kfd_device.c revision 1.1.1.1 1 /* $NetBSD: kfd_device.c,v 1.1.1.1 2018/08/27 01:34:46 riastradh Exp $ */
2
3 /*
4 * Copyright 2014 Advanced Micro Devices, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: kfd_device.c,v 1.1.1.1 2018/08/27 01:34:46 riastradh Exp $");
27
28 #include <linux/amd-iommu.h>
29 #include <linux/bsearch.h>
30 #include <linux/pci.h>
31 #include <linux/slab.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_pm4_headers.h"
35
36 #define MQD_SIZE_ALIGNED 768
37
38 static const struct kfd_device_info kaveri_device_info = {
39 .asic_family = CHIP_KAVERI,
40 .max_pasid_bits = 16,
41 /* max num of queues for KV.TODO should be a dynamic value */
42 .max_no_of_hqd = 24,
43 .ih_ring_entry_size = 4 * sizeof(uint32_t),
44 .event_interrupt_class = &event_interrupt_class_cik,
45 .num_of_watch_points = 4,
46 .mqd_size_aligned = MQD_SIZE_ALIGNED
47 };
48
49 static const struct kfd_device_info carrizo_device_info = {
50 .asic_family = CHIP_CARRIZO,
51 .max_pasid_bits = 16,
52 /* max num of queues for CZ.TODO should be a dynamic value */
53 .max_no_of_hqd = 24,
54 .ih_ring_entry_size = 4 * sizeof(uint32_t),
55 .event_interrupt_class = &event_interrupt_class_cik,
56 .num_of_watch_points = 4,
57 .mqd_size_aligned = MQD_SIZE_ALIGNED
58 };
59
60 struct kfd_deviceid {
61 unsigned short did;
62 const struct kfd_device_info *device_info;
63 };
64
65 /* Please keep this sorted by increasing device id. */
66 static const struct kfd_deviceid supported_devices[] = {
67 { 0x1304, &kaveri_device_info }, /* Kaveri */
68 { 0x1305, &kaveri_device_info }, /* Kaveri */
69 { 0x1306, &kaveri_device_info }, /* Kaveri */
70 { 0x1307, &kaveri_device_info }, /* Kaveri */
71 { 0x1309, &kaveri_device_info }, /* Kaveri */
72 { 0x130A, &kaveri_device_info }, /* Kaveri */
73 { 0x130B, &kaveri_device_info }, /* Kaveri */
74 { 0x130C, &kaveri_device_info }, /* Kaveri */
75 { 0x130D, &kaveri_device_info }, /* Kaveri */
76 { 0x130E, &kaveri_device_info }, /* Kaveri */
77 { 0x130F, &kaveri_device_info }, /* Kaveri */
78 { 0x1310, &kaveri_device_info }, /* Kaveri */
79 { 0x1311, &kaveri_device_info }, /* Kaveri */
80 { 0x1312, &kaveri_device_info }, /* Kaveri */
81 { 0x1313, &kaveri_device_info }, /* Kaveri */
82 { 0x1315, &kaveri_device_info }, /* Kaveri */
83 { 0x1316, &kaveri_device_info }, /* Kaveri */
84 { 0x1317, &kaveri_device_info }, /* Kaveri */
85 { 0x1318, &kaveri_device_info }, /* Kaveri */
86 { 0x131B, &kaveri_device_info }, /* Kaveri */
87 { 0x131C, &kaveri_device_info }, /* Kaveri */
88 { 0x131D, &kaveri_device_info }, /* Kaveri */
89 { 0x9870, &carrizo_device_info }, /* Carrizo */
90 { 0x9874, &carrizo_device_info }, /* Carrizo */
91 { 0x9875, &carrizo_device_info }, /* Carrizo */
92 { 0x9876, &carrizo_device_info }, /* Carrizo */
93 { 0x9877, &carrizo_device_info } /* Carrizo */
94 };
95
96 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
97 unsigned int chunk_size);
98 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
99
100 static const struct kfd_device_info *lookup_device_info(unsigned short did)
101 {
102 size_t i;
103
104 for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
105 if (supported_devices[i].did == did) {
106 BUG_ON(supported_devices[i].device_info == NULL);
107 return supported_devices[i].device_info;
108 }
109 }
110
111 return NULL;
112 }
113
114 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
115 struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
