ast_dp501.c revision 1.2.6.2 1 /* $NetBSD: ast_dp501.c,v 1.2.6.2 2019/06/10 22:08:04 christos Exp $ */
2
3
4 #include <sys/cdefs.h>
5 __KERNEL_RCSID(0, "$NetBSD: ast_dp501.c,v 1.2.6.2 2019/06/10 22:08:04 christos Exp $");
6
7 #include <linux/firmware.h>
8 #include <drm/drmP.h>
9 #include "ast_drv.h"
10 MODULE_FIRMWARE("ast_dp501_fw.bin");
11
12 int ast_load_dp501_microcode(struct drm_device *dev)
13 {
14 struct ast_private *ast = dev->dev_private;
15 static char *fw_name = "ast_dp501_fw.bin";
16 int err;
17 err = request_firmware(&ast->dp501_fw, fw_name, dev->dev);
18 if (err)
19 return err;
20
21 return 0;
22 }
23
24 static void send_ack(struct ast_private *ast)
25 {
26 u8 sendack;
27 sendack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0xff);
28 sendack |= 0x80;
29 ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0x00, sendack);
30 }
31
32 static void send_nack(struct ast_private *ast)
33 {
34 u8 sendack;
35 sendack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0xff);
36 sendack &= ~0x80;
37 ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, 0x00, sendack);
38 }
39
40 static bool wait_ack(struct ast_private *ast)
41 {
42 u8 waitack;
43 u32 retry = 0;
44 do {
45 waitack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd2, 0xff);
46 waitack &= 0x80;
47 udelay(100);
48 } while ((!waitack) && (retry++ < 1000));
49
50 if (retry < 1000)
51 return true;
52 else
53 return false;
54 }
55
56 static bool wait_nack(struct ast_private *ast)
57 {
58 u8 waitack;
59 u32 retry = 0;
60 do {
61 waitack = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd2, 0xff);
62 waitack &= 0x80;
63 udelay(100);
64 } while ((waitack) && (retry++ < 1000));
65
66 if (retry < 1000)
67 return true;
68 else
69 return false;
70 }
71
72 static void set_cmd_trigger(struct ast_private *ast)
73 {
74 ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, ~0x40, 0x40);
75 }
76
77 static void clear_cmd_trigger(struct ast_private *ast)
78 {
79 ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9b, ~0x40, 0x00);
80 }
81
82 #if 0
83 static bool wait_fw_ready(struct ast_private *ast)
84 {
85 u8 waitready;
86 u32 retry = 0;
87 do {
88 waitready = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd2, 0xff);
89 waitready &= 0x40;
90 udelay(100);
91 } while ((!waitready) && (retry++ < 1000));
92
93 if (retry < 1000)
94 return true;
95 else
96 return false;
97 }
98 #endif
99
100 static bool ast_write_cmd(struct drm_device *dev, u8 data)
101 {
102 struct ast_private *ast = dev->dev_private;
103 int retry = 0;
104 if (wait_nack(ast)) {
105 send_nack(ast);
106 ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9a, 0x00, data);
107 send_ack(ast);
108 set_cmd_trigger(ast);
109 do {
110 if (wait_ack(ast)) {
111 clear_cmd_trigger(ast);
112 send_nack(ast);
113 return true;
114 }
115 } while (retry++ < 100);
116 }
117 clear_cmd_trigger(ast);
118 send_nack(ast);
119 return false;
120 }
121
122 static bool ast_write_data(struct drm_device *dev, u8 data)
123 {
124 struct ast_private *ast = dev->dev_private;
125
126 if (wait_nack(ast)) {
127 send_nack(ast);
128 ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9a, 0x00, data);
129 send_ack(ast);
130 if (wait_ack(ast)) {
131 send_nack(ast);
132 return true;
133 }
134 }
135 send_nack(ast);
136 return false;
137 }
138
139 #if 0
140 static bool ast_read_data(struct drm_device *dev, u8 *data)
141 {
142 struct ast_private *ast = dev->dev_private;
143 u8 tmp;
144
145 *data = 0;
146
147 if (wait_ack(ast) == false)
148 return false;
149 tmp = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd3, 0xff);
150 *data = tmp;
151 if (wait_nack(ast) == false) {
152 send_nack(ast);
153 return false;
154 }
155 send_nack(ast);
