 */
544 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
545 struct amdgpu_vm_pt *entry)
546 {
547 return entry && (!start || entry != start->entry);
548 }
549
550 /**
551 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
552 *
553 * @adev: amdgpu_device structure
554 * @cursor: current state
555 *
556 * Move the cursor to the next node in a deep first search.
557 */
558 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
559 struct amdgpu_vm_pt_cursor *cursor)
560 {
561 if (!cursor->entry)
562 return;
563
564 if (!cursor->parent)
565 cursor->entry = NULL;
566 else if (amdgpu_vm_pt_sibling(adev, cursor))
567 while (amdgpu_vm_pt_descendant(adev, cursor));
568 else
569 amdgpu_vm_pt_ancestor(cursor);
570 }
571
572 /*
573 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
574 */
575 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry) \
576 for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)), \
577 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
578 amdgpu_vm_pt_continue_dfs((start), (entry)); \
579 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
580
581 /**
582 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
583 *
584 * @vm: vm providing the BOs
585 * @validated: head of validation list
586 * @entry: entry to add
587 *
588 * Add the page directory to the list of BOs to
589 * validate for command submission.
590 */
591 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
592 struct list_head *validated,
593 struct amdgpu_bo_list_entry *entry)
594 {
595 entry->priority = 0;
596 entry->tv.bo = &vm->root.base.bo->tbo;
597 /* One for TTM and one for the CS job */
598 entry->tv.num_shared = 2;
599 entry->user_pages = NULL;
600 list_add(&entry->tv.head, validated);
601 }
602
603 /**
604 * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
605 *
606 * @bo: BO which was removed from the LRU
607 *
608 * Make sure the bulk_moveable flag is updated when a BO is removed from the
609 * LRU.
610 */
611 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
612 {
613 struct amdgpu_bo *abo;
614 struct amdgpu_vm_bo_base *bo_base;
615
616 if (!amdgpu_bo_is_amdgpu_bo(bo))
617 return;
618
619 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
620 return;
621
622 abo = ttm_to_amdgpu_bo(bo);
623 if (!abo->parent)
624 return;
625 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
626 struct amdgpu_vm *vm = bo_base->vm;
627
628 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
629 vm->bulk_moveable = false;
630 }
631
632 }
633 /**
634 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
635 *
636 * @adev: amdgpu device pointer
637 * @vm: vm providing the BOs
638 *
639 * Move all BOs to the end of LRU and remember their positions to put them
640 * together.
641 */
642 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
643 struct amdgpu_vm *vm)
644 {
645 struct amdgpu_vm_bo_base *bo_base;
646
647 if (vm->bulk_moveable) {
648 spin_lock(&ttm_bo_glob.lru_lock);
649 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
650 spin_unlock(&ttm_bo_glob.lru_lock);
651 return;
652 }
653
654 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
655
656 spin_lock(&ttm_bo_glob.lru_lock);
657 list_for_each_entry(bo_base, &vm->idle, vm_status) {
658 struct amdgpu_bo *bo = bo_base->bo;
659
660 if (!bo->parent)
661 continue;
662
663 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
664 if (bo->shadow)
665 ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
666 &vm->lru_bulk_move);
667 }
668 spin_unlock(&ttm_bo_glob.lru_lock);
669
670 vm->bulk_moveable = true;
671 }
672
673 /**
674 * amdgpu_vm_validate_pt_bos - validate the page table BOs
675 *
676 * @adev: amdgpu device pointer
677 * @vm: vm providing the BOs
678 * @validate: callback to do the validation
679 * @param: parameter for the validation callback
680 *
681 * Validate the page table BOs on command submission if neccessary.
682 *
683 * Returns:
684 * Validation result.
685 */
686 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
687 int (*validate)(void *p, struct amdgpu_bo *bo),
688 void *param)
689 {
690 struct amdgpu_vm_bo_base *bo_base, *tmp;
691 int r;
692
693 vm->bulk_moveable &= list_empty(&vm->evicted);
694
695 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
696 struct amdgpu_bo *bo = bo_base->bo;
697
698 r = validate(param, bo);
699 if (r)
700 return r;
701
702 if (bo->tbo.type != ttm_bo_type_kernel) {
703 amdgpu_vm_bo_moved(bo_base);
704 } else {
705 vm->update_funcs->map_table(bo);
706 if (bo->parent)
707 amdgpu_vm_bo_relocated(bo_base);
708 else
709 amdgpu_vm_bo_idle(bo_base);
710 }
711 }
712
713 amdgpu_vm_eviction_lock(vm);
714 vm->evicting = false;
715 amdgpu_vm_eviction_unlock(vm);
716
717 return 0;
718 }
719
720 /**
721 * amdgpu_vm_ready - check VM is ready for updates
722 *
723 * @vm: VM to check
724 *
725 * Check if all VM PDs/PTs are ready for updates
726 *
727 * Returns:
728 * True if eviction list is empty.
729 */
730 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
731 {
732 return list_empty(&vm->evicted);
733 }
734
735 /**
736 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
737 *
738 * @adev: amdgpu_device pointer
739 * @vm: VM to clear BO from
740 * @bo: BO to clear
741 * @direct: use a direct update
742 *
743 * Root PD needs to be reserved when calling this.
744 *
745 * Returns:
746 * 0 on success, errno otherwise.
747 */
748 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
749 struct amdgpu_vm *vm,
750 struct amdgpu_bo *bo,
751 bool direct)
752 {
753 struct ttm_operation_ctx ctx = { true, false };
754 unsigned level = adev->vm_manager.root_level;
755 struct amdgpu_vm_update_params params;
756 struct amdgpu_bo *ancestor = bo;
757 unsigned entries, ats_entries;
758 uint64_t addr;
759 int r;
760
761 /* Figure out our place in the hierarchy */
762 if (ancestor->parent) {
763 ++level;
764 while (ancestor->parent->parent) {
765 ++level;
766 ancestor = ancestor->parent;
767 }
768 }
769
770 entries = amdgpu_bo_size(bo) / 8;
771 if (!vm->pte_support_ats) {
772 ats_entries = 0;
773
774 } else if (!bo->parent) {
775 ats_entries = amdgpu_vm_num_ats_entries(adev);
776 ats_entries = min(ats_entries, entries);
777 entries -= ats_entries;
778
779 } else {
780 struct amdgpu_vm_pt *pt;
781
782 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
783 ats_entries = amdgpu_vm_num_ats_entries(adev);
784 if ((pt - vm->root.entries) >= ats_entries) {
785 ats_entries = 0;
786 } else {
787 ats_entries = entries;
788 entries = 0;
789 }
790 }
791
792 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
793 if (r)
794 return r;
795
796 if (bo->shadow) {
797 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
798 &ctx);
799 if (r)
800 return r;
801 }
802
803 r = vm->update_funcs->map_table(bo);
804 if (r)
805 return r;
806
807 memset(¶ms, 0, sizeof(params));
808 params.adev = adev;
809 params.vm = vm;
810 params.direct = direct;
811
812 r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_KFD, NULL);
813 if (r)
814 return r;
815
816 addr = 0;
817 if (ats_entries) {
818 uint64_t value = 0, flags;
819
820 flags = AMDGPU_PTE_DEFAULT_ATC;
821 if (level != AMDGPU_VM_PTB) {
822 /* Handle leaf PDEs as PTEs */
823 flags |= AMDGPU_PDE_PTE;
824 amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
825 }
826
827 r = vm->update_funcs->update(¶ms, bo, addr, 0, ats_entries,
828 value, flags);
829 if (r)
830 return r;
831
832 addr += ats_entries * 8;
833 }
834
835 if (entries) {
836 uint64_t value = 0, flags = 0;
837
838 if (adev->asic_type >= CHIP_VEGA10) {
839 if (level != AMDGPU_VM_PTB) {
840 /* Handle leaf PDEs as PTEs */
841 flags |= AMDGPU_PDE_PTE;
842 amdgpu_gmc_get_vm_pde(adev, level,
843 &value, &flags);
844 } else {
845 /* Workaround for fault priority problem on GMC9 */
846 flags = AMDGPU_PTE_EXECUTABLE;
847 }
848 }
849
850 r = vm->update_funcs->update(¶ms, bo, addr, 0, entries,
851 value, flags);
852 if (r)
853 return r;
854 }
855
856 return vm->update_funcs->commit(¶ms, NULL);
857 }
858
859 /**
860 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
861 *
862 * @adev: amdgpu_device pointer
863 * @vm: requesting vm
864 * @level: the page table level
865 * @direct: use a direct update
866 * @bp: resulting BO allocation parameters
867 */
868 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
869 int level, bool direct,
870 struct amdgpu_bo_param *bp)
871 {
872 memset(bp, 0, sizeof(*bp));
873
874 bp->size = amdgpu_vm_bo_size(adev, level);
875 bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
876 bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
877 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
878 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
879 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
880 if (vm->use_cpu_for_update)
881 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
882 else if (!vm->root.base.bo || vm->root.base.bo->shadow)
883 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
884 bp->type = ttm_bo_type_kernel;
885 bp->no_wait_gpu = direct;
886 if (vm->root.base.bo)
887 bp->resv = vm->root.base.bo->tbo.base.resv;
888 }
889
890 /**
891 * amdgpu_vm_alloc_pts - Allocate a specific page table
892 *
893 * @adev: amdgpu_device pointer
894 * @vm: VM to allocate page tables for
895 * @cursor: Which page table to allocate
896 * @direct: use a direct update
897 *
898 * Make sure a specific page table or directory is allocated.
899 *
900 * Returns:
901 * 1 if page table needed to be allocated, 0 if page table was already
902 * allocated, negative errno if an error occurred.
903 */
904 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
905 struct amdgpu_vm *vm,
906 struct amdgpu_vm_pt_cursor *cursor,
907 bool direct)
908 {
909 struct amdgpu_vm_pt *entry = cursor->entry;
910 struct amdgpu_bo_param bp;
911 struct amdgpu_bo *pt;
912 int r;
913
914 if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
915 unsigned num_entries;
916
917 num_entries = amdgpu_vm_num_entries(adev, cursor->level);
918 entry->entries = kvmalloc_array(num_entries,
919 sizeof(*entry->entries),
920 GFP_KERNEL | __GFP_ZERO);
921 if (!entry->entries)
922 return -ENOMEM;
923 }
924
925 if (entry->base.bo)
926 return 0;
927
928 amdgpu_vm_bo_param(adev, vm, cursor->level, direct, &bp);
929
930 r = amdgpu_bo_create(adev, &bp, &pt);
931 if (r)
932 return r;
933
934 /* Keep a reference to the root directory to avoid
935 * freeing them up in the wrong order.