116 {
117 struct kfd_dev *kfd;
118
119 const struct kfd_device_info *device_info =
120 lookup_device_info(pdev->device);
121
122 if (!device_info)
123 return NULL;
124
125 kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
126 if (!kfd)
127 return NULL;
128
129 kfd->kgd = kgd;
130 kfd->device_info = device_info;
131 kfd->pdev = pdev;
132 kfd->init_complete = false;
133 kfd->kfd2kgd = f2g;
134
135 mutex_init(&kfd->doorbell_mutex);
136 memset(&kfd->doorbell_available_index, 0,
137 sizeof(kfd->doorbell_available_index));
138
139 return kfd;
140 }
141
142 static bool device_iommu_pasid_init(struct kfd_dev *kfd)
143 {
144 const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP |
145 AMD_IOMMU_DEVICE_FLAG_PRI_SUP |
146 AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
147
148 struct amd_iommu_device_info iommu_info;
149 unsigned int pasid_limit;
150 int err;
151
152 err = amd_iommu_device_info(kfd->pdev, &iommu_info);
153 if (err < 0) {
154 dev_err(kfd_device,
155 "error getting iommu info. is the iommu enabled?\n");
156 return false;
157 }
158
159 if ((iommu_info.flags & required_iommu_flags) != required_iommu_flags) {
160 dev_err(kfd_device, "error required iommu flags ats(%i), pri(%i), pasid(%i)\n",
161 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP) != 0,
162 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) != 0,
163 (iommu_info.flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) != 0);
164 return false;
165 }
166
167 pasid_limit = min_t(unsigned int,
168 (unsigned int)1 << kfd->device_info->max_pasid_bits,
169 iommu_info.max_pasids);
170 /*
171 * last pasid is used for kernel queues doorbells
172 * in the future the last pasid might be used for a kernel thread.
173 */
174 pasid_limit = min_t(unsigned int,
175 pasid_limit,
176 kfd->doorbell_process_limit - 1);
177
178 err = amd_iommu_init_device(kfd->pdev, pasid_limit);
179 if (err < 0) {
180 dev_err(kfd_device, "error initializing iommu device\n");
181 return false;
182 }
183
184 if (!kfd_set_pasid_limit(pasid_limit)) {
185 dev_err(kfd_device, "error setting pasid limit\n");
186 amd_iommu_free_device(kfd->pdev);
187 return false;
188 }
189
190 return true;
191 }
192
193 static void iommu_pasid_shutdown_callback(struct pci_dev *pdev, int pasid)
194 {
195 struct kfd_dev *dev = kfd_device_by_pci_dev(pdev);
196
197 if (dev)
198 kfd_unbind_process_from_device(dev, pasid);
199 }
200
201 /*
202 * This function called by IOMMU driver on PPR failure
203 */
204 static int iommu_invalid_ppr_cb(struct pci_dev *pdev, int pasid,
205 unsigned long address, u16 flags)
206 {
207 struct kfd_dev *dev;
208
209 dev_warn(kfd_device,
210 "Invalid PPR device %x:%x.%x pasid %d address 0x%lX flags 0x%X",
211 PCI_BUS_NUM(pdev->devfn),
212 PCI_SLOT(pdev->devfn),
213 PCI_FUNC(pdev->devfn),
214 pasid,
215 address,
216 flags);
217
218 dev = kfd_device_by_pci_dev(pdev);
219 BUG_ON(dev == NULL);
220
221 kfd_signal_iommu_event(dev, pasid, address,
222 flags & PPR_FAULT_WRITE, flags & PPR_FAULT_EXEC);
223
224 return AMD_IOMMU_INV_PRI_RSP_INVALID;
225 }
226
227 bool kgd2kfd_device_init(struct kfd_dev *kfd,
228 const struct kgd2kfd_shared_resources *gpu_resources)
229 {
230 unsigned int size;
231
232 kfd->shared_resources = *gpu_resources;
233
234 /* calculate max size of mqds needed for queues */
235 size = max_num_of_queues_per_device *
236 kfd->device_info->mqd_size_aligned;
237
238 /*
239 * calculate max size of runlist packet.
