kfd_topology.c revision 1.1 1 /* $NetBSD: kfd_topology.c,v 1.1 2018/08/27 01:34:46 riastradh Exp $ */
2
3 /*
4 * Copyright 2014 Advanced Micro Devices, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: kfd_topology.c,v 1.1 2018/08/27 01:34:46 riastradh Exp $");
27
28 #include <linux/types.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31 #include <linux/errno.h>
32 #include <linux/acpi.h>
33 #include <linux/hash.h>
34 #include <linux/cpufreq.h>
35 #include <linux/log2.h>
36
37 #include "kfd_priv.h"
38 #include "kfd_crat.h"
39 #include "kfd_topology.h"
40
41 static struct list_head topology_device_list;
42 static int topology_crat_parsed;
43 static struct kfd_system_properties sys_props;
44
45 static DECLARE_RWSEM(topology_lock);
46
47 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
48 {
49 struct kfd_topology_device *top_dev;
50 struct kfd_dev *device = NULL;
51
52 down_read(&topology_lock);
53
54 list_for_each_entry(top_dev, &topology_device_list, list)
55 if (top_dev->gpu_id == gpu_id) {
56 device = top_dev->gpu;
57 break;
58 }
59
60 up_read(&topology_lock);
61
62 return device;
63 }
64
65 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
66 {
67 struct kfd_topology_device *top_dev;
68 struct kfd_dev *device = NULL;
69
70 down_read(&topology_lock);
71
72 list_for_each_entry(top_dev, &topology_device_list, list)
73 if (top_dev->gpu->pdev == pdev) {
74 device = top_dev->gpu;
75 break;
76 }
77
78 up_read(&topology_lock);
79
80 return device;
81 }
82
83 static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size)
84 {
85 struct acpi_table_header *crat_table;
86 acpi_status status;
87
88 if (!size)
89 return -EINVAL;
90
91 /*
92 * Fetch the CRAT table from ACPI
93 */
94 status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
95 if (status == AE_NOT_FOUND) {
96 pr_warn("CRAT table not found\n");
97 return -ENODATA;
98 } else if (ACPI_FAILURE(status)) {
99 const char *err = acpi_format_exception(status);
100
101 pr_err("CRAT table error: %s\n", err);
102 return -EINVAL;
103 }
104
105 if (*size >= crat_table->length && crat_image != NULL)
106 memcpy(crat_image, crat_table, crat_table->length);
107
108 *size = crat_table->length;
109
110 return 0;
111 }
112
113 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
114 struct crat_subtype_computeunit *cu)
115 {
116 BUG_ON(!dev);
117 BUG_ON(!cu);
118
119 dev->node_props.cpu_cores_count = cu->num_cpu_cores;
120 dev->node_props.cpu_core_id_base = cu->processor_id_low;
121 if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
122 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
123
124 pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
125 cu->processor_id_low);
126 }
127
128 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
129 struct crat_subtype_computeunit *cu)
130 {
131 BUG_ON(!dev);
132 BUG_ON(!cu);
133
134 dev->node_props.simd_id_base = cu->processor_id_low;
135 dev->node_props.simd_count = cu->num_simd_cores;
136 dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
137 dev->node_props.max_waves_per_simd = cu->max_waves_simd;
138 dev->node_props.wave_front_size = cu->wave_front_size;
139 dev->node_props.mem_banks_count = cu->num_banks;
140 dev->node_props.array_count = cu->num_arrays;
141 dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
142 dev->node_props.simd_per_cu = cu->num_simd_per_cu;
143 dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
144 if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
145 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
146 pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
147 cu->processor_id_low);
148 }
149
150 /* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
151 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
152 {
153 struct kfd_topology_device *dev;
154 int i = 0;
155
156 BUG_ON(!cu);
157
158 pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
159 cu->proximity_domain, cu->hsa_capability);
160 list_for_each_entry(dev, &topology_device_list, list) {
161 if (cu->proximity_domain == i) {
162 if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
163 kfd_populated_cu_info_cpu(dev, cu);
164
165 if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
166 kfd_populated_cu_info_gpu(dev, cu);
167 break;
168 }
169 i++;
170 }
171
172 return 0;
173 }
174
175 /*
176 * kfd_parse_subtype_mem is called when the topology mutex is
177 * already acquired
178 */
