Home | History | Annotate | Line # | Download | only in amdkfd
      1  1.1  riastrad /*	$NetBSD: kfd_events.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $	*/
      2  1.1  riastrad 
      3  1.1  riastrad /*
      4  1.1  riastrad  * Copyright 2014 Advanced Micro Devices, Inc.
      5  1.1  riastrad  *
      6  1.1  riastrad  * Permission is hereby granted, free of charge, to any person obtaining a
      7  1.1  riastrad  * copy of this software and associated documentation files (the "Software"),
      8  1.1  riastrad  * to deal in the Software without restriction, including without limitation
      9  1.1  riastrad  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  1.1  riastrad  * and/or sell copies of the Software, and to permit persons to whom the
     11  1.1  riastrad  * Software is furnished to do so, subject to the following conditions:
     12  1.1  riastrad  *
     13  1.1  riastrad  * The above copyright notice and this permission notice shall be included in
     14  1.1  riastrad  * all copies or substantial portions of the Software.
     15  1.1  riastrad  *
     16  1.1  riastrad  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     17  1.1  riastrad  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     18  1.1  riastrad  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     19  1.1  riastrad  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     20  1.1  riastrad  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     21  1.1  riastrad  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     22  1.1  riastrad  * OTHER DEALINGS IN THE SOFTWARE.
     23  1.1  riastrad  */
     24  1.1  riastrad 
     25  1.1  riastrad #include <sys/cdefs.h>
     26  1.1  riastrad __KERNEL_RCSID(0, "$NetBSD: kfd_events.c,v 1.3 2021/12/18 23:44:59 riastradh Exp $");
     27  1.1  riastrad 
     28  1.1  riastrad #include <linux/mm_types.h>
     29  1.1  riastrad #include <linux/slab.h>
     30  1.1  riastrad #include <linux/types.h>
     31  1.3  riastrad #include <linux/sched/signal.h>
     32  1.3  riastrad #include <linux/sched/mm.h>
     33  1.1  riastrad #include <linux/uaccess.h>
     34  1.1  riastrad #include <linux/mman.h>
     35  1.1  riastrad #include <linux/memory.h>
     36  1.1  riastrad #include "kfd_priv.h"
     37  1.1  riastrad #include "kfd_events.h"
     38  1.3  riastrad #include "kfd_iommu.h"
     39  1.1  riastrad #include <linux/device.h>
     40  1.1  riastrad 
     41  1.1  riastrad /*
     42  1.3  riastrad  * Wrapper around wait_queue_entry_t
     43  1.1  riastrad  */
     44  1.1  riastrad struct kfd_event_waiter {
     45  1.3  riastrad 	wait_queue_entry_t wait;
     46  1.3  riastrad 	struct kfd_event *event; /* Event to wait for */
     47  1.3  riastrad 	bool activated;		 /* Becomes true when event is signaled */
     48  1.1  riastrad };
     49  1.1  riastrad 
     50  1.1  riastrad /*
     51  1.1  riastrad  * Each signal event needs a 64-bit signal slot where the signaler will write
     52  1.3  riastrad  * a 1 before sending an interrupt. (This is needed because some interrupts
     53  1.1  riastrad  * do not contain enough spare data bits to identify an event.)
     54  1.3  riastrad  * We get whole pages and map them to the process VA.
     55  1.3  riastrad  * Individual signal events use their event_id as slot index.
     56  1.1  riastrad  */
     57  1.3  riastrad struct kfd_signal_page {
     58  1.1  riastrad 	uint64_t *kernel_address;
     59  1.1  riastrad 	uint64_t __user *user_address;
     60  1.3  riastrad 	bool need_to_free_pages;
     61  1.1  riastrad };
     62  1.1  riastrad 
     63  1.1  riastrad 
     64  1.3  riastrad static uint64_t *page_slots(struct kfd_signal_page *page)
     65  1.1  riastrad {
     66  1.1  riastrad 	return page->kernel_address;
     67  1.1  riastrad }
     68  1.1  riastrad 
     69  1.3  riastrad static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
     70  1.1  riastrad {
     71  1.1  riastrad 	void *backing_store;
     72  1.3  riastrad 	struct kfd_signal_page *page;
     73  1.1  riastrad 
     74  1.3  riastrad 	page = kzalloc(sizeof(*page), GFP_KERNEL);
     75  1.1  riastrad 	if (!page)
     76  1.3  riastrad 		return NULL;
     77  1.1  riastrad 
     78  1.3  riastrad 	backing_store = (void *) __get_free_pages(GFP_KERNEL,
     79  1.1  riastrad 					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
     80  1.1  riastrad 	if (!backing_store)
     81  1.1  riastrad 		goto fail_alloc_signal_store;
     82  1.1  riastrad 
     83  1.3  riastrad 	/* Initialize all events to unsignaled */
     84  1.1  riastrad 	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
     85  1.3  riastrad 	       KFD_SIGNAL_EVENT_LIMIT * 8);
     86  1.1  riastrad 
     87  1.1  riastrad 	page->kernel_address = backing_store;
     88  1.3  riastrad 	page->need_to_free_pages = true;
     89  1.3  riastrad 	pr_debug("Allocated new event signal page at %p, for process %p\n",
     90  1.1  riastrad 			page, p);
     91  1.1  riastrad 
     92  1.3  riastrad 	return page;
     93  1.1  riastrad 
     94  1.1  riastrad fail_alloc_signal_store:
     95  1.1  riastrad 	kfree(page);
     96  1.3  riastrad 	return NULL;
     97  1.1  riastrad }
     98  1.1  riastrad 
     99  1.3  riastrad static int allocate_event_notification_slot(struct kfd_process *p,
    100  1.3  riastrad 					    struct kfd_event *ev)
    101  1.1  riastrad {
    102  1.3  riastrad 	int id;
    103  1.1  riastrad 
    104  1.3  riastrad 	if (!p->signal_page) {
    105  1.3  riastrad 		p->signal_page = allocate_signal_page(p);
    106  1.3  riastrad 		if (!p->signal_page)
    107  1.3  riastrad 			return -ENOMEM;
    108  1.3  riastrad 		/* Oldest user mode expects 256 event slots */
    109  1.3  riastrad 		p->signal_mapped_size = 256*8;
    110  1.3  riastrad 	}
    111  1.1  riastrad 
    112  1.1  riastrad 	/*
    113  1.3  riastrad 	 * Compatibility with old user mode: Only use signal slots
    114  1.3  riastrad 	 * user mode has mapped, may be less than
    115  1.3  riastrad 	 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
    116  1.3  riastrad 	 * of the event limit without breaking user mode.
    117  1.1  riastrad 	 */
    118  1.3  riastrad 	id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
    119  1.3  riastrad 		       GFP_KERNEL);
    120  1.3  riastrad 	if (id < 0)
    121  1.3  riastrad 		return id;
    122  1.3  riastrad 
    123  1.3  riastrad 	ev->event_id = id;
    124  1.3  riastrad 	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
    125  1.1  riastrad 
    126  1.3  riastrad 	return 0;
    127  1.1  riastrad }
    128  1.1  riastrad 
    129  1.1  riastrad /*
    130  1.1  riastrad  * Assumes that p->event_mutex is held and of course that p is not going
    131  1.1  riastrad  * away (current or locked).