156 return true;
157 }
158
159 static void clear_cmd(struct ast_private *ast)
160 {
161 send_nack(ast);
162 ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x9a, 0x00, 0x00);
163 }
164 #endif
165
166 void ast_set_dp501_video_output(struct drm_device *dev, u8 mode)
167 {
168 ast_write_cmd(dev, 0x40);
169 ast_write_data(dev, mode);
170
171 msleep(10);
172 }
173
174 static u32 get_fw_base(struct ast_private *ast)
175 {
176 return ast_mindwm(ast, 0x1e6e2104) & 0x7fffffff;
177 }
178
179 bool ast_backup_fw(struct drm_device *dev, u8 *addr, u32 size)
180 {
181 struct ast_private *ast = dev->dev_private;
182 u32 i, data;
183 u32 boot_address;
184
185 data = ast_mindwm(ast, 0x1e6e2100) & 0x01;
186 if (data) {
187 boot_address = get_fw_base(ast);
188 for (i = 0; i < size; i += 4)
189 *(u32 *)(addr + i) = ast_mindwm(ast, boot_address + i);
190 return true;
191 }
192 return false;
193 }
194
195 bool ast_launch_m68k(struct drm_device *dev)
196 {
197 struct ast_private *ast = dev->dev_private;
198 u32 i, data, len = 0;
199 u32 boot_address;
200 u8 *fw_addr = NULL;
201 u8 jreg;
202
203 data = ast_mindwm(ast, 0x1e6e2100) & 0x01;
204 if (!data) {
205
206 if (ast->dp501_fw_addr) {
207 fw_addr = ast->dp501_fw_addr;
208 len = 32*1024;
209 } else if (ast->dp501_fw) {
210 fw_addr = (u8 *)ast->dp501_fw->data;
211 len = ast->dp501_fw->size;
212 }
213 /* Get BootAddress */
214 ast_moutdwm(ast, 0x1e6e2000, 0x1688a8a8);
215 data = ast_mindwm(ast, 0x1e6e0004);
216 switch (data & 0x03) {
217 case 0:
218 boot_address = 0x44000000;
219 break;
220 default:
221 case 1:
222 boot_address = 0x48000000;
223 break;
224 case 2:
225 boot_address = 0x50000000;
226 break;
227 case 3:
228 boot_address = 0x60000000;
229 break;
230 }
231 boot_address -= 0x200000; /* -2MB */
232
233 /* copy image to buffer */
234 for (i = 0; i < len; i += 4) {
235 data = *(u32 *)(fw_addr + i);
236 ast_moutdwm(ast, boot_address + i, data);
237 }
238
239 /* Init SCU */
240 ast_moutdwm(ast, 0x1e6e2000, 0x1688a8a8);
241
242 /* Launch FW */
243 ast_moutdwm(ast, 0x1e6e2104, 0x80000000 + boot_address);
244 ast_moutdwm(ast, 0x1e6e2100, 1);
245
246 /* Update Scratch */
247 data = ast_mindwm(ast, 0x1e6e2040) & 0xfffff1ff; /* D[11:9] = 100b: UEFI handling */
248 data |= 0x800;
249 ast_moutdwm(ast, 0x1e6e2040, data);
250
251 jreg = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0x99, 0xfc); /* D[1:0]: Reserved Video Buffer */
252 jreg |= 0x02;
253 ast_set_index_reg(ast, AST_IO_CRTC_PORT, 0x99, jreg);
254 }
255 return true;
256 }
257
258 u8 ast_get_dp501_max_clk(struct drm_device *dev)
259 {
260 struct ast_private *ast = dev->dev_private;
261 u32 boot_address, offset, data;
262 u8 linkcap[4], linkrate, linklanes, maxclk = 0xff;
263
264 boot_address = get_fw_base(ast);
265
266 /* validate FW version */
267 offset = 0xf000;
268 data = ast_mindwm(ast, boot_address + offset);
269 if ((data & 0xf0) != 0x10) /* version: 1x */
270 return maxclk;
271
272 /* Read Link Capability */
273 offset = 0xf014;
274 *(u32 *)linkcap = ast_mindwm(ast, boot_address + offset);
275 if (linkcap[2] == 0) {
276 linkrate = linkcap[0];
277 linklanes = linkcap[1];
278 data = (linkrate == 0x0a) ? (90 * linklanes) : (54 * linklanes);
279 if (data > 0xff)
280 data = 0xff;
281 maxclk = (u8)data;
282 }
283 return maxclk;
284 }
285
286 bool ast_dp501_read_edid(struct drm_device *dev, u8 *ediddata)
287 {
288 struct ast_private *ast = dev->dev_private;
289 u32 i, boot_address, offset, data;
290
291 boot_address = get_fw_base(ast);
292
293 /* validate FW version */
294 offset = 0xf000;
295 data = ast_mindwm(ast, boot_address + offset);
296 if ((data & 0xf0) != 0x10)
297 return false;
298
299 /* validate PnP Monitor */
300 offset = 0xf010;