179 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
180 {
181 struct kfd_mem_properties *props;
182 struct kfd_topology_device *dev;
183 int i = 0;
184
185 BUG_ON(!mem);
186
187 pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
188 mem->promixity_domain);
189 list_for_each_entry(dev, &topology_device_list, list) {
190 if (mem->promixity_domain == i) {
191 props = kfd_alloc_struct(props);
192 if (props == NULL)
193 return -ENOMEM;
194
195 if (dev->node_props.cpu_cores_count == 0)
196 props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
197 else
198 props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
199
200 if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
201 props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
202 if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
203 props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
204
205 props->size_in_bytes =
206 ((uint64_t)mem->length_high << 32) +
207 mem->length_low;
208 props->width = mem->width;
209
210 dev->mem_bank_count++;
211 list_add_tail(&props->list, &dev->mem_props);
212
213 break;
214 }
215 i++;
216 }
217
218 return 0;
219 }
220
221 /*
222 * kfd_parse_subtype_cache is called when the topology mutex
223 * is already acquired
224 */
225 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
226 {
227 struct kfd_cache_properties *props;
228 struct kfd_topology_device *dev;
229 uint32_t id;
230
231 BUG_ON(!cache);
232
233 id = cache->processor_id_low;
234
235 pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
236 list_for_each_entry(dev, &topology_device_list, list)
237 if (id == dev->node_props.cpu_core_id_base ||
238 id == dev->node_props.simd_id_base) {
239 props = kfd_alloc_struct(props);
240 if (props == NULL)
241 return -ENOMEM;
242
243 props->processor_id_low = id;
244 props->cache_level = cache->cache_level;
245 props->cache_size = cache->cache_size;
246 props->cacheline_size = cache->cache_line_size;
247 props->cachelines_per_tag = cache->lines_per_tag;
248 props->cache_assoc = cache->associativity;
249 props->cache_latency = cache->cache_latency;
250
251 if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
252 props->cache_type |= HSA_CACHE_TYPE_DATA;
253 if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
254 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
255 if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
256 props->cache_type |= HSA_CACHE_TYPE_CPU;
257 if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
258 props->cache_type |= HSA_CACHE_TYPE_HSACU;
259
260 dev->cache_count++;
261 dev->node_props.caches_count++;
262 list_add_tail(&props->list, &dev->cache_props);
263
264 break;
265 }
266
267 return 0;
268 }
269
270 /*
271 * kfd_parse_subtype_iolink is called when the topology mutex
272 * is already acquired
273 */
274 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
275 {
276 struct kfd_iolink_properties *props;
277 struct kfd_topology_device *dev;
278 uint32_t i = 0;
279 uint32_t id_from;
280 uint32_t id_to;
281
282 BUG_ON(!iolink);
283
284 id_from = iolink->proximity_domain_from;
285 id_to = iolink->proximity_domain_to;
286
287 pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from);
288 list_for_each_entry(dev, &topology_device_list, list) {
289 if (id_from == i) {
290 props = kfd_alloc_struct(props);
291 if (props == NULL)
292 return -ENOMEM;
293
294 props->node_from = id_from;
295 props->node_to = id_to;
296 props->ver_maj = iolink->version_major;
297 props->ver_min = iolink->version_minor;
298
299 /*
300 * weight factor (derived from CDIR), currently always 1
301 */
302 props->weight = 1;
303
304 props->min_latency = iolink->minimum_latency;
305 props->max_latency = iolink->maximum_latency;
306 props->min_bandwidth = iolink->minimum_bandwidth_mbs;
307 props->max_bandwidth = iolink->maximum_bandwidth_mbs;
308 props->rec_transfer_size =
309 iolink->recommended_transfer_size;
310
311 dev->io_link_count++;
312 dev->node_props.io_links_count++;
313 list_add_tail(&props->list, &dev->io_link_props);
314
315 break;
316 }
317 i++;
318 }
319
320 return 0;
321 }
322
323 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
324 {
325 struct crat_subtype_computeunit *cu;
326 struct crat_subtype_memory *mem;
327 struct crat_subtype_cache *cache;
328 struct crat_subtype_iolink *iolink;
329 int ret = 0;
330
331 BUG_ON(!sub_type_hdr);
332
333 switch (sub_type_hdr->type) {
334 case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