240 * There can be only 2 packets at once
241 */
242 size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_map_process) +
243 max_num_of_queues_per_device *
244 sizeof(struct pm4_map_queues) + sizeof(struct pm4_runlist)) * 2;
245
246 /* Add size of HIQ & DIQ */
247 size += KFD_KERNEL_QUEUE_SIZE * 2;
248
249 /* add another 512KB for all other allocations on gart (HPD, fences) */
250 size += 512 * 1024;
251
252 if (kfd->kfd2kgd->init_gtt_mem_allocation(
253 kfd->kgd, size, &kfd->gtt_mem,
254 &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
255 dev_err(kfd_device,
256 "Could not allocate %d bytes for device (%x:%x)\n",
257 size, kfd->pdev->vendor, kfd->pdev->device);
258 goto out;
259 }
260
261 dev_info(kfd_device,
262 "Allocated %d bytes on gart for device(%x:%x)\n",
263 size, kfd->pdev->vendor, kfd->pdev->device);
264
265 /* Initialize GTT sa with 512 byte chunk size */
266 if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
267 dev_err(kfd_device,
268 "Error initializing gtt sub-allocator\n");
269 goto kfd_gtt_sa_init_error;
270 }
271
272 kfd_doorbell_init(kfd);
273
274 if (kfd_topology_add_device(kfd) != 0) {
275 dev_err(kfd_device,
276 "Error adding device (%x:%x) to topology\n",
277 kfd->pdev->vendor, kfd->pdev->device);
278 goto kfd_topology_add_device_error;
279 }
280
281 if (kfd_interrupt_init(kfd)) {
282 dev_err(kfd_device,
283 "Error initializing interrupts for device (%x:%x)\n",
284 kfd->pdev->vendor, kfd->pdev->device);
285 goto kfd_interrupt_error;
286 }
287
288 if (!device_iommu_pasid_init(kfd)) {
289 dev_err(kfd_device,
290 "Error initializing iommuv2 for device (%x:%x)\n",
291 kfd->pdev->vendor, kfd->pdev->device);
292 goto device_iommu_pasid_error;
293 }
294 amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
295 iommu_pasid_shutdown_callback);
296 amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
297
298 kfd->dqm = device_queue_manager_init(kfd);
299 if (!kfd->dqm) {
300 dev_err(kfd_device,
301 "Error initializing queue manager for device (%x:%x)\n",
302 kfd->pdev->vendor, kfd->pdev->device);
303 goto device_queue_manager_error;
304 }
305
306 if (kfd->dqm->ops.start(kfd->dqm) != 0) {
307 dev_err(kfd_device,
308 "Error starting queuen manager for device (%x:%x)\n",
309 kfd->pdev->vendor, kfd->pdev->device);
310 goto dqm_start_error;
311 }
312
313 kfd->dbgmgr = NULL;
314
315 kfd->init_complete = true;
316 dev_info(kfd_device, "added device (%x:%x)\n", kfd->pdev->vendor,
317 kfd->pdev->device);
318
319 pr_debug("kfd: Starting kfd with the following scheduling policy %d\n",
320 sched_policy);
321
322 goto out;
323
324 dqm_start_error:
325 device_queue_manager_uninit(kfd->dqm);
326 device_queue_manager_error:
327 amd_iommu_free_device(kfd->pdev);
328 device_iommu_pasid_error:
329 kfd_interrupt_exit(kfd);
330 kfd_interrupt_error:
331 kfd_topology_remove_device(kfd);
332 kfd_topology_add_device_error:
333 kfd_gtt_sa_fini(kfd);
334 kfd_gtt_sa_init_error:
335 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
336 dev_err(kfd_device,
337 "device (%x:%x) NOT added due to errors\n",
338 kfd->pdev->vendor, kfd->pdev->device);
339 out:
340 return kfd->init_complete;
341 }
342
343 void kgd2kfd_device_exit(struct kfd_dev *kfd)
344 {
345 if (kfd->init_complete) {