    132  1.1  riastrad  */
    133  1.1  riastrad static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
    134  1.1  riastrad {
    135  1.3  riastrad 	return idr_find(&p->event_idr, id);
    136  1.1  riastrad }
    137  1.1  riastrad 
    138  1.3  riastrad /**
    139  1.3  riastrad  * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
    140  1.3  riastrad  * @p:     Pointer to struct kfd_process
    141  1.3  riastrad  * @id:    ID to look up
    142  1.3  riastrad  * @bits:  Number of valid bits in @id
    143  1.3  riastrad  *
    144  1.3  riastrad  * Finds the first signaled event with a matching partial ID. If no
    145  1.3  riastrad  * matching signaled event is found, returns NULL. In that case the
    146  1.3  riastrad  * caller should assume that the partial ID is invalid and do an
    147  1.3  riastrad  * exhaustive search of all siglaned events.
    148  1.3  riastrad  *
    149  1.3  riastrad  * If multiple events with the same partial ID signal at the same
    150  1.3  riastrad  * time, they will be found one interrupt at a time, not necessarily
    151  1.3  riastrad  * in the same order the interrupts occurred. As long as the number of
    152  1.3  riastrad  * interrupts is correct, all signaled events will be seen by the
    153  1.3  riastrad  * driver.
    154  1.1  riastrad  */
    155  1.3  riastrad static struct kfd_event *lookup_signaled_event_by_partial_id(
    156  1.3  riastrad 	struct kfd_process *p, uint32_t id, uint32_t bits)
    157  1.1  riastrad {
    158  1.3  riastrad 	struct kfd_event *ev;
    159  1.1  riastrad 
    160  1.3  riastrad 	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
    161  1.3  riastrad 		return NULL;
    162  1.1  riastrad 
    163  1.3  riastrad 	/* Fast path for the common case that @id is not a partial ID
    164  1.3  riastrad 	 * and we only need a single lookup.
    165  1.3  riastrad 	 */
    166  1.3  riastrad 	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
    167  1.3  riastrad 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
    168  1.3  riastrad 			return NULL;
    169  1.1  riastrad 
    170  1.3  riastrad 		return idr_find(&p->event_idr, id);
    171  1.1  riastrad 	}
    172  1.1  riastrad 
    173  1.3  riastrad 	/* General case for partial IDs: Iterate over all matching IDs
    174  1.3  riastrad 	 * and find the first one that has signaled.
    175  1.3  riastrad 	 */
    176  1.3  riastrad 	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
    177  1.3  riastrad 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
    178  1.3  riastrad 			continue;
    179  1.1  riastrad 
    180  1.3  riastrad 		ev = idr_find(&p->event_idr, id);
    181  1.1  riastrad 	}
    182  1.1  riastrad 
    183  1.3  riastrad 	return ev;
    184  1.1  riastrad }
    185  1.1  riastrad 
    186  1.1  riastrad static int create_signal_event(struct file *devkfd,
    187  1.1  riastrad 				struct kfd_process *p,
    188  1.1  riastrad 				struct kfd_event *ev)
    189  1.1  riastrad {
    190  1.3  riastrad 	int ret;
    191  1.3  riastrad 
    192  1.3  riastrad 	if (p->signal_mapped_size &&
    193  1.3  riastrad 	    p->signal_event_count == p->signal_mapped_size / 8) {
    194  1.3  riastrad 		if (!p->signal_event_limit_reached) {
    195  1.3  riastrad 			pr_warn("Signal event wasn't created because limit was reached\n");
    196  1.3  riastrad 			p->signal_event_limit_reached = true;
    197  1.3  riastrad 		}
    198  1.3  riastrad 		return -ENOSPC;
    199  1.1  riastrad 	}
    200  1.1  riastrad 
    201  1.3  riastrad 	ret = allocate_event_notification_slot(p, ev);
    202  1.3  riastrad 	if (ret) {
    203  1.3  riastrad 		pr_warn("Signal event wasn't created because out of kernel memory\n");
    204  1.3  riastrad 		return ret;
    205  1.1  riastrad 	}
    206  1.1  riastrad 
    207  1.1  riastrad 	p->signal_event_count++;
    208  1.1  riastrad 
    209  1.3  riastrad 	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
    210  1.3  riastrad 	pr_debug("Signal event number %zu created with id %d, address %p\n",
    211  1.1  riastrad 			p->signal_event_count, ev->event_id,
    212  1.1  riastrad 			ev->user_signal_address);
    213  1.1  riastrad 
    214  1.1  riastrad 	return 0;
    215  1.1  riastrad }
    216  1.1  riastrad 
    217  1.1  riastrad static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
    218  1.1  riastrad {
    219  1.3  riastrad 	/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
    220  1.3  riastrad 	 * intentional integer overflow to -1 without a compiler
    221  1.3  riastrad 	 * warning. idr_alloc treats a negative value as "maximum
    222  1.3  riastrad 	 * signed integer".
    223  1.3  riastrad 	 */
    224  1.3  riastrad 	int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
    225  1.3  riastrad 			   (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
    226  1.3  riastrad 			   GFP_KERNEL);
    227  1.3  riastrad 
    228  1.3  riastrad 	if (id < 0)
    229  1.3  riastrad 		return id;
    230  1.3  riastrad 	ev->event_id = id;
    231  1.1  riastrad 
    232  1.1  riastrad 	return 0;
    233  1.1  riastrad }
    234  1.1  riastrad 
    235  1.1  riastrad void kfd_event_init_process(struct kfd_process *p)
    236  1.1  riastrad {
    237  1.1  riastrad 	mutex_init(&p->event_mutex);
    238  1.3  riastrad 	idr_init(&p->event_idr);
    239  1.3  riastrad 	p->signal_page = NULL;
    240  1.1  riastrad 	p->signal_event_count = 0;
    241  1.1  riastrad }
    242  1.1  riastrad 
    243  1.1  riastrad static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
    244  1.1  riastrad {
    245  1.3  riastrad 	struct kfd_event_waiter *waiter;
    246  1.3  riastrad 
    247  1.3  riastrad 	/* Wake up pending waiters. They will return failure */
    248  1.3  riastrad 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
    249  1.3  riastrad 		waiter->event = NULL;
    250  1.3  riastrad 	wake_up_all(&ev->wq);
    251  1.3  riastrad 
    252  1.3  riastrad 	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
    253  1.3  riastrad 	    ev->type == KFD_EVENT_TYPE_DEBUG)
    254  1.1  riastrad 		p->signal_event_count--;
    255  1.1  riastrad 
    256  1.3  riastrad 	idr_remove(&p->event_idr, ev->event_id);
    257  1.1  riastrad 	kfree(ev);
    258  1.1  riastrad }
    259  1.1  riastrad 
    260  1.1  riastrad static void destroy_events(struct kfd_process *p)
    261  1.1  riastrad {
    262  1.1  riastrad 	struct kfd_event *ev;
    263  1.3  riastrad 	uint32_t id;
    264  1.1  riastrad 
    265  1.3  riastrad 	idr_for_each_entry(&p->event_idr, ev, id)
    266  1.1  riastrad 		destroy_event(p, ev);
    267  1.3  riastrad 	idr_destroy(&p->event_idr);
    268  1.1  riastrad }
    269  1.1  riastrad 
    270  1.1  riastrad /*
    271  1.1  riastrad  * We assume that the process is being destroyed and there is no need to
    272  1.1  riastrad  * unmap the pages or keep bookkeeping data in order.