936 */
937 pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
938 amdgpu_vm_bo_base_init(&entry->base, vm, pt);
939
940 r = amdgpu_vm_clear_bo(adev, vm, pt, direct);
941 if (r)
942 goto error_free_pt;
943
944 return 0;
945
946 error_free_pt:
947 amdgpu_bo_unref(&pt->shadow);
948 amdgpu_bo_unref(&pt);
949 return r;
950 }
951
952 /**
953 * amdgpu_vm_free_table - fre one PD/PT
954 *
955 * @entry: PDE to free
956 */
957 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
958 {
959 if (entry->base.bo) {
960 entry->base.bo->vm_bo = NULL;
961 list_del(&entry->base.vm_status);
962 amdgpu_bo_unref(&entry->base.bo->shadow);
963 amdgpu_bo_unref(&entry->base.bo);
964 }
965 kvfree(entry->entries);
966 entry->entries = NULL;
967 }
968
969 /**
970 * amdgpu_vm_free_pts - free PD/PT levels
971 *
972 * @adev: amdgpu device structure
973 * @vm: amdgpu vm structure
974 * @start: optional cursor where to start freeing PDs/PTs
975 *
976 * Free the page directory or page table level and all sub levels.
977 */
978 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
979 struct amdgpu_vm *vm,
980 struct amdgpu_vm_pt_cursor *start)
981 {
982 struct amdgpu_vm_pt_cursor cursor;
983 struct amdgpu_vm_pt *entry;
984
985 vm->bulk_moveable = false;
986
987 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
988 amdgpu_vm_free_table(entry);
989
990 if (start)
991 amdgpu_vm_free_table(start->entry);
992 }
993
994 /**
995 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
996 *
997 * @adev: amdgpu_device pointer
998 */
999 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1000 {
1001 const struct amdgpu_ip_block *ip_block;
1002 bool has_compute_vm_bug;
1003 struct amdgpu_ring *ring;
1004 int i;
1005
1006 has_compute_vm_bug = false;
1007
1008 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1009 if (ip_block) {
1010 /* Compute has a VM bug for GFX version < 7.
1011 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1012 if (ip_block->version->major <= 7)
1013 has_compute_vm_bug = true;
1014 else if (ip_block->version->major == 8)
1015 if (adev->gfx.mec_fw_version < 673)
1016 has_compute_vm_bug = true;
1017 }
1018
1019 for (i = 0; i < adev->num_rings; i++) {
1020 ring = adev->rings[i];
1021 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1022 /* only compute rings */
1023 ring->has_compute_vm_bug = has_compute_vm_bug;
1024 else
1025 ring->has_compute_vm_bug = false;
1026 }
1027 }
1028
1029 /**
1030 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1031 *
1032 * @ring: ring on which the job will be submitted
1033 * @job: job to submit
1034 *
1035 * Returns:
1036 * True if sync is needed.
1037 */
1038 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1039 struct amdgpu_job *job)
1040 {
1041 struct amdgpu_device *adev = ring->adev;
1042 unsigned vmhub = ring->funcs->vmhub;
1043 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1044 struct amdgpu_vmid *id;
1045 bool gds_switch_needed;
1046 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1047
1048 if (job->vmid == 0)
1049 return false;
1050 id = &id_mgr->ids[job->vmid];
1051 gds_switch_needed = ring->funcs->emit_gds_switch && (
1052 id->gds_base != job->gds_base ||
1053 id->gds_size != job->gds_size ||
1054 id->gws_base != job->gws_base ||
1055 id->gws_size != job->gws_size ||
1056 id->oa_base != job->oa_base ||
1057 id->oa_size != job->oa_size);
1058
1059 if (amdgpu_vmid_had_gpu_reset(adev, id))
1060 return true;
1061
1062 return vm_flush_needed || gds_switch_needed;
1063 }
1064
1065 /**
1066 * amdgpu_vm_flush - hardware flush the vm
1067 *
1068 * @ring: ring to use for flush
1069 * @job: related job
1070 * @need_pipe_sync: is pipe sync needed
1071 *
1072 * Emit a VM flush when it is necessary.
1073 *
1074 * Returns:
1075 * 0 on success, errno otherwise.
1076 */
1077 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1078 bool need_pipe_sync)
1079 {
1080 struct amdgpu_device *adev = ring->adev;
1081 unsigned vmhub = ring->funcs->vmhub;
1082 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1083 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1084 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1085 id->gds_base != job->gds_base ||
1086 id->gds_size != job->gds_size ||
1087 id->gws_base != job->gws_base ||
1088 id->gws_size != job->gws_size ||
1089 id->oa_base != job->oa_base ||
1090 id->oa_size != job->oa_size);
1091 bool vm_flush_needed = job->vm_needs_flush;
1092 struct dma_fence *fence = NULL;
1093 bool pasid_mapping_needed = false;
1094 unsigned patch_offset = 0;
1095 int r;
1096
1097 if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1098 gds_switch_needed = true;
1099 vm_flush_needed = true;
1100 pasid_mapping_needed = true;
1101 }
1102
1103 mutex_lock(&id_mgr->lock);
1104 if (id->pasid != job->pasid || !id->pasid_mapping ||
1105 !dma_fence_is_signaled(id->pasid_mapping))
1106 pasid_mapping_needed = true;
1107 mutex_unlock(&id_mgr->lock);
1108
1109 gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1110 vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
1111 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1112 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1113 ring->funcs->emit_wreg;
1114
1115 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1116 return 0;
1117
1118 if (ring->funcs->init_cond_exec)
1119 patch_offset = amdgpu_ring_init_cond_exec(ring);
1120
1121 if (need_pipe_sync)
1122 amdgpu_ring_emit_pipeline_sync(ring);
1123
1124 if (vm_flush_needed) {
1125 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1126 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1127 }
1128
1129 if (pasid_mapping_needed)
1130 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1131
1132 if (vm_flush_needed || pasid_mapping_needed) {
1133 r = amdgpu_fence_emit(ring, &fence, 0);
1134 if (r)
1135 return r;
1136 }
1137
1138 if (vm_flush_needed) {
1139 mutex_lock(&id_mgr->lock);
1140 dma_fence_put(id->last_flush);
1141 id->last_flush = dma_fence_get(fence);
1142 id->current_gpu_reset_count =
1143 atomic_read(&adev->gpu_reset_counter);
1144 mutex_unlock(&id_mgr->lock);
1145 }
1146
1147 if (pasid_mapping_needed) {
1148 mutex_lock(&id_mgr->lock);
1149 id->pasid = job->pasid;
1150 dma_fence_put(id->pasid_mapping);
1151 id->pasid_mapping = dma_fence_get(fence);
1152 mutex_unlock(&id_mgr->lock);
1153 }
1154 dma_fence_put(fence);
1155
1156 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1157 id->gds_base = job->gds_base;
1158 id->gds_size = job->gds_size;
1159 id->gws_base = job->gws_base;
1160 id->gws_size = job->gws_size;
1161 id->oa_base = job->oa_base;
1162 id->oa_size = job->oa_size;
1163 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1164 job->gds_size, job->gws_base,
1165 job->gws_size, job->oa_base,
1166 job->oa_size);
1167 }
1168
1169 if (ring->funcs->patch_cond_exec)
1170 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1171
1172 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1173 if (ring->funcs->emit_switch_buffer) {
1174 amdgpu_ring_emit_switch_buffer(ring);
1175 amdgpu_ring_emit_switch_buffer(ring);
1176 }
1177 return 0;
1178 }
1179
1180 /**
1181 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1182 *
1183 * @vm: requested vm
1184 * @bo: requested buffer object
1185 *
1186 * Find @bo inside the requested vm.
1187 * Search inside the @bos vm list for the requested vm
1188 * Returns the found bo_va or NULL if none is found
1189 *
1190 * Object has to be reserved!
1191 *
1192 * Returns:
1193 * Found bo_va or NULL.
1194 */
1195 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1196 struct amdgpu_bo *bo)
1197 {
1198 struct amdgpu_vm_bo_base *base;
1199
1200 for (base = bo->vm_bo; base; base = base->next) {
1201 if (base->vm != vm)
1202 continue;
1203
1204 return container_of(base, struct amdgpu_bo_va, base);
1205 }
1206 return NULL;
1207 }
1208
1209 /**
1210 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1211 *
1212 * @pages_addr: optional DMA address to use for lookup
1213 * @addr: the unmapped addr
1214 *
1215 * Look up the physical address of the page that the pte resolves
1216 * to.
1217 *
1218 * Returns:
1219 * The pointer for the page table entry.
1220 */
1221 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1222 {
1223 uint64_t result;
1224
1225 /* page table offset */
1226 result = pages_addr[addr >> PAGE_SHIFT];
1227
1228 /* in case cpu page size != gpu page size*/
1229 result |= addr & (~PAGE_MASK);
1230
1231 result &= 0xFFFFFFFFFFFFF000ULL;
1232
1233 return result;
1234 }
1235
1236 /**
1237 * amdgpu_vm_update_pde - update a single level in the hierarchy
1238 *
1239 * @params: parameters for the update
1240 * @vm: requested vm
1241 * @entry: entry to update
1242 *
1243 * Makes sure the requested entry in parent is up to date.
1244 */
1245 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1246 struct amdgpu_vm *vm,
1247 struct amdgpu_vm_pt *entry)
1248 {
1249 struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1250 struct amdgpu_bo *bo = parent->base.bo, *pbo;
1251 uint64_t pde, pt, flags;
1252 unsigned level;
1253
1254 for (level = 0, pbo = bo->parent; pbo; ++level)
1255 pbo = pbo->parent;
1256
1257 level += params->adev->vm_manager.root_level;
1258 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1259 pde = (entry - parent->entries) * 8;
1260 return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1261 }
1262
1263 /**
1264 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1265 *
1266 * @adev: amdgpu_device pointer
1267 * @vm: related vm
1268 *
1269 * Mark all PD level as invalid after an error.
1270 */
1271 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1272 struct amdgpu_vm *vm)
1273 {
1274 struct amdgpu_vm_pt_cursor cursor;
1275 struct amdgpu_vm_pt *entry;
1276
1277 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1278 if (entry->base.bo && !entry->base.moved)
1279 amdgpu_vm_bo_relocated(&entry->base);
1280 }
1281
1282 /**
1283 * amdgpu_vm_update_pdes - make sure that all directories are valid
1284 *
1285 * @adev: amdgpu_device pointer
1286 * @vm: requested vm
1287 * @direct: submit directly to the paging queue
1288 *
1289 * Makes sure all directories are up to date.
