drm_dp_mst_topology.c revision 1.11 1 /* $NetBSD: drm_dp_mst_topology.c,v 1.11 2021/12/19 09:45:10 riastradh Exp $ */
2
3 /*
4 * Copyright 2014 Red Hat
5 *
6 * Permission to use, copy, modify, distribute, and sell this software and its
7 * documentation for any purpose is hereby granted without fee, provided that
8 * the above copyright notice appear in all copies and that both that copyright
9 * notice and this permission notice appear in supporting documentation, and
10 * that the name of the copyright holders not be used in advertising or
11 * publicity pertaining to distribution of the software without specific,
12 * written prior permission. The copyright holders make no representations
13 * about the suitability of this software for any purpose. It is provided "as
14 * is" without express or implied warranty.
15 *
16 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
17 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
18 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
19 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
20 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
21 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
22 * OF THIS SOFTWARE.
23 */
24
25 #include <sys/cdefs.h>
26 __KERNEL_RCSID(0, "$NetBSD: drm_dp_mst_topology.c,v 1.11 2021/12/19 09:45:10 riastradh Exp $");
27
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/i2c.h>
31 #include <linux/init.h>
32 #include <linux/kernel.h>
33 #include <linux/sched.h>
34 #include <linux/seq_file.h>
35
36 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
37 #include <linux/stacktrace.h>
38 #include <linux/sort.h>
39 #include <linux/timekeeping.h>
40 #include <linux/math64.h>
41 #endif
42
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_mst_helper.h>
46 #include <drm/drm_drv.h>
47 #include <drm/drm_print.h>
48 #include <drm/drm_probe_helper.h>
49
50 #include "drm_crtc_helper_internal.h"
51 #include "drm_dp_mst_topology_internal.h"
52
53 #include <linux/nbsd-namespace.h>
54
55 /**
56 * DOC: dp mst helper
57 *
58 * These functions contain parts of the DisplayPort 1.2a MultiStream Transport
59 * protocol. The helpers contain a topology manager and bandwidth manager.
60 * The helpers encapsulate the sending and received of sideband msgs.
61 */
62 struct drm_dp_pending_up_req {
63 struct drm_dp_sideband_msg_hdr hdr;
64 struct drm_dp_sideband_msg_req_body msg;
65 struct list_head next;
66 };
67
68 #if IS_ENABLED(CONFIG_DEBUG_FS)
69 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
70 char *buf);
71 #endif
72
73 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port);
74
75 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
76 int id,
77 struct drm_dp_payload *payload);
78
79 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
80 struct drm_dp_mst_port *port,
81 int offset, int size, u8 *bytes);
82 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
83 struct drm_dp_mst_port *port,
84 int offset, int size, u8 *bytes);
85
86 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
87 struct drm_dp_mst_branch *mstb);
88
89 static void
90 drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr,
91 struct drm_dp_mst_branch *mstb);
92
93 static int drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
94 struct drm_dp_mst_branch *mstb,
95 struct drm_dp_mst_port *port);
96 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
97 u8 *guid);
98
99 static int drm_dp_mst_register_i2c_bus(struct drm_dp_aux *aux);
100 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_aux *aux);
101 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr);
102
103 #define DBG_PREFIX "[dp_mst]"
104
105 #define DP_STR(x) [DP_ ## x] = #x
106
107 static const char *drm_dp_mst_req_type_str(u8 req_type)
108 {
109 static const char * const req_type_str[] = {
110 DP_STR(GET_MSG_TRANSACTION_VERSION),
111 DP_STR(LINK_ADDRESS),
112 DP_STR(CONNECTION_STATUS_NOTIFY),
113 DP_STR(ENUM_PATH_RESOURCES),
114 DP_STR(ALLOCATE_PAYLOAD),
115 DP_STR(QUERY_PAYLOAD),
116 DP_STR(RESOURCE_STATUS_NOTIFY),
117 DP_STR(CLEAR_PAYLOAD_ID_TABLE),
118 DP_STR(REMOTE_DPCD_READ),
119 DP_STR(REMOTE_DPCD_WRITE),
120 DP_STR(REMOTE_I2C_READ),
121 DP_STR(REMOTE_I2C_WRITE),
122 DP_STR(POWER_UP_PHY),
123 DP_STR(POWER_DOWN_PHY),
124 DP_STR(SINK_EVENT_NOTIFY),
125 DP_STR(QUERY_STREAM_ENC_STATUS),
126 };
127
128 if (req_type >= ARRAY_SIZE(req_type_str) ||
129 !req_type_str[req_type])
130 return "unknown";
131
132 return req_type_str[req_type];
133 }
134
135 #undef DP_STR
136 #define DP_STR(x) [DP_NAK_ ## x] = #x
137
138 static const char *drm_dp_mst_nak_reason_str(u8 nak_reason)
139 {
140 static const char * const nak_reason_str[] = {
141 DP_STR(WRITE_FAILURE),
142 DP_STR(INVALID_READ),
143 DP_STR(CRC_FAILURE),
144 DP_STR(BAD_PARAM),
145 DP_STR(DEFER),
146 DP_STR(LINK_FAILURE),
147 DP_STR(NO_RESOURCES),
148 DP_STR(DPCD_FAIL),
149 DP_STR(I2C_NAK),
150 DP_STR(ALLOCATE_FAIL),
151 };
152
153 if (nak_reason >= ARRAY_SIZE(nak_reason_str) ||
154 !nak_reason_str[nak_reason])
155 return "unknown";
156
157 return nak_reason_str[nak_reason];
158 }
159
160 #undef DP_STR
161 #define DP_STR(x) [DRM_DP_SIDEBAND_TX_ ## x] = #x
162
163 static const char *drm_dp_mst_sideband_tx_state_str(int state)
164 {
165 static const char * const sideband_reason_str[] = {
166 DP_STR(QUEUED),
167 DP_STR(START_SEND),
168 DP_STR(SENT),
169 DP_STR(RX),
170 DP_STR(TIMEOUT),
171 };
172
173 if (state >= ARRAY_SIZE(sideband_reason_str) ||
174 !sideband_reason_str[state])
175 return "unknown";
176
177 return sideband_reason_str[state];
178 }
179
180 static int
181 drm_dp_mst_rad_to_str(const u8 rad[8], u8 lct, char *out, size_t len)
182 {
183 int i;
184 u8 unpacked_rad[16];
185
186 for (i = 0; i < lct; i++) {
187 if (i % 2)
188 unpacked_rad[i] = rad[i / 2] >> 4;
189 else
190 unpacked_rad[i] = rad[i / 2] & BIT_MASK(4);
191 }
192
193 /* TODO: Eventually add something to printk so we can format the rad
194 * like this: 1.2.3
195 */
196 return snprintf(out, len, "%*phC", lct, unpacked_rad);
197 }
198
199 /* sideband msg handling */
200 static u8 drm_dp_msg_header_crc4(const uint8_t *data, size_t num_nibbles)
201 {
202 u8 bitmask = 0x80;
203 u8 bitshift = 7;
204 u8 array_index = 0;
205 int number_of_bits = num_nibbles * 4;
206 u8 remainder = 0;
207
208 while (number_of_bits != 0) {
209 number_of_bits--;
210 remainder <<= 1;
211 remainder |= (data[array_index] & bitmask) >> bitshift;
212 bitmask >>= 1;
213 bitshift--;
214 if (bitmask == 0) {
215 bitmask = 0x80;
216 bitshift = 7;
217 array_index++;
218 }
219 if ((remainder & 0x10) == 0x10)
220 remainder ^= 0x13;
221 }
222
223 number_of_bits = 4;
224 while (number_of_bits != 0) {
225 number_of_bits--;
226 remainder <<= 1;
227 if ((remainder & 0x10) != 0)
228 remainder ^= 0x13;
229 }
230
231 return remainder;
232 }
233
234 static u8 drm_dp_msg_data_crc4(const uint8_t *data, u8 number_of_bytes)
235 {
236 u8 bitmask = 0x80;
237 u8 bitshift = 7;
238 u8 array_index = 0;
239 int number_of_bits = number_of_bytes * 8;
240 u16 remainder = 0;
241
242 while (number_of_bits != 0) {
243 number_of_bits--;
244 remainder <<= 1;
245 remainder |= (data[array_index] & bitmask) >> bitshift;
246 bitmask >>= 1;
247 bitshift--;
248 if (bitmask == 0) {
249 bitmask = 0x80;
250 bitshift = 7;
251 array_index++;
252 }
253 if ((remainder & 0x100) == 0x100)
254 remainder ^= 0xd5;
255 }
256
257 number_of_bits = 8;
258 while (number_of_bits != 0) {
259 number_of_bits--;
260 remainder <<= 1;
261 if ((remainder & 0x100) != 0)
262 remainder ^= 0xd5;
263 }
264
265 return remainder & 0xff;
266 }
267 static inline u8 drm_dp_calc_sb_hdr_size(struct drm_dp_sideband_msg_hdr *hdr)
268 {
269 u8 size = 3;
270 size += (hdr->lct / 2);
271 return size;
272 }
273
274 static void drm_dp_encode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr,
275 u8 *buf, int *len)
276 {
277 int idx = 0;
278 int i;
279 u8 crc4;
280 buf[idx++] = ((hdr->lct & 0xf) << 4) | (hdr->lcr & 0xf);
281 for (i = 0; i < (hdr->lct / 2); i++)
282 buf[idx++] = hdr->rad[i];
283 buf[idx++] = (hdr->broadcast << 7) | (hdr->path_msg << 6) |
284 (hdr->msg_len & 0x3f);
285 buf[idx++] = (hdr->somt << 7) | (hdr->eomt << 6) | (hdr->seqno << 4);
286
287 crc4 = drm_dp_msg_header_crc4(buf, (idx * 2) - 1);
288 buf[idx - 1] |= (crc4 & 0xf);
289
290 *len = idx;
291 }
292
293 static bool drm_dp_decode_sideband_msg_hdr(struct drm_dp_sideband_msg_hdr *hdr,
294 u8 *buf, int buflen, u8 *hdrlen)
295 {
296 u8 crc4;
297 u8 len;
298 int i;
299 u8 idx;
300 if (buf[0] == 0)
301 return false;
302 len = 3;
303 len += ((buf[0] & 0xf0) >> 4) / 2;
304 if (len > buflen)
305 return false;
306 crc4 = drm_dp_msg_header_crc4(buf, (len * 2) - 1);
307
308 if ((crc4 & 0xf) != (buf[len - 1] & 0xf)) {
309 DRM_DEBUG_KMS("crc4 mismatch 0x%x 0x%x\n", crc4, buf[len - 1]);
310 return false;
311 }
312
313 hdr->lct = (buf[0] & 0xf0) >> 4;
314 hdr->lcr = (buf[0] & 0xf);
315 idx = 1;
316 for (i = 0; i < (hdr->lct / 2); i++)
317 hdr->rad[i] = buf[idx++];
318 hdr->broadcast = (buf[idx] >> 7) & 0x1;
319 hdr->path_msg = (buf[idx] >> 6) & 0x1;
320 hdr->msg_len = buf[idx] & 0x3f;
321 idx++;
322 hdr->somt = (buf[idx] >> 7) & 0x1;
323 hdr->eomt = (buf[idx] >> 6) & 0x1;
324 hdr->seqno = (buf[idx] >> 4) & 0x1;
325 idx++;
326 *hdrlen = idx;
327 return true;
328 }
329
330 static void
331 drm_dp_encode_sideband_req(const struct drm_dp_sideband_msg_req_body *req,
332 struct drm_dp_sideband_msg_tx *raw)
333 {
334 int idx = 0;
335 int i;
336 u8 *buf = raw->msg;
337 buf[idx++] = req->req_type & 0x7f;
338
339 switch (req->req_type) {
340 case DP_ENUM_PATH_RESOURCES:
341 case DP_POWER_DOWN_PHY:
342 case DP_POWER_UP_PHY:
343 buf[idx] = (req->u.port_num.port_number & 0xf) << 4;
344 idx++;
345 break;
346 case DP_ALLOCATE_PAYLOAD:
347 buf[idx] = (req->u.allocate_payload.port_number & 0xf) << 4 |
348 (req->u.allocate_payload.number_sdp_streams & 0xf);
349 idx++;
350 buf[idx] = (req->u.allocate_payload.vcpi & 0x7f);
351 idx++;
352 buf[idx] = (req->u.allocate_payload.pbn >> 8);
353 idx++;
354 buf[idx] = (req->u.allocate_payload.pbn & 0xff);
355 idx++;
356 for (i = 0; i < req->u.allocate_payload.number_sdp_streams / 2; i++) {
357 buf[idx] = ((req->u.allocate_payload.sdp_stream_sink[i * 2] & 0xf) << 4) |
358 (req->u.allocate_payload.sdp_stream_sink[i * 2 + 1] & 0xf);
359 idx++;
360 }
361 if (req->u.allocate_payload.number_sdp_streams & 1) {
362 i = req->u.allocate_payload.number_sdp_streams - 1;
363 buf[idx] = (req->u.allocate_payload.sdp_stream_sink[i] & 0xf) << 4;
364 idx++;
365 }
366 break;
367 case DP_QUERY_PAYLOAD:
368 buf[idx] = (req->u.query_payload.port_number & 0xf) << 4;
369 idx++;
370 buf[idx] = (req->u.query_payload.vcpi & 0x7f);
371 idx++;
372 break;
373 case DP_REMOTE_DPCD_READ:
374 buf[idx] = (req->u.dpcd_read.port_number & 0xf) << 4;
375 buf[idx] |= ((req->u.dpcd_read.dpcd_address & 0xf0000) >> 16) & 0xf;
376 idx++;
377 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff00) >> 8;
378 idx++;
379 buf[idx] = (req->u.dpcd_read.dpcd_address & 0xff);
380 idx++;
381 buf[idx] = (req->u.dpcd_read.num_bytes);
382 idx++;
383 break;
384
385 case DP_REMOTE_DPCD_WRITE:
386 buf[idx] = (req->u.dpcd_write.port_number & 0xf) << 4;
387 buf[idx] |= ((req->u.dpcd_write.dpcd_address & 0xf0000) >> 16) & 0xf;
388 idx++;
389 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff00) >> 8;
390 idx++;
391 buf[idx] = (req->u.dpcd_write.dpcd_address & 0xff);
392 idx++;
393 buf[idx] = (req->u.dpcd_write.num_bytes);
394 idx++;
395 memcpy(&buf[idx], req->u.dpcd_write.bytes, req->u.dpcd_write.num_bytes);
396 idx += req->u.dpcd_write.num_bytes;
397 break;
398 case DP_REMOTE_I2C_READ:
399 buf[idx] = (req->u.i2c_read.port_number & 0xf) << 4;
400 buf[idx] |= (req->u.i2c_read.num_transactions & 0x3);
401 idx++;
402 for (i = 0; i < (req->u.i2c_read.num_transactions & 0x3); i++) {
403 buf[idx] = req->u.i2c_read.transactions[i].i2c_dev_id & 0x7f;
404 idx++;
405 buf[idx] = req->u.i2c_read.transactions[i].num_bytes;
406 idx++;
407 memcpy(&buf[idx], req->u.i2c_read.transactions[i].bytes, req->u.i2c_read.transactions[i].num_bytes);
408 idx += req->u.i2c_read.transactions[i].num_bytes;
409
410 buf[idx] = (req->u.i2c_read.transactions[i].no_stop_bit & 0x1) << 4;
411 buf[idx] |= (req->u.i2c_read.transactions[i].i2c_transaction_delay & 0xf);
412 idx++;
413 }
414 buf[idx] = (req->u.i2c_read.read_i2c_device_id) & 0x7f;
415 idx++;
416 buf[idx] = (req->u.i2c_read.num_bytes_read);
417 idx++;
418 break;
419
420 case DP_REMOTE_I2C_WRITE:
421 buf[idx] = (req->u.i2c_write.port_number & 0xf) << 4;
422 idx++;
423 buf[idx] = (req->u.i2c_write.write_i2c_device_id) & 0x7f;
424 idx++;
425 buf[idx] = (req->u.i2c_write.num_bytes);
426 idx++;
427 memcpy(&buf[idx], req->u.i2c_write.bytes, req->u.i2c_write.num_bytes);
428 idx += req->u.i2c_write.num_bytes;
429 break;
430 }
431 raw->cur_len = idx;
432 }
433 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_encode_sideband_req);
434
435 /* Decode a sideband request we've encoded, mainly used for debugging */
436 static int
437 drm_dp_decode_sideband_req(const struct drm_dp_sideband_msg_tx *raw,
438 struct drm_dp_sideband_msg_req_body *req)
439 {
440 const u8 *buf = raw->msg;
441 int i, idx = 0;
442
443 req->req_type = buf[idx++] & 0x7f;
444 switch (req->req_type) {
445 case DP_ENUM_PATH_RESOURCES:
446 case DP_POWER_DOWN_PHY:
447 case DP_POWER_UP_PHY:
448 req->u.port_num.port_number = (buf[idx] >> 4) & 0xf;
449 break;
450 case DP_ALLOCATE_PAYLOAD:
451 {
452 struct drm_dp_allocate_payload *a =
453 &req->u.allocate_payload;
454
455 a->number_sdp_streams = buf[idx] & 0xf;
456 a->port_number = (buf[idx] >> 4) & 0xf;
457
458 WARN_ON(buf[++idx] & 0x80);
459 a->vcpi = buf[idx] & 0x7f;
460
461 a->pbn = buf[++idx] << 8;
462 a->pbn |= buf[++idx];
463
464 idx++;
465 for (i = 0; i < a->number_sdp_streams; i++) {
466 a->sdp_stream_sink[i] =
467 (buf[idx + (i / 2)] >> ((i % 2) ? 0 : 4)) & 0xf;
468 }
469 }
470 break;
471 case DP_QUERY_PAYLOAD:
472 req->u.query_payload.port_number = (buf[idx] >> 4) & 0xf;
473 WARN_ON(buf[++idx] & 0x80);
474 req->u.query_payload.vcpi = buf[idx] & 0x7f;
475 break;
476 case DP_REMOTE_DPCD_READ:
477 {
478 struct drm_dp_remote_dpcd_read *r = &req->u.dpcd_read;
479
480 r->port_number = (buf[idx] >> 4) & 0xf;
481
482 r->dpcd_address = (buf[idx] << 16) & 0xf0000;
483 r->dpcd_address |= (buf[++idx] << 8) & 0xff00;
484 r->dpcd_address |= buf[++idx] & 0xff;
485
486 r->num_bytes = buf[++idx];
487 }
488 break;
489 case DP_REMOTE_DPCD_WRITE:
490 {
491 struct drm_dp_remote_dpcd_write *w =
492 &req->u.dpcd_write;
493
494 w->port_number = (buf[idx] >> 4) & 0xf;
495
496 w->dpcd_address = (buf[idx] << 16) & 0xf0000;
497 w->dpcd_address |= (buf[++idx] << 8) & 0xff00;
498 w->dpcd_address |= buf[++idx] & 0xff;
499
500 w->num_bytes = buf[++idx];
501
502 w->bytes = kmemdup(&buf[++idx], w->num_bytes,
503 GFP_KERNEL);
504 if (!w->bytes)
505 return -ENOMEM;
506 }
507 break;
508 case DP_REMOTE_I2C_READ:
509 {
510 struct drm_dp_remote_i2c_read *r = &req->u.i2c_read;
511 struct drm_dp_remote_i2c_read_tx *tx;
512 bool failed = false;
513
514 r->num_transactions = buf[idx] & 0x3;
515 r->port_number = (buf[idx] >> 4) & 0xf;
516 for (i = 0; i < r->num_transactions; i++) {
517 tx = &r->transactions[i];
518
519 tx->i2c_dev_id = buf[++idx] & 0x7f;
520 tx->num_bytes = buf[++idx];
521 tx->bytes = kmemdup(&buf[++idx],
522 tx->num_bytes,
523 GFP_KERNEL);
524 if (!tx->bytes) {
525 failed = true;
526 break;
527 }
528 idx += tx->num_bytes;
529 tx->no_stop_bit = (buf[idx] >> 5) & 0x1;