335 cu = (struct crat_subtype_computeunit *)sub_type_hdr;
336 ret = kfd_parse_subtype_cu(cu);
337 break;
338 case CRAT_SUBTYPE_MEMORY_AFFINITY:
339 mem = (struct crat_subtype_memory *)sub_type_hdr;
340 ret = kfd_parse_subtype_mem(mem);
341 break;
342 case CRAT_SUBTYPE_CACHE_AFFINITY:
343 cache = (struct crat_subtype_cache *)sub_type_hdr;
344 ret = kfd_parse_subtype_cache(cache);
345 break;
346 case CRAT_SUBTYPE_TLB_AFFINITY:
347 /*
348 * For now, nothing to do here
349 */
350 pr_info("Found TLB entry in CRAT table (not processing)\n");
351 break;
352 case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
353 /*
354 * For now, nothing to do here
355 */
356 pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
357 break;
358 case CRAT_SUBTYPE_IOLINK_AFFINITY:
359 iolink = (struct crat_subtype_iolink *)sub_type_hdr;
360 ret = kfd_parse_subtype_iolink(iolink);
361 break;
362 default:
363 pr_warn("Unknown subtype (%d) in CRAT\n",
364 sub_type_hdr->type);
365 }
366
367 return ret;
368 }
369
370 static void kfd_release_topology_device(struct kfd_topology_device *dev)
371 {
372 struct kfd_mem_properties *mem;
373 struct kfd_cache_properties *cache;
374 struct kfd_iolink_properties *iolink;
375
376 BUG_ON(!dev);
377
378 list_del(&dev->list);
379
380 while (dev->mem_props.next != &dev->mem_props) {
381 mem = container_of(dev->mem_props.next,
382 struct kfd_mem_properties, list);
383 list_del(&mem->list);
384 kfree(mem);
385 }
386
387 while (dev->cache_props.next != &dev->cache_props) {
388 cache = container_of(dev->cache_props.next,
389 struct kfd_cache_properties, list);
390 list_del(&cache->list);
391 kfree(cache);
392 }
393
394 while (dev->io_link_props.next != &dev->io_link_props) {
395 iolink = container_of(dev->io_link_props.next,
396 struct kfd_iolink_properties, list);
397 list_del(&iolink->list);
398 kfree(iolink);
399 }
400
401 kfree(dev);
402
403 sys_props.num_devices--;
404 }
405
406 static void kfd_release_live_view(void)
407 {
408 struct kfd_topology_device *dev;
409
410 while (topology_device_list.next != &topology_device_list) {
411 dev = container_of(topology_device_list.next,
412 struct kfd_topology_device, list);
413 kfd_release_topology_device(dev);
414 }
415
416 memset(&sys_props, 0, sizeof(sys_props));
417 }
418
419 static struct kfd_topology_device *kfd_create_topology_device(void)
420 {
421 struct kfd_topology_device *dev;
422
423 dev = kfd_alloc_struct(dev);
424 if (dev == NULL) {
425 pr_err("No memory to allocate a topology device");
426 return NULL;
427 }
428
429 INIT_LIST_HEAD(&dev->mem_props);
430 INIT_LIST_HEAD(&dev->cache_props);
431 INIT_LIST_HEAD(&dev->io_link_props);
432
433 list_add_tail(&dev->list, &topology_device_list);
434 sys_props.num_devices++;
435
436 return dev;
437 }
438
439 static int kfd_parse_crat_table(void *crat_image)
440 {
441 struct kfd_topology_device *top_dev;
442 struct crat_subtype_generic *sub_type_hdr;
443 uint16_t node_id;
444 int ret;
445 struct crat_header *crat_table = (struct crat_header *)crat_image;
446 uint16_t num_nodes;
447 uint32_t image_len;
448
449 if (!crat_image)
450 return -EINVAL;
451
452 num_nodes = crat_table->num_domains;
453 image_len = crat_table->length;
454
455 pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
456
457 for (node_id = 0; node_id < num_nodes; node_id++) {
458 top_dev = kfd_create_topology_device();
459 if (!top_dev) {
460 kfd_release_live_view();
461 return -ENOMEM;
462 }
463 }
464
465 sys_props.platform_id =
466 (*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
467 sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
468 sys_props.platform_rev = crat_table->revision;
469
470 sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
471 while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
472 ((char *)crat_image) + image_len) {
473 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
474 ret = kfd_parse_subtype(sub_type_hdr);
475 if (ret != 0) {
476 kfd_release_live_view();
477 return ret;
478 }
479 }
480
481 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
482 sub_type_hdr->length);
483 }
484
485 sys_props.generation_count++;
486 topology_crat_parsed = 1;
487
488 return 0;
489 }
490
491
492 #define sysfs_show_gen_prop(buffer, fmt, ...) \
493 snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
494 #define sysfs_show_32bit_prop(buffer, name, value) \
495 sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