1290 *
1291 * Returns:
1292 * 0 for success, error for failure.
1293 */
1294 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1295 struct amdgpu_vm *vm, bool direct)
1296 {
1297 struct amdgpu_vm_update_params params;
1298 int r;
1299
1300 if (list_empty(&vm->relocated))
1301 return 0;
1302
1303 memset(¶ms, 0, sizeof(params));
1304 params.adev = adev;
1305 params.vm = vm;
1306 params.direct = direct;
1307
1308 r = vm->update_funcs->prepare(¶ms, AMDGPU_FENCE_OWNER_VM, NULL);
1309 if (r)
1310 return r;
1311
1312 while (!list_empty(&vm->relocated)) {
1313 struct amdgpu_vm_pt *entry;
1314
1315 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1316 base.vm_status);
1317 amdgpu_vm_bo_idle(&entry->base);
1318
1319 r = amdgpu_vm_update_pde(¶ms, vm, entry);
1320 if (r)
1321 goto error;
1322 }
1323
1324 r = vm->update_funcs->commit(¶ms, &vm->last_update);
1325 if (r)
1326 goto error;
1327 return 0;
1328
1329 error:
1330 amdgpu_vm_invalidate_pds(adev, vm);
1331 return r;
1332 }
1333
1334 /*
1335 * amdgpu_vm_update_flags - figure out flags for PTE updates
1336 *
1337 * Make sure to set the right flags for the PTEs at the desired level.
1338 */
1339 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1340 struct amdgpu_bo *bo, unsigned level,
1341 uint64_t pe, uint64_t addr,
1342 unsigned count, uint32_t incr,
1343 uint64_t flags)
1344
1345 {
1346 if (level != AMDGPU_VM_PTB) {
1347 flags |= AMDGPU_PDE_PTE;
1348 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1349
1350 } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1351 !(flags & AMDGPU_PTE_VALID) &&
1352 !(flags & AMDGPU_PTE_PRT)) {
1353
1354 /* Workaround for fault priority problem on GMC9 */
1355 flags |= AMDGPU_PTE_EXECUTABLE;
1356 }
1357
1358 params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1359 flags);
1360 }
1361
1362 /**
1363 * amdgpu_vm_fragment - get fragment for PTEs
1364 *
1365 * @params: see amdgpu_vm_update_params definition
1366 * @start: first PTE to handle
1367 * @end: last PTE to handle
1368 * @flags: hw mapping flags
1369 * @frag: resulting fragment size
1370 * @frag_end: end of this fragment
1371 *
1372 * Returns the first possible fragment for the start and end address.
1373 */
1374 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1375 uint64_t start, uint64_t end, uint64_t flags,
1376 unsigned int *frag, uint64_t *frag_end)
1377 {
1378 /**
1379 * The MC L1 TLB supports variable sized pages, based on a fragment
1380 * field in the PTE. When this field is set to a non-zero value, page
1381 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1382 * flags are considered valid for all PTEs within the fragment range
1383 * and corresponding mappings are assumed to be physically contiguous.
1384 *
1385 * The L1 TLB can store a single PTE for the whole fragment,
1386 * significantly increasing the space available for translation
1387 * caching. This leads to large improvements in throughput when the
1388 * TLB is under pressure.
1389 *
1390 * The L2 TLB distributes small and large fragments into two
1391 * asymmetric partitions. The large fragment cache is significantly
1392 * larger. Thus, we try to use large fragments wherever possible.
1393 * Userspace can support this by aligning virtual base address and
1394 * allocation size to the fragment size.
1395 *
1396 * Starting with Vega10 the fragment size only controls the L1. The L2
1397 * is now directly feed with small/huge/giant pages from the walker.
1398 */
1399 unsigned max_frag;
1400
1401 if (params->adev->asic_type < CHIP_VEGA10)
1402 max_frag = params->adev->vm_manager.fragment_size;
1403 else
1404 max_frag = 31;
1405
1406 /* system pages are non continuously */
1407 if (params->pages_addr) {
1408 *frag = 0;
1409 *frag_end = end;
1410 return;
1411 }
1412
1413 /* This intentionally wraps around if no bit is set */
1414 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1415 if (*frag >= max_frag) {
1416 *frag = max_frag;
1417 *frag_end = end & ~((1ULL << max_frag) - 1);
1418 } else {
1419 *frag_end = start + (1 << *frag);
1420 }
1421 }
1422
1423 /**
1424 * amdgpu_vm_update_ptes - make sure that page tables are valid
1425 *
1426 * @params: see amdgpu_vm_update_params definition
1427 * @start: start of GPU address range
1428 * @end: end of GPU address range
1429 * @dst: destination address to map to, the next dst inside the function
1430 * @flags: mapping flags
1431 *
1432 * Update the page tables in the range @start - @end.
1433 *
1434 * Returns:
1435 * 0 for success, -EINVAL for failure.
1436 */
1437 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1438 uint64_t start, uint64_t end,
1439 uint64_t dst, uint64_t flags)
1440 {
1441 struct amdgpu_device *adev = params->adev;
1442 struct amdgpu_vm_pt_cursor cursor;
1443 uint64_t frag_start = start, frag_end;
1444 unsigned int frag;
1445 int r;
1446
1447 /* figure out the initial fragment */
1448 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1449
1450 /* walk over the address space and update the PTs */
1451 amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1452 while (cursor.pfn < end) {
1453 unsigned shift, parent_shift, mask;
1454 uint64_t incr, entry_end, pe_start;
1455 struct amdgpu_bo *pt;
1456
1457 /* make sure that the page tables covering the address range are
1458 * actually allocated
1459 */
1460 r = amdgpu_vm_alloc_pts(params->adev, params->vm, &cursor,
1461 params->direct);
1462 if (r)
1463 return r;
1464
1465 pt = cursor.entry->base.bo;
1466
1467 /* The root level can't be a huge page */
1468 if (cursor.level == adev->vm_manager.root_level) {
1469 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1470 return -ENOENT;
1471 continue;
1472 }
1473
1474 shift = amdgpu_vm_level_shift(adev, cursor.level);
1475 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1476 if (adev->asic_type < CHIP_VEGA10 &&
1477 (flags & AMDGPU_PTE_VALID)) {
1478 /* No huge page support before GMC v9 */
1479 if (cursor.level != AMDGPU_VM_PTB) {
1480 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1481 return -ENOENT;
1482 continue;
1483 }
1484 } else if (frag < shift) {
1485 /* We can't use this level when the fragment size is
1486 * smaller than the address shift. Go to the next
1487 * child entry and try again.
1488 */
1489 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1490 return -ENOENT;
1491 continue;
1492 } else if (frag >= parent_shift &&
1493 cursor.level - 1 != adev->vm_manager.root_level) {
1494 /* If the fragment size is even larger than the parent
1495 * shift we should go up one level and check it again
1496 * unless one level up is the root level.
1497 */
1498 if (!amdgpu_vm_pt_ancestor(&cursor))
1499 return -ENOENT;
1500 continue;
1501 }
1502
1503 /* Looks good so far, calculate parameters for the update */
1504 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1505 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1506 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1507 entry_end = (uint64_t)(mask + 1) << shift;
1508 entry_end += cursor.pfn & ~(entry_end - 1);
1509 entry_end = min(entry_end, end);
1510
1511 do {
1512 uint64_t upd_end = min(entry_end, frag_end);
1513 unsigned nptes = (upd_end - frag_start) >> shift;
1514
1515 amdgpu_vm_update_flags(params, pt, cursor.level,
1516 pe_start, dst, nptes, incr,
1517 flags | AMDGPU_PTE_FRAG(frag));
1518
1519 pe_start += nptes * 8;
1520 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1521
1522 frag_start = upd_end;
1523 if (frag_start >= frag_end) {
1524 /* figure out the next fragment */
1525 amdgpu_vm_fragment(params, frag_start, end,
1526 flags, &frag, &frag_end);
1527 if (frag < shift)
1528 break;
1529 }
1530 } while (frag_start < entry_end);
1531
1532 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1533 /* Free all child entries.
1534 * Update the tables with the flags and addresses and free up subsequent
1535 * tables in the case of huge pages or freed up areas.
1536 * This is the maximum you can free, because all other page tables are not
1537 * completely covered by the range and so potentially still in use.
1538 */
1539 while (cursor.pfn < frag_start) {
1540 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1541 amdgpu_vm_pt_next(adev, &cursor);
1542 }
1543
1544 } else if (frag >= shift) {
1545 /* or just move on to the next on the same level. */
1546 amdgpu_vm_pt_next(adev, &cursor);
1547 }
1548 }
1549
1550 return 0;
1551 }
1552
1553 /**
1554 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1555 *
1556 * @adev: amdgpu_device pointer
1557 * @vm: requested vm
1558 * @direct: direct submission in a page fault
1559 * @exclusive: fence we need to sync to
1560 * @start: start of mapped range
1561 * @last: last mapped entry
1562 * @flags: flags for the entries
1563 * @addr: addr to set the area to
1564 * @pages_addr: DMA addresses to use for mapping
1565 * @fence: optional resulting fence
1566 *
1567 * Fill in the page table entries between @start and @last.
1568 *
1569 * Returns:
1570 * 0 for success, -EINVAL for failure.