530 tx->i2c_transaction_delay = buf[idx] & 0xf;
531 }
532
533 if (failed) {
534 for (i = 0; i < r->num_transactions; i++) {
535 tx = &r->transactions[i];
536 kfree(tx->bytes);
537 }
538 return -ENOMEM;
539 }
540
541 r->read_i2c_device_id = buf[++idx] & 0x7f;
542 r->num_bytes_read = buf[++idx];
543 }
544 break;
545 case DP_REMOTE_I2C_WRITE:
546 {
547 struct drm_dp_remote_i2c_write *w = &req->u.i2c_write;
548
549 w->port_number = (buf[idx] >> 4) & 0xf;
550 w->write_i2c_device_id = buf[++idx] & 0x7f;
551 w->num_bytes = buf[++idx];
552 w->bytes = kmemdup(&buf[++idx], w->num_bytes,
553 GFP_KERNEL);
554 if (!w->bytes)
555 return -ENOMEM;
556 }
557 break;
558 }
559
560 return 0;
561 }
562 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_decode_sideband_req);
563
564 static void
565 drm_dp_dump_sideband_msg_req_body(const struct drm_dp_sideband_msg_req_body *req,
566 int indent, struct drm_printer *printer)
567 {
568 int i;
569
570 #define P(f, ...) drm_printf_indent(printer, indent, f, ##__VA_ARGS__)
571 if (req->req_type == DP_LINK_ADDRESS) {
572 /* No contents to print */
573 P("type=%s\n", drm_dp_mst_req_type_str(req->req_type));
574 return;
575 }
576
577 P("type=%s contents:\n", drm_dp_mst_req_type_str(req->req_type));
578 indent++;
579
580 switch (req->req_type) {
581 case DP_ENUM_PATH_RESOURCES:
582 case DP_POWER_DOWN_PHY:
583 case DP_POWER_UP_PHY:
584 P("port=%d\n", req->u.port_num.port_number);
585 break;
586 case DP_ALLOCATE_PAYLOAD:
587 P("port=%d vcpi=%d pbn=%d sdp_streams=%d %*ph\n",
588 req->u.allocate_payload.port_number,
589 req->u.allocate_payload.vcpi, req->u.allocate_payload.pbn,
590 req->u.allocate_payload.number_sdp_streams,
591 req->u.allocate_payload.number_sdp_streams,
592 req->u.allocate_payload.sdp_stream_sink);
593 break;
594 case DP_QUERY_PAYLOAD:
595 P("port=%d vcpi=%d\n",
596 req->u.query_payload.port_number,
597 req->u.query_payload.vcpi);
598 break;
599 case DP_REMOTE_DPCD_READ:
600 P("port=%d dpcd_addr=%05x len=%d\n",
601 req->u.dpcd_read.port_number, req->u.dpcd_read.dpcd_address,
602 req->u.dpcd_read.num_bytes);
603 break;
604 case DP_REMOTE_DPCD_WRITE:
605 P("port=%d addr=%05x len=%d: %*ph\n",
606 req->u.dpcd_write.port_number,
607 req->u.dpcd_write.dpcd_address,
608 req->u.dpcd_write.num_bytes, req->u.dpcd_write.num_bytes,
609 req->u.dpcd_write.bytes);
610 break;
611 case DP_REMOTE_I2C_READ:
612 P("port=%d num_tx=%d id=%d size=%d:\n",
613 req->u.i2c_read.port_number,
614 req->u.i2c_read.num_transactions,
615 req->u.i2c_read.read_i2c_device_id,
616 req->u.i2c_read.num_bytes_read);
617
618 indent++;
619 for (i = 0; i < req->u.i2c_read.num_transactions; i++) {
620 const struct drm_dp_remote_i2c_read_tx *rtx =
621 &req->u.i2c_read.transactions[i];
622
623 P("%d: id=%03d size=%03d no_stop_bit=%d tx_delay=%03d: %*ph\n",
624 i, rtx->i2c_dev_id, rtx->num_bytes,
625 rtx->no_stop_bit, rtx->i2c_transaction_delay,
626 rtx->num_bytes, rtx->bytes);
627 }
628 break;
629 case DP_REMOTE_I2C_WRITE:
630 P("port=%d id=%d size=%d: %*ph\n",
631 req->u.i2c_write.port_number,
632 req->u.i2c_write.write_i2c_device_id,
633 req->u.i2c_write.num_bytes, req->u.i2c_write.num_bytes,
634 req->u.i2c_write.bytes);
635 break;
636 default:
637 P("???\n");
638 break;
639 }
640 #undef P
641 }
642 EXPORT_SYMBOL_FOR_TESTS_ONLY(drm_dp_dump_sideband_msg_req_body);
643
644 static inline void
645 drm_dp_mst_dump_sideband_msg_tx(struct drm_printer *p,
646 const struct drm_dp_sideband_msg_tx *txmsg)
647 {
648 struct drm_dp_sideband_msg_req_body req;
649 char buf[64];
650 int ret;
651 int i;
652
653 drm_dp_mst_rad_to_str(txmsg->dst->rad, txmsg->dst->lct, buf,
654 sizeof(buf));
655 drm_printf(p, "txmsg cur_offset=%x cur_len=%x seqno=%x state=%s path_msg=%d dst=%s\n",
656 txmsg->cur_offset, txmsg->cur_len, txmsg->seqno,
657 drm_dp_mst_sideband_tx_state_str(txmsg->state),
658 txmsg->path_msg, buf);
659
660 ret = drm_dp_decode_sideband_req(txmsg, &req);
661 if (ret) {
662 drm_printf(p, "<failed to decode sideband req: %d>\n", ret);
663 return;
664 }
665 drm_dp_dump_sideband_msg_req_body(&req, 1, p);
666
667 switch (req.req_type) {
668 case DP_REMOTE_DPCD_WRITE:
669 kfree(req.u.dpcd_write.bytes);
670 break;
671 case DP_REMOTE_I2C_READ:
672 for (i = 0; i < req.u.i2c_read.num_transactions; i++)
673 kfree(req.u.i2c_read.transactions[i].bytes);
674 break;
675 case DP_REMOTE_I2C_WRITE:
676 kfree(req.u.i2c_write.bytes);
677 break;
678 }
679 }
680
681 static void drm_dp_crc_sideband_chunk_req(u8 *msg, u8 len)
682 {
683 u8 crc4;
684 crc4 = drm_dp_msg_data_crc4(msg, len);
685 msg[len] = crc4;
686 }
687
688 static void drm_dp_encode_sideband_reply(struct drm_dp_sideband_msg_reply_body *rep,
689 struct drm_dp_sideband_msg_tx *raw)
690 {
691 int idx = 0;
692 u8 *buf = raw->msg;
693
694 buf[idx++] = (rep->reply_type & 0x1) << 7 | (rep->req_type & 0x7f);
695
696 raw->cur_len = idx;
697 }
698
699 /* this adds a chunk of msg to the builder to get the final msg */
700 static bool drm_dp_sideband_msg_build(struct drm_dp_sideband_msg_rx *msg,
701 u8 *replybuf, u8 replybuflen, bool hdr)
702 {
703 int ret;
704 u8 crc4 __unused; /* XXX Mistake? */
705
706 if (hdr) {
707 u8 hdrlen;
708 struct drm_dp_sideband_msg_hdr recv_hdr;
709 ret = drm_dp_decode_sideband_msg_hdr(&recv_hdr, replybuf, replybuflen, &hdrlen);
710 if (ret == false) {
711 print_hex_dump(KERN_DEBUG, "failed hdr", DUMP_PREFIX_NONE, 16, 1, replybuf, replybuflen, false);
712 return false;
713 }
714
715 /*
716 * ignore out-of-order messages or messages that are part of a
717 * failed transaction
718 */
719 if (!recv_hdr.somt && !msg->have_somt)
720 return false;
721
722 /* get length contained in this portion */
723 msg->curchunk_len = recv_hdr.msg_len;
724 msg->curchunk_hdrlen = hdrlen;
725
726 /* we have already gotten an somt - don't bother parsing */
727 if (recv_hdr.somt && msg->have_somt)
728 return false;
729
730 if (recv_hdr.somt) {
731 memcpy(&msg->initial_hdr, &recv_hdr, sizeof(struct drm_dp_sideband_msg_hdr));
732 msg->have_somt = true;
733 }
734 if (recv_hdr.eomt)
735 msg->have_eomt = true;
736
737 /* copy the bytes for the remainder of this header chunk */
738 msg->curchunk_idx = min(msg->curchunk_len, (u8)(replybuflen - hdrlen));
739 memcpy(&msg->chunk[0], replybuf + hdrlen, msg->curchunk_idx);
740 } else {
741 memcpy(&msg->chunk[msg->curchunk_idx], replybuf, replybuflen);
742 msg->curchunk_idx += replybuflen;
743 }
744
745 if (msg->curchunk_idx >= msg->curchunk_len) {
746 /* do CRC */
747 crc4 = drm_dp_msg_data_crc4(msg->chunk, msg->curchunk_len - 1);
748 /* copy chunk into bigger msg */
749 memcpy(&msg->msg[msg->curlen], msg->chunk, msg->curchunk_len - 1);
750 msg->curlen += msg->curchunk_len - 1;
751 }
752 return true;
753 }
754
755 static bool drm_dp_sideband_parse_link_address(struct drm_dp_sideband_msg_rx *raw,
756 struct drm_dp_sideband_msg_reply_body *repmsg)
757 {
758 int idx = 1;
759 int i;
760 memcpy(repmsg->u.link_addr.guid, &raw->msg[idx], 16);
761 idx += 16;
762 repmsg->u.link_addr.nports = raw->msg[idx] & 0xf;
763 idx++;
764 if (idx > raw->curlen)
765 goto fail_len;
766 for (i = 0; i < repmsg->u.link_addr.nports; i++) {
767 if (raw->msg[idx] & 0x80)
768 repmsg->u.link_addr.ports[i].input_port = 1;
769
770 repmsg->u.link_addr.ports[i].peer_device_type = (raw->msg[idx] >> 4) & 0x7;
771 repmsg->u.link_addr.ports[i].port_number = (raw->msg[idx] & 0xf);
772
773 idx++;
774 if (idx > raw->curlen)
775 goto fail_len;
776 repmsg->u.link_addr.ports[i].mcs = (raw->msg[idx] >> 7) & 0x1;
777 repmsg->u.link_addr.ports[i].ddps = (raw->msg[idx] >> 6) & 0x1;
778 if (repmsg->u.link_addr.ports[i].input_port == 0)
779 repmsg->u.link_addr.ports[i].legacy_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
780 idx++;
781 if (idx > raw->curlen)
782 goto fail_len;
783 if (repmsg->u.link_addr.ports[i].input_port == 0) {
784 repmsg->u.link_addr.ports[i].dpcd_revision = (raw->msg[idx]);
785 idx++;
786 if (idx > raw->curlen)
787 goto fail_len;
788 memcpy(repmsg->u.link_addr.ports[i].peer_guid, &raw->msg[idx], 16);
789 idx += 16;
790 if (idx > raw->curlen)
791 goto fail_len;
792 repmsg->u.link_addr.ports[i].num_sdp_streams = (raw->msg[idx] >> 4) & 0xf;
793 repmsg->u.link_addr.ports[i].num_sdp_stream_sinks = (raw->msg[idx] & 0xf);
794 idx++;
795
796 }
797 if (idx > raw->curlen)
798 goto fail_len;
799 }
800
801 return true;
802 fail_len:
803 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
804 return false;
805 }
806
807 static bool drm_dp_sideband_parse_remote_dpcd_read(struct drm_dp_sideband_msg_rx *raw,
808 struct drm_dp_sideband_msg_reply_body *repmsg)
809 {
810 int idx = 1;
811 repmsg->u.remote_dpcd_read_ack.port_number = raw->msg[idx] & 0xf;
812 idx++;
813 if (idx > raw->curlen)
814 goto fail_len;
815 repmsg->u.remote_dpcd_read_ack.num_bytes = raw->msg[idx];
816 idx++;
817 if (idx > raw->curlen)
818 goto fail_len;
819
820 memcpy(repmsg->u.remote_dpcd_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_dpcd_read_ack.num_bytes);
821 return true;
822 fail_len:
823 DRM_DEBUG_KMS("link address reply parse length fail %d %d\n", idx, raw->curlen);
824 return false;
825 }
826
827 static bool drm_dp_sideband_parse_remote_dpcd_write(struct drm_dp_sideband_msg_rx *raw,
828 struct drm_dp_sideband_msg_reply_body *repmsg)
829 {
830 int idx = 1;
831 repmsg->u.remote_dpcd_write_ack.port_number = raw->msg[idx] & 0xf;
832 idx++;
833 if (idx > raw->curlen)
834 goto fail_len;
835 return true;
836 fail_len:
837 DRM_DEBUG_KMS("parse length fail %d %d\n", idx, raw->curlen);
838 return false;
839 }
840
841 static bool drm_dp_sideband_parse_remote_i2c_read_ack(struct drm_dp_sideband_msg_rx *raw,
842 struct drm_dp_sideband_msg_reply_body *repmsg)
843 {
844 int idx = 1;
845
846 repmsg->u.remote_i2c_read_ack.port_number = (raw->msg[idx] & 0xf);
847 idx++;
848 if (idx > raw->curlen)
849 goto fail_len;
850 repmsg->u.remote_i2c_read_ack.num_bytes = raw->msg[idx];
851 idx++;
852 /* TODO check */
853 memcpy(repmsg->u.remote_i2c_read_ack.bytes, &raw->msg[idx], repmsg->u.remote_i2c_read_ack.num_bytes);
854 return true;
855 fail_len:
856 DRM_DEBUG_KMS("remote i2c reply parse length fail %d %d\n", idx, raw->curlen);
857 return false;
858 }
859
860 static bool drm_dp_sideband_parse_enum_path_resources_ack(struct drm_dp_sideband_msg_rx *raw,
861 struct drm_dp_sideband_msg_reply_body *repmsg)
862 {
863 int idx = 1;
864 repmsg->u.path_resources.port_number = (raw->msg[idx] >> 4) & 0xf;
865 repmsg->u.path_resources.fec_capable = raw->msg[idx] & 0x1;
866 idx++;
867 if (idx > raw->curlen)
868 goto fail_len;
869 repmsg->u.path_resources.full_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
870 idx += 2;
871 if (idx > raw->curlen)
872 goto fail_len;
873 repmsg->u.path_resources.avail_payload_bw_number = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
874 idx += 2;
875 if (idx > raw->curlen)
876 goto fail_len;
877 return true;
878 fail_len:
879 DRM_DEBUG_KMS("enum resource parse length fail %d %d\n", idx, raw->curlen);
880 return false;
881 }
882
883 static bool drm_dp_sideband_parse_allocate_payload_ack(struct drm_dp_sideband_msg_rx *raw,
884 struct drm_dp_sideband_msg_reply_body *repmsg)
885 {
886 int idx = 1;
887 repmsg->u.allocate_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
888 idx++;
889 if (idx > raw->curlen)
890 goto fail_len;
891 repmsg->u.allocate_payload.vcpi = raw->msg[idx];
892 idx++;
893 if (idx > raw->curlen)
894 goto fail_len;
895 repmsg->u.allocate_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx+1]);
896 idx += 2;
897 if (idx > raw->curlen)
898 goto fail_len;
899 return true;
900 fail_len:
901 DRM_DEBUG_KMS("allocate payload parse length fail %d %d\n", idx, raw->curlen);
902 return false;
903 }
904
905 static bool drm_dp_sideband_parse_query_payload_ack(struct drm_dp_sideband_msg_rx *raw,
906 struct drm_dp_sideband_msg_reply_body *repmsg)
907 {
908 int idx = 1;
909 repmsg->u.query_payload.port_number = (raw->msg[idx] >> 4) & 0xf;
910 idx++;
911 if (idx > raw->curlen)
912 goto fail_len;
913 repmsg->u.query_payload.allocated_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
914 idx += 2;
915 if (idx > raw->curlen)
916 goto fail_len;
917 return true;
918 fail_len:
919 DRM_DEBUG_KMS("query payload parse length fail %d %d\n", idx, raw->curlen);
920 return false;
921 }
922
923 static bool drm_dp_sideband_parse_power_updown_phy_ack(struct drm_dp_sideband_msg_rx *raw,
924 struct drm_dp_sideband_msg_reply_body *repmsg)
925 {
926 int idx = 1;
927
928 repmsg->u.port_number.port_number = (raw->msg[idx] >> 4) & 0xf;
929 idx++;
930 if (idx > raw->curlen) {
931 DRM_DEBUG_KMS("power up/down phy parse length fail %d %d\n",
932 idx, raw->curlen);
933 return false;
934 }
935 return true;
936 }
937
938 static bool drm_dp_sideband_parse_reply(struct drm_dp_sideband_msg_rx *raw,
939 struct drm_dp_sideband_msg_reply_body *msg)
940 {
941 memset(msg, 0, sizeof(*msg));
942 msg->reply_type = (raw->msg[0] & 0x80) >> 7;
943 msg->req_type = (raw->msg[0] & 0x7f);
944
945 if (msg->reply_type == DP_SIDEBAND_REPLY_NAK) {
946 memcpy(msg->u.nak.guid, &raw->msg[1], 16);
947 msg->u.nak.reason = raw->msg[17];
948 msg->u.nak.nak_data = raw->msg[18];
949 return false;
950 }
951
952 switch (msg->req_type) {
953 case DP_LINK_ADDRESS:
954 return drm_dp_sideband_parse_link_address(raw, msg);
955 case DP_QUERY_PAYLOAD:
956 return drm_dp_sideband_parse_query_payload_ack(raw, msg);
957 case DP_REMOTE_DPCD_READ:
958 return drm_dp_sideband_parse_remote_dpcd_read(raw, msg);
959 case DP_REMOTE_DPCD_WRITE:
960 return drm_dp_sideband_parse_remote_dpcd_write(raw, msg);
961 case DP_REMOTE_I2C_READ:
962 return drm_dp_sideband_parse_remote_i2c_read_ack(raw, msg);
963 case DP_ENUM_PATH_RESOURCES:
964 return drm_dp_sideband_parse_enum_path_resources_ack(raw, msg);
965 case DP_ALLOCATE_PAYLOAD:
966 return drm_dp_sideband_parse_allocate_payload_ack(raw, msg);
967 case DP_POWER_DOWN_PHY:
968 case DP_POWER_UP_PHY:
969 return drm_dp_sideband_parse_power_updown_phy_ack(raw, msg);
970 case DP_CLEAR_PAYLOAD_ID_TABLE:
971 return true; /* since there's nothing to parse */
972 default:
973 DRM_ERROR("Got unknown reply 0x%02x (%s)\n", msg->req_type,
974 drm_dp_mst_req_type_str(msg->req_type));
975 return false;
976 }
977 }
978
979 static bool drm_dp_sideband_parse_connection_status_notify(struct drm_dp_sideband_msg_rx *raw,
980 struct drm_dp_sideband_msg_req_body *msg)
981 {
982 int idx = 1;
983
984 msg->u.conn_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
985 idx++;
986 if (idx > raw->curlen)
987 goto fail_len;
988
989 memcpy(msg->u.conn_stat.guid, &raw->msg[idx], 16);
990 idx += 16;
991 if (idx > raw->curlen)
992 goto fail_len;
993
994 msg->u.conn_stat.legacy_device_plug_status = (raw->msg[idx] >> 6) & 0x1;
995 msg->u.conn_stat.displayport_device_plug_status = (raw->msg[idx] >> 5) & 0x1;
996 msg->u.conn_stat.message_capability_status = (raw->msg[idx] >> 4) & 0x1;
997 msg->u.conn_stat.input_port = (raw->msg[idx] >> 3) & 0x1;
998 msg->u.conn_stat.peer_device_type = (raw->msg[idx] & 0x7);
999 idx++;
1000 return true;
1001 fail_len:
1002 DRM_DEBUG_KMS("connection status reply parse length fail %d %d\n", idx, raw->curlen);
1003 return false;
1004 }
1005
1006 static bool drm_dp_sideband_parse_resource_status_notify(struct drm_dp_sideband_msg_rx *raw,
1007 struct drm_dp_sideband_msg_req_body *msg)
1008 {
1009 int idx = 1;
1010
1011 msg->u.resource_stat.port_number = (raw->msg[idx] & 0xf0) >> 4;
1012 idx++;
1013 if (idx > raw->curlen)
1014 goto fail_len;