496 #define sysfs_show_64bit_prop(buffer, name, value) \
497 sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
498 #define sysfs_show_32bit_val(buffer, value) \
499 sysfs_show_gen_prop(buffer, "%u\n", value)
500 #define sysfs_show_str_val(buffer, value) \
501 sysfs_show_gen_prop(buffer, "%s\n", value)
502
503 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
504 char *buffer)
505 {
506 ssize_t ret;
507
508 /* Making sure that the buffer is an empty string */
509 buffer[0] = 0;
510
511 if (attr == &sys_props.attr_genid) {
512 ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
513 } else if (attr == &sys_props.attr_props) {
514 sysfs_show_64bit_prop(buffer, "platform_oem",
515 sys_props.platform_oem);
516 sysfs_show_64bit_prop(buffer, "platform_id",
517 sys_props.platform_id);
518 ret = sysfs_show_64bit_prop(buffer, "platform_rev",
519 sys_props.platform_rev);
520 } else {
521 ret = -EINVAL;
522 }
523
524 return ret;
525 }
526
527 static void kfd_topology_kobj_release(struct kobject *kobj)
528 {
529 kfree(kobj);
530 }
531
532 static const struct sysfs_ops sysprops_ops = {
533 .show = sysprops_show,
534 };
535
536 static struct kobj_type sysprops_type = {
537 .release = kfd_topology_kobj_release,
538 .sysfs_ops = &sysprops_ops,
539 };
540
541 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
542 char *buffer)
543 {
544 ssize_t ret;
545 struct kfd_iolink_properties *iolink;
546
547 /* Making sure that the buffer is an empty string */
548 buffer[0] = 0;
549
550 iolink = container_of(attr, struct kfd_iolink_properties, attr);
551 sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
552 sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
553 sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
554 sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
555 sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
556 sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
557 sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
558 sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
559 sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
560 sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
561 sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
562 iolink->rec_transfer_size);
563 ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
564
565 return ret;
566 }
567
568 static const struct sysfs_ops iolink_ops = {
569 .show = iolink_show,
570 };
571
572 static struct kobj_type iolink_type = {
573 .release = kfd_topology_kobj_release,
574 .sysfs_ops = &iolink_ops,
575 };
576
577 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
578 char *buffer)
579 {
580 ssize_t ret;
581 struct kfd_mem_properties *mem;
582
583 /* Making sure that the buffer is an empty string */
584 buffer[0] = 0;
585
586 mem = container_of(attr, struct kfd_mem_properties, attr);
587 sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
588 sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
589 sysfs_show_32bit_prop(buffer, "flags", mem->flags);
590 sysfs_show_32bit_prop(buffer, "width", mem->width);
591 ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
592
593 return ret;
594 }
595
596 static const struct sysfs_ops mem_ops = {
597 .show = mem_show,
598 };
599
600 static struct kobj_type mem_type = {
601 .release = kfd_topology_kobj_release,
602 .sysfs_ops = &mem_ops,
603 };
604
605 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
606 char *buffer)
607 {
608 ssize_t ret;
609 uint32_t i;
610 struct kfd_cache_properties *cache;
611
612 /* Making sure that the buffer is an empty string */
613 buffer[0] = 0;
614
615 cache = container_of(attr, struct kfd_cache_properties, attr);
616 sysfs_show_32bit_prop(buffer, "processor_id_low",
617 cache->processor_id_low);
618 sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
619 sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
620 sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
621 sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
622 cache->cachelines_per_tag);
623 sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
624 sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
625 sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
626 snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
627 for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++)
628 ret = snprintf(buffer, PAGE_SIZE, "%s%d%s",
629 buffer, cache->sibling_map[i],