1571 */
1572 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1573 struct amdgpu_vm *vm, bool direct,
1574 struct dma_fence *exclusive,
1575 uint64_t start, uint64_t last,
1576 uint64_t flags, uint64_t addr,
1577 dma_addr_t *pages_addr,
1578 struct dma_fence **fence)
1579 {
1580 struct amdgpu_vm_update_params params;
1581 void *owner = AMDGPU_FENCE_OWNER_VM;
1582 int r;
1583
1584 memset(¶ms, 0, sizeof(params));
1585 params.adev = adev;
1586 params.vm = vm;
1587 params.direct = direct;
1588 params.pages_addr = pages_addr;
1589
1590 /* sync to everything except eviction fences on unmapping */
1591 if (!(flags & AMDGPU_PTE_VALID))
1592 owner = AMDGPU_FENCE_OWNER_KFD;
1593
1594 amdgpu_vm_eviction_lock(vm);
1595 if (vm->evicting) {
1596 r = -EBUSY;
1597 goto error_unlock;
1598 }
1599
1600 r = vm->update_funcs->prepare(¶ms, owner, exclusive);
1601 if (r)
1602 goto error_unlock;
1603
1604 r = amdgpu_vm_update_ptes(¶ms, start, last + 1, addr, flags);
1605 if (r)
1606 goto error_unlock;
1607
1608 r = vm->update_funcs->commit(¶ms, fence);
1609
1610 error_unlock:
1611 amdgpu_vm_eviction_unlock(vm);
1612 return r;
1613 }
1614
1615 /**
1616 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1617 *
1618 * @adev: amdgpu_device pointer
1619 * @exclusive: fence we need to sync to
1620 * @pages_addr: DMA addresses to use for mapping
1621 * @vm: requested vm
1622 * @mapping: mapped range and flags to use for the update
1623 * @flags: HW flags for the mapping
1624 * @bo_adev: amdgpu_device pointer that bo actually been allocated
1625 * @nodes: array of drm_mm_nodes with the MC addresses
1626 * @fence: optional resulting fence
1627 *
1628 * Split the mapping into smaller chunks so that each update fits
1629 * into a SDMA IB.
1630 *
1631 * Returns:
1632 * 0 for success, -EINVAL for failure.
1633 */
1634 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1635 struct dma_fence *exclusive,
1636 dma_addr_t *pages_addr,
1637 struct amdgpu_vm *vm,
1638 struct amdgpu_bo_va_mapping *mapping,
1639 uint64_t flags,
1640 struct amdgpu_device *bo_adev,
1641 struct drm_mm_node *nodes,
1642 struct dma_fence **fence)
1643 {
1644 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1645 uint64_t pfn, start = mapping->start;
1646 int r;
1647
1648 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1649 * but in case of something, we filter the flags in first place
1650 */
1651 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1652 flags &= ~AMDGPU_PTE_READABLE;
1653 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1654 flags &= ~AMDGPU_PTE_WRITEABLE;
1655
1656 /* Apply ASIC specific mapping flags */
1657 amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1658
1659 trace_amdgpu_vm_bo_update(mapping);
1660
1661 pfn = mapping->offset >> PAGE_SHIFT;
1662 if (nodes) {
1663 while (pfn >= nodes->size) {
1664 pfn -= nodes->size;
1665 ++nodes;
1666 }
1667 }
1668
1669 do {
1670 dma_addr_t *dma_addr = NULL;
1671 uint64_t max_entries;
1672 uint64_t addr, last;
1673
1674 if (nodes) {
1675 addr = nodes->start << PAGE_SHIFT;
1676 max_entries = (nodes->size - pfn) *
1677 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1678 } else {
1679 addr = 0;
1680 max_entries = S64_MAX;
1681 }
1682
1683 if (pages_addr) {
1684 uint64_t count;
1685
1686 for (count = 1;
1687 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1688 ++count) {
1689 uint64_t idx = pfn + count;
1690
1691 if (pages_addr[idx] !=
1692 (pages_addr[idx - 1] + PAGE_SIZE))
1693 break;
1694 }
1695
1696 if (count < min_linear_pages) {
1697 addr = pfn << PAGE_SHIFT;
1698 dma_addr = pages_addr;
1699 } else {
1700 addr = pages_addr[pfn];
1701 max_entries = count *
1702 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1703 }
1704
1705 } else if (flags & AMDGPU_PTE_VALID) {
1706 addr += bo_adev->vm_manager.vram_base_offset;
1707 addr += pfn << PAGE_SHIFT;
1708 }
1709
1710 last = min((uint64_t)mapping->last, start + max_entries - 1);
1711 r = amdgpu_vm_bo_update_mapping(adev, vm, false, exclusive,
1712 start, last, flags, addr,
1713 dma_addr, fence);
1714 if (r)
1715 return r;
1716
1717 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1718 if (nodes && nodes->size == pfn) {
1719 pfn = 0;
1720 ++nodes;
1721 }
1722 start = last + 1;
1723
1724 } while (unlikely(start != mapping->last + 1));
1725
1726 return 0;
1727 }
1728
1729 /**
1730 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1731 *
1732 * @adev: amdgpu_device pointer
1733 * @bo_va: requested BO and VM object
1734 * @clear: if true clear the entries
1735 *
1736 * Fill in the page table entries for @bo_va.
1737 *
1738 * Returns:
1739 * 0 for success, -EINVAL for failure.
1740 */
1741 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1742 bool clear)
1743 {
1744 struct amdgpu_bo *bo = bo_va->base.bo;
1745 struct amdgpu_vm *vm = bo_va->base.vm;
1746 struct amdgpu_bo_va_mapping *mapping;
1747 dma_addr_t *pages_addr = NULL;
1748 struct ttm_mem_reg *mem;
1749 struct drm_mm_node *nodes;
1750 struct dma_fence *exclusive, **last_update;
1751 uint64_t flags;
1752 struct amdgpu_device *bo_adev = adev;
1753 int r;
1754
1755 if (clear || !bo) {
1756 mem = NULL;
1757 nodes = NULL;
1758 exclusive = NULL;
1759 } else {
1760 struct ttm_dma_tt *ttm;
1761
1762 mem = &bo->tbo.mem;
1763 nodes = mem->mm_node;
1764 if (mem->mem_type == TTM_PL_TT) {
1765 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1766 pages_addr = ttm->dma_address;
1767 }
1768 exclusive = bo->tbo.moving;
1769 }
1770
1771 if (bo) {
1772 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1773 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1774 } else {
1775 flags = 0x0;
1776 }
1777
1778 if (clear || (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv))
1779 last_update = &vm->last_update;
1780 else
1781 last_update = &bo_va->last_pt_update;
1782
1783 if (!clear && bo_va->base.moved) {
1784 bo_va->base.moved = false;
1785 list_splice_init(&bo_va->valids, &bo_va->invalids);
1786
1787 } else if (bo_va->cleared != clear) {
1788 list_splice_init(&bo_va->valids, &bo_va->invalids);
1789 }
1790
1791 list_for_each_entry(mapping, &bo_va->invalids, list) {
1792 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1793 mapping, flags, bo_adev, nodes,
1794 last_update);
1795 if (r)
1796 return r;
1797 }
1798
1799 /* If the BO is not in its preferred location add it back to
1800 * the evicted list so that it gets validated again on the
1801 * next command submission.
1802 */
1803 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1804 uint32_t mem_type = bo->tbo.mem.mem_type;
1805
1806 if (!(bo->preferred_domains &
1807 amdgpu_mem_type_to_domain(mem_type)))
1808 amdgpu_vm_bo_evicted(&bo_va->base);
1809 else
1810 amdgpu_vm_bo_idle(&bo_va->base);
1811 } else {
1812 amdgpu_vm_bo_done(&bo_va->base);
1813 }
1814
1815 list_splice_init(&bo_va->invalids, &bo_va->valids);
1816 bo_va->cleared = clear;
1817
1818 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1819 list_for_each_entry(mapping, &bo_va->valids, list)
1820 trace_amdgpu_vm_bo_mapping(mapping);
1821 }
1822
1823 return 0;
1824 }
1825
1826 /**
1827 * amdgpu_vm_update_prt_state - update the global PRT state
1828 *
1829 * @adev: amdgpu_device pointer
1830 */
1831 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1832 {
1833 unsigned long flags;
1834 bool enable;
1835
1836 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1837 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1838 adev->gmc.gmc_funcs->set_prt(adev, enable);
1839 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1840 }
1841
1842 /**
1843 * amdgpu_vm_prt_get - add a PRT user
1844 *
1845 * @adev: amdgpu_device pointer
1846 */
1847 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1848 {
1849 if (!adev->gmc.gmc_funcs->set_prt)
1850 return;
1851
1852 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1853 amdgpu_vm_update_prt_state(adev);
1854 }
1855
1856 /**
1857 * amdgpu_vm_prt_put - drop a PRT user
1858 *
1859 * @adev: amdgpu_device pointer
1860 */
1861 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1862 {
1863 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1864 amdgpu_vm_update_prt_state(adev);
1865 }
1866
1867 /**
1868 * amdgpu_vm_prt_cb - callback for updating the PRT status
1869 *
1870 * @fence: fence for the callback
1871 * @_cb: the callback function
1872 */
1873 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1874 {
1875 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1876
1877 amdgpu_vm_prt_put(cb->adev);
1878 kfree(cb);
1879 }
1880
1881 /**
1882 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1883 *
1884 * @adev: amdgpu_device pointer
1885 * @fence: fence for the callback
1886 */
1887 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1888 struct dma_fence *fence)
1889 {
1890 struct amdgpu_prt_cb *cb;
1891
1892 if (!adev->gmc.gmc_funcs->set_prt)
1893 return;
1894
1895 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1896 if (!cb) {
1897 /* Last resort when we are OOM */
1898 if (fence)
1899 dma_fence_wait(fence, false);
1900
1901 amdgpu_vm_prt_put(adev);
1902 } else {
1903 cb->adev = adev;
1904 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1905 amdgpu_vm_prt_cb))
1906 amdgpu_vm_prt_cb(fence, &cb->cb);
1907 }
1908 }
1909
1910 /**
1911 * amdgpu_vm_free_mapping - free a mapping
1912 *
1913 * @adev: amdgpu_device pointer
1914 * @vm: requested vm
1915 * @mapping: mapping to be freed
1916 * @fence: fence of the unmap operation
1917 *
1918 * Free a mapping and make sure we decrease the PRT usage count if applicable.
1919 */
1920 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1921 struct amdgpu_vm *vm,
1922 struct amdgpu_bo_va_mapping *mapping,
1923 struct dma_fence *fence)
1924 {
1925 if (mapping->flags & AMDGPU_PTE_PRT)
1926 amdgpu_vm_add_prt_cb(adev, fence);
1927 kfree(mapping);
1928 }
1929
1930 /**
1931 * amdgpu_vm_prt_fini - finish all prt mappings
1932 *
1933 * @adev: amdgpu_device pointer
1934 * @vm: requested vm
1935 *
1936 * Register a cleanup callback to disable PRT support after VM dies.
1937 */
1938 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1939 {
1940 struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1941 struct dma_fence *excl, **shared;
1942 unsigned i, shared_count;
1943 int r;
1944
1945 r = dma_resv_get_fences_rcu(resv, &excl,
1946 &shared_count, &shared);
1947 if (r) {
1948 /* Not enough memory to grab the fence list, as last resort
1949 * block for all the fences to complete.