301 data = ast_mindwm(ast, boot_address + offset);
302 if (!(data & 0x01))
303 return false;
304
305 /* Read EDID */
306 offset = 0xf020;
307 for (i = 0; i < 128; i += 4) {
308 data = ast_mindwm(ast, boot_address + offset + i);
309 *(u32 *)(ediddata + i) = data;
310 }
311
312 return true;
313 }
314
315 static bool ast_init_dvo(struct drm_device *dev)
316 {
317 struct ast_private *ast = dev->dev_private;
318 u8 jreg;
319 u32 data;
320 ast_write32(ast, 0xf004, 0x1e6e0000);
321 ast_write32(ast, 0xf000, 0x1);
322 ast_write32(ast, 0x12000, 0x1688a8a8);
323
324 jreg = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd0, 0xff);
325 if (!(jreg & 0x80)) {
326 /* Init SCU DVO Settings */
327 data = ast_read32(ast, 0x12008);
328 /* delay phase */
329 data &= 0xfffff8ff;
330 data |= 0x00000500;
331 ast_write32(ast, 0x12008, data);
332
333 if (ast->chip == AST2300) {
334 data = ast_read32(ast, 0x12084);
335 /* multi-pins for DVO single-edge */
336 data |= 0xfffe0000;
337 ast_write32(ast, 0x12084, data);
338
339 data = ast_read32(ast, 0x12088);
340 /* multi-pins for DVO single-edge */
341 data |= 0x000fffff;
342 ast_write32(ast, 0x12088, data);
343
344 data = ast_read32(ast, 0x12090);
345 /* multi-pins for DVO single-edge */
346 data &= 0xffffffcf;
347 data |= 0x00000020;
348 ast_write32(ast, 0x12090, data);
349 } else { /* AST2400 */
350 data = ast_read32(ast, 0x12088);
351 /* multi-pins for DVO single-edge */
352 data |= 0x30000000;
353 ast_write32(ast, 0x12088, data);
354
355 data = ast_read32(ast, 0x1208c);
356 /* multi-pins for DVO single-edge */
357 data |= 0x000000cf;
358 ast_write32(ast, 0x1208c, data);
359
360 data = ast_read32(ast, 0x120a4);
361 /* multi-pins for DVO single-edge */
362 data |= 0xffff0000;
363 ast_write32(ast, 0x120a4, data);
364
365 data = ast_read32(ast, 0x120a8);
366 /* multi-pins for DVO single-edge */
367 data |= 0x0000000f;
368 ast_write32(ast, 0x120a8, data);
369
370 data = ast_read32(ast, 0x12094);
371 /* multi-pins for DVO single-edge */
372 data |= 0x00000002;
373 ast_write32(ast, 0x12094, data);
374 }
375 }
376
377 /* Force to DVO */
378 data = ast_read32(ast, 0x1202c);
379 data &= 0xfffbffff;
380 ast_write32(ast, 0x1202c, data);
381
382 /* Init VGA DVO Settings */
383 ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xa3, 0xcf, 0x80);
384 return true;
385 }
386
387
388 static void ast_init_analog(struct drm_device *dev)
389 {
390 struct ast_private *ast = dev->dev_private;
391 u32 data;
392
393 /*
394 * Set DAC source to VGA mode in SCU2C via the P2A
395 * bridge. First configure the P2U to target the SCU
396 * in case it isn't at this stage.
397 */
398 ast_write32(ast, 0xf004, 0x1e6e0000);
399 ast_write32(ast, 0xf000, 0x1);
400
401 /* Then unlock the SCU with the magic password */
402 ast_write32(ast, 0x12000, 0x1688a8a8);
403 ast_write32(ast, 0x12000, 0x1688a8a8);
404 ast_write32(ast, 0x12000, 0x1688a8a8);
405
406 /* Finally, clear bits [17:16] of SCU2c */
407 data = ast_read32(ast, 0x1202c);
408 data &= 0xfffcffff;
409 ast_write32(ast, 0, data);
410
411 /* Disable DVO */
412 ast_set_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xa3, 0xcf, 0x00);
413 }
414
415 void ast_init_3rdtx(struct drm_device *dev)
416 {
417 struct ast_private *ast = dev->dev_private;
418 u8 jreg;
419
420 if (ast->chip == AST2300 || ast->chip == AST2400) {
421 jreg = ast_get_index_reg_mask(ast, AST_IO_CRTC_PORT, 0xd1, 0xff);
422 switch (jreg & 0x0e) {
423 case 0x04:
424 ast_init_dvo(dev);
425 break;
426 case 0x08:
427 ast_launch_m68k(dev);
428 break;
429 case 0x0c:
430 ast_init_dvo(dev);
431 break;
432 default:
433 if (ast->tx_chip_type == AST_TX_SIL164)
434 ast_init_dvo(dev);
435 else
436 ast_init_analog(dev);
437 }
438 }
439 }
440