1015
1016 memcpy(msg->u.resource_stat.guid, &raw->msg[idx], 16);
1017 idx += 16;
1018 if (idx > raw->curlen)
1019 goto fail_len;
1020
1021 msg->u.resource_stat.available_pbn = (raw->msg[idx] << 8) | (raw->msg[idx + 1]);
1022 idx++;
1023 return true;
1024 fail_len:
1025 DRM_DEBUG_KMS("resource status reply parse length fail %d %d\n", idx, raw->curlen);
1026 return false;
1027 }
1028
1029 static bool drm_dp_sideband_parse_req(struct drm_dp_sideband_msg_rx *raw,
1030 struct drm_dp_sideband_msg_req_body *msg)
1031 {
1032 memset(msg, 0, sizeof(*msg));
1033 msg->req_type = (raw->msg[0] & 0x7f);
1034
1035 switch (msg->req_type) {
1036 case DP_CONNECTION_STATUS_NOTIFY:
1037 return drm_dp_sideband_parse_connection_status_notify(raw, msg);
1038 case DP_RESOURCE_STATUS_NOTIFY:
1039 return drm_dp_sideband_parse_resource_status_notify(raw, msg);
1040 default:
1041 DRM_ERROR("Got unknown request 0x%02x (%s)\n", msg->req_type,
1042 drm_dp_mst_req_type_str(msg->req_type));
1043 return false;
1044 }
1045 }
1046
1047 static int build_dpcd_write(struct drm_dp_sideband_msg_tx *msg, u8 port_num, u32 offset, u8 num_bytes, u8 *bytes)
1048 {
1049 struct drm_dp_sideband_msg_req_body req;
1050
1051 req.req_type = DP_REMOTE_DPCD_WRITE;
1052 req.u.dpcd_write.port_number = port_num;
1053 req.u.dpcd_write.dpcd_address = offset;
1054 req.u.dpcd_write.num_bytes = num_bytes;
1055 req.u.dpcd_write.bytes = bytes;
1056 drm_dp_encode_sideband_req(&req, msg);
1057
1058 return 0;
1059 }
1060
1061 static int build_link_address(struct drm_dp_sideband_msg_tx *msg)
1062 {
1063 struct drm_dp_sideband_msg_req_body req;
1064
1065 req.req_type = DP_LINK_ADDRESS;
1066 drm_dp_encode_sideband_req(&req, msg);
1067 return 0;
1068 }
1069
1070 static int build_clear_payload_id_table(struct drm_dp_sideband_msg_tx *msg)
1071 {
1072 struct drm_dp_sideband_msg_req_body req;
1073
1074 req.req_type = DP_CLEAR_PAYLOAD_ID_TABLE;
1075 drm_dp_encode_sideband_req(&req, msg);
1076 return 0;
1077 }
1078
1079 static int build_enum_path_resources(struct drm_dp_sideband_msg_tx *msg, int port_num)
1080 {
1081 struct drm_dp_sideband_msg_req_body req;
1082
1083 req.req_type = DP_ENUM_PATH_RESOURCES;
1084 req.u.port_num.port_number = port_num;
1085 drm_dp_encode_sideband_req(&req, msg);
1086 msg->path_msg = true;
1087 return 0;
1088 }
1089
1090 static int build_allocate_payload(struct drm_dp_sideband_msg_tx *msg, int port_num,
1091 u8 vcpi, uint16_t pbn,
1092 u8 number_sdp_streams,
1093 u8 *sdp_stream_sink)
1094 {
1095 struct drm_dp_sideband_msg_req_body req;
1096 memset(&req, 0, sizeof(req));
1097 req.req_type = DP_ALLOCATE_PAYLOAD;
1098 req.u.allocate_payload.port_number = port_num;
1099 req.u.allocate_payload.vcpi = vcpi;
1100 req.u.allocate_payload.pbn = pbn;
1101 req.u.allocate_payload.number_sdp_streams = number_sdp_streams;
1102 memcpy(req.u.allocate_payload.sdp_stream_sink, sdp_stream_sink,
1103 number_sdp_streams);
1104 drm_dp_encode_sideband_req(&req, msg);
1105 msg->path_msg = true;
1106 return 0;
1107 }
1108
1109 static int build_power_updown_phy(struct drm_dp_sideband_msg_tx *msg,
1110 int port_num, bool power_up)
1111 {
1112 struct drm_dp_sideband_msg_req_body req;
1113
1114 if (power_up)
1115 req.req_type = DP_POWER_UP_PHY;
1116 else
1117 req.req_type = DP_POWER_DOWN_PHY;
1118
1119 req.u.port_num.port_number = port_num;
1120 drm_dp_encode_sideband_req(&req, msg);
1121 msg->path_msg = true;
1122 return 0;
1123 }
1124
1125 static int drm_dp_mst_assign_payload_id(struct drm_dp_mst_topology_mgr *mgr,
1126 struct drm_dp_vcpi *vcpi)
1127 {
1128 int ret, vcpi_ret;
1129
1130 mutex_lock(&mgr->payload_lock);
1131 ret = find_first_zero_bit(&mgr->payload_mask, mgr->max_payloads + 1);
1132 if (ret > mgr->max_payloads) {
1133 ret = -EINVAL;
1134 DRM_DEBUG_KMS("out of payload ids %d\n", ret);
1135 goto out_unlock;
1136 }
1137
1138 vcpi_ret = find_first_zero_bit(&mgr->vcpi_mask, mgr->max_payloads + 1);
1139 if (vcpi_ret > mgr->max_payloads) {
1140 ret = -EINVAL;
1141 DRM_DEBUG_KMS("out of vcpi ids %d\n", ret);
1142 goto out_unlock;
1143 }
1144
1145 set_bit(ret, &mgr->payload_mask);
1146 set_bit(vcpi_ret, &mgr->vcpi_mask);
1147 vcpi->vcpi = vcpi_ret + 1;
1148 mgr->proposed_vcpis[ret - 1] = vcpi;
1149 out_unlock:
1150 mutex_unlock(&mgr->payload_lock);
1151 return ret;
1152 }
1153
1154 static void drm_dp_mst_put_payload_id(struct drm_dp_mst_topology_mgr *mgr,
1155 int vcpi)
1156 {
1157 int i;
1158 if (vcpi == 0)
1159 return;
1160
1161 mutex_lock(&mgr->payload_lock);
1162 DRM_DEBUG_KMS("putting payload %d\n", vcpi);
1163 clear_bit(vcpi - 1, &mgr->vcpi_mask);
1164
1165 for (i = 0; i < mgr->max_payloads; i++) {
1166 if (mgr->proposed_vcpis[i] &&
1167 mgr->proposed_vcpis[i]->vcpi == vcpi) {
1168 mgr->proposed_vcpis[i] = NULL;
1169 clear_bit(i + 1, &mgr->payload_mask);
1170 }
1171 }
1172 mutex_unlock(&mgr->payload_lock);
1173 }
1174
1175 static bool check_txmsg_state(struct drm_dp_mst_topology_mgr *mgr,
1176 struct drm_dp_sideband_msg_tx *txmsg)
1177 {
1178 unsigned int state;
1179
1180 /*
1181 * All updates to txmsg->state are protected by mgr->qlock, and the two
1182 * cases we check here are terminal states. For those the barriers
1183 * provided by the wake_up/wait_event pair are enough.
1184 */
1185 state = READ_ONCE(txmsg->state);
1186 return (state == DRM_DP_SIDEBAND_TX_RX ||
1187 state == DRM_DP_SIDEBAND_TX_TIMEOUT);
1188 }
1189
1190 static int drm_dp_mst_wait_tx_reply(struct drm_dp_mst_branch *mstb,
1191 struct drm_dp_sideband_msg_tx *txmsg)
1192 {
1193 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
1194 int ret;
1195
1196 #ifdef __NetBSD__
1197 mutex_lock(&mstb->mgr->qlock);
1198 DRM_TIMED_WAIT_UNTIL(ret, &mgr->tx_waitq, &mstb->mgr->qlock, 4*HZ,
1199 check_txmsg_state(mgr, txmsg));
1200 #else
1201 ret = wait_event_timeout(mgr->tx_waitq,
1202 check_txmsg_state(mgr, txmsg),
1203 (4 * HZ));
1204 mutex_lock(&mstb->mgr->qlock);
1205 #endif
1206 if (ret > 0) {
1207 if (txmsg->state == DRM_DP_SIDEBAND_TX_TIMEOUT) {
1208 ret = -EIO;
1209 goto out;
1210 }
1211 } else {
1212 DRM_DEBUG_KMS("timedout msg send %p %d %d\n", txmsg, txmsg->state, txmsg->seqno);
1213
1214 /* dump some state */
1215 ret = -EIO;
1216
1217 /* remove from q */
1218 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED ||
1219 txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND) {
1220 list_del(&txmsg->next);
1221 }
1222
1223 if (txmsg->state == DRM_DP_SIDEBAND_TX_START_SEND ||
1224 txmsg->state == DRM_DP_SIDEBAND_TX_SENT) {
1225 mstb->tx_slots[txmsg->seqno] = NULL;
1226 }
1227 mgr->is_waiting_for_dwn_reply = false;
1228
1229 }
1230 out:
1231 if (unlikely(ret == -EIO) && drm_debug_enabled(DRM_UT_DP)) {
1232 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
1233
1234 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
1235 }
1236 mutex_unlock(&mgr->qlock);
1237
1238 drm_dp_mst_kick_tx(mgr);
1239 return ret;
1240 }
1241
1242 static struct drm_dp_mst_branch *drm_dp_add_mst_branch_device(u8 lct, u8 *rad)
1243 {
1244 struct drm_dp_mst_branch *mstb;
1245
1246 mstb = kzalloc(sizeof(*mstb), GFP_KERNEL);
1247 if (!mstb)
1248 return NULL;
1249
1250 mstb->lct = lct;
1251 if (lct > 1)
1252 memcpy(mstb->rad, rad, lct / 2);
1253 INIT_LIST_HEAD(&mstb->ports);
1254 kref_init(&mstb->topology_kref);
1255 kref_init(&mstb->malloc_kref);
1256 return mstb;
1257 }
1258
1259 static void drm_dp_free_mst_branch_device(struct kref *kref)
1260 {
1261 struct drm_dp_mst_branch *mstb =
1262 container_of(kref, struct drm_dp_mst_branch, malloc_kref);
1263
1264 if (mstb->port_parent)
1265 drm_dp_mst_put_port_malloc(mstb->port_parent);
1266
1267 kfree(mstb);
1268 }
1269
1270 /**
1271 * DOC: Branch device and port refcounting
1272 *
1273 * Topology refcount overview
1274 * ~~~~~~~~~~~~~~~~~~~~~~~~~~
1275 *
1276 * The refcounting schemes for &struct drm_dp_mst_branch and &struct
1277 * drm_dp_mst_port are somewhat unusual. Both ports and branch devices have
1278 * two different kinds of refcounts: topology refcounts, and malloc refcounts.
1279 *
1280 * Topology refcounts are not exposed to drivers, and are handled internally
1281 * by the DP MST helpers. The helpers use them in order to prevent the
1282 * in-memory topology state from being changed in the middle of critical
1283 * operations like changing the internal state of payload allocations. This
1284 * means each branch and port will be considered to be connected to the rest
1285 * of the topology until its topology refcount reaches zero. Additionally,
1286 * for ports this means that their associated &struct drm_connector will stay
1287 * registered with userspace until the port's refcount reaches 0.
1288 *
1289 * Malloc refcount overview
1290 * ~~~~~~~~~~~~~~~~~~~~~~~~
1291 *
1292 * Malloc references are used to keep a &struct drm_dp_mst_port or &struct
1293 * drm_dp_mst_branch allocated even after all of its topology references have
1294 * been dropped, so that the driver or MST helpers can safely access each
1295 * branch's last known state before it was disconnected from the topology.
1296 * When the malloc refcount of a port or branch reaches 0, the memory
1297 * allocation containing the &struct drm_dp_mst_branch or &struct
1298 * drm_dp_mst_port respectively will be freed.
1299 *
1300 * For &struct drm_dp_mst_branch, malloc refcounts are not currently exposed
1301 * to drivers. As of writing this documentation, there are no drivers that
1302 * have a usecase for accessing &struct drm_dp_mst_branch outside of the MST
1303 * helpers. Exposing this API to drivers in a race-free manner would take more
1304 * tweaking of the refcounting scheme, however patches are welcome provided
1305 * there is a legitimate driver usecase for this.
1306 *
1307 * Refcount relationships in a topology
1308 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1309 *
1310 * Let's take a look at why the relationship between topology and malloc
1311 * refcounts is designed the way it is.
1312 *
1313 * .. kernel-figure:: dp-mst/topology-figure-1.dot
1314 *
1315 * An example of topology and malloc refs in a DP MST topology with two
1316 * active payloads. Topology refcount increments are indicated by solid
1317 * lines, and malloc refcount increments are indicated by dashed lines.
1318 * Each starts from the branch which incremented the refcount, and ends at
1319 * the branch to which the refcount belongs to, i.e. the arrow points the
1320 * same way as the C pointers used to reference a structure.
1321 *
1322 * As you can see in the above figure, every branch increments the topology
1323 * refcount of its children, and increments the malloc refcount of its
1324 * parent. Additionally, every payload increments the malloc refcount of its
1325 * assigned port by 1.
1326 *
1327 * So, what would happen if MSTB #3 from the above figure was unplugged from
1328 * the system, but the driver hadn't yet removed payload #2 from port #3? The
1329 * topology would start to look like the figure below.
1330 *
1331 * .. kernel-figure:: dp-mst/topology-figure-2.dot
1332 *
1333 * Ports and branch devices which have been released from memory are
1334 * colored grey, and references which have been removed are colored red.
1335 *
1336 * Whenever a port or branch device's topology refcount reaches zero, it will
1337 * decrement the topology refcounts of all its children, the malloc refcount
1338 * of its parent, and finally its own malloc refcount. For MSTB #4 and port
1339 * #4, this means they both have been disconnected from the topology and freed
1340 * from memory. But, because payload #2 is still holding a reference to port
1341 * #3, port #3 is removed from the topology but its &struct drm_dp_mst_port
1342 * is still accessible from memory. This also means port #3 has not yet
1343 * decremented the malloc refcount of MSTB #3, so its &struct
1344 * drm_dp_mst_branch will also stay allocated in memory until port #3's
1345 * malloc refcount reaches 0.
1346 *
1347 * This relationship is necessary because in order to release payload #2, we
1348 * need to be able to figure out the last relative of port #3 that's still
1349 * connected to the topology. In this case, we would travel up the topology as
1350 * shown below.
1351 *
1352 * .. kernel-figure:: dp-mst/topology-figure-3.dot
1353 *
1354 * And finally, remove payload #2 by communicating with port #2 through
1355 * sideband transactions.
1356 */
1357
1358 /**
1359 * drm_dp_mst_get_mstb_malloc() - Increment the malloc refcount of a branch
1360 * device
1361 * @mstb: The &struct drm_dp_mst_branch to increment the malloc refcount of
1362 *
1363 * Increments &drm_dp_mst_branch.malloc_kref. When
1364 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb
1365 * will be released and @mstb may no longer be used.
1366 *
1367 * See also: drm_dp_mst_put_mstb_malloc()
1368 */
1369 static void
1370 drm_dp_mst_get_mstb_malloc(struct drm_dp_mst_branch *mstb)
1371 {
1372 kref_get(&mstb->malloc_kref);
1373 DRM_DEBUG("mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref));
1374 }
1375
1376 /**
1377 * drm_dp_mst_put_mstb_malloc() - Decrement the malloc refcount of a branch
1378 * device
1379 * @mstb: The &struct drm_dp_mst_branch to decrement the malloc refcount of
1380 *
1381 * Decrements &drm_dp_mst_branch.malloc_kref. When
1382 * &drm_dp_mst_branch.malloc_kref reaches 0, the memory allocation for @mstb
1383 * will be released and @mstb may no longer be used.
1384 *
1385 * See also: drm_dp_mst_get_mstb_malloc()
1386 */
1387 static void
1388 drm_dp_mst_put_mstb_malloc(struct drm_dp_mst_branch *mstb)
1389 {
1390 DRM_DEBUG("mstb %p (%d)\n", mstb, kref_read(&mstb->malloc_kref) - 1);
1391 kref_put(&mstb->malloc_kref, drm_dp_free_mst_branch_device);
1392 }
1393
1394 static void drm_dp_free_mst_port(struct kref *kref)
1395 {
1396 struct drm_dp_mst_port *port =
1397 container_of(kref, struct drm_dp_mst_port, malloc_kref);
1398
1399 drm_dp_mst_put_mstb_malloc(port->parent);
1400 kfree(port);
1401 }
1402
1403 /**
1404 * drm_dp_mst_get_port_malloc() - Increment the malloc refcount of an MST port
1405 * @port: The &struct drm_dp_mst_port to increment the malloc refcount of
1406 *
1407 * Increments &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref
1408 * reaches 0, the memory allocation for @port will be released and @port may
1409 * no longer be used.
1410 *
1411 * Because @port could potentially be freed at any time by the DP MST helpers
1412 * if &drm_dp_mst_port.malloc_kref reaches 0, including during a call to this
1413 * function, drivers that which to make use of &struct drm_dp_mst_port should
1414 * ensure that they grab at least one main malloc reference to their MST ports
1415 * in &drm_dp_mst_topology_cbs.add_connector. This callback is called before
1416 * there is any chance for &drm_dp_mst_port.malloc_kref to reach 0.
1417 *
1418 * See also: drm_dp_mst_put_port_malloc()
1419 */
1420 void
1421 drm_dp_mst_get_port_malloc(struct drm_dp_mst_port *port)
1422 {
1423 kref_get(&port->malloc_kref);
1424 DRM_DEBUG("port %p (%d)\n", port, kref_read(&port->malloc_kref));
1425 }
1426 EXPORT_SYMBOL(drm_dp_mst_get_port_malloc);
1427
1428 /**
1429 * drm_dp_mst_put_port_malloc() - Decrement the malloc refcount of an MST port
1430 * @port: The &struct drm_dp_mst_port to decrement the malloc refcount of
1431 *
1432 * Decrements &drm_dp_mst_port.malloc_kref. When &drm_dp_mst_port.malloc_kref
1433 * reaches 0, the memory allocation for @port will be released and @port may
1434 * no longer be used.