1950 */
1951 dma_resv_wait_timeout_rcu(resv, true, false,
1952 MAX_SCHEDULE_TIMEOUT);
1953 return;
1954 }
1955
1956 /* Add a callback for each fence in the reservation object */
1957 amdgpu_vm_prt_get(adev);
1958 amdgpu_vm_add_prt_cb(adev, excl);
1959
1960 for (i = 0; i < shared_count; ++i) {
1961 amdgpu_vm_prt_get(adev);
1962 amdgpu_vm_add_prt_cb(adev, shared[i]);
1963 }
1964
1965 kfree(shared);
1966 }
1967
1968 /**
1969 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1970 *
1971 * @adev: amdgpu_device pointer
1972 * @vm: requested vm
1973 * @fence: optional resulting fence (unchanged if no work needed to be done
1974 * or if an error occurred)
1975 *
1976 * Make sure all freed BOs are cleared in the PT.
1977 * PTs have to be reserved and mutex must be locked!
1978 *
1979 * Returns:
1980 * 0 for success.
1981 *
1982 */
1983 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1984 struct amdgpu_vm *vm,
1985 struct dma_fence **fence)
1986 {
1987 struct amdgpu_bo_va_mapping *mapping;
1988 uint64_t init_pte_value = 0;
1989 struct dma_fence *f = NULL;
1990 int r;
1991
1992 while (!list_empty(&vm->freed)) {
1993 mapping = list_first_entry(&vm->freed,
1994 struct amdgpu_bo_va_mapping, list);
1995 list_del(&mapping->list);
1996
1997 if (vm->pte_support_ats &&
1998 mapping->start < AMDGPU_GMC_HOLE_START)
1999 init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2000
2001 r = amdgpu_vm_bo_update_mapping(adev, vm, false, NULL,
2002 mapping->start, mapping->last,
2003 init_pte_value, 0, NULL, &f);
2004 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2005 if (r) {
2006 dma_fence_put(f);
2007 return r;
2008 }
2009 }
2010
2011 if (fence && f) {
2012 dma_fence_put(*fence);
2013 *fence = f;
2014 } else {
2015 dma_fence_put(f);
2016 }
2017
2018 return 0;
2019
2020 }
2021
2022 /**
2023 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2024 *
2025 * @adev: amdgpu_device pointer
2026 * @vm: requested vm
2027 *
2028 * Make sure all BOs which are moved are updated in the PTs.
2029 *
2030 * Returns:
2031 * 0 for success.
2032 *
2033 * PTs have to be reserved!
2034 */
2035 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2036 struct amdgpu_vm *vm)
2037 {
2038 struct amdgpu_bo_va *bo_va, *tmp;
2039 struct dma_resv *resv;
2040 bool clear;
2041 int r;
2042
2043 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2044 /* Per VM BOs never need to bo cleared in the page tables */
2045 r = amdgpu_vm_bo_update(adev, bo_va, false);
2046 if (r)
2047 return r;
2048 }
2049
2050 spin_lock(&vm->invalidated_lock);
2051 while (!list_empty(&vm->invalidated)) {
2052 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2053 base.vm_status);
2054 resv = bo_va->base.bo->tbo.base.resv;
2055 spin_unlock(&vm->invalidated_lock);
2056
2057 /* Try to reserve the BO to avoid clearing its ptes */
2058 if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2059 clear = false;
2060 /* Somebody else is using the BO right now */
2061 else
2062 clear = true;
2063
2064 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2065 if (r)
2066 return r;
2067
2068 if (!clear)
2069 dma_resv_unlock(resv);
2070 spin_lock(&vm->invalidated_lock);
2071 }
2072 spin_unlock(&vm->invalidated_lock);
2073
2074 return 0;
2075 }
2076
2077 /**
2078 * amdgpu_vm_bo_add - add a bo to a specific vm
2079 *
2080 * @adev: amdgpu_device pointer
2081 * @vm: requested vm
2082 * @bo: amdgpu buffer object
2083 *
2084 * Add @bo into the requested vm.
2085 * Add @bo to the list of bos associated with the vm
2086 *
2087 * Returns:
2088 * Newly added bo_va or NULL for failure
2089 *
2090 * Object has to be reserved!
2091 */
2092 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2093 struct amdgpu_vm *vm,
2094 struct amdgpu_bo *bo)
2095 {
2096 struct amdgpu_bo_va *bo_va;
2097
2098 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2099 if (bo_va == NULL) {
2100 return NULL;
2101 }
2102 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2103
2104 bo_va->ref_count = 1;
2105 INIT_LIST_HEAD(&bo_va->valids);
2106 INIT_LIST_HEAD(&bo_va->invalids);
2107
2108 if (bo && amdgpu_xgmi_same_hive(adev, amdgpu_ttm_adev(bo->tbo.bdev)) &&
2109 (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM)) {
2110 bo_va->is_xgmi = true;
2111 mutex_lock(&adev->vm_manager.lock_pstate);
2112 /* Power up XGMI if it can be potentially used */
2113 if (++adev->vm_manager.xgmi_map_counter == 1)
2114 amdgpu_xgmi_set_pstate(adev, 1);
2115 mutex_unlock(&adev->vm_manager.lock_pstate);
2116 }
2117
2118 return bo_va;
2119 }
2120
2121
2122 /**
2123 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2124 *
2125 * @adev: amdgpu_device pointer
2126 * @bo_va: bo_va to store the address
2127 * @mapping: the mapping to insert
2128 *
2129 * Insert a new mapping into all structures.
2130 */
2131 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2132 struct amdgpu_bo_va *bo_va,
2133 struct amdgpu_bo_va_mapping *mapping)
2134 {
2135 struct amdgpu_vm *vm = bo_va->base.vm;
2136 struct amdgpu_bo *bo = bo_va->base.bo;
2137
2138 mapping->bo_va = bo_va;
2139 list_add(&mapping->list, &bo_va->invalids);
2140 amdgpu_vm_it_insert(mapping, &vm->va);
2141
2142 if (mapping->flags & AMDGPU_PTE_PRT)
2143 amdgpu_vm_prt_get(adev);
2144
2145 if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2146 !bo_va->base.moved) {
2147 list_move(&bo_va->base.vm_status, &vm->moved);
2148 }
2149 trace_amdgpu_vm_bo_map(bo_va, mapping);
2150 }
2151
2152 /**
2153 * amdgpu_vm_bo_map - map bo inside a vm
2154 *
2155 * @adev: amdgpu_device pointer
2156 * @bo_va: bo_va to store the address
2157 * @saddr: where to map the BO
2158 * @offset: requested offset in the BO
2159 * @size: BO size in bytes
2160 * @flags: attributes of pages (read/write/valid/etc.)
2161 *
2162 * Add a mapping of the BO at the specefied addr into the VM.
2163 *
2164 * Returns:
2165 * 0 for success, error for failure.
2166 *
2167 * Object has to be reserved and unreserved outside!
2168 */
2169 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2170 struct amdgpu_bo_va *bo_va,
2171 uint64_t saddr, uint64_t offset,
2172 uint64_t size, uint64_t flags)
2173 {
2174 struct amdgpu_bo_va_mapping *mapping, *tmp;
2175 struct amdgpu_bo *bo = bo_va->base.bo;
2176 struct amdgpu_vm *vm = bo_va->base.vm;
2177 uint64_t eaddr;
2178
2179 /* validate the parameters */
2180 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2181 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2182 return -EINVAL;
2183
2184 /* make sure object fit at this offset */
2185 eaddr = saddr + size - 1;
2186 if (saddr >= eaddr ||
2187 (bo && offset + size > amdgpu_bo_size(bo)))
2188 return -EINVAL;
2189
2190 saddr /= AMDGPU_GPU_PAGE_SIZE;
2191 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2192
2193 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2194 if (tmp) {
2195 /* bo and tmp overlap, invalid addr */
2196 dev_err(adev->dev, "bo %p va 0x%010"PRIx64"-0x%010"PRIx64" conflict with "
2197 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2198 tmp->start, tmp->last + 1);
2199 return -EINVAL;
2200 }
2201
2202 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2203 if (!mapping)
2204 return -ENOMEM;
2205
2206 mapping->start = saddr;
2207 mapping->last = eaddr;
2208 mapping->offset = offset;
2209 mapping->flags = flags;
2210
2211 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2212
2213 return 0;
2214 }
2215
2216 /**
2217 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2218 *
2219 * @adev: amdgpu_device pointer
2220 * @bo_va: bo_va to store the address
2221 * @saddr: where to map the BO
2222 * @offset: requested offset in the BO
2223 * @size: BO size in bytes
2224 * @flags: attributes of pages (read/write/valid/etc.)
2225 *
2226 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2227 * mappings as we do so.
2228 *
2229 * Returns:
2230 * 0 for success, error for failure.
2231 *
2232 * Object has to be reserved and unreserved outside!
2233 */
2234 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2235 struct amdgpu_bo_va *bo_va,
2236 uint64_t saddr, uint64_t offset,
2237 uint64_t size, uint64_t flags)
2238 {
2239 struct amdgpu_bo_va_mapping *mapping;
2240 struct amdgpu_bo *bo = bo_va->base.bo;
2241 uint64_t eaddr;
2242 int r;
2243
2244 /* validate the parameters */
2245 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2246 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2247 return -EINVAL;
2248
2249 /* make sure object fit at this offset */
2250 eaddr = saddr + size - 1;
2251 if (saddr >= eaddr ||
2252 (bo && offset + size > amdgpu_bo_size(bo)))
2253 return -EINVAL;
2254
2255 /* Allocate all the needed memory */
2256 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2257 if (!mapping)
2258 return -ENOMEM;
2259
2260 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2261 if (r) {
2262 kfree(mapping);
2263 return r;
2264 }
2265
2266 saddr /= AMDGPU_GPU_PAGE_SIZE;
2267 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2268
2269 mapping->start = saddr;
2270 mapping->last = eaddr;
2271 mapping->offset = offset;
2272 mapping->flags = flags;
2273
2274 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2275
2276 return 0;
2277 }
2278
2279 /**
2280 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2281 *
2282 * @adev: amdgpu_device pointer
2283 * @bo_va: bo_va to remove the address from
2284 * @saddr: where to the BO is mapped
2285 *
2286 * Remove a mapping of the BO at the specefied addr from the VM.
2287 *
2288 * Returns:
2289 * 0 for success, error for failure.
2290 *
2291 * Object has to be reserved and unreserved outside!