    273  1.1  riastrad  */
    274  1.3  riastrad static void shutdown_signal_page(struct kfd_process *p)
    275  1.1  riastrad {
    276  1.3  riastrad 	struct kfd_signal_page *page = p->signal_page;
    277  1.1  riastrad 
    278  1.3  riastrad 	if (page) {
    279  1.3  riastrad 		if (page->need_to_free_pages)
    280  1.3  riastrad 			free_pages((unsigned long)page->kernel_address,
    281  1.3  riastrad 				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
    282  1.1  riastrad 		kfree(page);
    283  1.1  riastrad 	}
    284  1.1  riastrad }
    285  1.1  riastrad 
    286  1.1  riastrad void kfd_event_free_process(struct kfd_process *p)
    287  1.1  riastrad {
    288  1.1  riastrad 	destroy_events(p);
    289  1.3  riastrad 	shutdown_signal_page(p);
    290  1.1  riastrad }
    291  1.1  riastrad 
    292  1.1  riastrad static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
    293  1.1  riastrad {
    294  1.1  riastrad 	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
    295  1.1  riastrad 					ev->type == KFD_EVENT_TYPE_DEBUG;
    296  1.1  riastrad }
    297  1.1  riastrad 
    298  1.1  riastrad static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
    299  1.1  riastrad {
    300  1.1  riastrad 	return ev->type == KFD_EVENT_TYPE_SIGNAL;
    301  1.1  riastrad }
    302  1.1  riastrad 
    303  1.3  riastrad int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
    304  1.3  riastrad 		       uint64_t size)
    305  1.3  riastrad {
    306  1.3  riastrad 	struct kfd_signal_page *page;
    307  1.3  riastrad 
    308  1.3  riastrad 	if (p->signal_page)
    309  1.3  riastrad 		return -EBUSY;
    310  1.3  riastrad 
    311  1.3  riastrad 	page = kzalloc(sizeof(*page), GFP_KERNEL);
    312  1.3  riastrad 	if (!page)
    313  1.3  riastrad 		return -ENOMEM;
    314  1.3  riastrad 
    315  1.3  riastrad 	/* Initialize all events to unsignaled */
    316  1.3  riastrad 	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
    317  1.3  riastrad 	       KFD_SIGNAL_EVENT_LIMIT * 8);
    318  1.3  riastrad 
    319  1.3  riastrad 	page->kernel_address = kernel_address;
    320  1.3  riastrad 
    321  1.3  riastrad 	p->signal_page = page;
    322  1.3  riastrad 	p->signal_mapped_size = size;
    323  1.3  riastrad 
    324  1.3  riastrad 	return 0;
    325  1.3  riastrad }
    326  1.3  riastrad 
    327  1.1  riastrad int kfd_event_create(struct file *devkfd, struct kfd_process *p,
    328  1.1  riastrad 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
    329  1.1  riastrad 		     uint32_t *event_id, uint32_t *event_trigger_data,
    330  1.1  riastrad 		     uint64_t *event_page_offset, uint32_t *event_slot_index)
    331  1.1  riastrad {
    332  1.1  riastrad 	int ret = 0;
    333  1.1  riastrad 	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
    334  1.1  riastrad 
    335  1.1  riastrad 	if (!ev)
    336  1.1  riastrad 		return -ENOMEM;
    337  1.1  riastrad 
    338  1.1  riastrad 	ev->type = event_type;
    339  1.1  riastrad 	ev->auto_reset = auto_reset;
    340  1.1  riastrad 	ev->signaled = false;
    341  1.1  riastrad 
    342  1.3  riastrad 	init_waitqueue_head(&ev->wq);
    343  1.1  riastrad 
    344  1.1  riastrad 	*event_page_offset = 0;
    345  1.1  riastrad 
    346  1.1  riastrad 	mutex_lock(&p->event_mutex);
    347  1.1  riastrad 
    348  1.1  riastrad 	switch (event_type) {
    349  1.1  riastrad 	case KFD_EVENT_TYPE_SIGNAL:
    350  1.1  riastrad 	case KFD_EVENT_TYPE_DEBUG:
    351  1.1  riastrad 		ret = create_signal_event(devkfd, p, ev);
    352  1.1  riastrad 		if (!ret) {
    353  1.3  riastrad 			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
    354  1.3  riastrad 			*event_slot_index = ev->event_id;
    355  1.1  riastrad 		}
    356  1.1  riastrad 		break;
    357  1.1  riastrad 	default:
    358  1.1  riastrad 		ret = create_other_event(p, ev);
    359  1.1  riastrad 		break;
    360  1.1  riastrad 	}
    361  1.1  riastrad 
    362  1.1  riastrad 	if (!ret) {
    363  1.1  riastrad 		*event_id = ev->event_id;
    364  1.1  riastrad 		*event_trigger_data = ev->event_id;
    365  1.1  riastrad 	} else {
    366  1.1  riastrad 		kfree(ev);
    367  1.1  riastrad 	}
    368  1.1  riastrad 
    369  1.1  riastrad 	mutex_unlock(&p->event_mutex);
    370  1.1  riastrad 
    371  1.1  riastrad 	return ret;
    372  1.1  riastrad }
    373  1.1  riastrad 
    374  1.1  riastrad /* Assumes that p is current. */
    375  1.1  riastrad int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
    376  1.1  riastrad {
    377  1.1  riastrad 	struct kfd_event *ev;
    378  1.1  riastrad 	int ret = 0;
    379  1.1  riastrad 
    380  1.1  riastrad 	mutex_lock(&p->event_mutex);
    381  1.1  riastrad 
    382  1.1  riastrad 	ev = lookup_event_by_id(p, event_id);
    383  1.1  riastrad 
    384  1.1  riastrad 	if (ev)
    385  1.1  riastrad 		destroy_event(p, ev);
    386  1.1  riastrad 	else
    387  1.1  riastrad 		ret = -EINVAL;
    388  1.1  riastrad 
    389  1.1  riastrad 	mutex_unlock(&p->event_mutex);
    390  1.1  riastrad 	return ret;
    391  1.1  riastrad }
    392  1.1  riastrad 
    393  1.1  riastrad static void set_event(struct kfd_event *ev)
    394  1.1  riastrad {
    395  1.1  riastrad 	struct kfd_event_waiter *waiter;
    396  1.1  riastrad 
    397  1.3  riastrad 	/* Auto reset if the list is non-empty and we're waking
    398  1.3  riastrad 	 * someone. waitqueue_active is safe here because we're
    399  1.3  riastrad 	 * protected by the p->event_mutex, which is also held when
    400  1.3  riastrad 	 * updating the wait queues in kfd_wait_on_events.