1435 *
1436 * See also: drm_dp_mst_get_port_malloc()
1437 */
1438 void
1439 drm_dp_mst_put_port_malloc(struct drm_dp_mst_port *port)
1440 {
1441 DRM_DEBUG("port %p (%d)\n", port, kref_read(&port->malloc_kref) - 1);
1442 kref_put(&port->malloc_kref, drm_dp_free_mst_port);
1443 }
1444 EXPORT_SYMBOL(drm_dp_mst_put_port_malloc);
1445
1446 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
1447
1448 #define STACK_DEPTH 8
1449
1450 static noinline void
1451 __topology_ref_save(struct drm_dp_mst_topology_mgr *mgr,
1452 struct drm_dp_mst_topology_ref_history *history,
1453 enum drm_dp_mst_topology_ref_type type)
1454 {
1455 struct drm_dp_mst_topology_ref_entry *entry = NULL;
1456 depot_stack_handle_t backtrace;
1457 ulong stack_entries[STACK_DEPTH];
1458 uint n;
1459 int i;
1460
1461 n = stack_trace_save(stack_entries, ARRAY_SIZE(stack_entries), 1);
1462 backtrace = stack_depot_save(stack_entries, n, GFP_KERNEL);
1463 if (!backtrace)
1464 return;
1465
1466 /* Try to find an existing entry for this backtrace */
1467 for (i = 0; i < history->len; i++) {
1468 if (history->entries[i].backtrace == backtrace) {
1469 entry = &history->entries[i];
1470 break;
1471 }
1472 }
1473
1474 /* Otherwise add one */
1475 if (!entry) {
1476 struct drm_dp_mst_topology_ref_entry *new;
1477 int new_len = history->len + 1;
1478
1479 new = krealloc(history->entries, sizeof(*new) * new_len,
1480 GFP_KERNEL);
1481 if (!new)
1482 return;
1483
1484 entry = &new[history->len];
1485 history->len = new_len;
1486 history->entries = new;
1487
1488 entry->backtrace = backtrace;
1489 entry->type = type;
1490 entry->count = 0;
1491 }
1492 entry->count++;
1493 entry->ts_nsec = ktime_get_ns();
1494 }
1495
1496 static int
1497 topology_ref_history_cmp(const void *a, const void *b)
1498 {
1499 const struct drm_dp_mst_topology_ref_entry *entry_a = a, *entry_b = b;
1500
1501 if (entry_a->ts_nsec > entry_b->ts_nsec)
1502 return 1;
1503 else if (entry_a->ts_nsec < entry_b->ts_nsec)
1504 return -1;
1505 else
1506 return 0;
1507 }
1508
1509 static inline const char *
1510 topology_ref_type_to_str(enum drm_dp_mst_topology_ref_type type)
1511 {
1512 if (type == DRM_DP_MST_TOPOLOGY_REF_GET)
1513 return "get";
1514 else
1515 return "put";
1516 }
1517
1518 static void
1519 __dump_topology_ref_history(struct drm_dp_mst_topology_ref_history *history,
1520 void *ptr, const char *type_str)
1521 {
1522 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
1523 char *buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
1524 int i;
1525
1526 if (!buf)
1527 return;
1528
1529 if (!history->len)
1530 goto out;
1531
1532 /* First, sort the list so that it goes from oldest to newest
1533 * reference entry
1534 */
1535 sort(history->entries, history->len, sizeof(*history->entries),
1536 topology_ref_history_cmp, NULL);
1537
1538 drm_printf(&p, "%s (%p) topology count reached 0, dumping history:\n",
1539 type_str, ptr);
1540
1541 for (i = 0; i < history->len; i++) {
1542 const struct drm_dp_mst_topology_ref_entry *entry =
1543 &history->entries[i];
1544 ulong *entries;
1545 uint nr_entries;
1546 u64 ts_nsec = entry->ts_nsec;
1547 u32 rem_nsec = do_div(ts_nsec, 1000000000);
1548
1549 nr_entries = stack_depot_fetch(entry->backtrace, &entries);
1550 stack_trace_snprint(buf, PAGE_SIZE, entries, nr_entries, 4);
1551
1552 drm_printf(&p, " %d %ss (last at %5llu.%06u):\n%s",
1553 entry->count,
1554 topology_ref_type_to_str(entry->type),
1555 ts_nsec, rem_nsec / 1000, buf);
1556 }
1557
1558 /* Now free the history, since this is the only time we expose it */
1559 kfree(history->entries);
1560 out:
1561 kfree(buf);
1562 }
1563
1564 static __always_inline void
1565 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb)
1566 {
1567 __dump_topology_ref_history(&mstb->topology_ref_history, mstb,
1568 "MSTB");
1569 }
1570
1571 static __always_inline void
1572 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port)
1573 {
1574 __dump_topology_ref_history(&port->topology_ref_history, port,
1575 "Port");
1576 }
1577
1578 static __always_inline void
1579 save_mstb_topology_ref(struct drm_dp_mst_branch *mstb,
1580 enum drm_dp_mst_topology_ref_type type)
1581 {
1582 __topology_ref_save(mstb->mgr, &mstb->topology_ref_history, type);
1583 }
1584
1585 static __always_inline void
1586 save_port_topology_ref(struct drm_dp_mst_port *port,
1587 enum drm_dp_mst_topology_ref_type type)
1588 {
1589 __topology_ref_save(port->mgr, &port->topology_ref_history, type);
1590 }
1591
1592 static inline void
1593 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr)
1594 {
1595 mutex_lock(&mgr->topology_ref_history_lock);
1596 }
1597
1598 static inline void
1599 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr)
1600 {
1601 mutex_unlock(&mgr->topology_ref_history_lock);
1602 }
1603 #else
1604 static inline void
1605 topology_ref_history_lock(struct drm_dp_mst_topology_mgr *mgr) {}
1606 static inline void
1607 topology_ref_history_unlock(struct drm_dp_mst_topology_mgr *mgr) {}
1608 static inline void
1609 drm_dp_mst_dump_mstb_topology_history(struct drm_dp_mst_branch *mstb) {}
1610 static inline void
1611 drm_dp_mst_dump_port_topology_history(struct drm_dp_mst_port *port) {}
1612 #define save_mstb_topology_ref(mstb, type)
1613 #define save_port_topology_ref(port, type)
1614 #endif
1615
1616 static void drm_dp_destroy_mst_branch_device(struct kref *kref)
1617 {
1618 struct drm_dp_mst_branch *mstb =
1619 container_of(kref, struct drm_dp_mst_branch, topology_kref);
1620 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
1621
1622 drm_dp_mst_dump_mstb_topology_history(mstb);
1623
1624 INIT_LIST_HEAD(&mstb->destroy_next);
1625
1626 /*
1627 * This can get called under mgr->mutex, so we need to perform the
1628 * actual destruction of the mstb in another worker
1629 */
1630 mutex_lock(&mgr->delayed_destroy_lock);
1631 list_add(&mstb->destroy_next, &mgr->destroy_branch_device_list);
1632 mutex_unlock(&mgr->delayed_destroy_lock);
1633 schedule_work(&mgr->delayed_destroy_work);
1634 }
1635
1636 /**
1637 * drm_dp_mst_topology_try_get_mstb() - Increment the topology refcount of a
1638 * branch device unless it's zero
1639 * @mstb: &struct drm_dp_mst_branch to increment the topology refcount of
1640 *
1641 * Attempts to grab a topology reference to @mstb, if it hasn't yet been
1642 * removed from the topology (e.g. &drm_dp_mst_branch.topology_kref has
1643 * reached 0). Holding a topology reference implies that a malloc reference
1644 * will be held to @mstb as long as the user holds the topology reference.
1645 *
1646 * Care should be taken to ensure that the user has at least one malloc
1647 * reference to @mstb. If you already have a topology reference to @mstb, you
1648 * should use drm_dp_mst_topology_get_mstb() instead.
1649 *
1650 * See also:
1651 * drm_dp_mst_topology_get_mstb()
1652 * drm_dp_mst_topology_put_mstb()
1653 *
1654 * Returns:
1655 * * 1: A topology reference was grabbed successfully
1656 * * 0: @port is no longer in the topology, no reference was grabbed
1657 */
1658 static int __must_check
1659 drm_dp_mst_topology_try_get_mstb(struct drm_dp_mst_branch *mstb)
1660 {
1661 int ret;
1662
1663 topology_ref_history_lock(mstb->mgr);
1664 ret = kref_get_unless_zero(&mstb->topology_kref);
1665 if (ret) {
1666 DRM_DEBUG("mstb %p (%d)\n",
1667 mstb, kref_read(&mstb->topology_kref));
1668 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET);
1669 }
1670
1671 topology_ref_history_unlock(mstb->mgr);
1672
1673 return ret;
1674 }
1675
1676 /**
1677 * drm_dp_mst_topology_get_mstb() - Increment the topology refcount of a
1678 * branch device
1679 * @mstb: The &struct drm_dp_mst_branch to increment the topology refcount of
1680 *
1681 * Increments &drm_dp_mst_branch.topology_refcount without checking whether or
1682 * not it's already reached 0. This is only valid to use in scenarios where
1683 * you are already guaranteed to have at least one active topology reference
1684 * to @mstb. Otherwise, drm_dp_mst_topology_try_get_mstb() must be used.
1685 *
1686 * See also:
1687 * drm_dp_mst_topology_try_get_mstb()
1688 * drm_dp_mst_topology_put_mstb()
1689 */
1690 static void drm_dp_mst_topology_get_mstb(struct drm_dp_mst_branch *mstb)
1691 {
1692 topology_ref_history_lock(mstb->mgr);
1693
1694 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_GET);
1695 WARN_ON(kref_read(&mstb->topology_kref) == 0);
1696 kref_get(&mstb->topology_kref);
1697 DRM_DEBUG("mstb %p (%d)\n", mstb, kref_read(&mstb->topology_kref));
1698
1699 topology_ref_history_unlock(mstb->mgr);
1700 }
1701
1702 /**
1703 * drm_dp_mst_topology_put_mstb() - release a topology reference to a branch
1704 * device
1705 * @mstb: The &struct drm_dp_mst_branch to release the topology reference from
1706 *
1707 * Releases a topology reference from @mstb by decrementing
1708 * &drm_dp_mst_branch.topology_kref.
1709 *
1710 * See also:
1711 * drm_dp_mst_topology_try_get_mstb()
1712 * drm_dp_mst_topology_get_mstb()
1713 */
1714 static void
1715 drm_dp_mst_topology_put_mstb(struct drm_dp_mst_branch *mstb)
1716 {
1717 topology_ref_history_lock(mstb->mgr);
1718
1719 DRM_DEBUG("mstb %p (%d)\n",
1720 mstb, kref_read(&mstb->topology_kref) - 1);
1721 save_mstb_topology_ref(mstb, DRM_DP_MST_TOPOLOGY_REF_PUT);
1722
1723 topology_ref_history_unlock(mstb->mgr);
1724 kref_put(&mstb->topology_kref, drm_dp_destroy_mst_branch_device);
1725 }
1726
1727 static void drm_dp_destroy_port(struct kref *kref)
1728 {
1729 struct drm_dp_mst_port *port =
1730 container_of(kref, struct drm_dp_mst_port, topology_kref);
1731 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
1732
1733 drm_dp_mst_dump_port_topology_history(port);
1734
1735 /* There's nothing that needs locking to destroy an input port yet */
1736 if (port->input) {
1737 drm_dp_mst_put_port_malloc(port);
1738 return;
1739 }
1740
1741 kfree(port->cached_edid);
1742
1743 /*
1744 * we can't destroy the connector here, as we might be holding the
1745 * mode_config.mutex from an EDID retrieval
1746 */
1747 mutex_lock(&mgr->delayed_destroy_lock);
1748 list_add(&port->next, &mgr->destroy_port_list);
1749 mutex_unlock(&mgr->delayed_destroy_lock);
1750 schedule_work(&mgr->delayed_destroy_work);
1751 }
1752
1753 /**
1754 * drm_dp_mst_topology_try_get_port() - Increment the topology refcount of a
1755 * port unless it's zero
1756 * @port: &struct drm_dp_mst_port to increment the topology refcount of
1757 *
1758 * Attempts to grab a topology reference to @port, if it hasn't yet been
1759 * removed from the topology (e.g. &drm_dp_mst_port.topology_kref has reached
1760 * 0). Holding a topology reference implies that a malloc reference will be
1761 * held to @port as long as the user holds the topology reference.
1762 *
1763 * Care should be taken to ensure that the user has at least one malloc
1764 * reference to @port. If you already have a topology reference to @port, you
1765 * should use drm_dp_mst_topology_get_port() instead.
1766 *
1767 * See also:
1768 * drm_dp_mst_topology_get_port()
1769 * drm_dp_mst_topology_put_port()
1770 *
1771 * Returns:
1772 * * 1: A topology reference was grabbed successfully
1773 * * 0: @port is no longer in the topology, no reference was grabbed
1774 */
1775 static int __must_check
1776 drm_dp_mst_topology_try_get_port(struct drm_dp_mst_port *port)
1777 {
1778 int ret;
1779
1780 topology_ref_history_lock(port->mgr);
1781 ret = kref_get_unless_zero(&port->topology_kref);
1782 if (ret) {
1783 DRM_DEBUG("port %p (%d)\n",
1784 port, kref_read(&port->topology_kref));
1785 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET);
1786 }
1787
1788 topology_ref_history_unlock(port->mgr);
1789 return ret;
1790 }
1791
1792 /**
1793 * drm_dp_mst_topology_get_port() - Increment the topology refcount of a port
1794 * @port: The &struct drm_dp_mst_port to increment the topology refcount of
1795 *
1796 * Increments &drm_dp_mst_port.topology_refcount without checking whether or
1797 * not it's already reached 0. This is only valid to use in scenarios where
1798 * you are already guaranteed to have at least one active topology reference
1799 * to @port. Otherwise, drm_dp_mst_topology_try_get_port() must be used.
1800 *
1801 * See also:
1802 * drm_dp_mst_topology_try_get_port()
1803 * drm_dp_mst_topology_put_port()
1804 */
1805 static void drm_dp_mst_topology_get_port(struct drm_dp_mst_port *port)
1806 {
1807 topology_ref_history_lock(port->mgr);
1808
1809 WARN_ON(kref_read(&port->topology_kref) == 0);
1810 kref_get(&port->topology_kref);
1811 DRM_DEBUG("port %p (%d)\n", port, kref_read(&port->topology_kref));
1812 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_GET);
1813
1814 topology_ref_history_unlock(port->mgr);
1815 }
1816
1817 /**
1818 * drm_dp_mst_topology_put_port() - release a topology reference to a port
1819 * @port: The &struct drm_dp_mst_port to release the topology reference from
1820 *
1821 * Releases a topology reference from @port by decrementing
1822 * &drm_dp_mst_port.topology_kref.
1823 *
1824 * See also:
1825 * drm_dp_mst_topology_try_get_port()
1826 * drm_dp_mst_topology_get_port()
1827 */
1828 static void drm_dp_mst_topology_put_port(struct drm_dp_mst_port *port)
1829 {
1830 topology_ref_history_lock(port->mgr);
1831
1832 DRM_DEBUG("port %p (%d)\n",
1833 port, kref_read(&port->topology_kref) - 1);
1834 save_port_topology_ref(port, DRM_DP_MST_TOPOLOGY_REF_PUT);
1835
1836 topology_ref_history_unlock(port->mgr);
1837 kref_put(&port->topology_kref, drm_dp_destroy_port);
1838 }
1839
1840 static struct drm_dp_mst_branch *
1841 drm_dp_mst_topology_get_mstb_validated_locked(struct drm_dp_mst_branch *mstb,
1842 struct drm_dp_mst_branch *to_find)
1843 {
1844 struct drm_dp_mst_port *port;
1845 struct drm_dp_mst_branch *rmstb;
1846
1847 if (to_find == mstb)
1848 return mstb;
1849
1850 list_for_each_entry(port, &mstb->ports, next) {
1851 if (port->mstb) {
1852 rmstb = drm_dp_mst_topology_get_mstb_validated_locked(
1853 port->mstb, to_find);
1854 if (rmstb)
1855 return rmstb;
1856 }
1857 }
1858 return NULL;
1859 }
1860
1861 static struct drm_dp_mst_branch *
1862 drm_dp_mst_topology_get_mstb_validated(struct drm_dp_mst_topology_mgr *mgr,
1863 struct drm_dp_mst_branch *mstb)
1864 {
1865 struct drm_dp_mst_branch *rmstb = NULL;
1866
1867 mutex_lock(&mgr->lock);
1868 if (mgr->mst_primary) {
1869 rmstb = drm_dp_mst_topology_get_mstb_validated_locked(
1870 mgr->mst_primary, mstb);
1871
1872 if (rmstb && !drm_dp_mst_topology_try_get_mstb(rmstb))
1873 rmstb = NULL;
1874 }
1875 mutex_unlock(&mgr->lock);
1876 return rmstb;
1877 }
1878
1879 static struct drm_dp_mst_port *
1880 drm_dp_mst_topology_get_port_validated_locked(struct drm_dp_mst_branch *mstb,
1881 struct drm_dp_mst_port *to_find)
1882 {
1883 struct drm_dp_mst_port *port, *mport;
1884
1885 list_for_each_entry(port, &mstb->ports, next) {
1886 if (port == to_find)
1887 return port;
1888
1889 if (port->mstb) {
1890 mport = drm_dp_mst_topology_get_port_validated_locked(
1891 port->mstb, to_find);
1892 if (mport)
1893 return mport;
1894 }
1895 }
1896 return NULL;
1897 }
1898
1899 static struct drm_dp_mst_port *
1900 drm_dp_mst_topology_get_port_validated(struct drm_dp_mst_topology_mgr *mgr,
1901 struct drm_dp_mst_port *port)
1902 {
1903 struct drm_dp_mst_port *rport = NULL;
1904
1905 mutex_lock(&mgr->lock);
1906 if (mgr->mst_primary) {
1907 rport = drm_dp_mst_topology_get_port_validated_locked(
1908 mgr->mst_primary, port);
1909
1910 if (rport && !drm_dp_mst_topology_try_get_port(rport))
1911 rport = NULL;
1912 }
1913 mutex_unlock(&mgr->lock);
1914 return rport;
1915 }
1916
1917 static struct drm_dp_mst_port *drm_dp_get_port(struct drm_dp_mst_branch *mstb, u8 port_num)
1918 {
1919 struct drm_dp_mst_port *port;
1920 int ret;
1921
1922 list_for_each_entry(port, &mstb->ports, next) {
1923 if (port->port_num == port_num) {
1924 ret = drm_dp_mst_topology_try_get_port(port);
1925 return ret ? port : NULL;
1926 }
1927 }
1928
1929 return NULL;
1930 }
1931
1932 /*
1933 * calculate a new RAD for this MST branch device
1934 * if parent has an LCT of 2 then it has 1 nibble of RAD,
1935 * if parent has an LCT of 3 then it has 2 nibbles of RAD,
1936 */
1937 static u8 drm_dp_calculate_rad(struct drm_dp_mst_port *port,
1938 u8 *rad)
1939 {
1940 int parent_lct = port->parent->lct;
1941 int shift = 4;
1942 int idx = (parent_lct - 1) / 2;
1943 if (parent_lct > 1) {
1944 memcpy(rad, port->parent->rad, idx + 1);
1945 shift = (parent_lct % 2) ? 4 : 0;
1946 } else
1947 rad[0] = 0;
1948
1949 rad[idx] |= port->port_num << shift;
1950 return parent_lct + 1;
1951 }
1952
1953 static bool drm_dp_mst_is_dp_mst_end_device(u8 pdt, bool mcs)
1954 {
1955 switch (pdt) {
1956 case DP_PEER_DEVICE_DP_LEGACY_CONV:
1957 case DP_PEER_DEVICE_SST_SINK:
1958 return true;
1959 case DP_PEER_DEVICE_MST_BRANCHING:
1960 /* For sst branch device */
1961 if (!mcs)
1962 return true;
1963
1964 return false;
1965 }
1966 return true;
1967 }
1968
1969 static int
1970 drm_dp_port_set_pdt(struct drm_dp_mst_port *port, u8 new_pdt,
1971 bool new_mcs)
1972 {
1973 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
1974 struct drm_dp_mst_branch *mstb;
1975 u8 rad[8], lct;
1976 int ret = 0;
1977
1978 if (port->pdt == new_pdt && port->mcs == new_mcs)
1979 return 0;
1980
1981 /* Teardown the old pdt, if there is one */
1982 if (port->pdt != DP_PEER_DEVICE_NONE) {
1983 if (drm_dp_mst_is_dp_mst_end_device(port->pdt, port->mcs)) {
1984 /*
1985 * If the new PDT would also have an i2c bus,
1986 * don't bother with reregistering it
1987 */
1988 if (new_pdt != DP_PEER_DEVICE_NONE &&
1989 drm_dp_mst_is_dp_mst_end_device(new_pdt, new_mcs)) {
1990 port->pdt = new_pdt;
1991 port->mcs = new_mcs;
1992 return 0;
1993 }
1994
1995 /* remove i2c over sideband */
1996 drm_dp_mst_unregister_i2c_bus(&port->aux);
1997 } else {
1998 mutex_lock(&mgr->lock);
1999 drm_dp_mst_topology_put_mstb(port->mstb);
2000 port->mstb = NULL;
2001 mutex_unlock(&mgr->lock);
2002 }
2003 }
2004
2005 port->pdt = new_pdt;
2006 port->mcs = new_mcs;
2007
2008 if (port->pdt != DP_PEER_DEVICE_NONE) {
2009 if (drm_dp_mst_is_dp_mst_end_device(port->pdt, port->mcs)) {
2010 /* add i2c over sideband */
2011 ret = drm_dp_mst_register_i2c_bus(&port->aux);
2012 } else {
2013 lct = drm_dp_calculate_rad(port, rad);
2014 mstb = drm_dp_add_mst_branch_device(lct, rad);
2015 if (!mstb) {
2016 ret = -ENOMEM;
2017 DRM_ERROR("Failed to create MSTB for port %p",
2018 port);
2019 goto out;
2020 }
2021
2022 mutex_lock(&mgr->lock);
2023 port->mstb = mstb;
2024 mstb->mgr = port->mgr;
2025 mstb->port_parent = port;
2026
2027 /*
2028 * Make sure this port's memory allocation stays
2029 * around until its child MSTB releases it
2030 */
2031 drm_dp_mst_get_port_malloc(port);
2032 mutex_unlock(&mgr->lock);
2033
2034 /* And make sure we send a link address for this */
2035 ret = 1;
2036 }
2037 }
2038
2039 out:
2040 if (ret < 0)
2041 port->pdt = DP_PEER_DEVICE_NONE;
2042 return ret;
2043 }
2044
2045 /**
2046 * drm_dp_mst_dpcd_read() - read a series of bytes from the DPCD via sideband
2047 * @aux: Fake sideband AUX CH
2048 * @offset: address of the (first) register to read
2049 * @buffer: buffer to store the register values
2050 * @size: number of bytes in @buffer
2051 *
2052 * Performs the same functionality for remote devices via
2053 * sideband messaging as drm_dp_dpcd_read() does for local
2054 * devices via actual AUX CH.