2292 */
2293 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2294 struct amdgpu_bo_va *bo_va,
2295 uint64_t saddr)
2296 {
2297 struct amdgpu_bo_va_mapping *mapping;
2298 struct amdgpu_vm *vm = bo_va->base.vm;
2299 bool valid = true;
2300
2301 saddr /= AMDGPU_GPU_PAGE_SIZE;
2302
2303 list_for_each_entry(mapping, &bo_va->valids, list) {
2304 if (mapping->start == saddr)
2305 break;
2306 }
2307
2308 if (&mapping->list == &bo_va->valids) {
2309 valid = false;
2310
2311 list_for_each_entry(mapping, &bo_va->invalids, list) {
2312 if (mapping->start == saddr)
2313 break;
2314 }
2315
2316 if (&mapping->list == &bo_va->invalids)
2317 return -ENOENT;
2318 }
2319
2320 list_del(&mapping->list);
2321 amdgpu_vm_it_remove(mapping, &vm->va);
2322 mapping->bo_va = NULL;
2323 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2324
2325 if (valid)
2326 list_add(&mapping->list, &vm->freed);
2327 else
2328 amdgpu_vm_free_mapping(adev, vm, mapping,
2329 bo_va->last_pt_update);
2330
2331 return 0;
2332 }
2333
2334 /**
2335 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2336 *
2337 * @adev: amdgpu_device pointer
2338 * @vm: VM structure to use
2339 * @saddr: start of the range
2340 * @size: size of the range
2341 *
2342 * Remove all mappings in a range, split them as appropriate.
2343 *
2344 * Returns:
2345 * 0 for success, error for failure.
2346 */
2347 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2348 struct amdgpu_vm *vm,
2349 uint64_t saddr, uint64_t size)
2350 {
2351 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2352 LIST_HEAD(removed);
2353 uint64_t eaddr;
2354
2355 eaddr = saddr + size - 1;
2356 saddr /= AMDGPU_GPU_PAGE_SIZE;
2357 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2358
2359 /* Allocate all the needed memory */
2360 before = kzalloc(sizeof(*before), GFP_KERNEL);
2361 if (!before)
2362 return -ENOMEM;
2363 INIT_LIST_HEAD(&before->list);
2364
2365 after = kzalloc(sizeof(*after), GFP_KERNEL);
2366 if (!after) {
2367 kfree(before);
2368 return -ENOMEM;
2369 }
2370 INIT_LIST_HEAD(&after->list);
2371
2372 /* Now gather all removed mappings */
2373 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2374 while (tmp) {
2375 /* Remember mapping split at the start */
2376 if (tmp->start < saddr) {
2377 before->start = tmp->start;
2378 before->last = saddr - 1;
2379 before->offset = tmp->offset;
2380 before->flags = tmp->flags;
2381 before->bo_va = tmp->bo_va;
2382 list_add(&before->list, &tmp->bo_va->invalids);
2383 }
2384
2385 /* Remember mapping split at the end */
2386 if (tmp->last > eaddr) {
2387 after->start = eaddr + 1;
2388 after->last = tmp->last;
2389 after->offset = tmp->offset;
2390 after->offset += after->start - tmp->start;
2391 after->flags = tmp->flags;
2392 after->bo_va = tmp->bo_va;
2393 list_add(&after->list, &tmp->bo_va->invalids);
2394 }
2395
2396 list_del(&tmp->list);
2397 list_add(&tmp->list, &removed);
2398
2399 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2400 }
2401
2402 /* And free them up */
2403 list_for_each_entry_safe(tmp, next, &removed, list) {
2404 amdgpu_vm_it_remove(tmp, &vm->va);
2405 list_del(&tmp->list);
2406
2407 if (tmp->start < saddr)
2408 tmp->start = saddr;
2409 if (tmp->last > eaddr)
2410 tmp->last = eaddr;
2411
2412 tmp->bo_va = NULL;
2413 list_add(&tmp->list, &vm->freed);
2414 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2415 }
2416
2417 /* Insert partial mapping before the range */
2418 if (!list_empty(&before->list)) {
2419 amdgpu_vm_it_insert(before, &vm->va);
2420 if (before->flags & AMDGPU_PTE_PRT)
2421 amdgpu_vm_prt_get(adev);
2422 } else {
2423 kfree(before);
2424 }
2425
2426 /* Insert partial mapping after the range */
2427 if (!list_empty(&after->list)) {
2428 amdgpu_vm_it_insert(after, &vm->va);
2429 if (after->flags & AMDGPU_PTE_PRT)
2430 amdgpu_vm_prt_get(adev);
2431 } else {
2432 kfree(after);
2433 }
2434
2435 return 0;
2436 }
2437
2438 /**
2439 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2440 *
2441 * @vm: the requested VM
2442 * @addr: the address
2443 *
2444 * Find a mapping by it's address.
2445 *
2446 * Returns:
2447 * The amdgpu_bo_va_mapping matching for addr or NULL
2448 *
2449 */
2450 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2451 uint64_t addr)
2452 {
2453 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2454 }
2455
2456 /**
2457 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2458 *
2459 * @vm: the requested vm
2460 * @ticket: CS ticket
2461 *
2462 * Trace all mappings of BOs reserved during a command submission.
2463 */
2464 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2465 {
2466 struct amdgpu_bo_va_mapping *mapping;
2467
2468 if (!trace_amdgpu_vm_bo_cs_enabled())
2469 return;
2470
2471 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2472 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2473 if (mapping->bo_va && mapping->bo_va->base.bo) {
2474 struct amdgpu_bo *bo;
2475
2476 bo = mapping->bo_va->base.bo;
2477 if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2478 ticket)
2479 continue;
2480 }
2481
2482 trace_amdgpu_vm_bo_cs(mapping);
2483 }
2484 }
2485
2486 /**
2487 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2488 *
2489 * @adev: amdgpu_device pointer
2490 * @bo_va: requested bo_va
2491 *
2492 * Remove @bo_va->bo from the requested vm.
2493 *
2494 * Object have to be reserved!
2495 */
2496 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2497 struct amdgpu_bo_va *bo_va)
2498 {
2499 struct amdgpu_bo_va_mapping *mapping, *next;
2500 struct amdgpu_bo *bo = bo_va->base.bo;
2501 struct amdgpu_vm *vm = bo_va->base.vm;
2502 struct amdgpu_vm_bo_base **base;
2503
2504 if (bo) {
2505 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2506 vm->bulk_moveable = false;
2507
2508 for (base = &bo_va->base.bo->vm_bo; *base;
2509 base = &(*base)->next) {
2510 if (*base != &bo_va->base)
2511 continue;
2512
2513 *base = bo_va->base.next;
2514 break;
2515 }
2516 }
2517
2518 spin_lock(&vm->invalidated_lock);
2519 list_del(&bo_va->base.vm_status);
2520 spin_unlock(&vm->invalidated_lock);
2521
2522 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2523 list_del(&mapping->list);
2524 amdgpu_vm_it_remove(mapping, &vm->va);
2525 mapping->bo_va = NULL;
2526 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2527 list_add(&mapping->list, &vm->freed);
2528 }
2529 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2530 list_del(&mapping->list);
2531 amdgpu_vm_it_remove(mapping, &vm->va);
2532 amdgpu_vm_free_mapping(adev, vm, mapping,
2533 bo_va->last_pt_update);
2534 }
2535
2536 dma_fence_put(bo_va->last_pt_update);
2537
2538 if (bo && bo_va->is_xgmi) {
2539 mutex_lock(&adev->vm_manager.lock_pstate);
2540 if (--adev->vm_manager.xgmi_map_counter == 0)
2541 amdgpu_xgmi_set_pstate(adev, 0);
2542 mutex_unlock(&adev->vm_manager.lock_pstate);
2543 }
2544
2545 kfree(bo_va);
2546 }
2547
2548 /**
2549 * amdgpu_vm_evictable - check if we can evict a VM
2550 *
2551 * @bo: A page table of the VM.
2552 *
2553 * Check if it is possible to evict a VM.
2554 */
2555 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2556 {
2557 struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2558
2559 /* Page tables of a destroyed VM can go away immediately */
2560 if (!bo_base || !bo_base->vm)
2561 return true;
2562
2563 /* Don't evict VM page tables while they are busy */
2564 if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2565 return false;
2566
2567 /* Try to block ongoing updates */
2568 if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2569 return false;
2570
2571 /* Don't evict VM page tables while they are updated */
2572 if (!dma_fence_is_signaled(bo_base->vm->last_direct) ||
2573 !dma_fence_is_signaled(bo_base->vm->last_delayed)) {
2574 amdgpu_vm_eviction_unlock(bo_base->vm);
2575 return false;
2576 }
2577
2578 bo_base->vm->evicting = true;
2579 amdgpu_vm_eviction_unlock(bo_base->vm);
2580 return true;
2581 }
2582
2583 /**
2584 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2585 *
2586 * @adev: amdgpu_device pointer
2587 * @bo: amdgpu buffer object
2588 * @evicted: is the BO evicted
2589 *
2590 * Mark @bo as invalid.
2591 */
2592 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2593 struct amdgpu_bo *bo, bool evicted)
2594 {
2595 struct amdgpu_vm_bo_base *bo_base;
2596
2597 /* shadow bo doesn't have bo base, its validation needs its parent */
2598 if (bo->parent && bo->parent->shadow == bo)
2599 bo = bo->parent;
2600
2601 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2602 struct amdgpu_vm *vm = bo_base->vm;
2603
2604 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2605 amdgpu_vm_bo_evicted(bo_base);
2606 continue;
2607 }
2608
2609 if (bo_base->moved)
2610 continue;
2611 bo_base->moved = true;
2612
2613 if (bo->tbo.type == ttm_bo_type_kernel)
2614 amdgpu_vm_bo_relocated(bo_base);
2615 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2616 amdgpu_vm_bo_moved(bo_base);
2617 else
2618 amdgpu_vm_bo_invalidated(bo_base);
2619 }
2620 }
2621
2622 /**
2623 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2624 *
2625 * @vm_size: VM size
2626 *
2627 * Returns:
2628 * VM page table as power of two
2629 */
2630 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2631 {
2632 /* Total bits covered by PD + PTs */
2633 unsigned bits = ilog2(vm_size) + 18;
2634
2635 /* Make sure the PD is 4K in size up to 8GB address space.