630 (i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ?
631 "\n" : ",");
632
633 return ret;
634 }
635
636 static const struct sysfs_ops cache_ops = {
637 .show = kfd_cache_show,
638 };
639
640 static struct kobj_type cache_type = {
641 .release = kfd_topology_kobj_release,
642 .sysfs_ops = &cache_ops,
643 };
644
645 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
646 char *buffer)
647 {
648 struct kfd_topology_device *dev;
649 char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
650 uint32_t i;
651 uint32_t log_max_watch_addr;
652
653 /* Making sure that the buffer is an empty string */
654 buffer[0] = 0;
655
656 if (strcmp(attr->name, "gpu_id") == 0) {
657 dev = container_of(attr, struct kfd_topology_device,
658 attr_gpuid);
659 return sysfs_show_32bit_val(buffer, dev->gpu_id);
660 }
661
662 if (strcmp(attr->name, "name") == 0) {
663 dev = container_of(attr, struct kfd_topology_device,
664 attr_name);
665 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
666 public_name[i] =
667 (char)dev->node_props.marketing_name[i];
668 if (dev->node_props.marketing_name[i] == 0)
669 break;
670 }
671 public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
672 return sysfs_show_str_val(buffer, public_name);
673 }
674
675 dev = container_of(attr, struct kfd_topology_device,
676 attr_props);
677 sysfs_show_32bit_prop(buffer, "cpu_cores_count",
678 dev->node_props.cpu_cores_count);
679 sysfs_show_32bit_prop(buffer, "simd_count",
680 dev->node_props.simd_count);
681
682 if (dev->mem_bank_count < dev->node_props.mem_banks_count) {
683 pr_warn("kfd: mem_banks_count truncated from %d to %d\n",
684 dev->node_props.mem_banks_count,
685 dev->mem_bank_count);
686 sysfs_show_32bit_prop(buffer, "mem_banks_count",
687 dev->mem_bank_count);
688 } else {
689 sysfs_show_32bit_prop(buffer, "mem_banks_count",
690 dev->node_props.mem_banks_count);
691 }
692
693 sysfs_show_32bit_prop(buffer, "caches_count",
694 dev->node_props.caches_count);
695 sysfs_show_32bit_prop(buffer, "io_links_count",
696 dev->node_props.io_links_count);
697 sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
698 dev->node_props.cpu_core_id_base);
699 sysfs_show_32bit_prop(buffer, "simd_id_base",
700 dev->node_props.simd_id_base);
701 sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
702 dev->node_props.max_waves_per_simd);
703 sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
704 dev->node_props.lds_size_in_kb);
705 sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
706 dev->node_props.gds_size_in_kb);
707 sysfs_show_32bit_prop(buffer, "wave_front_size",
708 dev->node_props.wave_front_size);
709 sysfs_show_32bit_prop(buffer, "array_count",
710 dev->node_props.array_count);
711 sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
712 dev->node_props.simd_arrays_per_engine);
713 sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
714 dev->node_props.cu_per_simd_array);
715 sysfs_show_32bit_prop(buffer, "simd_per_cu",
716 dev->node_props.simd_per_cu);
717 sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
718 dev->node_props.max_slots_scratch_cu);
719 sysfs_show_32bit_prop(buffer, "vendor_id",
720 dev->node_props.vendor_id);
721 sysfs_show_32bit_prop(buffer, "device_id",
722 dev->node_props.device_id);
723 sysfs_show_32bit_prop(buffer, "location_id",
724 dev->node_props.location_id);
725
726 if (dev->gpu) {
727 log_max_watch_addr =
728 __ilog2_u32(dev->gpu->device_info->num_of_watch_points);
729
730 if (log_max_watch_addr) {
731 dev->node_props.capability |=
732 HSA_CAP_WATCH_POINTS_SUPPORTED;
733
734 dev->node_props.capability |=
735 ((log_max_watch_addr <<
736 HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
737 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
738 }
739
740 sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
741 dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(
742 dev->gpu->kgd));
743
744 sysfs_show_64bit_prop(buffer, "local_mem_size",
745 (unsigned long long int) 0);
746
747 sysfs_show_32bit_prop(buffer, "fw_version",
748 dev->gpu->kfd2kgd->get_fw_version(
749 dev->gpu->kgd,
750 KGD_ENGINE_MEC1));
751 sysfs_show_32bit_prop(buffer, "capability",
752 dev->node_props.capability);
753 }
754
755 return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
756 cpufreq_quick_get_max(0)/1000);
757 }
758
759 static const struct sysfs_ops node_ops = {
760 .show = node_show,
761 };
762
763 static struct kobj_type node_type = {