2055 *
2056 * Return: Number of bytes read, or negative error code on failure.
2057 */
2058 ssize_t drm_dp_mst_dpcd_read(struct drm_dp_aux *aux,
2059 unsigned int offset, void *buffer, size_t size)
2060 {
2061 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port,
2062 aux);
2063
2064 return drm_dp_send_dpcd_read(port->mgr, port,
2065 offset, size, buffer);
2066 }
2067
2068 /**
2069 * drm_dp_mst_dpcd_write() - write a series of bytes to the DPCD via sideband
2070 * @aux: Fake sideband AUX CH
2071 * @offset: address of the (first) register to write
2072 * @buffer: buffer containing the values to write
2073 * @size: number of bytes in @buffer
2074 *
2075 * Performs the same functionality for remote devices via
2076 * sideband messaging as drm_dp_dpcd_write() does for local
2077 * devices via actual AUX CH.
2078 *
2079 * Return: 0 on success, negative error code on failure.
2080 */
2081 ssize_t drm_dp_mst_dpcd_write(struct drm_dp_aux *aux,
2082 unsigned int offset, void *buffer, size_t size)
2083 {
2084 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port,
2085 aux);
2086
2087 return drm_dp_send_dpcd_write(port->mgr, port,
2088 offset, size, buffer);
2089 }
2090
2091 static void drm_dp_check_mstb_guid(struct drm_dp_mst_branch *mstb, u8 *guid)
2092 {
2093 int ret __unused;
2094
2095 memcpy(mstb->guid, guid, 16);
2096
2097 if (!drm_dp_validate_guid(mstb->mgr, mstb->guid)) {
2098 if (mstb->port_parent) {
2099 ret = drm_dp_send_dpcd_write(
2100 mstb->mgr,
2101 mstb->port_parent,
2102 DP_GUID,
2103 16,
2104 mstb->guid);
2105 } else {
2106
2107 ret = drm_dp_dpcd_write(
2108 mstb->mgr->aux,
2109 DP_GUID,
2110 mstb->guid,
2111 16);
2112 }
2113 }
2114 }
2115
2116 static void build_mst_prop_path(const struct drm_dp_mst_branch *mstb,
2117 int pnum,
2118 char *proppath,
2119 size_t proppath_size)
2120 {
2121 int i;
2122 char temp[8];
2123 snprintf(proppath, proppath_size, "mst:%d", mstb->mgr->conn_base_id);
2124 for (i = 0; i < (mstb->lct - 1); i++) {
2125 int shift = (i % 2) ? 0 : 4;
2126 int port_num = (mstb->rad[i / 2] >> shift) & 0xf;
2127 snprintf(temp, sizeof(temp), "-%d", port_num);
2128 strlcat(proppath, temp, proppath_size);
2129 }
2130 snprintf(temp, sizeof(temp), "-%d", pnum);
2131 strlcat(proppath, temp, proppath_size);
2132 }
2133
2134 /**
2135 * drm_dp_mst_connector_late_register() - Late MST connector registration
2136 * @connector: The MST connector
2137 * @port: The MST port for this connector
2138 *
2139 * Helper to register the remote aux device for this MST port. Drivers should
2140 * call this from their mst connector's late_register hook to enable MST aux
2141 * devices.
2142 *
2143 * Return: 0 on success, negative error code on failure.
2144 */
2145 int drm_dp_mst_connector_late_register(struct drm_connector *connector,
2146 struct drm_dp_mst_port *port)
2147 {
2148 DRM_DEBUG_KMS("registering %s remote bus for %s\n",
2149 port->aux.name, device_xname(connector->dev->dev));
2150
2151 port->aux.dev = connector->kdev;
2152 return drm_dp_aux_register_devnode(&port->aux);
2153 }
2154 EXPORT_SYMBOL(drm_dp_mst_connector_late_register);
2155
2156 /**
2157 * drm_dp_mst_connector_early_unregister() - Early MST connector unregistration
2158 * @connector: The MST connector
2159 * @port: The MST port for this connector
2160 *
2161 * Helper to unregister the remote aux device for this MST port, registered by
2162 * drm_dp_mst_connector_late_register(). Drivers should call this from their mst
2163 * connector's early_unregister hook.
2164 */
2165 void drm_dp_mst_connector_early_unregister(struct drm_connector *connector,
2166 struct drm_dp_mst_port *port)
2167 {
2168 DRM_DEBUG_KMS("unregistering %s remote bus for %s\n",
2169 port->aux.name, device_xname(connector->dev->dev));
2170 drm_dp_aux_unregister_devnode(&port->aux);
2171 }
2172 EXPORT_SYMBOL(drm_dp_mst_connector_early_unregister);
2173
2174 static void
2175 drm_dp_mst_port_add_connector(struct drm_dp_mst_branch *mstb,
2176 struct drm_dp_mst_port *port)
2177 {
2178 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
2179 char proppath[255];
2180 int ret;
2181
2182 build_mst_prop_path(mstb, port->port_num, proppath, sizeof(proppath));
2183 port->connector = mgr->cbs->add_connector(mgr, port, proppath);
2184 if (!port->connector) {
2185 ret = -ENOMEM;
2186 goto error;
2187 }
2188
2189 if (port->pdt != DP_PEER_DEVICE_NONE &&
2190 drm_dp_mst_is_dp_mst_end_device(port->pdt, port->mcs)) {
2191 port->cached_edid = drm_get_edid(port->connector,
2192 &port->aux.ddc);
2193 drm_connector_set_tile_property(port->connector);
2194 }
2195
2196 mgr->cbs->register_connector(port->connector);
2197 return;
2198
2199 error:
2200 DRM_ERROR("Failed to create connector for port %p: %d\n", port, ret);
2201 }
2202
2203 /*
2204 * Drop a topology reference, and unlink the port from the in-memory topology
2205 * layout
2206 */
2207 static void
2208 drm_dp_mst_topology_unlink_port(struct drm_dp_mst_topology_mgr *mgr,
2209 struct drm_dp_mst_port *port)
2210 {
2211 mutex_lock(&mgr->lock);
2212 port->parent->num_ports--;
2213 list_del(&port->next);
2214 mutex_unlock(&mgr->lock);
2215 drm_dp_mst_topology_put_port(port);
2216 }
2217
2218 static struct drm_dp_mst_port *
2219 drm_dp_mst_add_port(struct drm_device *dev,
2220 struct drm_dp_mst_topology_mgr *mgr,
2221 struct drm_dp_mst_branch *mstb, u8 port_number)
2222 {
2223 struct drm_dp_mst_port *port = kzalloc(sizeof(*port), GFP_KERNEL);
2224
2225 if (!port)
2226 return NULL;
2227
2228 kref_init(&port->topology_kref);
2229 kref_init(&port->malloc_kref);
2230 port->parent = mstb;
2231 port->port_num = port_number;
2232 port->mgr = mgr;
2233 port->aux.name = "DPMST";
2234 port->aux.dev = dev->dev;
2235 port->aux.is_remote = true;
2236
2237 /* initialize the MST downstream port's AUX crc work queue */
2238 drm_dp_remote_aux_init(&port->aux);
2239
2240 /*
2241 * Make sure the memory allocation for our parent branch stays
2242 * around until our own memory allocation is released
2243 */
2244 drm_dp_mst_get_mstb_malloc(mstb);
2245
2246 return port;
2247 }
2248
2249 static int
2250 drm_dp_mst_handle_link_address_port(struct drm_dp_mst_branch *mstb,
2251 struct drm_device *dev,
2252 struct drm_dp_link_addr_reply_port *port_msg)
2253 {
2254 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
2255 struct drm_dp_mst_port *port;
2256 int old_ddps = 0, ret;
2257 u8 new_pdt = DP_PEER_DEVICE_NONE;
2258 bool new_mcs = 0;
2259 bool created = false, send_link_addr = false, changed = false;
2260
2261 port = drm_dp_get_port(mstb, port_msg->port_number);
2262 if (!port) {
2263 port = drm_dp_mst_add_port(dev, mgr, mstb,
2264 port_msg->port_number);
2265 if (!port)
2266 return -ENOMEM;
2267 created = true;
2268 changed = true;
2269 } else if (!port->input && port_msg->input_port && port->connector) {
2270 /* Since port->connector can't be changed here, we create a
2271 * new port if input_port changes from 0 to 1
2272 */
2273 drm_dp_mst_topology_unlink_port(mgr, port);
2274 drm_dp_mst_topology_put_port(port);
2275 port = drm_dp_mst_add_port(dev, mgr, mstb,
2276 port_msg->port_number);
2277 if (!port)
2278 return -ENOMEM;
2279 changed = true;
2280 created = true;
2281 } else if (port->input && !port_msg->input_port) {
2282 changed = true;
2283 } else if (port->connector) {
2284 /* We're updating a port that's exposed to userspace, so do it
2285 * under lock
2286 */
2287 drm_modeset_lock(&mgr->base.lock, NULL);
2288
2289 old_ddps = port->ddps;
2290 changed = port->ddps != port_msg->ddps ||
2291 (port->ddps &&
2292 (port->ldps != port_msg->legacy_device_plug_status ||
2293 port->dpcd_rev != port_msg->dpcd_revision ||
2294 port->mcs != port_msg->mcs ||
2295 port->pdt != port_msg->peer_device_type ||
2296 port->num_sdp_stream_sinks !=
2297 port_msg->num_sdp_stream_sinks));
2298 }
2299
2300 port->input = port_msg->input_port;
2301 if (!port->input)
2302 new_pdt = port_msg->peer_device_type;
2303 new_mcs = port_msg->mcs;
2304 port->ddps = port_msg->ddps;
2305 port->ldps = port_msg->legacy_device_plug_status;
2306 port->dpcd_rev = port_msg->dpcd_revision;
2307 port->num_sdp_streams = port_msg->num_sdp_streams;
2308 port->num_sdp_stream_sinks = port_msg->num_sdp_stream_sinks;
2309
2310 /* manage mstb port lists with mgr lock - take a reference
2311 for this list */
2312 if (created) {
2313 mutex_lock(&mgr->lock);
2314 drm_dp_mst_topology_get_port(port);
2315 list_add(&port->next, &mstb->ports);
2316 mstb->num_ports++;
2317 mutex_unlock(&mgr->lock);
2318 }
2319
2320 if (old_ddps != port->ddps) {
2321 if (port->ddps) {
2322 if (!port->input) {
2323 drm_dp_send_enum_path_resources(mgr, mstb,
2324 port);
2325 }
2326 } else {
2327 port->available_pbn = 0;
2328 }
2329 }
2330
2331 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs);
2332 if (ret == 1) {
2333 send_link_addr = true;
2334 } else if (ret < 0) {
2335 DRM_ERROR("Failed to change PDT on port %p: %d\n",
2336 port, ret);
2337 goto fail;
2338 }
2339
2340 /*
2341 * If this port wasn't just created, then we're reprobing because
2342 * we're coming out of suspend. In this case, always resend the link
2343 * address if there's an MSTB on this port
2344 */
2345 if (!created && port->pdt == DP_PEER_DEVICE_MST_BRANCHING &&
2346 port->mcs)
2347 send_link_addr = true;
2348
2349 if (port->connector)
2350 drm_modeset_unlock(&mgr->base.lock);
2351 else if (!port->input)
2352 drm_dp_mst_port_add_connector(mstb, port);
2353
2354 if (send_link_addr && port->mstb) {
2355 ret = drm_dp_send_link_address(mgr, port->mstb);
2356 if (ret == 1) /* MSTB below us changed */
2357 changed = true;
2358 else if (ret < 0)
2359 goto fail_put;
2360 }
2361
2362 /* put reference to this port */
2363 drm_dp_mst_topology_put_port(port);
2364 return changed;
2365
2366 fail:
2367 drm_dp_mst_topology_unlink_port(mgr, port);
2368 if (port->connector)
2369 drm_modeset_unlock(&mgr->base.lock);
2370 fail_put:
2371 drm_dp_mst_topology_put_port(port);
2372 return ret;
2373 }
2374
2375 static void
2376 drm_dp_mst_handle_conn_stat(struct drm_dp_mst_branch *mstb,
2377 struct drm_dp_connection_status_notify *conn_stat)
2378 {
2379 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
2380 struct drm_dp_mst_port *port;
2381 int old_ddps, old_input, ret, i;
2382 u8 new_pdt;
2383 bool new_mcs;
2384 bool dowork = false, create_connector = false;
2385
2386 port = drm_dp_get_port(mstb, conn_stat->port_number);
2387 if (!port)
2388 return;
2389
2390 if (port->connector) {
2391 if (!port->input && conn_stat->input_port) {
2392 /*
2393 * We can't remove a connector from an already exposed
2394 * port, so just throw the port out and make sure we
2395 * reprobe the link address of it's parent MSTB
2396 */
2397 drm_dp_mst_topology_unlink_port(mgr, port);
2398 mstb->link_address_sent = false;
2399 dowork = true;
2400 goto out;
2401 }
2402
2403 /* Locking is only needed if the port's exposed to userspace */
2404 drm_modeset_lock(&mgr->base.lock, NULL);
2405 } else if (port->input && !conn_stat->input_port) {
2406 create_connector = true;
2407 /* Reprobe link address so we get num_sdp_streams */
2408 mstb->link_address_sent = false;
2409 dowork = true;
2410 }
2411
2412 old_ddps = port->ddps;
2413 old_input = port->input;
2414 port->input = conn_stat->input_port;
2415 port->ldps = conn_stat->legacy_device_plug_status;
2416 port->ddps = conn_stat->displayport_device_plug_status;
2417
2418 if (old_ddps != port->ddps) {
2419 if (port->ddps) {
2420 dowork = true;
2421 } else {
2422 port->available_pbn = 0;
2423 }
2424 }
2425
2426 new_pdt = port->input ? DP_PEER_DEVICE_NONE : conn_stat->peer_device_type;
2427 new_mcs = conn_stat->message_capability_status;
2428 ret = drm_dp_port_set_pdt(port, new_pdt, new_mcs);
2429 if (ret == 1) {
2430 dowork = true;
2431 } else if (ret < 0) {
2432 DRM_ERROR("Failed to change PDT for port %p: %d\n",
2433 port, ret);
2434 dowork = false;
2435 }
2436
2437 if (!old_input && old_ddps != port->ddps && !port->ddps) {
2438 for (i = 0; i < mgr->max_payloads; i++) {
2439 struct drm_dp_vcpi *vcpi = mgr->proposed_vcpis[i];
2440 struct drm_dp_mst_port *port_validated;
2441
2442 if (!vcpi)
2443 continue;
2444
2445 port_validated =
2446 container_of(vcpi, struct drm_dp_mst_port, vcpi);
2447 port_validated =
2448 drm_dp_mst_topology_get_port_validated(mgr, port_validated);
2449 if (!port_validated) {
2450 mutex_lock(&mgr->payload_lock);
2451 vcpi->num_slots = 0;
2452 mutex_unlock(&mgr->payload_lock);
2453 } else {
2454 drm_dp_mst_topology_put_port(port_validated);
2455 }
2456 }
2457 }
2458
2459 if (port->connector)
2460 drm_modeset_unlock(&mgr->base.lock);
2461 else if (create_connector)
2462 drm_dp_mst_port_add_connector(mstb, port);
2463
2464 out:
2465 drm_dp_mst_topology_put_port(port);
2466 if (dowork)
2467 queue_work(system_long_wq, &mstb->mgr->work);
2468 }
2469
2470 static struct drm_dp_mst_branch *drm_dp_get_mst_branch_device(struct drm_dp_mst_topology_mgr *mgr,
2471 u8 lct, u8 *rad)
2472 {
2473 struct drm_dp_mst_branch *mstb;
2474 struct drm_dp_mst_port *port;
2475 int i, ret;
2476 /* find the port by iterating down */
2477
2478 mutex_lock(&mgr->lock);
2479 mstb = mgr->mst_primary;
2480
2481 if (!mstb)
2482 goto out;
2483
2484 for (i = 0; i < lct - 1; i++) {
2485 int shift = (i % 2) ? 0 : 4;
2486 int port_num = (rad[i / 2] >> shift) & 0xf;
2487
2488 list_for_each_entry(port, &mstb->ports, next) {
2489 if (port->port_num == port_num) {
2490 mstb = port->mstb;
2491 if (!mstb) {
2492 DRM_ERROR("failed to lookup MSTB with lct %d, rad %02x\n", lct, rad[0]);
2493 goto out;
2494 }
2495
2496 break;
2497 }
2498 }
2499 }
2500 ret = drm_dp_mst_topology_try_get_mstb(mstb);
2501 if (!ret)
2502 mstb = NULL;
2503 out:
2504 mutex_unlock(&mgr->lock);
2505 return mstb;
2506 }
2507
2508 static struct drm_dp_mst_branch *get_mst_branch_device_by_guid_helper(
2509 struct drm_dp_mst_branch *mstb,
2510 const uint8_t *guid)
2511 {
2512 struct drm_dp_mst_branch *found_mstb;
2513 struct drm_dp_mst_port *port;
2514
2515 if (memcmp(mstb->guid, guid, 16) == 0)
2516 return mstb;
2517
2518
2519 list_for_each_entry(port, &mstb->ports, next) {
2520 if (!port->mstb)
2521 continue;
2522
2523 found_mstb = get_mst_branch_device_by_guid_helper(port->mstb, guid);
2524
2525 if (found_mstb)
2526 return found_mstb;
2527 }
2528
2529 return NULL;
2530 }
2531
2532 static struct drm_dp_mst_branch *
2533 drm_dp_get_mst_branch_device_by_guid(struct drm_dp_mst_topology_mgr *mgr,
2534 const uint8_t *guid)
2535 {
2536 struct drm_dp_mst_branch *mstb;
2537 int ret;
2538
2539 /* find the port by iterating down */
2540 mutex_lock(&mgr->lock);
2541
2542 mstb = get_mst_branch_device_by_guid_helper(mgr->mst_primary, guid);
2543 if (mstb) {
2544 ret = drm_dp_mst_topology_try_get_mstb(mstb);
2545 if (!ret)
2546 mstb = NULL;
2547 }
2548
2549 mutex_unlock(&mgr->lock);
2550 return mstb;
2551 }
2552
2553 static int drm_dp_check_and_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
2554 struct drm_dp_mst_branch *mstb)
2555 {
2556 struct drm_dp_mst_port *port;
2557 int ret;
2558 bool changed = false;
2559
2560 if (!mstb->link_address_sent) {
2561 ret = drm_dp_send_link_address(mgr, mstb);
2562 if (ret == 1)
2563 changed = true;
2564 else if (ret < 0)
2565 return ret;
2566 }
2567
2568 list_for_each_entry(port, &mstb->ports, next) {
2569 struct drm_dp_mst_branch *mstb_child = NULL;
2570
2571 if (port->input || !port->ddps)
2572 continue;
2573
2574 if (!port->available_pbn) {
2575 drm_modeset_lock(&mgr->base.lock, NULL);
2576 drm_dp_send_enum_path_resources(mgr, mstb, port);
2577 drm_modeset_unlock(&mgr->base.lock);
2578 changed = true;
2579 }
2580
2581 if (port->mstb)
2582 mstb_child = drm_dp_mst_topology_get_mstb_validated(
2583 mgr, port->mstb);
2584
2585 if (mstb_child) {
2586 ret = drm_dp_check_and_send_link_address(mgr,
2587 mstb_child);
2588 drm_dp_mst_topology_put_mstb(mstb_child);
2589 if (ret == 1)
2590 changed = true;
2591 else if (ret < 0)
2592 return ret;
2593 }
2594 }
2595
2596 return changed;
2597 }
2598
2599 static void drm_dp_mst_link_probe_work(struct work_struct *work)
2600 {
2601 struct drm_dp_mst_topology_mgr *mgr =
2602 container_of(work, struct drm_dp_mst_topology_mgr, work);
2603 struct drm_device *dev = mgr->dev;
2604 struct drm_dp_mst_branch *mstb;
2605 int ret;
2606 bool clear_payload_id_table;
2607
2608 mutex_lock(&mgr->probe_lock);
2609
2610 mutex_lock(&mgr->lock);
2611 clear_payload_id_table = !mgr->payload_id_table_cleared;
2612 mgr->payload_id_table_cleared = true;
2613
2614 mstb = mgr->mst_primary;
2615 if (mstb) {
2616 ret = drm_dp_mst_topology_try_get_mstb(mstb);
2617 if (!ret)
2618 mstb = NULL;
2619 }
2620 mutex_unlock(&mgr->lock);
2621 if (!mstb) {
2622 mutex_unlock(&mgr->probe_lock);
2623 return;
2624 }
2625
2626 /*
2627 * Certain branch devices seem to incorrectly report an available_pbn
2628 * of 0 on downstream sinks, even after clearing the
2629 * DP_PAYLOAD_ALLOCATE_* registers in
2630 * drm_dp_mst_topology_mgr_set_mst(). Namely, the CableMatters USB-C
2631 * 2x DP hub. Sending a CLEAR_PAYLOAD_ID_TABLE message seems to make
2632 * things work again.