2636 Above that split equal between PD and PTs */
2637 if (vm_size <= 8)
2638 return (bits - 9);
2639 else
2640 return ((bits + 3) / 2);
2641 }
2642
2643 /**
2644 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2645 *
2646 * @adev: amdgpu_device pointer
2647 * @min_vm_size: the minimum vm size in GB if it's set auto
2648 * @fragment_size_default: Default PTE fragment size
2649 * @max_level: max VMPT level
2650 * @max_bits: max address space size in bits
2651 *
2652 */
2653 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2654 uint32_t fragment_size_default, unsigned max_level,
2655 unsigned max_bits)
2656 {
2657 unsigned int max_size = 1 << (max_bits - 30);
2658 unsigned int vm_size;
2659 uint64_t tmp;
2660
2661 /* adjust vm size first */
2662 if (amdgpu_vm_size != -1) {
2663 vm_size = amdgpu_vm_size;
2664 if (vm_size > max_size) {
2665 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2666 amdgpu_vm_size, max_size);
2667 vm_size = max_size;
2668 }
2669 } else {
2670 struct sysinfo si;
2671 unsigned int phys_ram_gb;
2672
2673 /* Optimal VM size depends on the amount of physical
2674 * RAM available. Underlying requirements and
2675 * assumptions:
2676 *
2677 * - Need to map system memory and VRAM from all GPUs
2678 * - VRAM from other GPUs not known here
2679 * - Assume VRAM <= system memory
2680 * - On GFX8 and older, VM space can be segmented for
2681 * different MTYPEs
2682 * - Need to allow room for fragmentation, guard pages etc.
2683 *
2684 * This adds up to a rough guess of system memory x3.
2685 * Round up to power of two to maximize the available
2686 * VM size with the given page table size.
2687 */
2688 si_meminfo(&si);
2689 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2690 (1 << 30) - 1) >> 30;
2691 vm_size = roundup_pow_of_two(
2692 min(max(phys_ram_gb * 3, min_vm_size), max_size));
2693 }
2694
2695 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2696
2697 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2698 if (amdgpu_vm_block_size != -1)
2699 tmp >>= amdgpu_vm_block_size - 9;
2700 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2701 adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2702 switch (adev->vm_manager.num_level) {
2703 case 3:
2704 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2705 break;
2706 case 2:
2707 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2708 break;
2709 case 1:
2710 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2711 break;
2712 default:
2713 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2714 }
2715 /* block size depends on vm size and hw setup*/
2716 if (amdgpu_vm_block_size != -1)
2717 adev->vm_manager.block_size =
2718 min((unsigned)amdgpu_vm_block_size, max_bits
2719 - AMDGPU_GPU_PAGE_SHIFT
2720 - 9 * adev->vm_manager.num_level);
2721 else if (adev->vm_manager.num_level > 1)
2722 adev->vm_manager.block_size = 9;
2723 else
2724 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2725
2726 if (amdgpu_vm_fragment_size == -1)
2727 adev->vm_manager.fragment_size = fragment_size_default;
2728 else
2729 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2730
2731 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2732 vm_size, adev->vm_manager.num_level + 1,
2733 adev->vm_manager.block_size,
2734 adev->vm_manager.fragment_size);
2735 }
2736
2737 /**
2738 * amdgpu_vm_wait_idle - wait for the VM to become idle
2739 *
2740 * @vm: VM object to wait for
2741 * @timeout: timeout to wait for VM to become idle
2742 */
2743 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2744 {
2745 timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2746 true, true, timeout);
2747 if (timeout <= 0)
2748 return timeout;
2749
2750 timeout = dma_fence_wait_timeout(vm->last_direct, true, timeout);
2751 if (timeout <= 0)
2752 return timeout;
2753
2754 return dma_fence_wait_timeout(vm->last_delayed, true, timeout);
2755 }
2756
2757 /**
2758 * amdgpu_vm_init - initialize a vm instance
2759 *
2760 * @adev: amdgpu_device pointer
2761 * @vm: requested vm
2762 * @vm_context: Indicates if it GFX or Compute context
2763 * @pasid: Process address space identifier
2764 *
2765 * Init @vm fields.
2766 *
2767 * Returns:
2768 * 0 for success, error for failure.
2769 */
2770 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2771 int vm_context, unsigned int pasid)
2772 {
2773 struct amdgpu_bo_param bp;
2774 struct amdgpu_bo *root;
2775 int r, i;
2776
2777 #ifdef __NetBSD__
2778 interval_tree_init(&vm->va);
2779 #else
2780 vm->va = RB_ROOT_CACHED;
2781 #endif
2782 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2783 vm->reserved_vmid[i] = NULL;
2784 INIT_LIST_HEAD(&vm->evicted);
2785 INIT_LIST_HEAD(&vm->relocated);
2786 INIT_LIST_HEAD(&vm->moved);
2787 INIT_LIST_HEAD(&vm->idle);
2788 INIT_LIST_HEAD(&vm->invalidated);
2789 spin_lock_init(&vm->invalidated_lock);
2790 INIT_LIST_HEAD(&vm->freed);
2791
2792
2793 /* create scheduler entities for page table updates */
2794 r = drm_sched_entity_init(&vm->direct, DRM_SCHED_PRIORITY_NORMAL,
2795 adev->vm_manager.vm_pte_scheds,
2796 adev->vm_manager.vm_pte_num_scheds, NULL);
2797 if (r)
2798 return r;
2799
2800 r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2801 adev->vm_manager.vm_pte_scheds,
2802 adev->vm_manager.vm_pte_num_scheds, NULL);
2803 if (r)
2804 goto error_free_direct;
2805
2806 vm->pte_support_ats = false;
2807 vm->is_compute_context = false;
2808
2809 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2810 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2811 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2812
2813 if (adev->asic_type == CHIP_RAVEN)
2814 vm->pte_support_ats = true;
2815 } else {
2816 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2817 AMDGPU_VM_USE_CPU_FOR_GFX);
2818 }
2819 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2820 vm->use_cpu_for_update ? "CPU" : "SDMA");
2821 WARN_ONCE((vm->use_cpu_for_update &&
2822 !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2823 "CPU update of VM recommended only for large BAR system\n");
2824
2825 if (vm->use_cpu_for_update)
2826 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2827 else
2828 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2829 vm->last_update = NULL;
2830 vm->last_direct = dma_fence_get_stub();
2831 vm->last_delayed = dma_fence_get_stub();
2832
2833 mutex_init(&vm->eviction_lock);
2834 vm->evicting = false;
2835
2836 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2837 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2838 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2839 r = amdgpu_bo_create(adev, &bp, &root);
2840 if (r)
2841 goto error_free_delayed;
2842
2843 r = amdgpu_bo_reserve(root, true);
2844 if (r)
2845 goto error_free_root;
2846
2847 r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2848 if (r)
2849 goto error_unreserve;
2850
2851 amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2852
2853 r = amdgpu_vm_clear_bo(adev, vm, root, false);
2854 if (r)
2855 goto error_unreserve;
2856
2857 amdgpu_bo_unreserve(vm->root.base.bo);
2858
2859 if (pasid) {
2860 unsigned long flags;
2861
2862 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2863 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2864 GFP_ATOMIC);
2865 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2866 if (r < 0)
2867 goto error_free_root;
2868
2869 vm->pasid = pasid;
2870 }
2871
2872 INIT_KFIFO(vm->faults);
2873
2874 return 0;
2875
2876 error_unreserve:
2877 amdgpu_bo_unreserve(vm->root.base.bo);
2878
2879 error_free_root:
2880 amdgpu_bo_unref(&vm->root.base.bo->shadow);
2881 amdgpu_bo_unref(&vm->root.base.bo);
2882 vm->root.base.bo = NULL;
2883
2884 error_free_delayed:
2885 dma_fence_put(vm->last_direct);
2886 dma_fence_put(vm->last_delayed);
2887 drm_sched_entity_destroy(&vm->delayed);
2888
2889 error_free_direct:
2890 drm_sched_entity_destroy(&vm->direct);
2891
2892 return r;
2893 }
2894
2895 /**
2896 * amdgpu_vm_check_clean_reserved - check if a VM is clean
2897 *
2898 * @adev: amdgpu_device pointer
2899 * @vm: the VM to check
2900 *
2901 * check all entries of the root PD, if any subsequent PDs are allocated,
2902 * it means there are page table creating and filling, and is no a clean
2903 * VM
2904 *
2905 * Returns:
2906 * 0 if this VM is clean
2907 */
2908 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2909 struct amdgpu_vm *vm)
2910 {
2911 enum amdgpu_vm_level root = adev->vm_manager.root_level;
2912 unsigned int entries = amdgpu_vm_num_entries(adev, root);
2913 unsigned int i = 0;
2914
2915 if (!(vm->root.entries))
2916 return 0;
2917
2918 for (i = 0; i < entries; i++) {
2919 if (vm->root.entries[i].base.bo)
2920 return -EINVAL;
2921 }
2922
2923 return 0;
2924 }
2925
2926 /**
2927 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2928 *
2929 * @adev: amdgpu_device pointer
2930 * @vm: requested vm
2931 * @pasid: pasid to use
2932 *
2933 * This only works on GFX VMs that don't have any BOs added and no
2934 * page tables allocated yet.
2935 *
2936 * Changes the following VM parameters:
2937 * - use_cpu_for_update
2938 * - pte_supports_ats
2939 * - pasid (old PASID is released, because compute manages its own PASIDs)
2940 *
2941 * Reinitializes the page directory to reflect the changed ATS
2942 * setting.
2943 *
2944 * Returns:
2945 * 0 for success, -errno for errors.
2946 */
2947 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2948 unsigned int pasid)
2949 {
2950 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2951 int r;
2952
2953 r = amdgpu_bo_reserve(vm->root.base.bo, true);
2954 if (r)
2955 return r;
2956
2957 /* Sanity checks */
2958 r = amdgpu_vm_check_clean_reserved(adev, vm);
2959 if (r)
2960 goto unreserve_bo;
2961
2962 if (pasid) {
2963 unsigned long flags;
2964
2965 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2966 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2967 GFP_ATOMIC);
2968 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2969
2970 if (r == -ENOSPC)
2971 goto unreserve_bo;
2972 r = 0;
2973 }
2974
2975 /* Check if PD needs to be reinitialized and do it before
2976 * changing any other state, in case it fails.