    401  1.3  riastrad 	 */
    402  1.3  riastrad 	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
    403  1.1  riastrad 
    404  1.3  riastrad 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
    405  1.1  riastrad 		waiter->activated = true;
    406  1.1  riastrad 
    407  1.3  riastrad 	wake_up_all(&ev->wq);
    408  1.1  riastrad }
    409  1.1  riastrad 
    410  1.1  riastrad /* Assumes that p is current. */
    411  1.1  riastrad int kfd_set_event(struct kfd_process *p, uint32_t event_id)
    412  1.1  riastrad {
    413  1.1  riastrad 	int ret = 0;
    414  1.1  riastrad 	struct kfd_event *ev;
    415  1.1  riastrad 
    416  1.1  riastrad 	mutex_lock(&p->event_mutex);
    417  1.1  riastrad 
    418  1.1  riastrad 	ev = lookup_event_by_id(p, event_id);
    419  1.1  riastrad 
    420  1.1  riastrad 	if (ev && event_can_be_cpu_signaled(ev))
    421  1.1  riastrad 		set_event(ev);
    422  1.1  riastrad 	else
    423  1.1  riastrad 		ret = -EINVAL;
    424  1.1  riastrad 
    425  1.1  riastrad 	mutex_unlock(&p->event_mutex);
    426  1.1  riastrad 	return ret;
    427  1.1  riastrad }
    428  1.1  riastrad 
    429  1.1  riastrad static void reset_event(struct kfd_event *ev)
    430  1.1  riastrad {
    431  1.1  riastrad 	ev->signaled = false;
    432  1.1  riastrad }
    433  1.1  riastrad 
    434  1.1  riastrad /* Assumes that p is current. */
    435  1.1  riastrad int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
    436  1.1  riastrad {
    437  1.1  riastrad 	int ret = 0;
    438  1.1  riastrad 	struct kfd_event *ev;
    439  1.1  riastrad 
    440  1.1  riastrad 	mutex_lock(&p->event_mutex);
    441  1.1  riastrad 
    442  1.1  riastrad 	ev = lookup_event_by_id(p, event_id);
    443  1.1  riastrad 
    444  1.1  riastrad 	if (ev && event_can_be_cpu_signaled(ev))
    445  1.1  riastrad 		reset_event(ev);
    446  1.1  riastrad 	else
    447  1.1  riastrad 		ret = -EINVAL;
    448  1.1  riastrad 
    449  1.1  riastrad 	mutex_unlock(&p->event_mutex);
    450  1.1  riastrad 	return ret;
    451  1.1  riastrad 
    452  1.1  riastrad }
    453  1.1  riastrad 
    454  1.1  riastrad static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
    455  1.1  riastrad {
    456  1.3  riastrad 	page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
    457  1.1  riastrad }
    458  1.1  riastrad 
    459  1.1  riastrad static void set_event_from_interrupt(struct kfd_process *p,
    460  1.1  riastrad 					struct kfd_event *ev)
    461  1.1  riastrad {
    462  1.1  riastrad 	if (ev && event_can_be_gpu_signaled(ev)) {
    463  1.1  riastrad 		acknowledge_signal(p, ev);
    464  1.1  riastrad 		set_event(ev);
    465  1.1  riastrad 	}
    466  1.1  riastrad }
    467  1.1  riastrad 
    468  1.1  riastrad void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
    469  1.1  riastrad 				uint32_t valid_id_bits)
    470  1.1  riastrad {
    471  1.3  riastrad 	struct kfd_event *ev = NULL;
    472  1.1  riastrad 
    473  1.1  riastrad 	/*
    474  1.1  riastrad 	 * Because we are called from arbitrary context (workqueue) as opposed
    475  1.1  riastrad 	 * to process context, kfd_process could attempt to exit while we are
    476  1.3  riastrad 	 * running so the lookup function increments the process ref count.
    477  1.1  riastrad 	 */
    478  1.1  riastrad 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
    479  1.1  riastrad 
    480  1.1  riastrad 	if (!p)
    481  1.1  riastrad 		return; /* Presumably process exited. */
    482  1.1  riastrad 
    483  1.1  riastrad 	mutex_lock(&p->event_mutex);
    484  1.1  riastrad 
    485  1.3  riastrad 	if (valid_id_bits)
    486  1.3  riastrad 		ev = lookup_signaled_event_by_partial_id(p, partial_id,
    487  1.3  riastrad 							 valid_id_bits);
    488  1.3  riastrad 	if (ev) {
    489  1.1  riastrad 		set_event_from_interrupt(p, ev);
    490  1.3  riastrad 	} else if (p->signal_page) {
    491  1.1  riastrad 		/*
    492  1.3  riastrad 		 * Partial ID lookup failed. Assume that the event ID
    493  1.3  riastrad 		 * in the interrupt payload was invalid and do an
    494  1.3  riastrad 		 * exhaustive search of signaled events.
    495  1.1  riastrad 		 */
    496  1.3  riastrad 		uint64_t *slots = page_slots(p->signal_page);
    497  1.3  riastrad 		uint32_t id;
    498  1.3  riastrad 
    499  1.3  riastrad 		if (valid_id_bits)
    500  1.3  riastrad 			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
    501  1.3  riastrad 					     partial_id, valid_id_bits);
    502  1.3  riastrad 
    503  1.3  riastrad 		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
    504  1.3  riastrad 			/* With relatively few events, it's faster to
    505  1.3  riastrad 			 * iterate over the event IDR
    506  1.3  riastrad 			 */
    507  1.3  riastrad 			idr_for_each_entry(&p->event_idr, ev, id) {
    508  1.3  riastrad 				if (id >= KFD_SIGNAL_EVENT_LIMIT)
    509  1.3  riastrad 					break;
    510  1.1  riastrad 
    511  1.3  riastrad 				if (slots[id] != UNSIGNALED_EVENT_SLOT)
    512  1.3  riastrad 					set_event_from_interrupt(p, ev);
    513  1.3  riastrad 			}
    514  1.3  riastrad 		} else {
    515  1.3  riastrad 			/* With relatively many events, it's faster to
    516  1.3  riastrad 			 * iterate over the signal slots and lookup
    517  1.3  riastrad 			 * only signaled events from the IDR.
    518  1.3  riastrad 			 */
    519  1.3  riastrad 			for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
    520  1.3  riastrad 				if (slots[id] != UNSIGNALED_EVENT_SLOT) {
    521  1.3  riastrad 					ev = lookup_event_by_id(p, id);
    522  1.1  riastrad 					set_event_from_interrupt(p, ev);
    523  1.1  riastrad 				}
    524  1.3  riastrad 		}
    525  1.1  riastrad 	}
    526  1.1  riastrad 
    527  1.1  riastrad 	mutex_unlock(&p->event_mutex);
    528  1.3  riastrad 	kfd_unref_process(p);
    529  1.1  riastrad }
    530  1.1  riastrad 
    531  1.1  riastrad static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
    532  1.1  riastrad {
    533  1.1  riastrad 	struct kfd_event_waiter *event_waiters;
    534  1.1  riastrad 	uint32_t i;
    535  1.1  riastrad 
    536  1.1  riastrad 	event_waiters = kmalloc_array(num_events,
    537  1.1  riastrad 					sizeof(struct kfd_event_waiter),
    538  1.1  riastrad 					GFP_KERNEL);
    539  1.1  riastrad 
    540  1.1  riastrad 	for (i = 0; (event_waiters) && (i < num_events) ; i++) {
    541  1.3  riastrad 		init_wait(&event_waiters[i].wait);
    542  1.1  riastrad 		event_waiters[i].activated = false;
    543  1.1  riastrad 	}
    544  1.1  riastrad 
    545  1.1  riastrad 	return event_waiters;
    546  1.1  riastrad }
    547  1.1  riastrad 
    548  1.3  riastrad static int init_event_waiter_get_status(struct kfd_process *p,
    549  1.1  riastrad 		struct kfd_event_waiter *waiter,
    550  1.3  riastrad 		uint32_t event_id)
    551  1.1  riastrad {
    552  1.1  riastrad 	struct kfd_event *ev = lookup_event_by_id(p, event_id);
    553  1.1  riastrad 
    554  1.1  riastrad 	if (!ev)
    555  1.1  riastrad 		return -EINVAL;
    556  1.1  riastrad 
    557  1.1  riastrad 	waiter->event = ev;
    558  1.1  riastrad 	waiter->activated = ev->signaled;
    559  1.1  riastrad 	ev->signaled = ev->signaled && !ev->auto_reset;
    560  1.1  riastrad 
    561  1.3  riastrad 	return 0;
    562  1.3  riastrad }
    563  1.3  riastrad 
    564  1.3  riastrad static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
    565  1.3  riastrad {
    566  1.3  riastrad 	struct kfd_event *ev = waiter->event;
    567  1.1  riastrad 
    568  1.3  riastrad 	/* Only add to the wait list if we actually need to
    569  1.3  riastrad 	 * wait on this event.