2633 */
2634 if (clear_payload_id_table) {
2635 DRM_DEBUG_KMS("Clearing payload ID table\n");
2636 drm_dp_send_clear_payload_id_table(mgr, mstb);
2637 }
2638
2639 ret = drm_dp_check_and_send_link_address(mgr, mstb);
2640 drm_dp_mst_topology_put_mstb(mstb);
2641
2642 mutex_unlock(&mgr->probe_lock);
2643 if (ret)
2644 drm_kms_helper_hotplug_event(dev);
2645 }
2646
2647 static bool drm_dp_validate_guid(struct drm_dp_mst_topology_mgr *mgr,
2648 u8 *guid)
2649 {
2650 u64 salt;
2651
2652 if (memchr_inv(guid, 0, 16))
2653 return true;
2654
2655 salt = get_jiffies_64();
2656
2657 memcpy(&guid[0], &salt, sizeof(u64));
2658 memcpy(&guid[8], &salt, sizeof(u64));
2659
2660 return false;
2661 }
2662
2663 static int build_dpcd_read(struct drm_dp_sideband_msg_tx *msg, u8 port_num, u32 offset, u8 num_bytes)
2664 {
2665 struct drm_dp_sideband_msg_req_body req;
2666
2667 req.req_type = DP_REMOTE_DPCD_READ;
2668 req.u.dpcd_read.port_number = port_num;
2669 req.u.dpcd_read.dpcd_address = offset;
2670 req.u.dpcd_read.num_bytes = num_bytes;
2671 drm_dp_encode_sideband_req(&req, msg);
2672
2673 return 0;
2674 }
2675
2676 static int drm_dp_send_sideband_msg(struct drm_dp_mst_topology_mgr *mgr,
2677 bool up, u8 *msg, int len)
2678 {
2679 int ret;
2680 int regbase = up ? DP_SIDEBAND_MSG_UP_REP_BASE : DP_SIDEBAND_MSG_DOWN_REQ_BASE;
2681 int tosend, total, offset;
2682 int retries = 0;
2683
2684 retry:
2685 total = len;
2686 offset = 0;
2687 do {
2688 tosend = min3(mgr->max_dpcd_transaction_bytes, 16, total);
2689
2690 ret = drm_dp_dpcd_write(mgr->aux, regbase + offset,
2691 &msg[offset],
2692 tosend);
2693 if (ret != tosend) {
2694 if (ret == -EIO && retries < 5) {
2695 retries++;
2696 goto retry;
2697 }
2698 DRM_DEBUG_KMS("failed to dpcd write %d %d\n", tosend, ret);
2699
2700 return -EIO;
2701 }
2702 offset += tosend;
2703 total -= tosend;
2704 } while (total > 0);
2705 return 0;
2706 }
2707
2708 static int set_hdr_from_dst_qlock(struct drm_dp_sideband_msg_hdr *hdr,
2709 struct drm_dp_sideband_msg_tx *txmsg)
2710 {
2711 struct drm_dp_mst_branch *mstb = txmsg->dst;
2712 u8 req_type;
2713
2714 /* both msg slots are full */
2715 if (txmsg->seqno == -1) {
2716 if (mstb->tx_slots[0] && mstb->tx_slots[1]) {
2717 DRM_DEBUG_KMS("%s: failed to find slot\n", __func__);
2718 return -EAGAIN;
2719 }
2720 if (mstb->tx_slots[0] == NULL && mstb->tx_slots[1] == NULL) {
2721 txmsg->seqno = mstb->last_seqno;
2722 mstb->last_seqno ^= 1;
2723 } else if (mstb->tx_slots[0] == NULL)
2724 txmsg->seqno = 0;
2725 else
2726 txmsg->seqno = 1;
2727 mstb->tx_slots[txmsg->seqno] = txmsg;
2728 }
2729
2730 req_type = txmsg->msg[0] & 0x7f;
2731 if (req_type == DP_CONNECTION_STATUS_NOTIFY ||
2732 req_type == DP_RESOURCE_STATUS_NOTIFY)
2733 hdr->broadcast = 1;
2734 else
2735 hdr->broadcast = 0;
2736 hdr->path_msg = txmsg->path_msg;
2737 hdr->lct = mstb->lct;
2738 hdr->lcr = mstb->lct - 1;
2739 if (mstb->lct > 1)
2740 memcpy(hdr->rad, mstb->rad, mstb->lct / 2);
2741 hdr->seqno = txmsg->seqno;
2742 return 0;
2743 }
2744 /*
2745 * process a single block of the next message in the sideband queue
2746 */
2747 static int process_single_tx_qlock(struct drm_dp_mst_topology_mgr *mgr,
2748 struct drm_dp_sideband_msg_tx *txmsg,
2749 bool up)
2750 {
2751 u8 chunk[48];
2752 struct drm_dp_sideband_msg_hdr hdr;
2753 int len, space, idx, tosend;
2754 int ret;
2755
2756 memset(&hdr, 0, sizeof(struct drm_dp_sideband_msg_hdr));
2757
2758 if (txmsg->state == DRM_DP_SIDEBAND_TX_QUEUED) {
2759 txmsg->seqno = -1;
2760 txmsg->state = DRM_DP_SIDEBAND_TX_START_SEND;
2761 }
2762
2763 /* make hdr from dst mst - for replies use seqno
2764 otherwise assign one */
2765 ret = set_hdr_from_dst_qlock(&hdr, txmsg);
2766 if (ret < 0)
2767 return ret;
2768
2769 /* amount left to send in this message */
2770 len = txmsg->cur_len - txmsg->cur_offset;
2771
2772 /* 48 - sideband msg size - 1 byte for data CRC, x header bytes */
2773 space = 48 - 1 - drm_dp_calc_sb_hdr_size(&hdr);
2774
2775 tosend = min(len, space);
2776 if (len == txmsg->cur_len)
2777 hdr.somt = 1;
2778 if (space >= len)
2779 hdr.eomt = 1;
2780
2781
2782 hdr.msg_len = tosend + 1;
2783 drm_dp_encode_sideband_msg_hdr(&hdr, chunk, &idx);
2784 memcpy(&chunk[idx], &txmsg->msg[txmsg->cur_offset], tosend);
2785 /* add crc at end */
2786 drm_dp_crc_sideband_chunk_req(&chunk[idx], tosend);
2787 idx += tosend + 1;
2788
2789 ret = drm_dp_send_sideband_msg(mgr, up, chunk, idx);
2790 if (unlikely(ret) && drm_debug_enabled(DRM_UT_DP)) {
2791 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
2792
2793 drm_printf(&p, "sideband msg failed to send\n");
2794 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
2795 return ret;
2796 }
2797
2798 txmsg->cur_offset += tosend;
2799 if (txmsg->cur_offset == txmsg->cur_len) {
2800 txmsg->state = DRM_DP_SIDEBAND_TX_SENT;
2801 return 1;
2802 }
2803 return 0;
2804 }
2805
2806 static void process_single_down_tx_qlock(struct drm_dp_mst_topology_mgr *mgr)
2807 {
2808 struct drm_dp_sideband_msg_tx *txmsg;
2809 int ret;
2810
2811 WARN_ON(!mutex_is_locked(&mgr->qlock));
2812
2813 /* construct a chunk from the first msg in the tx_msg queue */
2814 if (list_empty(&mgr->tx_msg_downq))
2815 return;
2816
2817 txmsg = list_first_entry(&mgr->tx_msg_downq, struct drm_dp_sideband_msg_tx, next);
2818 ret = process_single_tx_qlock(mgr, txmsg, false);
2819 if (ret == 1) {
2820 /* txmsg is sent it should be in the slots now */
2821 mgr->is_waiting_for_dwn_reply = true;
2822 list_del(&txmsg->next);
2823 } else if (ret) {
2824 DRM_DEBUG_KMS("failed to send msg in q %d\n", ret);
2825 mgr->is_waiting_for_dwn_reply = false;
2826 list_del(&txmsg->next);
2827 if (txmsg->seqno != -1)
2828 txmsg->dst->tx_slots[txmsg->seqno] = NULL;
2829 txmsg->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
2830 #ifdef __NetBSD__
2831 DRM_WAKEUP_ALL(&mgr->tx_waitq, &mgr->qlock);
2832 #else
2833 wake_up_all(&mgr->tx_waitq);
2834 #endif
2835 }
2836 }
2837
2838 /* called holding qlock */
2839 static void process_single_up_tx_qlock(struct drm_dp_mst_topology_mgr *mgr,
2840 struct drm_dp_sideband_msg_tx *txmsg)
2841 {
2842 int ret;
2843
2844 /* construct a chunk from the first msg in the tx_msg queue */
2845 ret = process_single_tx_qlock(mgr, txmsg, true);
2846
2847 if (ret != 1)
2848 DRM_DEBUG_KMS("failed to send msg in q %d\n", ret);
2849
2850 if (txmsg->seqno != -1) {
2851 WARN_ON((unsigned int)txmsg->seqno >
2852 ARRAY_SIZE(txmsg->dst->tx_slots));
2853 txmsg->dst->tx_slots[txmsg->seqno] = NULL;
2854 }
2855 }
2856
2857 static void drm_dp_queue_down_tx(struct drm_dp_mst_topology_mgr *mgr,
2858 struct drm_dp_sideband_msg_tx *txmsg)
2859 {
2860 mutex_lock(&mgr->qlock);
2861 list_add_tail(&txmsg->next, &mgr->tx_msg_downq);
2862
2863 if (drm_debug_enabled(DRM_UT_DP)) {
2864 struct drm_printer p = drm_debug_printer(DBG_PREFIX);
2865
2866 drm_dp_mst_dump_sideband_msg_tx(&p, txmsg);
2867 }
2868
2869 if (list_is_singular(&mgr->tx_msg_downq) &&
2870 !mgr->is_waiting_for_dwn_reply)
2871 process_single_down_tx_qlock(mgr);
2872 mutex_unlock(&mgr->qlock);
2873 }
2874
2875 static void
2876 drm_dp_dump_link_address(struct drm_dp_link_address_ack_reply *reply)
2877 {
2878 struct drm_dp_link_addr_reply_port *port_reply;
2879 int i;
2880
2881 for (i = 0; i < reply->nports; i++) {
2882 port_reply = &reply->ports[i];
2883 DRM_DEBUG_KMS("port %d: input %d, pdt: %d, pn: %d, dpcd_rev: %02x, mcs: %d, ddps: %d, ldps %d, sdp %d/%d\n",
2884 i,
2885 port_reply->input_port,
2886 port_reply->peer_device_type,
2887 port_reply->port_number,
2888 port_reply->dpcd_revision,
2889 port_reply->mcs,
2890 port_reply->ddps,
2891 port_reply->legacy_device_plug_status,
2892 port_reply->num_sdp_streams,
2893 port_reply->num_sdp_stream_sinks);
2894 }
2895 }
2896
2897 static int drm_dp_send_link_address(struct drm_dp_mst_topology_mgr *mgr,
2898 struct drm_dp_mst_branch *mstb)
2899 {
2900 struct drm_dp_sideband_msg_tx *txmsg;
2901 struct drm_dp_link_address_ack_reply *reply;
2902 struct drm_dp_mst_port *port, *tmp;
2903 int i, len __unused, ret, port_mask = 0;
2904 bool changed = false;
2905
2906 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
2907 if (!txmsg)
2908 return -ENOMEM;
2909
2910 txmsg->dst = mstb;
2911 len = build_link_address(txmsg);
2912
2913 mstb->link_address_sent = true;
2914 drm_dp_queue_down_tx(mgr, txmsg);
2915
2916 /* FIXME: Actually do some real error handling here */
2917 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
2918 if (ret <= 0) {
2919 DRM_ERROR("Sending link address failed with %d\n", ret);
2920 goto out;
2921 }
2922 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
2923 DRM_ERROR("link address NAK received\n");
2924 ret = -EIO;
2925 goto out;
2926 }
2927
2928 reply = &txmsg->reply.u.link_addr;
2929 DRM_DEBUG_KMS("link address reply: %d\n", reply->nports);
2930 drm_dp_dump_link_address(reply);
2931
2932 drm_dp_check_mstb_guid(mstb, reply->guid);
2933
2934 for (i = 0; i < reply->nports; i++) {
2935 port_mask |= BIT(reply->ports[i].port_number);
2936 ret = drm_dp_mst_handle_link_address_port(mstb, mgr->dev,
2937 &reply->ports[i]);
2938 if (ret == 1)
2939 changed = true;
2940 else if (ret < 0)
2941 goto out;
2942 }
2943
2944 /* Prune any ports that are currently a part of mstb in our in-memory
2945 * topology, but were not seen in this link address. Usually this
2946 * means that they were removed while the topology was out of sync,
2947 * e.g. during suspend/resume
2948 */
2949 mutex_lock(&mgr->lock);
2950 list_for_each_entry_safe(port, tmp, &mstb->ports, next) {
2951 if (port_mask & BIT(port->port_num))
2952 continue;
2953
2954 DRM_DEBUG_KMS("port %d was not in link address, removing\n",
2955 port->port_num);
2956 list_del(&port->next);
2957 drm_dp_mst_topology_put_port(port);
2958 changed = true;
2959 }
2960 mutex_unlock(&mgr->lock);
2961
2962 out:
2963 if (ret <= 0)
2964 mstb->link_address_sent = false;
2965 kfree(txmsg);
2966 return ret < 0 ? ret : changed;
2967 }
2968
2969 void drm_dp_send_clear_payload_id_table(struct drm_dp_mst_topology_mgr *mgr,
2970 struct drm_dp_mst_branch *mstb)
2971 {
2972 struct drm_dp_sideband_msg_tx *txmsg;
2973 int len __unused, ret;
2974
2975 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
2976 if (!txmsg)
2977 return;
2978
2979 txmsg->dst = mstb;
2980 len = build_clear_payload_id_table(txmsg);
2981
2982 drm_dp_queue_down_tx(mgr, txmsg);
2983
2984 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
2985 if (ret > 0 && txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
2986 DRM_DEBUG_KMS("clear payload table id nak received\n");
2987
2988 kfree(txmsg);
2989 }
2990
2991 static int
2992 drm_dp_send_enum_path_resources(struct drm_dp_mst_topology_mgr *mgr,
2993 struct drm_dp_mst_branch *mstb,
2994 struct drm_dp_mst_port *port)
2995 {
2996 struct drm_dp_enum_path_resources_ack_reply *path_res;
2997 struct drm_dp_sideband_msg_tx *txmsg;
2998 int len __unused;
2999 int ret;
3000
3001 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3002 if (!txmsg)
3003 return -ENOMEM;
3004
3005 txmsg->dst = mstb;
3006 len = build_enum_path_resources(txmsg, port->port_num);
3007
3008 drm_dp_queue_down_tx(mgr, txmsg);
3009
3010 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3011 if (ret > 0) {
3012 path_res = &txmsg->reply.u.path_resources;
3013
3014 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
3015 DRM_DEBUG_KMS("enum path resources nak received\n");
3016 } else {
3017 if (port->port_num != path_res->port_number)
3018 DRM_ERROR("got incorrect port in response\n");
3019
3020 DRM_DEBUG_KMS("enum path resources %d: %d %d\n",
3021 path_res->port_number,
3022 path_res->full_payload_bw_number,
3023 path_res->avail_payload_bw_number);
3024 port->available_pbn =
3025 path_res->avail_payload_bw_number;
3026 port->fec_capable = path_res->fec_capable;
3027 }
3028 }
3029
3030 kfree(txmsg);
3031 return 0;
3032 }
3033
3034 static struct drm_dp_mst_port *drm_dp_get_last_connected_port_to_mstb(struct drm_dp_mst_branch *mstb)
3035 {
3036 if (!mstb->port_parent)
3037 return NULL;
3038
3039 if (mstb->port_parent->mstb != mstb)
3040 return mstb->port_parent;
3041
3042 return drm_dp_get_last_connected_port_to_mstb(mstb->port_parent->parent);
3043 }
3044
3045 /*
3046 * Searches upwards in the topology starting from mstb to try to find the
3047 * closest available parent of mstb that's still connected to the rest of the
3048 * topology. This can be used in order to perform operations like releasing
3049 * payloads, where the branch device which owned the payload may no longer be
3050 * around and thus would require that the payload on the last living relative
3051 * be freed instead.