346 device_queue_manager_uninit(kfd->dqm);
347 amd_iommu_free_device(kfd->pdev);
348 kfd_interrupt_exit(kfd);
349 kfd_topology_remove_device(kfd);
350 kfd_gtt_sa_fini(kfd);
351 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
352 }
353
354 kfree(kfd);
355 }
356
357 void kgd2kfd_suspend(struct kfd_dev *kfd)
358 {
359 BUG_ON(kfd == NULL);
360
361 if (kfd->init_complete) {
362 kfd->dqm->ops.stop(kfd->dqm);
363 amd_iommu_set_invalidate_ctx_cb(kfd->pdev, NULL);
364 amd_iommu_set_invalid_ppr_cb(kfd->pdev, NULL);
365 amd_iommu_free_device(kfd->pdev);
366 }
367 }
368
369 int kgd2kfd_resume(struct kfd_dev *kfd)
370 {
371 unsigned int pasid_limit;
372 int err;
373
374 BUG_ON(kfd == NULL);
375
376 pasid_limit = kfd_get_pasid_limit();
377
378 if (kfd->init_complete) {
379 err = amd_iommu_init_device(kfd->pdev, pasid_limit);
380 if (err < 0)
381 return -ENXIO;
382 amd_iommu_set_invalidate_ctx_cb(kfd->pdev,
383 iommu_pasid_shutdown_callback);
384 amd_iommu_set_invalid_ppr_cb(kfd->pdev, iommu_invalid_ppr_cb);
385 kfd->dqm->ops.start(kfd->dqm);
386 }
387
388 return 0;
389 }
390
391 /* This is called directly from KGD at ISR. */
392 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
393 {
394 if (!kfd->init_complete)
395 return;
396
397 spin_lock(&kfd->interrupt_lock);
398
399 if (kfd->interrupts_active
400 && interrupt_is_wanted(kfd, ih_ring_entry)
401 && enqueue_ih_ring_entry(kfd, ih_ring_entry))
402 schedule_work(&kfd->interrupt_work);
403
404 spin_unlock(&kfd->interrupt_lock);
405 }
406
407 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
408 unsigned int chunk_size)
409 {
410 unsigned int num_of_bits;
411
412 BUG_ON(!kfd);
413 BUG_ON(!kfd->gtt_mem);
414 BUG_ON(buf_size < chunk_size);
415 BUG_ON(buf_size == 0);
416 BUG_ON(chunk_size == 0);
417
418 kfd->gtt_sa_chunk_size = chunk_size;
419 kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
420
421 num_of_bits = kfd->gtt_sa_num_of_chunks / BITS_PER_BYTE;
422 BUG_ON(num_of_bits == 0);
423
424 kfd->gtt_sa_bitmap = kzalloc(num_of_bits, GFP_KERNEL);
425
426 if (!kfd->gtt_sa_bitmap)
427 return -ENOMEM;
428
429 pr_debug("kfd: gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
430 kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
431
432 mutex_init(&kfd->gtt_sa_lock);
433
434 return 0;
435
436 }
437
438 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
439 {
440 mutex_destroy(&kfd->gtt_sa_lock);
441 kfree(kfd->gtt_sa_bitmap);
442 }
443
444 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
445 unsigned int bit_num,
446 unsigned int chunk_size)
447 {
448 return start_addr + bit_num * chunk_size;
449 }
450
451 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
452 unsigned int bit_num,
453 unsigned int chunk_size)
454 {
455 return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
456 }
457
458 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
459 struct kfd_mem_obj **mem_obj)
460 {
461 unsigned int found, start_search, cur_size;
462
463 BUG_ON(!kfd);
464
465 if (size == 0)
466 return -EINVAL;
467
468 if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
469 return -ENOMEM;
470
471 *mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
472 if ((*mem_obj) == NULL)
473 return -ENOMEM;
474