    570  1.3  riastrad 	 */
    571  1.3  riastrad 	if (!waiter->activated)
    572  1.3  riastrad 		add_wait_queue(&ev->wq, &waiter->wait);
    573  1.1  riastrad }
    574  1.1  riastrad 
    575  1.3  riastrad /* test_event_condition - Test condition of events being waited for
    576  1.3  riastrad  * @all:           Return completion only if all events have signaled
    577  1.3  riastrad  * @num_events:    Number of events to wait for
    578  1.3  riastrad  * @event_waiters: Array of event waiters, one per event
    579  1.3  riastrad  *
    580  1.3  riastrad  * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
    581  1.3  riastrad  * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
    582  1.3  riastrad  * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
    583  1.3  riastrad  * the events have been destroyed.
    584  1.3  riastrad  */
    585  1.3  riastrad static uint32_t test_event_condition(bool all, uint32_t num_events,
    586  1.1  riastrad 				struct kfd_event_waiter *event_waiters)
    587  1.1  riastrad {
    588  1.1  riastrad 	uint32_t i;
    589  1.1  riastrad 	uint32_t activated_count = 0;
    590  1.1  riastrad 
    591  1.1  riastrad 	for (i = 0; i < num_events; i++) {
    592  1.3  riastrad 		if (!event_waiters[i].event)
    593  1.3  riastrad 			return KFD_IOC_WAIT_RESULT_FAIL;
    594  1.3  riastrad 
    595  1.1  riastrad 		if (event_waiters[i].activated) {
    596  1.1  riastrad 			if (!all)
    597  1.3  riastrad 				return KFD_IOC_WAIT_RESULT_COMPLETE;
    598  1.1  riastrad 
    599  1.1  riastrad 			activated_count++;
    600  1.1  riastrad 		}
    601  1.1  riastrad 	}
    602  1.1  riastrad 
    603  1.3  riastrad 	return activated_count == num_events ?
    604  1.3  riastrad 		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
    605  1.1  riastrad }
    606  1.1  riastrad 
    607  1.1  riastrad /*
    608  1.1  riastrad  * Copy event specific data, if defined.
    609  1.1  riastrad  * Currently only memory exception events have additional data to copy to user
    610  1.1  riastrad  */
    611  1.3  riastrad static int copy_signaled_event_data(uint32_t num_events,
    612  1.1  riastrad 		struct kfd_event_waiter *event_waiters,
    613  1.1  riastrad 		struct kfd_event_data __user *data)
    614  1.1  riastrad {
    615  1.1  riastrad 	struct kfd_hsa_memory_exception_data *src;
    616  1.1  riastrad 	struct kfd_hsa_memory_exception_data __user *dst;
    617  1.1  riastrad 	struct kfd_event_waiter *waiter;
    618  1.1  riastrad 	struct kfd_event *event;
    619  1.1  riastrad 	uint32_t i;
    620  1.1  riastrad 
    621  1.1  riastrad 	for (i = 0; i < num_events; i++) {
    622  1.1  riastrad 		waiter = &event_waiters[i];
    623  1.1  riastrad 		event = waiter->event;
    624  1.1  riastrad 		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
    625  1.3  riastrad 			dst = &data[i].memory_exception_data;
    626  1.1  riastrad 			src = &event->memory_exception_data;
    627  1.1  riastrad 			if (copy_to_user(dst, src,
    628  1.1  riastrad 				sizeof(struct kfd_hsa_memory_exception_data)))
    629  1.3  riastrad 				return -EFAULT;
    630  1.1  riastrad 		}
    631  1.1  riastrad 	}
    632  1.1  riastrad 
    633  1.3  riastrad 	return 0;
    634  1.1  riastrad 
    635  1.1  riastrad }
    636  1.1  riastrad 
    637  1.1  riastrad 
    638  1.1  riastrad 
    639  1.1  riastrad static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
    640  1.1  riastrad {
    641  1.1  riastrad 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
    642  1.1  riastrad 		return 0;
    643  1.1  riastrad 
    644  1.1  riastrad 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
    645  1.1  riastrad 		return MAX_SCHEDULE_TIMEOUT;
    646  1.1  riastrad 
    647  1.1  riastrad 	/*
    648  1.1  riastrad 	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
    649  1.1  riastrad 	 * but we consider them finite.
    650  1.1  riastrad 	 * This hack is wrong, but nobody is likely to notice.