3052 */
3053 static struct drm_dp_mst_branch *
3054 drm_dp_get_last_connected_port_and_mstb(struct drm_dp_mst_topology_mgr *mgr,
3055 struct drm_dp_mst_branch *mstb,
3056 int *port_num)
3057 {
3058 struct drm_dp_mst_branch *rmstb = NULL;
3059 struct drm_dp_mst_port *found_port;
3060
3061 mutex_lock(&mgr->lock);
3062 if (!mgr->mst_primary)
3063 goto out;
3064
3065 do {
3066 found_port = drm_dp_get_last_connected_port_to_mstb(mstb);
3067 if (!found_port)
3068 break;
3069
3070 if (drm_dp_mst_topology_try_get_mstb(found_port->parent)) {
3071 rmstb = found_port->parent;
3072 *port_num = found_port->port_num;
3073 } else {
3074 /* Search again, starting from this parent */
3075 mstb = found_port->parent;
3076 }
3077 } while (!rmstb);
3078 out:
3079 mutex_unlock(&mgr->lock);
3080 return rmstb;
3081 }
3082
3083 static int drm_dp_payload_send_msg(struct drm_dp_mst_topology_mgr *mgr,
3084 struct drm_dp_mst_port *port,
3085 int id,
3086 int pbn)
3087 {
3088 struct drm_dp_sideband_msg_tx *txmsg;
3089 struct drm_dp_mst_branch *mstb;
3090 int len __unused, ret, port_num;
3091 u8 sinks[DRM_DP_MAX_SDP_STREAMS];
3092 int i;
3093
3094 port_num = port->port_num;
3095 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3096 if (!mstb) {
3097 mstb = drm_dp_get_last_connected_port_and_mstb(mgr,
3098 port->parent,
3099 &port_num);
3100
3101 if (!mstb)
3102 return -EINVAL;
3103 }
3104
3105 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3106 if (!txmsg) {
3107 ret = -ENOMEM;
3108 goto fail_put;
3109 }
3110
3111 for (i = 0; i < port->num_sdp_streams; i++)
3112 sinks[i] = i;
3113
3114 txmsg->dst = mstb;
3115 len = build_allocate_payload(txmsg, port_num,
3116 id,
3117 pbn, port->num_sdp_streams, sinks);
3118
3119 drm_dp_queue_down_tx(mgr, txmsg);
3120
3121 /*
3122 * FIXME: there is a small chance that between getting the last
3123 * connected mstb and sending the payload message, the last connected
3124 * mstb could also be removed from the topology. In the future, this
3125 * needs to be fixed by restarting the
3126 * drm_dp_get_last_connected_port_and_mstb() search in the event of a
3127 * timeout if the topology is still connected to the system.
3128 */
3129 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3130 if (ret > 0) {
3131 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3132 ret = -EINVAL;
3133 else
3134 ret = 0;
3135 }
3136 kfree(txmsg);
3137 fail_put:
3138 drm_dp_mst_topology_put_mstb(mstb);
3139 return ret;
3140 }
3141
3142 int drm_dp_send_power_updown_phy(struct drm_dp_mst_topology_mgr *mgr,
3143 struct drm_dp_mst_port *port, bool power_up)
3144 {
3145 struct drm_dp_sideband_msg_tx *txmsg;
3146 int len __unused, ret;
3147
3148 port = drm_dp_mst_topology_get_port_validated(mgr, port);
3149 if (!port)
3150 return -EINVAL;
3151
3152 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3153 if (!txmsg) {
3154 drm_dp_mst_topology_put_port(port);
3155 return -ENOMEM;
3156 }
3157
3158 txmsg->dst = port->parent;
3159 len = build_power_updown_phy(txmsg, port->port_num, power_up);
3160 drm_dp_queue_down_tx(mgr, txmsg);
3161
3162 ret = drm_dp_mst_wait_tx_reply(port->parent, txmsg);
3163 if (ret > 0) {
3164 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3165 ret = -EINVAL;
3166 else
3167 ret = 0;
3168 }
3169 kfree(txmsg);
3170 drm_dp_mst_topology_put_port(port);
3171
3172 return ret;
3173 }
3174 EXPORT_SYMBOL(drm_dp_send_power_updown_phy);
3175
3176 static int drm_dp_create_payload_step1(struct drm_dp_mst_topology_mgr *mgr,
3177 int id,
3178 struct drm_dp_payload *payload)
3179 {
3180 int ret;
3181
3182 ret = drm_dp_dpcd_write_payload(mgr, id, payload);
3183 if (ret < 0) {
3184 payload->payload_state = 0;
3185 return ret;
3186 }
3187 payload->payload_state = DP_PAYLOAD_LOCAL;
3188 return 0;
3189 }
3190
3191 static int drm_dp_create_payload_step2(struct drm_dp_mst_topology_mgr *mgr,
3192 struct drm_dp_mst_port *port,
3193 int id,
3194 struct drm_dp_payload *payload)
3195 {
3196 int ret;
3197 ret = drm_dp_payload_send_msg(mgr, port, id, port->vcpi.pbn);
3198 if (ret < 0)
3199 return ret;
3200 payload->payload_state = DP_PAYLOAD_REMOTE;
3201 return ret;
3202 }
3203
3204 static int drm_dp_destroy_payload_step1(struct drm_dp_mst_topology_mgr *mgr,
3205 struct drm_dp_mst_port *port,
3206 int id,
3207 struct drm_dp_payload *payload)
3208 {
3209 DRM_DEBUG_KMS("\n");
3210 /* it's okay for these to fail */
3211 if (port) {
3212 drm_dp_payload_send_msg(mgr, port, id, 0);
3213 }
3214
3215 drm_dp_dpcd_write_payload(mgr, id, payload);
3216 payload->payload_state = DP_PAYLOAD_DELETE_LOCAL;
3217 return 0;
3218 }
3219
3220 static int drm_dp_destroy_payload_step2(struct drm_dp_mst_topology_mgr *mgr,
3221 int id,
3222 struct drm_dp_payload *payload)
3223 {
3224 payload->payload_state = 0;
3225 return 0;
3226 }
3227
3228 /**
3229 * drm_dp_update_payload_part1() - Execute payload update part 1
3230 * @mgr: manager to use.
3231 *
3232 * This iterates over all proposed virtual channels, and tries to
3233 * allocate space in the link for them. For 0->slots transitions,
3234 * this step just writes the VCPI to the MST device. For slots->0
3235 * transitions, this writes the updated VCPIs and removes the
3236 * remote VC payloads.
3237 *
3238 * after calling this the driver should generate ACT and payload
3239 * packets.
3240 */
3241 int drm_dp_update_payload_part1(struct drm_dp_mst_topology_mgr *mgr)
3242 {
3243 struct drm_dp_payload req_payload;
3244 struct drm_dp_mst_port *port;
3245 int i, j;
3246 int cur_slots = 1;
3247
3248 mutex_lock(&mgr->payload_lock);
3249 for (i = 0; i < mgr->max_payloads; i++) {
3250 struct drm_dp_vcpi *vcpi = mgr->proposed_vcpis[i];
3251 struct drm_dp_payload *payload = &mgr->payloads[i];
3252 bool put_port = false;
3253
3254 /* solve the current payloads - compare to the hw ones
3255 - update the hw view */
3256 req_payload.start_slot = cur_slots;
3257 if (vcpi) {
3258 port = container_of(vcpi, struct drm_dp_mst_port,
3259 vcpi);
3260
3261 /* Validated ports don't matter if we're releasing
3262 * VCPI
3263 */
3264 if (vcpi->num_slots) {
3265 port = drm_dp_mst_topology_get_port_validated(
3266 mgr, port);
3267 if (!port) {
3268 mutex_unlock(&mgr->payload_lock);
3269 return -EINVAL;
3270 }
3271 put_port = true;
3272 }
3273
3274 req_payload.num_slots = vcpi->num_slots;
3275 req_payload.vcpi = vcpi->vcpi;
3276 } else {
3277 port = NULL;
3278 req_payload.num_slots = 0;
3279 }
3280
3281 payload->start_slot = req_payload.start_slot;
3282 /* work out what is required to happen with this payload */
3283 if (payload->num_slots != req_payload.num_slots) {
3284
3285 /* need to push an update for this payload */
3286 if (req_payload.num_slots) {
3287 drm_dp_create_payload_step1(mgr, vcpi->vcpi,
3288 &req_payload);
3289 payload->num_slots = req_payload.num_slots;
3290 payload->vcpi = req_payload.vcpi;
3291
3292 } else if (payload->num_slots) {
3293 payload->num_slots = 0;
3294 drm_dp_destroy_payload_step1(mgr, port,
3295 payload->vcpi,
3296 payload);
3297 req_payload.payload_state =
3298 payload->payload_state;
3299 payload->start_slot = 0;
3300 }
3301 payload->payload_state = req_payload.payload_state;
3302 }
3303 cur_slots += req_payload.num_slots;
3304
3305 if (put_port)
3306 drm_dp_mst_topology_put_port(port);
3307 }
3308
3309 for (i = 0; i < mgr->max_payloads; /* do nothing */) {
3310 if (mgr->payloads[i].payload_state != DP_PAYLOAD_DELETE_LOCAL) {
3311 i++;
3312 continue;
3313 }
3314
3315 DRM_DEBUG_KMS("removing payload %d\n", i);
3316 for (j = i; j < mgr->max_payloads - 1; j++) {
3317 mgr->payloads[j] = mgr->payloads[j + 1];
3318 mgr->proposed_vcpis[j] = mgr->proposed_vcpis[j + 1];
3319
3320 if (mgr->proposed_vcpis[j] &&
3321 mgr->proposed_vcpis[j]->num_slots) {
3322 set_bit(j + 1, &mgr->payload_mask);
3323 } else {
3324 clear_bit(j + 1, &mgr->payload_mask);
3325 }
3326 }
3327
3328 memset(&mgr->payloads[mgr->max_payloads - 1], 0,
3329 sizeof(struct drm_dp_payload));
3330 mgr->proposed_vcpis[mgr->max_payloads - 1] = NULL;
3331 clear_bit(mgr->max_payloads, &mgr->payload_mask);
3332 }
3333 mutex_unlock(&mgr->payload_lock);
3334
3335 return 0;
3336 }
3337 EXPORT_SYMBOL(drm_dp_update_payload_part1);
3338
3339 /**
3340 * drm_dp_update_payload_part2() - Execute payload update part 2
3341 * @mgr: manager to use.
3342 *
3343 * This iterates over all proposed virtual channels, and tries to
3344 * allocate space in the link for them. For 0->slots transitions,
3345 * this step writes the remote VC payload commands. For slots->0
3346 * this just resets some internal state.
3347 */
3348 int drm_dp_update_payload_part2(struct drm_dp_mst_topology_mgr *mgr)
3349 {
3350 struct drm_dp_mst_port *port;
3351 int i;
3352 int ret = 0;
3353 mutex_lock(&mgr->payload_lock);
3354 for (i = 0; i < mgr->max_payloads; i++) {
3355
3356 if (!mgr->proposed_vcpis[i])
3357 continue;
3358
3359 port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
3360
3361 DRM_DEBUG_KMS("payload %d %d\n", i, mgr->payloads[i].payload_state);
3362 if (mgr->payloads[i].payload_state == DP_PAYLOAD_LOCAL) {
3363 ret = drm_dp_create_payload_step2(mgr, port, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]);
3364 } else if (mgr->payloads[i].payload_state == DP_PAYLOAD_DELETE_LOCAL) {
3365 ret = drm_dp_destroy_payload_step2(mgr, mgr->proposed_vcpis[i]->vcpi, &mgr->payloads[i]);
3366 }
3367 if (ret) {
3368 mutex_unlock(&mgr->payload_lock);
3369 return ret;
3370 }
3371 }
3372 mutex_unlock(&mgr->payload_lock);
3373 return 0;
3374 }
3375 EXPORT_SYMBOL(drm_dp_update_payload_part2);
3376
3377 static int drm_dp_send_dpcd_read(struct drm_dp_mst_topology_mgr *mgr,
3378 struct drm_dp_mst_port *port,
3379 int offset, int size, u8 *bytes)
3380 {
3381 int len __unused;
3382 int ret = 0;
3383 struct drm_dp_sideband_msg_tx *txmsg;
3384 struct drm_dp_mst_branch *mstb;
3385
3386 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3387 if (!mstb)
3388 return -EINVAL;
3389
3390 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3391 if (!txmsg) {
3392 ret = -ENOMEM;
3393 goto fail_put;
3394 }
3395
3396 len = build_dpcd_read(txmsg, port->port_num, offset, size);
3397 txmsg->dst = port->parent;
3398
3399 drm_dp_queue_down_tx(mgr, txmsg);
3400
3401 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3402 if (ret < 0)
3403 goto fail_free;
3404
3405 /* DPCD read should never be NACKed */
3406 if (txmsg->reply.reply_type == 1) {
3407 DRM_ERROR("mstb %p port %d: DPCD read on addr 0x%x for %d bytes NAKed\n",
3408 mstb, port->port_num, offset, size);
3409 ret = -EIO;
3410 goto fail_free;
3411 }
3412
3413 if (txmsg->reply.u.remote_dpcd_read_ack.num_bytes != size) {
3414 ret = -EPROTO;
3415 goto fail_free;
3416 }
3417
3418 ret = min_t(size_t, txmsg->reply.u.remote_dpcd_read_ack.num_bytes,
3419 size);
3420 memcpy(bytes, txmsg->reply.u.remote_dpcd_read_ack.bytes, ret);
3421
3422 fail_free:
3423 kfree(txmsg);
3424 fail_put:
3425 drm_dp_mst_topology_put_mstb(mstb);
3426
3427 return ret;
3428 }
3429
3430 static int drm_dp_send_dpcd_write(struct drm_dp_mst_topology_mgr *mgr,
3431 struct drm_dp_mst_port *port,
3432 int offset, int size, u8 *bytes)
3433 {
3434 int len __unused;
3435 int ret;
3436 struct drm_dp_sideband_msg_tx *txmsg;
3437 struct drm_dp_mst_branch *mstb;
3438
3439 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
3440 if (!mstb)
3441 return -EINVAL;
3442
3443 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3444 if (!txmsg) {
3445 ret = -ENOMEM;
3446 goto fail_put;
3447 }
3448
3449 len = build_dpcd_write(txmsg, port->port_num, offset, size, bytes);
3450 txmsg->dst = mstb;
3451
3452 drm_dp_queue_down_tx(mgr, txmsg);
3453
3454 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
3455 if (ret > 0) {
3456 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3457 ret = -EIO;
3458 else
3459 ret = 0;
3460 }
3461 kfree(txmsg);
3462 fail_put:
3463 drm_dp_mst_topology_put_mstb(mstb);
3464 return ret;
3465 }
3466
3467 static int drm_dp_encode_up_ack_reply(struct drm_dp_sideband_msg_tx *msg, u8 req_type)
3468 {
3469 struct drm_dp_sideband_msg_reply_body reply;
3470
3471 reply.reply_type = DP_SIDEBAND_REPLY_ACK;
3472 reply.req_type = req_type;
3473 drm_dp_encode_sideband_reply(&reply, msg);
3474 return 0;
3475 }
3476
3477 static int drm_dp_send_up_ack_reply(struct drm_dp_mst_topology_mgr *mgr,
3478 struct drm_dp_mst_branch *mstb,
3479 int req_type, int seqno, bool broadcast)
3480 {
3481 struct drm_dp_sideband_msg_tx *txmsg;
3482
3483 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
3484 if (!txmsg)
3485 return -ENOMEM;
3486
3487 txmsg->dst = mstb;
3488 txmsg->seqno = seqno;
3489 drm_dp_encode_up_ack_reply(txmsg, req_type);
3490
3491 mutex_lock(&mgr->qlock);
3492
3493 process_single_up_tx_qlock(mgr, txmsg);
3494
3495 mutex_unlock(&mgr->qlock);
3496
3497 kfree(txmsg);
3498 return 0;
3499 }
3500
3501 static int drm_dp_get_vc_payload_bw(u8 dp_link_bw, u8 dp_link_count)
3502 {
3503 if (dp_link_bw == 0 || dp_link_count == 0)
3504 DRM_DEBUG_KMS("invalid link bandwidth in DPCD: %x (link count: %d)\n",
3505 dp_link_bw, dp_link_count);
3506
3507 return dp_link_bw * dp_link_count / 2;
3508 }
3509
3510 /**
3511 * drm_dp_mst_topology_mgr_set_mst() - Set the MST state for a topology manager
3512 * @mgr: manager to set state for
3513 * @mst_state: true to enable MST on this connector - false to disable.
3514 *
3515 * This is called by the driver when it detects an MST capable device plugged
3516 * into a DP MST capable port, or when a DP MST capable device is unplugged.