764 .release = kfd_topology_kobj_release,
765 .sysfs_ops = &node_ops,
766 };
767
768 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
769 {
770 sysfs_remove_file(kobj, attr);
771 kobject_del(kobj);
772 kobject_put(kobj);
773 }
774
775 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
776 {
777 struct kfd_iolink_properties *iolink;
778 struct kfd_cache_properties *cache;
779 struct kfd_mem_properties *mem;
780
781 BUG_ON(!dev);
782
783 if (dev->kobj_iolink) {
784 list_for_each_entry(iolink, &dev->io_link_props, list)
785 if (iolink->kobj) {
786 kfd_remove_sysfs_file(iolink->kobj,
787 &iolink->attr);
788 iolink->kobj = NULL;
789 }
790 kobject_del(dev->kobj_iolink);
791 kobject_put(dev->kobj_iolink);
792 dev->kobj_iolink = NULL;
793 }
794
795 if (dev->kobj_cache) {
796 list_for_each_entry(cache, &dev->cache_props, list)
797 if (cache->kobj) {
798 kfd_remove_sysfs_file(cache->kobj,
799 &cache->attr);
800 cache->kobj = NULL;
801 }
802 kobject_del(dev->kobj_cache);
803 kobject_put(dev->kobj_cache);
804 dev->kobj_cache = NULL;
805 }
806
807 if (dev->kobj_mem) {
808 list_for_each_entry(mem, &dev->mem_props, list)
809 if (mem->kobj) {
810 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
811 mem->kobj = NULL;
812 }
813 kobject_del(dev->kobj_mem);
814 kobject_put(dev->kobj_mem);
815 dev->kobj_mem = NULL;
816 }
817
818 if (dev->kobj_node) {
819 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
820 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
821 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
822 kobject_del(dev->kobj_node);
823 kobject_put(dev->kobj_node);
824 dev->kobj_node = NULL;
825 }
826 }
827
828 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
829 uint32_t id)
830 {
831 struct kfd_iolink_properties *iolink;
832 struct kfd_cache_properties *cache;
833 struct kfd_mem_properties *mem;
834 int ret;
835 uint32_t i;
836
837 BUG_ON(!dev);
838
839 /*
840 * Creating the sysfs folders
841 */
842 BUG_ON(dev->kobj_node);
843 dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
844 if (!dev->kobj_node)
845 return -ENOMEM;
846
847 ret = kobject_init_and_add(dev->kobj_node, &node_type,
848 sys_props.kobj_nodes, "%d", id);
849 if (ret < 0)
850 return ret;
851
852 dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
853 if (!dev->kobj_mem)
854 return -ENOMEM;
855
856 dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
857 if (!dev->kobj_cache)
858 return -ENOMEM;
859
860 dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
861 if (!dev->kobj_iolink)
862 return -ENOMEM;
863
864 /*
865 * Creating sysfs files for node properties
866 */
867 dev->attr_gpuid.name = "gpu_id";
868 dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
869 sysfs_attr_init(&dev->attr_gpuid);
870 dev->attr_name.name = "name";
871 dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
872 sysfs_attr_init(&dev->attr_name);
873 dev->attr_props.name = "properties";
874 dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
875 sysfs_attr_init(&dev->attr_props);
876 ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
877 if (ret < 0)
878 return ret;
879 ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
880 if (ret < 0)
881 return ret;
882 ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
883 if (ret < 0)
884 return ret;
885
886 i = 0;
887 list_for_each_entry(mem, &dev->mem_props, list) {
888 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
889 if (!mem->kobj)
890 return -ENOMEM;
891 ret = kobject_init_and_add(mem->kobj, &mem_type,
892 dev->kobj_mem, "%d", i);
893 if (ret < 0)
894 return ret;
895
896 mem->attr.name = "properties";
897 mem->attr.mode = KFD_SYSFS_FILE_MODE;
898 sysfs_attr_init(&mem->attr);
899 ret = sysfs_create_file(mem->kobj, &mem->attr);
900 if (ret < 0)
901 return ret;
902 i++;
903 }
904
905 i = 0;
906 list_for_each_entry(cache, &dev->cache_props, list) {
907 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
908 if (!cache->kobj)
909 return -ENOMEM;
910 ret = kobject_init_and_add(cache->kobj, &cache_type,
911 dev->kobj_cache, "%d", i);
912 if (ret < 0)
913 return ret;
914
915 cache->attr.name = "properties";
916 cache->attr.mode = KFD_SYSFS_FILE_MODE;
917 sysfs_attr_init(&cache->attr);
918 ret = sysfs_create_file(cache->kobj, &cache->attr);
919 if (ret < 0)
920 return ret;
921 i++;
922 }
923
924 i = 0;
925 list_for_each_entry(iolink, &dev->io_link_props, list) {