    651  1.1  riastrad 	 */
    652  1.1  riastrad 	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
    653  1.1  riastrad 
    654  1.1  riastrad 	return msecs_to_jiffies(user_timeout_ms) + 1;
    655  1.1  riastrad }
    656  1.1  riastrad 
    657  1.1  riastrad static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
    658  1.1  riastrad {
    659  1.1  riastrad 	uint32_t i;
    660  1.1  riastrad 
    661  1.1  riastrad 	for (i = 0; i < num_events; i++)
    662  1.3  riastrad 		if (waiters[i].event)
    663  1.3  riastrad 			remove_wait_queue(&waiters[i].event->wq,
    664  1.3  riastrad 					  &waiters[i].wait);
    665  1.1  riastrad 
    666  1.1  riastrad 	kfree(waiters);
    667  1.1  riastrad }
    668  1.1  riastrad 
    669  1.1  riastrad int kfd_wait_on_events(struct kfd_process *p,
    670  1.1  riastrad 		       uint32_t num_events, void __user *data,
    671  1.1  riastrad 		       bool all, uint32_t user_timeout_ms,
    672  1.3  riastrad 		       uint32_t *wait_result)
    673  1.1  riastrad {
    674  1.1  riastrad 	struct kfd_event_data __user *events =
    675  1.1  riastrad 			(struct kfd_event_data __user *) data;
    676  1.1  riastrad 	uint32_t i;
    677  1.1  riastrad 	int ret = 0;
    678  1.3  riastrad 
    679  1.1  riastrad 	struct kfd_event_waiter *event_waiters = NULL;
    680  1.1  riastrad 	long timeout = user_timeout_to_jiffies(user_timeout_ms);
    681  1.1  riastrad 
    682  1.1  riastrad 	event_waiters = alloc_event_waiters(num_events);
    683  1.1  riastrad 	if (!event_waiters) {
    684  1.1  riastrad 		ret = -ENOMEM;
    685  1.3  riastrad 		goto out;
    686  1.1  riastrad 	}
    687  1.1  riastrad 
    688  1.3  riastrad 	mutex_lock(&p->event_mutex);
    689  1.3  riastrad 
    690  1.1  riastrad 	for (i = 0; i < num_events; i++) {
    691  1.1  riastrad 		struct kfd_event_data event_data;
    692  1.1  riastrad 
    693  1.1  riastrad 		if (copy_from_user(&event_data, &events[i],
    694  1.1  riastrad 				sizeof(struct kfd_event_data))) {
    695  1.1  riastrad 			ret = -EFAULT;
    696  1.3  riastrad 			goto out_unlock;
    697  1.1  riastrad 		}
    698  1.1  riastrad 
    699  1.3  riastrad 		ret = init_event_waiter_get_status(p, &event_waiters[i],
    700  1.3  riastrad 				event_data.event_id);
    701  1.1  riastrad 		if (ret)
    702  1.3  riastrad 			goto out_unlock;
    703  1.1  riastrad 	}
    704  1.1  riastrad 
    705  1.3  riastrad 	/* Check condition once. */
    706  1.3  riastrad 	*wait_result = test_event_condition(all, num_events, event_waiters);
    707  1.3  riastrad 	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
    708  1.3  riastrad 		ret = copy_signaled_event_data(num_events,
    709  1.3  riastrad 					       event_waiters, events);
    710  1.3  riastrad 		goto out_unlock;
    711  1.3  riastrad 	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
    712  1.3  riastrad 		/* This should not happen. Events shouldn't be
    713  1.3  riastrad 		 * destroyed while we're holding the event_mutex
    714  1.3  riastrad 		 */
    715  1.3  riastrad 		goto out_unlock;
    716  1.3  riastrad 	}
    717  1.3  riastrad 
    718  1.3  riastrad 	/* Add to wait lists if we need to wait. */
    719  1.3  riastrad 	for (i = 0; i < num_events; i++)
    720  1.3  riastrad 		init_event_waiter_add_to_waitlist(&event_waiters[i]);
    721  1.3  riastrad 
    722  1.1  riastrad 	mutex_unlock(&p->event_mutex);
    723  1.1  riastrad 
    724  1.1  riastrad 	while (true) {
    725  1.1  riastrad 		if (fatal_signal_pending(current)) {
    726  1.1  riastrad 			ret = -EINTR;
    727  1.1  riastrad 			break;
    728  1.1  riastrad 		}
    729  1.1  riastrad 
    730  1.1  riastrad 		if (signal_pending(current)) {
    731  1.1  riastrad 			/*
    732  1.1  riastrad 			 * This is wrong when a nonzero, non-infinite timeout
    733  1.1  riastrad 			 * is specified. We need to use
    734  1.1  riastrad 			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
    735  1.1  riastrad 			 * contains a union with data for each user and it's
    736  1.1  riastrad 			 * in generic kernel code that I don't want to
    737  1.1  riastrad 			 * touch yet.
    738  1.1  riastrad 			 */
    739  1.1  riastrad 			ret = -ERESTARTSYS;
    740  1.1  riastrad 			break;
    741  1.1  riastrad 		}
    742  1.1  riastrad 
    743  1.3  riastrad 		/* Set task state to interruptible sleep before
    744  1.3  riastrad 		 * checking wake-up conditions. A concurrent wake-up
    745  1.3  riastrad 		 * will put the task back into runnable state. In that
    746  1.3  riastrad 		 * case schedule_timeout will not put the task to
    747  1.3  riastrad 		 * sleep and we'll get a chance to re-check the
    748  1.3  riastrad 		 * updated conditions almost immediately. Otherwise,
    749  1.3  riastrad 		 * this race condition would lead to a soft hang or a
    750  1.3  riastrad 		 * very long sleep.
    751  1.3  riastrad 		 */
    752  1.3  riastrad 		set_current_state(TASK_INTERRUPTIBLE);
    753  1.3  riastrad 
    754  1.3  riastrad 		*wait_result = test_event_condition(all, num_events,
    755  1.3  riastrad 						    event_waiters);
    756  1.3  riastrad 		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
    757  1.1  riastrad 			break;
    758  1.1  riastrad 
    759  1.3  riastrad 		if (timeout <= 0)
    760  1.1  riastrad 			break;
    761  1.1  riastrad 
    762  1.3  riastrad 		timeout = schedule_timeout(timeout);
    763  1.1  riastrad 	}
    764  1.1  riastrad 	__set_current_state(TASK_RUNNING);
    765  1.1  riastrad 
    766  1.3  riastrad 	/* copy_signaled_event_data may sleep. So this has to happen
    767  1.3  riastrad 	 * after the task state is set back to RUNNING.
    768  1.3  riastrad 	 */
    769  1.3  riastrad 	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
    770  1.3  riastrad 		ret = copy_signaled_event_data(num_events,
    771  1.3  riastrad 					       event_waiters, events);
    772  1.3  riastrad 
    773  1.1  riastrad 	mutex_lock(&p->event_mutex);
    774  1.3  riastrad out_unlock:
    775  1.1  riastrad 	free_waiters(num_events, event_waiters);
    776  1.1  riastrad 	mutex_unlock(&p->event_mutex);
    777  1.3  riastrad out:
    778  1.3  riastrad 	if (ret)
    779  1.3  riastrad 		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
    780  1.3  riastrad 	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
    781  1.3  riastrad 		ret = -EIO;
    782  1.1  riastrad 
    783  1.1  riastrad 	return ret;
    784  1.1  riastrad }
    785  1.1  riastrad 
    786  1.1  riastrad int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
    787  1.1  riastrad {
    788  1.1  riastrad 	unsigned long pfn;
    789  1.3  riastrad 	struct kfd_signal_page *page;
    790  1.3  riastrad 	int ret;
    791  1.1  riastrad 
    792  1.3  riastrad 	/* check required size doesn't exceed the allocated size */
    793  1.3  riastrad 	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
    794  1.1  riastrad 			get_order(vma->vm_end - vma->vm_start)) {
    795  1.3  riastrad 		pr_err("Event page mmap requested illegal size\n");
    796  1.1  riastrad 		return -EINVAL;
    797  1.1  riastrad 	}
    798  1.1  riastrad 
    799  1.3  riastrad 	page = p->signal_page;
    800  1.1  riastrad 	if (!page) {
    801  1.1  riastrad 		/* Probably KFD bug, but mmap is user-accessible. */
    802  1.3  riastrad 		pr_debug("Signal page could not be found\n");
    803  1.1  riastrad 		return -EINVAL;
    804  1.1  riastrad 	}
    805  1.1  riastrad 
    806  1.1  riastrad 	pfn = __pa(page->kernel_address);
    807  1.1  riastrad 	pfn >>= PAGE_SHIFT;
    808  1.1  riastrad 
    809  1.1  riastrad 	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
    810  1.1  riastrad 		       | VM_DONTDUMP | VM_PFNMAP;
    811  1.1  riastrad 
    812  1.3  riastrad 	pr_debug("Mapping signal page\n");
    813  1.1  riastrad 	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
    814  1.1  riastrad 	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
    815  1.1  riastrad 	pr_debug("     pfn                 == 0x%016lX\n", pfn);
    816  1.1  riastrad 	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
    817  1.1  riastrad 	pr_debug("     size                == 0x%08lX\n",
    818  1.1  riastrad 			vma->vm_end - vma->vm_start);
    819  1.1  riastrad 
    820  1.1  riastrad 	page->user_address = (uint64_t __user *)vma->vm_start;
    821  1.1  riastrad 
    822  1.1  riastrad 	/* mapping the page to user process */
    823  1.3  riastrad 	ret = remap_pfn_range(vma, vma->vm_start, pfn,
    824  1.1  riastrad 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
    825  1.3  riastrad 	if (!ret)
    826  1.3  riastrad 		p->signal_mapped_size = vma->vm_end - vma->vm_start;
    827  1.3  riastrad 
    828  1.3  riastrad 	return ret;
    829  1.1  riastrad }
    830  1.1  riastrad 
    831  1.1  riastrad /*
    832  1.1  riastrad  * Assumes that p->event_mutex is held and of course
    833  1.1  riastrad  * that p is not going away (current or locked).