475 pr_debug("kfd: allocated mem_obj = %p for size = %d\n", *mem_obj, size);
476
477 start_search = 0;
478
479 mutex_lock(&kfd->gtt_sa_lock);
480
481 kfd_gtt_restart_search:
482 /* Find the first chunk that is free */
483 found = find_next_zero_bit(kfd->gtt_sa_bitmap,
484 kfd->gtt_sa_num_of_chunks,
485 start_search);
486
487 pr_debug("kfd: found = %d\n", found);
488
489 /* If there wasn't any free chunk, bail out */
490 if (found == kfd->gtt_sa_num_of_chunks)
491 goto kfd_gtt_no_free_chunk;
492
493 /* Update fields of mem_obj */
494 (*mem_obj)->range_start = found;
495 (*mem_obj)->range_end = found;
496 (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
497 kfd->gtt_start_gpu_addr,
498 found,
499 kfd->gtt_sa_chunk_size);
500 (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
501 kfd->gtt_start_cpu_ptr,
502 found,
503 kfd->gtt_sa_chunk_size);
504
505 pr_debug("kfd: gpu_addr = %p, cpu_addr = %p\n",
506 (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
507
508 /* If we need only one chunk, mark it as allocated and get out */
509 if (size <= kfd->gtt_sa_chunk_size) {
510 pr_debug("kfd: single bit\n");
511 set_bit(found, kfd->gtt_sa_bitmap);
512 goto kfd_gtt_out;
513 }
514
515 /* Otherwise, try to see if we have enough contiguous chunks */
516 cur_size = size - kfd->gtt_sa_chunk_size;
517 do {
518 (*mem_obj)->range_end =
519 find_next_zero_bit(kfd->gtt_sa_bitmap,
520 kfd->gtt_sa_num_of_chunks, ++found);
521 /*
522 * If next free chunk is not contiguous than we need to
523 * restart our search from the last free chunk we found (which
524 * wasn't contiguous to the previous ones
525 */
526 if ((*mem_obj)->range_end != found) {
527 start_search = found;
528 goto kfd_gtt_restart_search;
529 }
530
531 /*
532 * If we reached end of buffer, bail out with error
533 */
534 if (found == kfd->gtt_sa_num_of_chunks)
535 goto kfd_gtt_no_free_chunk;
536
537 /* Check if we don't need another chunk */
538 if (cur_size <= kfd->gtt_sa_chunk_size)
539 cur_size = 0;
540 else
541 cur_size -= kfd->gtt_sa_chunk_size;
542
543 } while (cur_size > 0);
544
545 pr_debug("kfd: range_start = %d, range_end = %d\n",
546 (*mem_obj)->range_start, (*mem_obj)->range_end);
547
548 /* Mark the chunks as allocated */
549 for (found = (*mem_obj)->range_start;
550 found <= (*mem_obj)->range_end;
551 found++)
552 set_bit(found, kfd->gtt_sa_bitmap);
553
554 kfd_gtt_out:
555 mutex_unlock(&kfd->gtt_sa_lock);
556 return 0;
557
558 kfd_gtt_no_free_chunk:
559 pr_debug("kfd: allocation failed with mem_obj = %p\n", mem_obj);
560 mutex_unlock(&kfd->gtt_sa_lock);
561 kfree(mem_obj);
562 return -ENOMEM;
563 }
564
565 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
566 {
567 unsigned int bit;
568
569 BUG_ON(!kfd);
570
571 /* Act like kfree when trying to free a NULL object */
572 if (!mem_obj)
573 return 0;
574
575 pr_debug("kfd: free mem_obj = %p, range_start = %d, range_end = %d\n",
576 mem_obj, mem_obj->range_start, mem_obj->range_end);
577
578 mutex_lock(&kfd->gtt_sa_lock);
579
580 /* Mark the chunks as free */
581 for (bit = mem_obj->range_start;
582 bit <= mem_obj->range_end;
583 bit++)
584 clear_bit(bit, kfd->gtt_sa_bitmap);
585
586 mutex_unlock(&kfd->gtt_sa_lock);
587
588 kfree(mem_obj);
589 return 0;
590 }
591