926 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
927 if (!iolink->kobj)
928 return -ENOMEM;
929 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
930 dev->kobj_iolink, "%d", i);
931 if (ret < 0)
932 return ret;
933
934 iolink->attr.name = "properties";
935 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
936 sysfs_attr_init(&iolink->attr);
937 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
938 if (ret < 0)
939 return ret;
940 i++;
941 }
942
943 return 0;
944 }
945
946 static int kfd_build_sysfs_node_tree(void)
947 {
948 struct kfd_topology_device *dev;
949 int ret;
950 uint32_t i = 0;
951
952 list_for_each_entry(dev, &topology_device_list, list) {
953 ret = kfd_build_sysfs_node_entry(dev, i);
954 if (ret < 0)
955 return ret;
956 i++;
957 }
958
959 return 0;
960 }
961
962 static void kfd_remove_sysfs_node_tree(void)
963 {
964 struct kfd_topology_device *dev;
965
966 list_for_each_entry(dev, &topology_device_list, list)
967 kfd_remove_sysfs_node_entry(dev);
968 }
969
970 static int kfd_topology_update_sysfs(void)
971 {
972 int ret;
973
974 pr_info("Creating topology SYSFS entries\n");
975 if (sys_props.kobj_topology == NULL) {
976 sys_props.kobj_topology =
977 kfd_alloc_struct(sys_props.kobj_topology);
978 if (!sys_props.kobj_topology)
979 return -ENOMEM;
980
981 ret = kobject_init_and_add(sys_props.kobj_topology,
982 &sysprops_type, &kfd_device->kobj,
983 "topology");
984 if (ret < 0)
985 return ret;
986
987 sys_props.kobj_nodes = kobject_create_and_add("nodes",
988 sys_props.kobj_topology);
989 if (!sys_props.kobj_nodes)
990 return -ENOMEM;
991
992 sys_props.attr_genid.name = "generation_id";
993 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
994 sysfs_attr_init(&sys_props.attr_genid);
995 ret = sysfs_create_file(sys_props.kobj_topology,
996 &sys_props.attr_genid);
997 if (ret < 0)
998 return ret;
999
1000 sys_props.attr_props.name = "system_properties";
1001 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
1002 sysfs_attr_init(&sys_props.attr_props);
1003 ret = sysfs_create_file(sys_props.kobj_topology,
1004 &sys_props.attr_props);
1005 if (ret < 0)
1006 return ret;
1007 }
1008
1009 kfd_remove_sysfs_node_tree();
1010
1011 return kfd_build_sysfs_node_tree();
1012 }
1013
1014 static void kfd_topology_release_sysfs(void)
1015 {
1016 kfd_remove_sysfs_node_tree();
1017 if (sys_props.kobj_topology) {
1018 sysfs_remove_file(sys_props.kobj_topology,
1019 &sys_props.attr_genid);
1020 sysfs_remove_file(sys_props.kobj_topology,
1021 &sys_props.attr_props);
1022 if (sys_props.kobj_nodes) {
1023 kobject_del(sys_props.kobj_nodes);
1024 kobject_put(sys_props.kobj_nodes);
1025 sys_props.kobj_nodes = NULL;
1026 }
1027 kobject_del(sys_props.kobj_topology);
1028 kobject_put(sys_props.kobj_topology);
1029 sys_props.kobj_topology = NULL;
1030 }
1031 }
1032
1033 int kfd_topology_init(void)
1034 {
1035 void *crat_image = NULL;
1036 size_t image_size = 0;
1037 int ret;
1038
1039 /*
1040 * Initialize the head for the topology device list
1041 */
1042 INIT_LIST_HEAD(&topology_device_list);
1043 init_rwsem(&topology_lock);
1044 topology_crat_parsed = 0;
1045
1046 memset(&sys_props, 0, sizeof(sys_props));
1047
1048 /*
1049 * Get the CRAT image from the ACPI
1050 */
1051 ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1052 if (ret == 0 && image_size > 0) {
1053 pr_info("Found CRAT image with size=%zd\n", image_size);
1054 crat_image = kmalloc(image_size, GFP_KERNEL);
1055 if (!crat_image) {
1056 ret = -ENOMEM;
1057 pr_err("No memory for allocating CRAT image\n");
1058 goto err;
1059 }
1060 ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1061
1062 if (ret == 0) {
1063 down_write(&topology_lock);
1064 ret = kfd_parse_crat_table(crat_image);
1065 if (ret == 0)
1066 ret = kfd_topology_update_sysfs();
1067 up_write(&topology_lock);
1068 } else {
1069 pr_err("Couldn't get CRAT table size from ACPI\n");
1070 }
1071 kfree(crat_image);
1072 } else if (ret == -ENODATA) {
1073 ret = 0;
1074 } else {
1075 pr_err("Couldn't get CRAT table size from ACPI\n");
1076 }
1077
1078 err:
1079 pr_info("Finished initializing topology ret=%d\n", ret);
1080 return ret;
1081 }
1082
1083 void kfd_topology_shutdown(void)
1084 {
1085 kfd_topology_release_sysfs();
1086 kfd_release_live_view();
1087 }
1088
1089 static void kfd_debug_print_topology(void)
1090 {
1091 struct kfd_topology_device *dev;
1092 uint32_t i = 0;
1093
1094 pr_info("DEBUG PRINT OF TOPOLOGY:");