2977 */
2978 if (pte_support_ats != vm->pte_support_ats) {
2979 vm->pte_support_ats = pte_support_ats;
2980 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
2981 if (r)
2982 goto free_idr;
2983 }
2984
2985 /* Update VM state */
2986 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2987 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2988 DRM_DEBUG_DRIVER("VM update mode is %s\n",
2989 vm->use_cpu_for_update ? "CPU" : "SDMA");
2990 WARN_ONCE((vm->use_cpu_for_update &&
2991 !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2992 "CPU update of VM recommended only for large BAR system\n");
2993
2994 if (vm->use_cpu_for_update)
2995 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2996 else
2997 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2998 dma_fence_put(vm->last_update);
2999 vm->last_update = NULL;
3000 vm->is_compute_context = true;
3001
3002 if (vm->pasid) {
3003 unsigned long flags;
3004
3005 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3006 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3007 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3008
3009 /* Free the original amdgpu allocated pasid
3010 * Will be replaced with kfd allocated pasid
3011 */
3012 amdgpu_pasid_free(vm->pasid);
3013 vm->pasid = 0;
3014 }
3015
3016 /* Free the shadow bo for compute VM */
3017 amdgpu_bo_unref(&vm->root.base.bo->shadow);
3018
3019 if (pasid)
3020 vm->pasid = pasid;
3021
3022 goto unreserve_bo;
3023
3024 free_idr:
3025 if (pasid) {
3026 unsigned long flags;
3027
3028 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3029 idr_remove(&adev->vm_manager.pasid_idr, pasid);
3030 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3031 }
3032 unreserve_bo:
3033 amdgpu_bo_unreserve(vm->root.base.bo);
3034 return r;
3035 }
3036
3037 /**
3038 * amdgpu_vm_release_compute - release a compute vm
3039 * @adev: amdgpu_device pointer
3040 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3041 *
3042 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3043 * pasid from vm. Compute should stop use of vm after this call.
3044 */
3045 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3046 {
3047 if (vm->pasid) {
3048 unsigned long flags;
3049
3050 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3051 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3052 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3053 }
3054 vm->pasid = 0;
3055 vm->is_compute_context = false;
3056 }
3057
3058 /**
3059 * amdgpu_vm_fini - tear down a vm instance
3060 *
3061 * @adev: amdgpu_device pointer
3062 * @vm: requested vm
3063 *
3064 * Tear down @vm.
3065 * Unbind the VM and remove all bos from the vm bo list
3066 */
3067 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3068 {
3069 struct amdgpu_bo_va_mapping *mapping, *tmp;
3070 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3071 struct amdgpu_bo *root;
3072 int i;
3073
3074 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3075
3076 root = amdgpu_bo_ref(vm->root.base.bo);
3077 amdgpu_bo_reserve(root, true);
3078 if (vm->pasid) {
3079 unsigned long flags;
3080
3081 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3082 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3083 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3084 vm->pasid = 0;
3085 }
3086
3087 dma_fence_wait(vm->last_direct, false);
3088 dma_fence_put(vm->last_direct);
3089 dma_fence_wait(vm->last_delayed, false);
3090 dma_fence_put(vm->last_delayed);
3091
3092 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3093 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3094 amdgpu_vm_prt_fini(adev, vm);
3095 prt_fini_needed = false;
3096 }
3097
3098 list_del(&mapping->list);
3099 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3100 }
3101
3102 amdgpu_vm_free_pts(adev, vm, NULL);
3103 amdgpu_bo_unreserve(root);
3104 amdgpu_bo_unref(&root);
3105 WARN_ON(vm->root.base.bo);
3106
3107 drm_sched_entity_destroy(&vm->direct);
3108 drm_sched_entity_destroy(&vm->delayed);
3109
3110 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3111 dev_err(adev->dev, "still active bo inside vm\n");
3112 }
3113 rbtree_postorder_for_each_entry_safe(mapping, tmp,
3114 &vm->va.rb_root, rb) {
3115 /* Don't remove the mapping here, we don't want to trigger a
3116 * rebalance and the tree is about to be destroyed anyway.
3117 */
3118 list_del(&mapping->list);
3119 kfree(mapping);
3120 }
3121
3122 dma_fence_put(vm->last_update);
3123 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3124 amdgpu_vmid_free_reserved(adev, vm, i);
3125 }
3126
3127 /**
3128 * amdgpu_vm_manager_init - init the VM manager
3129 *
3130 * @adev: amdgpu_device pointer
3131 *
3132 * Initialize the VM manager structures
3133 */
3134 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3135 {
3136 unsigned i;
3137
3138 amdgpu_vmid_mgr_init(adev);
3139
3140 adev->vm_manager.fence_context =
3141 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3142 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3143 adev->vm_manager.seqno[i] = 0;
3144
3145 spin_lock_init(&adev->vm_manager.prt_lock);
3146 atomic_set(&adev->vm_manager.num_prt_users, 0);
3147
3148 /* If not overridden by the user, by default, only in large BAR systems
3149 * Compute VM tables will be updated by CPU
3150 */
3151 #ifdef CONFIG_X86_64
3152 if (amdgpu_vm_update_mode == -1) {
3153 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3154 adev->vm_manager.vm_update_mode =
3155 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3156 else
3157 adev->vm_manager.vm_update_mode = 0;
3158 } else
3159 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3160 #else
3161 adev->vm_manager.vm_update_mode = 0;
3162 #endif
3163
3164 idr_init(&adev->vm_manager.pasid_idr);
3165 spin_lock_init(&adev->vm_manager.pasid_lock);
3166
3167 adev->vm_manager.xgmi_map_counter = 0;
3168 mutex_init(&adev->vm_manager.lock_pstate);
3169 }
3170
3171 /**
3172 * amdgpu_vm_manager_fini - cleanup VM manager
3173 *
3174 * @adev: amdgpu_device pointer
3175 *
3176 * Cleanup the VM manager and free resources.
3177 */
3178 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3179 {
3180 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3181 idr_destroy(&adev->vm_manager.pasid_idr);
3182
3183 amdgpu_vmid_mgr_fini(adev);
3184 }
3185
3186 /**
3187 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3188 *
3189 * @dev: drm device pointer
3190 * @data: drm_amdgpu_vm
3191 * @filp: drm file pointer
3192 *
3193 * Returns:
3194 * 0 for success, -errno for errors.
3195 */
3196 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3197 {
3198 union drm_amdgpu_vm *args = data;
3199 struct amdgpu_device *adev = dev->dev_private;
3200 struct amdgpu_fpriv *fpriv = filp->driver_priv;
3201 int r;
3202
3203 switch (args->in.op) {
3204 case AMDGPU_VM_OP_RESERVE_VMID:
3205 /* We only have requirement to reserve vmid from gfxhub */
3206 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3207 AMDGPU_GFXHUB_0);
3208 if (r)
3209 return r;
3210 break;
3211 case AMDGPU_VM_OP_UNRESERVE_VMID:
3212 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3213 break;
3214 default:
3215 return -EINVAL;
3216 }
3217
3218 return 0;
3219 }
3220
3221 /**
3222 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3223 *
3224 * @adev: drm device pointer
3225 * @pasid: PASID identifier for VM
3226 * @task_info: task_info to fill.
3227 */
3228 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3229 struct amdgpu_task_info *task_info)
3230 {
3231 struct amdgpu_vm *vm;
3232 unsigned long flags;
3233
3234 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3235
3236 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3237 if (vm)
3238 *task_info = vm->task_info;
3239
3240 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3241 }
3242
3243 /**
3244 * amdgpu_vm_set_task_info - Sets VMs task info.
3245 *
3246 * @vm: vm for which to set the info
3247 */
3248 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3249 {
3250 if (vm->task_info.pid)
3251 return;
3252
3253 vm->task_info.pid = current->pid;
3254 get_task_comm(vm->task_info.task_name, current);
3255
3256 if (current->group_leader->mm != current->mm)
3257 return;
3258
3259 vm->task_info.tgid = current->group_leader->pid;
3260 get_task_comm(vm->task_info.process_name, current->group_leader);
3261 }
3262
3263 /**
3264 * amdgpu_vm_handle_fault - graceful handling of VM faults.
3265 * @adev: amdgpu device pointer
3266 * @pasid: PASID of the VM
3267 * @addr: Address of the fault
3268 *
3269 * Try to gracefully handle a VM fault. Return true if the fault was handled and
3270 * shouldn't be reported any more.
3271 */
3272 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, unsigned int pasid,
3273 uint64_t addr)
3274 {
3275 struct amdgpu_bo *root;
3276 uint64_t value, flags;
3277 struct amdgpu_vm *vm;
3278 long r;
3279
3280 spin_lock(&adev->vm_manager.pasid_lock);
3281 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3282 if (vm)
3283 root = amdgpu_bo_ref(vm->root.base.bo);
3284 else
3285 root = NULL;
3286 spin_unlock(&adev->vm_manager.pasid_lock);
3287
3288 if (!root)
3289 return false;
3290
3291 r = amdgpu_bo_reserve(root, true);
3292 if (r)
3293 goto error_unref;
3294
3295 /* Double check that the VM still exists */
3296 spin_lock(&adev->vm_manager.pasid_lock);
3297 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3298 if (vm && vm->root.base.bo != root)
3299 vm = NULL;
3300 spin_unlock(&adev->vm_manager.pasid_lock);
3301 if (!vm)
3302 goto error_unlock;
3303
3304 addr /= AMDGPU_GPU_PAGE_SIZE;
3305 flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3306 AMDGPU_PTE_SYSTEM;
3307
3308 if (vm->is_compute_context) {
3309 /* Intentionally setting invalid PTE flag
3310 * combination to force a no-retry-fault
3311 */
3312 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3313 AMDGPU_PTE_TF;
3314 value = 0;
3315
3316 } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3317 /* Redirect the access to the dummy page */
3318 value = adev->dummy_page_addr;
3319 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3320 AMDGPU_PTE_WRITEABLE;
3321
3322 } else {
3323 /* Let the hw retry silently on the PTE */
3324 value = 0;
3325 }
3326
3327 r = amdgpu_vm_bo_update_mapping(adev, vm, true, NULL, addr, addr + 1,
3328 flags, value, NULL, NULL);
3329 if (r)
3330 goto error_unlock;
3331
3332 r = amdgpu_vm_update_pdes(adev, vm, true);
3333
3334 error_unlock:
3335 amdgpu_bo_unreserve(root);
3336 if (r < 0)
3337 DRM_ERROR("Can't handle page fault (%ld)\n", r);
3338
3339 error_unref:
3340 amdgpu_bo_unref(&root);
3341
3342 return false;
3343 }
3344