    834  1.1  riastrad  */
    835  1.1  riastrad static void lookup_events_by_type_and_signal(struct kfd_process *p,
    836  1.1  riastrad 		int type, void *event_data)
    837  1.1  riastrad {
    838  1.1  riastrad 	struct kfd_hsa_memory_exception_data *ev_data;
    839  1.1  riastrad 	struct kfd_event *ev;
    840  1.3  riastrad 	uint32_t id;
    841  1.1  riastrad 	bool send_signal = true;
    842  1.1  riastrad 
    843  1.1  riastrad 	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
    844  1.1  riastrad 
    845  1.3  riastrad 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
    846  1.3  riastrad 	idr_for_each_entry_continue(&p->event_idr, ev, id)
    847  1.1  riastrad 		if (ev->type == type) {
    848  1.1  riastrad 			send_signal = false;
    849  1.1  riastrad 			dev_dbg(kfd_device,
    850  1.1  riastrad 					"Event found: id %X type %d",
    851  1.1  riastrad 					ev->event_id, ev->type);
    852  1.1  riastrad 			set_event(ev);
    853  1.1  riastrad 			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
    854  1.1  riastrad 				ev->memory_exception_data = *ev_data;
    855  1.1  riastrad 		}
    856  1.1  riastrad 
    857  1.3  riastrad 	if (type == KFD_EVENT_TYPE_MEMORY) {
    858  1.3  riastrad 		dev_warn(kfd_device,
    859  1.3  riastrad 			"Sending SIGSEGV to process %d (pasid 0x%x)",
    860  1.3  riastrad 				p->lead_thread->pid, p->pasid);
    861  1.3  riastrad 		send_sig(SIGSEGV, p->lead_thread, 0);
    862  1.3  riastrad 	}
    863  1.3  riastrad 
    864  1.1  riastrad 	/* Send SIGTERM no event of type "type" has been found*/
    865  1.1  riastrad 	if (send_signal) {
    866  1.1  riastrad 		if (send_sigterm) {
    867  1.1  riastrad 			dev_warn(kfd_device,
    868  1.3  riastrad 				"Sending SIGTERM to process %d (pasid 0x%x)",
    869  1.3  riastrad 					p->lead_thread->pid, p->pasid);
    870  1.1  riastrad 			send_sig(SIGTERM, p->lead_thread, 0);
    871  1.1  riastrad 		} else {
    872  1.1  riastrad 			dev_err(kfd_device,
    873  1.3  riastrad 				"Process %d (pasid 0x%x) got unhandled exception",
    874  1.3  riastrad 				p->lead_thread->pid, p->pasid);
    875  1.1  riastrad 		}
    876  1.1  riastrad 	}
    877  1.1  riastrad }
    878  1.1  riastrad 
    879  1.3  riastrad #ifdef KFD_SUPPORT_IOMMU_V2
    880  1.1  riastrad void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
    881  1.1  riastrad 		unsigned long address, bool is_write_requested,
    882  1.1  riastrad 		bool is_execute_requested)
    883  1.1  riastrad {
    884  1.1  riastrad 	struct kfd_hsa_memory_exception_data memory_exception_data;
    885  1.1  riastrad 	struct vm_area_struct *vma;
    886  1.1  riastrad 
    887  1.1  riastrad 	/*
    888  1.1  riastrad 	 * Because we are called from arbitrary context (workqueue) as opposed
    889  1.1  riastrad 	 * to process context, kfd_process could attempt to exit while we are
    890  1.3  riastrad 	 * running so the lookup function increments the process ref count.
    891  1.1  riastrad 	 */
    892  1.1  riastrad 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
    893  1.3  riastrad 	struct mm_struct *mm;
    894  1.1  riastrad 
    895  1.1  riastrad 	if (!p)
    896  1.1  riastrad 		return; /* Presumably process exited. */
    897  1.1  riastrad 
    898  1.3  riastrad 	/* Take a safe reference to the mm_struct, which may otherwise
    899  1.3  riastrad 	 * disappear even while the kfd_process is still referenced.
    900  1.3  riastrad 	 */
    901  1.3  riastrad 	mm = get_task_mm(p->lead_thread);
    902  1.3  riastrad 	if (!mm) {
    903  1.3  riastrad 		kfd_unref_process(p);
    904  1.3  riastrad 		return; /* Process is exiting */
    905  1.3  riastrad 	}
    906  1.3  riastrad 
    907  1.1  riastrad 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
    908  1.1  riastrad 
    909  1.3  riastrad 	down_read(&mm->mmap_sem);
    910  1.3  riastrad 	vma = find_vma(mm, address);
    911  1.1  riastrad 
    912  1.1  riastrad 	memory_exception_data.gpu_id = dev->id;
    913  1.1  riastrad 	memory_exception_data.va = address;
    914  1.1  riastrad 	/* Set failure reason */
    915  1.1  riastrad 	memory_exception_data.failure.NotPresent = 1;
    916  1.1  riastrad 	memory_exception_data.failure.NoExecute = 0;
    917  1.1  riastrad 	memory_exception_data.failure.ReadOnly = 0;
    918  1.3  riastrad 	if (vma && address >= vma->vm_start) {
    919  1.3  riastrad 		memory_exception_data.failure.NotPresent = 0;
    920  1.3  riastrad 
    921  1.3  riastrad 		if (is_write_requested && !(vma->vm_flags & VM_WRITE))
    922  1.3  riastrad 			memory_exception_data.failure.ReadOnly = 1;
    923  1.3  riastrad 		else
    924  1.3  riastrad 			memory_exception_data.failure.ReadOnly = 0;
    925  1.3  riastrad 
    926  1.3  riastrad 		if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
    927  1.3  riastrad 			memory_exception_data.failure.NoExecute = 1;
    928  1.3  riastrad 		else
    929  1.1  riastrad 			memory_exception_data.failure.NoExecute = 0;
    930  1.1  riastrad 	}
    931  1.1  riastrad 
    932  1.3  riastrad 	up_read(&mm->mmap_sem);
    933  1.3  riastrad 	mmput(mm);
    934  1.3  riastrad 
    935  1.3  riastrad 	pr_debug("notpresent %d, noexecute %d, readonly %d\n",
    936  1.3  riastrad 			memory_exception_data.failure.NotPresent,
    937  1.3  riastrad 			memory_exception_data.failure.NoExecute,
    938  1.3  riastrad 			memory_exception_data.failure.ReadOnly);
    939  1.1  riastrad 
    940  1.3  riastrad 	/* Workaround on Raven to not kill the process when memory is freed
    941  1.3  riastrad 	 * before IOMMU is able to finish processing all the excessive PPRs
    942  1.3  riastrad 	 */
    943  1.3  riastrad 	if (dev->device_info->asic_family != CHIP_RAVEN &&
    944  1.3  riastrad 	    dev->device_info->asic_family != CHIP_RENOIR) {
    945  1.3  riastrad 		mutex_lock(&p->event_mutex);
    946  1.3  riastrad 
    947  1.3  riastrad 		/* Lookup events by type and signal them */
    948  1.3  riastrad 		lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
    949  1.3  riastrad 				&memory_exception_data);
    950  1.1  riastrad 
    951  1.3  riastrad 		mutex_unlock(&p->event_mutex);
    952  1.3  riastrad 	}
    953  1.1  riastrad 
    954  1.3  riastrad 	kfd_unref_process(p);
    955  1.1  riastrad }
    956  1.3  riastrad #endif /* KFD_SUPPORT_IOMMU_V2 */
    957  1.1  riastrad 
    958  1.1  riastrad void kfd_signal_hw_exception_event(unsigned int pasid)
    959  1.1  riastrad {
    960  1.1  riastrad 	/*
    961  1.1  riastrad 	 * Because we are called from arbitrary context (workqueue) as opposed
    962  1.1  riastrad 	 * to process context, kfd_process could attempt to exit while we are
    963  1.3  riastrad 	 * running so the lookup function increments the process ref count.