1095 list_for_each_entry(dev, &topology_device_list, list) {
1096 pr_info("Node: %d\n", i);
1097 pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
1098 pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
1099 pr_info("\tSIMD count: %d", dev->node_props.simd_count);
1100 i++;
1101 }
1102 }
1103
1104 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1105 {
1106 uint32_t hashout;
1107 uint32_t buf[7];
1108 int i;
1109
1110 if (!gpu)
1111 return 0;
1112
1113 buf[0] = gpu->pdev->devfn;
1114 buf[1] = gpu->pdev->subsystem_vendor;
1115 buf[2] = gpu->pdev->subsystem_device;
1116 buf[3] = gpu->pdev->device;
1117 buf[4] = gpu->pdev->bus->number;
1118 buf[5] = (uint32_t)(gpu->kfd2kgd->get_vmem_size(gpu->kgd)
1119 & 0xffffffff);
1120 buf[6] = (uint32_t)(gpu->kfd2kgd->get_vmem_size(gpu->kgd) >> 32);
1121
1122 for (i = 0, hashout = 0; i < 7; i++)
1123 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1124
1125 return hashout;
1126 }
1127
1128 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1129 {
1130 struct kfd_topology_device *dev;
1131 struct kfd_topology_device *out_dev = NULL;
1132
1133 BUG_ON(!gpu);
1134
1135 list_for_each_entry(dev, &topology_device_list, list)
1136 if (dev->gpu == NULL && dev->node_props.simd_count > 0) {
1137 dev->gpu = gpu;
1138 out_dev = dev;
1139 break;
1140 }
1141
1142 return out_dev;
1143 }
1144
1145 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1146 {
1147 /*
1148 * TODO: Generate an event for thunk about the arrival/removal
1149 * of the GPU
1150 */
1151 }
1152
1153 int kfd_topology_add_device(struct kfd_dev *gpu)
1154 {
1155 uint32_t gpu_id;
1156 struct kfd_topology_device *dev;
1157 int res;
1158
1159 BUG_ON(!gpu);
1160
1161 gpu_id = kfd_generate_gpu_id(gpu);
1162
1163 pr_debug("kfd: Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1164
1165 down_write(&topology_lock);
1166 /*
1167 * Try to assign the GPU to existing topology device (generated from
1168 * CRAT table
1169 */
1170 dev = kfd_assign_gpu(gpu);
1171 if (!dev) {
1172 pr_info("GPU was not found in the current topology. Extending.\n");
1173 kfd_debug_print_topology();
1174 dev = kfd_create_topology_device();
1175 if (!dev) {
1176 res = -ENOMEM;
1177 goto err;
1178 }
1179 dev->gpu = gpu;
1180
1181 /*
1182 * TODO: Make a call to retrieve topology information from the
1183 * GPU vBIOS
1184 */
1185
1186 /*
1187 * Update the SYSFS tree, since we added another topology device
1188 */
1189 if (kfd_topology_update_sysfs() < 0)
1190 kfd_topology_release_sysfs();
1191
1192 }
1193
1194 dev->gpu_id = gpu_id;
1195 gpu->id = gpu_id;
1196 dev->node_props.vendor_id = gpu->pdev->vendor;
1197 dev->node_props.device_id = gpu->pdev->device;
1198 dev->node_props.location_id = (gpu->pdev->bus->number << 24) +
1199 (gpu->pdev->devfn & 0xffffff);
1200 /*
1201 * TODO: Retrieve max engine clock values from KGD
1202 */
1203
1204 if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
1205 dev->node_props.capability |= HSA_CAP_DOORBELL_PACKET_TYPE;
1206 pr_info("amdkfd: adding doorbell packet type capability\n");
1207 }
1208
1209 res = 0;
1210
1211 err:
1212 up_write(&topology_lock);
1213
1214 if (res == 0)
1215 kfd_notify_gpu_change(gpu_id, 1);
1216
1217 return res;
1218 }
1219
1220 int kfd_topology_remove_device(struct kfd_dev *gpu)
1221 {
1222 struct kfd_topology_device *dev;
1223 uint32_t gpu_id;
1224 int res = -ENODEV;
1225
1226 BUG_ON(!gpu);
1227
1228 down_write(&topology_lock);
1229
1230 list_for_each_entry(dev, &topology_device_list, list)
1231 if (dev->gpu == gpu) {
1232 gpu_id = dev->gpu_id;
1233 kfd_remove_sysfs_node_entry(dev);
1234 kfd_release_topology_device(dev);
1235 res = 0;
1236 if (kfd_topology_update_sysfs() < 0)
1237 kfd_topology_release_sysfs();
1238 break;
1239 }
1240
1241 up_write(&topology_lock);
1242
1243 if (res == 0)
1244 kfd_notify_gpu_change(gpu_id, 0);
1245
1246 return res;
1247 }
1248
1249 /*
1250 * When idx is out of bounds, the function will return NULL
1251 */
1252 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
1253 {
1254
1255 struct kfd_topology_device *top_dev;
1256 struct kfd_dev *device = NULL;
1257 uint8_t device_idx = 0;
1258
1259 down_read(&topology_lock);
1260
1261 list_for_each_entry(top_dev, &topology_device_list, list) {
1262 if (device_idx == idx) {
1263 device = top_dev->gpu;
1264 break;
1265 }
1266
1267 device_idx++;
1268 }
1269
1270 up_read(&topology_lock);
1271
1272 return device;
1273
1274 }
1275