    964  1.1  riastrad 	 */
    965  1.1  riastrad 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
    966  1.1  riastrad 
    967  1.1  riastrad 	if (!p)
    968  1.1  riastrad 		return; /* Presumably process exited. */
    969  1.1  riastrad 
    970  1.1  riastrad 	mutex_lock(&p->event_mutex);
    971  1.1  riastrad 
    972  1.1  riastrad 	/* Lookup events by type and signal them */
    973  1.1  riastrad 	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
    974  1.1  riastrad 
    975  1.1  riastrad 	mutex_unlock(&p->event_mutex);
    976  1.3  riastrad 	kfd_unref_process(p);
    977  1.3  riastrad }
    978  1.3  riastrad 
    979  1.3  riastrad void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
    980  1.3  riastrad 				struct kfd_vm_fault_info *info)
    981  1.3  riastrad {
    982  1.3  riastrad 	struct kfd_event *ev;
    983  1.3  riastrad 	uint32_t id;
    984  1.3  riastrad 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
    985  1.3  riastrad 	struct kfd_hsa_memory_exception_data memory_exception_data;
    986  1.3  riastrad 
    987  1.3  riastrad 	if (!p)
    988  1.3  riastrad 		return; /* Presumably process exited. */
    989  1.3  riastrad 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
    990  1.3  riastrad 	memory_exception_data.gpu_id = dev->id;
    991  1.3  riastrad 	memory_exception_data.failure.imprecise = true;
    992  1.3  riastrad 	/* Set failure reason */
    993  1.3  riastrad 	if (info) {
    994  1.3  riastrad 		memory_exception_data.va = (info->page_addr) << PAGE_SHIFT;
    995  1.3  riastrad 		memory_exception_data.failure.NotPresent =
    996  1.3  riastrad 			info->prot_valid ? 1 : 0;
    997  1.3  riastrad 		memory_exception_data.failure.NoExecute =
    998  1.3  riastrad 			info->prot_exec ? 1 : 0;
    999  1.3  riastrad 		memory_exception_data.failure.ReadOnly =
   1000  1.3  riastrad 			info->prot_write ? 1 : 0;
   1001  1.3  riastrad 		memory_exception_data.failure.imprecise = 0;
   1002  1.3  riastrad 	}
   1003  1.3  riastrad 	mutex_lock(&p->event_mutex);
   1004  1.3  riastrad 
   1005  1.3  riastrad 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
   1006  1.3  riastrad 	idr_for_each_entry_continue(&p->event_idr, ev, id)
   1007  1.3  riastrad 		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
   1008  1.3  riastrad 			ev->memory_exception_data = memory_exception_data;
   1009  1.3  riastrad 			set_event(ev);
   1010  1.3  riastrad 		}
   1011  1.3  riastrad 
   1012  1.3  riastrad 	mutex_unlock(&p->event_mutex);
   1013  1.3  riastrad 	kfd_unref_process(p);
   1014  1.3  riastrad }
   1015  1.3  riastrad 
   1016  1.3  riastrad void kfd_signal_reset_event(struct kfd_dev *dev)
   1017  1.3  riastrad {
   1018  1.3  riastrad 	struct kfd_hsa_hw_exception_data hw_exception_data;
   1019  1.3  riastrad 	struct kfd_hsa_memory_exception_data memory_exception_data;
   1020  1.3  riastrad 	struct kfd_process *p;
   1021  1.3  riastrad 	struct kfd_event *ev;
   1022  1.3  riastrad 	unsigned int temp;
   1023  1.3  riastrad 	uint32_t id, idx;
   1024  1.3  riastrad 	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
   1025  1.3  riastrad 			KFD_HW_EXCEPTION_ECC :
   1026  1.3  riastrad 			KFD_HW_EXCEPTION_GPU_HANG;
   1027  1.3  riastrad 
   1028  1.3  riastrad 	/* Whole gpu reset caused by GPU hang and memory is lost */
   1029  1.3  riastrad 	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
   1030  1.3  riastrad 	hw_exception_data.gpu_id = dev->id;
   1031  1.3  riastrad 	hw_exception_data.memory_lost = 1;
   1032  1.3  riastrad 	hw_exception_data.reset_cause = reset_cause;
   1033  1.3  riastrad 
   1034  1.3  riastrad 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
   1035  1.3  riastrad 	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
   1036  1.3  riastrad 	memory_exception_data.gpu_id = dev->id;
   1037  1.3  riastrad 	memory_exception_data.failure.imprecise = true;
   1038  1.3  riastrad 
   1039  1.3  riastrad 	idx = srcu_read_lock(&kfd_processes_srcu);
   1040  1.3  riastrad 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
   1041  1.3  riastrad 		mutex_lock(&p->event_mutex);
   1042  1.3  riastrad 		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
   1043  1.3  riastrad 		idr_for_each_entry_continue(&p->event_idr, ev, id) {
   1044  1.3  riastrad 			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
   1045  1.3  riastrad 				ev->hw_exception_data = hw_exception_data;
   1046  1.3  riastrad 				set_event(ev);
   1047  1.3  riastrad 			}
   1048  1.3  riastrad 			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
   1049  1.3  riastrad 			    reset_cause == KFD_HW_EXCEPTION_ECC) {
   1050  1.3  riastrad 				ev->memory_exception_data = memory_exception_data;
   1051  1.3  riastrad 				set_event(ev);
   1052  1.3  riastrad 			}
   1053  1.3  riastrad 		}
   1054  1.3  riastrad 		mutex_unlock(&p->event_mutex);
   1055  1.3  riastrad 	}
   1056  1.3  riastrad 	srcu_read_unlock(&kfd_processes_srcu, idx);
   1057  1.1  riastrad }
   1058