3517 */
3518 int drm_dp_mst_topology_mgr_set_mst(struct drm_dp_mst_topology_mgr *mgr, bool mst_state)
3519 {
3520 int ret = 0;
3521 int i = 0;
3522 struct drm_dp_mst_branch *mstb = NULL;
3523
3524 mutex_lock(&mgr->lock);
3525 if (mst_state == mgr->mst_state)
3526 goto out_unlock;
3527
3528 mgr->mst_state = mst_state;
3529 /* set the device into MST mode */
3530 if (mst_state) {
3531 WARN_ON(mgr->mst_primary);
3532
3533 /* get dpcd info */
3534 ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, mgr->dpcd, DP_RECEIVER_CAP_SIZE);
3535 if (ret != DP_RECEIVER_CAP_SIZE) {
3536 DRM_DEBUG_KMS("failed to read DPCD\n");
3537 goto out_unlock;
3538 }
3539
3540 mgr->pbn_div = drm_dp_get_vc_payload_bw(mgr->dpcd[1],
3541 mgr->dpcd[2] & DP_MAX_LANE_COUNT_MASK);
3542 if (mgr->pbn_div == 0) {
3543 ret = -EINVAL;
3544 goto out_unlock;
3545 }
3546
3547 /* add initial branch device at LCT 1 */
3548 mstb = drm_dp_add_mst_branch_device(1, NULL);
3549 if (mstb == NULL) {
3550 ret = -ENOMEM;
3551 goto out_unlock;
3552 }
3553 mstb->mgr = mgr;
3554
3555 /* give this the main reference */
3556 mgr->mst_primary = mstb;
3557 drm_dp_mst_topology_get_mstb(mgr->mst_primary);
3558
3559 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3560 DP_MST_EN | DP_UP_REQ_EN | DP_UPSTREAM_IS_SRC);
3561 if (ret < 0) {
3562 goto out_unlock;
3563 }
3564
3565 {
3566 struct drm_dp_payload reset_pay;
3567 reset_pay.start_slot = 0;
3568 reset_pay.num_slots = 0x3f;
3569 drm_dp_dpcd_write_payload(mgr, 0, &reset_pay);
3570 }
3571
3572 queue_work(system_long_wq, &mgr->work);
3573
3574 ret = 0;
3575 } else {
3576 /* disable MST on the device */
3577 mstb = mgr->mst_primary;
3578 mgr->mst_primary = NULL;
3579 /* this can fail if the device is gone */
3580 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL, 0);
3581 ret = 0;
3582 mutex_lock(&mgr->payload_lock);
3583 memset(mgr->payloads, 0, mgr->max_payloads * sizeof(struct drm_dp_payload));
3584 mgr->payload_mask = 0;
3585 set_bit(0, &mgr->payload_mask);
3586 for (i = 0; i < mgr->max_payloads; i++) {
3587 struct drm_dp_vcpi *vcpi = mgr->proposed_vcpis[i];
3588
3589 if (vcpi) {
3590 vcpi->vcpi = 0;
3591 vcpi->num_slots = 0;
3592 }
3593 mgr->proposed_vcpis[i] = NULL;
3594 }
3595 mgr->vcpi_mask = 0;
3596 mutex_unlock(&mgr->payload_lock);
3597
3598 mgr->payload_id_table_cleared = false;
3599 }
3600
3601 out_unlock:
3602 mutex_unlock(&mgr->lock);
3603 if (mstb)
3604 drm_dp_mst_topology_put_mstb(mstb);
3605 return ret;
3606
3607 }
3608 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_set_mst);
3609
3610 static void
3611 drm_dp_mst_topology_mgr_invalidate_mstb(struct drm_dp_mst_branch *mstb)
3612 {
3613 struct drm_dp_mst_port *port;
3614
3615 /* The link address will need to be re-sent on resume */
3616 mstb->link_address_sent = false;
3617
3618 list_for_each_entry(port, &mstb->ports, next) {
3619 /* The PBN for each port will also need to be re-probed */
3620 port->available_pbn = 0;
3621
3622 if (port->mstb)
3623 drm_dp_mst_topology_mgr_invalidate_mstb(port->mstb);
3624 }
3625 }
3626
3627 /**
3628 * drm_dp_mst_topology_mgr_suspend() - suspend the MST manager
3629 * @mgr: manager to suspend
3630 *
3631 * This function tells the MST device that we can't handle UP messages
3632 * anymore. This should stop it from sending any since we are suspended.
3633 */
3634 void drm_dp_mst_topology_mgr_suspend(struct drm_dp_mst_topology_mgr *mgr)
3635 {
3636 mutex_lock(&mgr->lock);
3637 drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3638 DP_MST_EN | DP_UPSTREAM_IS_SRC);
3639 mutex_unlock(&mgr->lock);
3640 flush_work(&mgr->up_req_work);
3641 flush_work(&mgr->work);
3642 flush_work(&mgr->delayed_destroy_work);
3643
3644 mutex_lock(&mgr->lock);
3645 if (mgr->mst_state && mgr->mst_primary)
3646 drm_dp_mst_topology_mgr_invalidate_mstb(mgr->mst_primary);
3647 mutex_unlock(&mgr->lock);
3648 }
3649 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_suspend);
3650
3651 /**
3652 * drm_dp_mst_topology_mgr_resume() - resume the MST manager
3653 * @mgr: manager to resume
3654 * @sync: whether or not to perform topology reprobing synchronously
3655 *
3656 * This will fetch DPCD and see if the device is still there,
3657 * if it is, it will rewrite the MSTM control bits, and return.
3658 *
3659 * If the device fails this returns -1, and the driver should do
3660 * a full MST reprobe, in case we were undocked.
3661 *
3662 * During system resume (where it is assumed that the driver will be calling
3663 * drm_atomic_helper_resume()) this function should be called beforehand with
3664 * @sync set to true. In contexts like runtime resume where the driver is not
3665 * expected to be calling drm_atomic_helper_resume(), this function should be
3666 * called with @sync set to false in order to avoid deadlocking.
3667 *
3668 * Returns: -1 if the MST topology was removed while we were suspended, 0
3669 * otherwise.
3670 */
3671 int drm_dp_mst_topology_mgr_resume(struct drm_dp_mst_topology_mgr *mgr,
3672 bool sync)
3673 {
3674 int ret;
3675 u8 guid[16];
3676
3677 mutex_lock(&mgr->lock);
3678 if (!mgr->mst_primary)
3679 goto out_fail;
3680
3681 ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, mgr->dpcd,
3682 DP_RECEIVER_CAP_SIZE);
3683 if (ret != DP_RECEIVER_CAP_SIZE) {
3684 DRM_DEBUG_KMS("dpcd read failed - undocked during suspend?\n");
3685 goto out_fail;
3686 }
3687
3688 ret = drm_dp_dpcd_writeb(mgr->aux, DP_MSTM_CTRL,
3689 DP_MST_EN |
3690 DP_UP_REQ_EN |
3691 DP_UPSTREAM_IS_SRC);
3692 if (ret < 0) {
3693 DRM_DEBUG_KMS("mst write failed - undocked during suspend?\n");
3694 goto out_fail;
3695 }
3696
3697 /* Some hubs forget their guids after they resume */
3698 ret = drm_dp_dpcd_read(mgr->aux, DP_GUID, guid, 16);
3699 if (ret != 16) {
3700 DRM_DEBUG_KMS("dpcd read failed - undocked during suspend?\n");
3701 goto out_fail;
3702 }
3703 drm_dp_check_mstb_guid(mgr->mst_primary, guid);
3704
3705 /*
3706 * For the final step of resuming the topology, we need to bring the
3707 * state of our in-memory topology back into sync with reality. So,
3708 * restart the probing process as if we're probing a new hub
3709 */
3710 queue_work(system_long_wq, &mgr->work);
3711 mutex_unlock(&mgr->lock);
3712
3713 if (sync) {
3714 DRM_DEBUG_KMS("Waiting for link probe work to finish re-syncing topology...\n");
3715 flush_work(&mgr->work);
3716 }
3717
3718 return 0;
3719
3720 out_fail:
3721 mutex_unlock(&mgr->lock);
3722 return -1;
3723 }
3724 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_resume);
3725
3726 static bool drm_dp_get_one_sb_msg(struct drm_dp_mst_topology_mgr *mgr, bool up)
3727 {
3728 int len;
3729 u8 replyblock[32];
3730 int replylen, origlen __unused, curreply;
3731 int ret;
3732 struct drm_dp_sideband_msg_rx *msg;
3733 int basereg = up ? DP_SIDEBAND_MSG_UP_REQ_BASE : DP_SIDEBAND_MSG_DOWN_REP_BASE;
3734 msg = up ? &mgr->up_req_recv : &mgr->down_rep_recv;
3735
3736 len = min(mgr->max_dpcd_transaction_bytes, 16);
3737 ret = drm_dp_dpcd_read(mgr->aux, basereg,
3738 replyblock, len);
3739 if (ret != len) {
3740 DRM_DEBUG_KMS("failed to read DPCD down rep %d %d\n", len, ret);
3741 return false;
3742 }
3743 ret = drm_dp_sideband_msg_build(msg, replyblock, len, true);
3744 if (!ret) {
3745 DRM_DEBUG_KMS("sideband msg build failed %d\n", replyblock[0]);
3746 return false;
3747 }
3748 replylen = msg->curchunk_len + msg->curchunk_hdrlen;
3749
3750 origlen = replylen;
3751 replylen -= len;
3752 curreply = len;
3753 while (replylen > 0) {
3754 len = min3(replylen, mgr->max_dpcd_transaction_bytes, 16);
3755 ret = drm_dp_dpcd_read(mgr->aux, basereg + curreply,
3756 replyblock, len);
3757 if (ret != len) {
3758 DRM_DEBUG_KMS("failed to read a chunk (len %d, ret %d)\n",
3759 len, ret);
3760 return false;
3761 }
3762
3763 ret = drm_dp_sideband_msg_build(msg, replyblock, len, false);
3764 if (!ret) {
3765 DRM_DEBUG_KMS("failed to build sideband msg\n");
3766 return false;
3767 }
3768
3769 curreply += len;
3770 replylen -= len;
3771 }
3772 return true;
3773 }
3774
3775 static int drm_dp_mst_handle_down_rep(struct drm_dp_mst_topology_mgr *mgr)
3776 {
3777 struct drm_dp_sideband_msg_tx *txmsg;
3778 struct drm_dp_mst_branch *mstb;
3779 struct drm_dp_sideband_msg_hdr *hdr = &mgr->down_rep_recv.initial_hdr;
3780 int slot = -1;
3781
3782 if (!drm_dp_get_one_sb_msg(mgr, false))
3783 goto clear_down_rep_recv;
3784
3785 if (!mgr->down_rep_recv.have_eomt)
3786 return 0;
3787
3788 mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad);
3789 if (!mstb) {
3790 DRM_DEBUG_KMS("Got MST reply from unknown device %d\n",
3791 hdr->lct);
3792 goto clear_down_rep_recv;
3793 }
3794
3795 /* find the message */
3796 slot = hdr->seqno;
3797 mutex_lock(&mgr->qlock);
3798 txmsg = mstb->tx_slots[slot];
3799 /* remove from slots */
3800 mutex_unlock(&mgr->qlock);
3801
3802 if (!txmsg) {
3803 DRM_DEBUG_KMS("Got MST reply with no msg %p %d %d %02x %02x\n",
3804 mstb, hdr->seqno, hdr->lct, hdr->rad[0],
3805 mgr->down_rep_recv.msg[0]);
3806 goto no_msg;
3807 }
3808
3809 drm_dp_sideband_parse_reply(&mgr->down_rep_recv, &txmsg->reply);
3810
3811 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK)
3812 DRM_DEBUG_KMS("Got NAK reply: req 0x%02x (%s), reason 0x%02x (%s), nak data 0x%02x\n",
3813 txmsg->reply.req_type,
3814 drm_dp_mst_req_type_str(txmsg->reply.req_type),
3815 txmsg->reply.u.nak.reason,
3816 drm_dp_mst_nak_reason_str(txmsg->reply.u.nak.reason),
3817 txmsg->reply.u.nak.nak_data);
3818
3819 memset(&mgr->down_rep_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
3820 drm_dp_mst_topology_put_mstb(mstb);
3821
3822 mutex_lock(&mgr->qlock);
3823 txmsg->state = DRM_DP_SIDEBAND_TX_RX;
3824 mstb->tx_slots[slot] = NULL;
3825 mgr->is_waiting_for_dwn_reply = false;
3826 mutex_unlock(&mgr->qlock);
3827
3828 #ifdef __NetBSD__
3829 DRM_WAKEUP_ALL(&mgr->tx_waitq, &mgr->qlock);
3830 #else
3831 wake_up_all(&mgr->tx_waitq);
3832 #endif
3833
3834 return 0;
3835
3836 no_msg:
3837 drm_dp_mst_topology_put_mstb(mstb);
3838 clear_down_rep_recv:
3839 mutex_lock(&mgr->qlock);
3840 mgr->is_waiting_for_dwn_reply = false;
3841 mutex_unlock(&mgr->qlock);
3842 memset(&mgr->down_rep_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
3843
3844 return 0;
3845 }
3846
3847 static inline bool
3848 drm_dp_mst_process_up_req(struct drm_dp_mst_topology_mgr *mgr,
3849 struct drm_dp_pending_up_req *up_req)
3850 {
3851 struct drm_dp_mst_branch *mstb = NULL;
3852 struct drm_dp_sideband_msg_req_body *msg = &up_req->msg;
3853 struct drm_dp_sideband_msg_hdr *hdr = &up_req->hdr;
3854 bool hotplug = false;
3855
3856 if (hdr->broadcast) {
3857 const u8 *guid = NULL;
3858
3859 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY)
3860 guid = msg->u.conn_stat.guid;
3861 else if (msg->req_type == DP_RESOURCE_STATUS_NOTIFY)
3862 guid = msg->u.resource_stat.guid;
3863
3864 if (guid)
3865 mstb = drm_dp_get_mst_branch_device_by_guid(mgr, guid);
3866 } else {
3867 mstb = drm_dp_get_mst_branch_device(mgr, hdr->lct, hdr->rad);
3868 }
3869
3870 if (!mstb) {
3871 DRM_DEBUG_KMS("Got MST reply from unknown device %d\n",
3872 hdr->lct);
3873 return false;
3874 }
3875
3876 /* TODO: Add missing handler for DP_RESOURCE_STATUS_NOTIFY events */
3877 if (msg->req_type == DP_CONNECTION_STATUS_NOTIFY) {
3878 drm_dp_mst_handle_conn_stat(mstb, &msg->u.conn_stat);
3879 hotplug = true;
3880 }
3881
3882 drm_dp_mst_topology_put_mstb(mstb);
3883 return hotplug;
3884 }
3885
3886 static void drm_dp_mst_up_req_work(struct work_struct *work)
3887 {
3888 struct drm_dp_mst_topology_mgr *mgr =
3889 container_of(work, struct drm_dp_mst_topology_mgr,
3890 up_req_work);
3891 struct drm_dp_pending_up_req *up_req;
3892 bool send_hotplug = false;
3893
3894 mutex_lock(&mgr->probe_lock);
3895 while (true) {
3896 mutex_lock(&mgr->up_req_lock);
3897 up_req = list_first_entry_or_null(&mgr->up_req_list,
3898 struct drm_dp_pending_up_req,
3899 next);
3900 if (up_req)
3901 list_del(&up_req->next);
3902 mutex_unlock(&mgr->up_req_lock);
3903
3904 if (!up_req)
3905 break;
3906
3907 send_hotplug |= drm_dp_mst_process_up_req(mgr, up_req);
3908 kfree(up_req);
3909 }
3910 mutex_unlock(&mgr->probe_lock);
3911
3912 if (send_hotplug)
3913 drm_kms_helper_hotplug_event(mgr->dev);
3914 }
3915
3916 static int drm_dp_mst_handle_up_req(struct drm_dp_mst_topology_mgr *mgr)
3917 {
3918 struct drm_dp_sideband_msg_hdr *hdr = &mgr->up_req_recv.initial_hdr;
3919 struct drm_dp_pending_up_req *up_req;
3920 bool seqno;
3921
3922 if (!drm_dp_get_one_sb_msg(mgr, true))
3923 goto out;
3924
3925 if (!mgr->up_req_recv.have_eomt)
3926 return 0;
3927
3928 up_req = kzalloc(sizeof(*up_req), GFP_KERNEL);
3929 if (!up_req) {
3930 DRM_ERROR("Not enough memory to process MST up req\n");
3931 return -ENOMEM;
3932 }
3933 INIT_LIST_HEAD(&up_req->next);
3934
3935 seqno = hdr->seqno;
3936 drm_dp_sideband_parse_req(&mgr->up_req_recv, &up_req->msg);
3937
3938 if (up_req->msg.req_type != DP_CONNECTION_STATUS_NOTIFY &&
3939 up_req->msg.req_type != DP_RESOURCE_STATUS_NOTIFY) {
3940 DRM_DEBUG_KMS("Received unknown up req type, ignoring: %x\n",
3941 up_req->msg.req_type);
3942 kfree(up_req);
3943 goto out;
3944 }
3945
3946 drm_dp_send_up_ack_reply(mgr, mgr->mst_primary, up_req->msg.req_type,
3947 seqno, false);
3948
3949 if (up_req->msg.req_type == DP_CONNECTION_STATUS_NOTIFY) {
3950 const struct drm_dp_connection_status_notify *conn_stat =
3951 &up_req->msg.u.conn_stat;
3952
3953 DRM_DEBUG_KMS("Got CSN: pn: %d ldps:%d ddps: %d mcs: %d ip: %d pdt: %d\n",
3954 conn_stat->port_number,
3955 conn_stat->legacy_device_plug_status,
3956 conn_stat->displayport_device_plug_status,
3957 conn_stat->message_capability_status,
3958 conn_stat->input_port,
3959 conn_stat->peer_device_type);
3960 } else if (up_req->msg.req_type == DP_RESOURCE_STATUS_NOTIFY) {
3961 const struct drm_dp_resource_status_notify *res_stat =
3962 &up_req->msg.u.resource_stat;
3963
3964 DRM_DEBUG_KMS("Got RSN: pn: %d avail_pbn %d\n",
3965 res_stat->port_number,
3966 res_stat->available_pbn);
3967 }
3968
3969 up_req->hdr = *hdr;
3970 mutex_lock(&mgr->up_req_lock);
3971 list_add_tail(&up_req->next, &mgr->up_req_list);
3972 mutex_unlock(&mgr->up_req_lock);
3973 queue_work(system_long_wq, &mgr->up_req_work);
3974
3975 out:
3976 memset(&mgr->up_req_recv, 0, sizeof(struct drm_dp_sideband_msg_rx));
3977 return 0;
3978 }
3979
3980 /**
3981 * drm_dp_mst_hpd_irq() - MST hotplug IRQ notify
3982 * @mgr: manager to notify irq for.
3983 * @esi: 4 bytes from SINK_COUNT_ESI
3984 * @handled: whether the hpd interrupt was consumed or not
3985 *
3986 * This should be called from the driver when it detects a short IRQ,
3987 * along with the value of the DEVICE_SERVICE_IRQ_VECTOR_ESI0. The
3988 * topology manager will process the sideband messages received as a result
3989 * of this.
3990 */
3991 int drm_dp_mst_hpd_irq(struct drm_dp_mst_topology_mgr *mgr, u8 *esi, bool *handled)
3992 {
3993 int ret = 0;
3994 int sc;
3995 *handled = false;
3996 sc = esi[0] & 0x3f;
3997
3998 if (sc != mgr->sink_count) {
3999 mgr->sink_count = sc;
4000 *handled = true;
4001 }
4002
4003 if (esi[1] & DP_DOWN_REP_MSG_RDY) {
4004 ret = drm_dp_mst_handle_down_rep(mgr);
4005 *handled = true;
4006 }
4007
4008 if (esi[1] & DP_UP_REQ_MSG_RDY) {
4009 ret |= drm_dp_mst_handle_up_req(mgr);
4010 *handled = true;
4011 }
4012
4013 drm_dp_mst_kick_tx(mgr);
4014 return ret;
4015 }
4016 EXPORT_SYMBOL(drm_dp_mst_hpd_irq);
4017
4018 /**
4019 * drm_dp_mst_detect_port() - get connection status for an MST port
4020 * @connector: DRM connector for this port
4021 * @ctx: The acquisition context to use for grabbing locks
4022 * @mgr: manager for this port
4023 * @port: pointer to a port
4024 *
4025 * This returns the current connection state for a port.
4026 */
4027 int
4028 drm_dp_mst_detect_port(struct drm_connector *connector,
4029 struct drm_modeset_acquire_ctx *ctx,
4030 struct drm_dp_mst_topology_mgr *mgr,
4031 struct drm_dp_mst_port *port)
4032 {
4033 int ret;
4034
4035 /* we need to search for the port in the mgr in case it's gone */
4036 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4037 if (!port)
4038 return connector_status_disconnected;
4039
4040 ret = drm_modeset_lock(&mgr->base.lock, ctx);
4041 if (ret)
4042 goto out;
4043
4044 ret = connector_status_disconnected;
4045
4046 if (!port->ddps)
4047 goto out;
4048
4049 switch (port->pdt) {
4050 case DP_PEER_DEVICE_NONE:
4051 case DP_PEER_DEVICE_MST_BRANCHING:
4052 if (!port->mcs)
4053 ret = connector_status_connected;
4054 break;
4055
4056 case DP_PEER_DEVICE_SST_SINK:
4057 ret = connector_status_connected;
4058 /* for logical ports - cache the EDID */
4059 if (port->port_num >= 8 && !port->cached_edid) {
4060 port->cached_edid = drm_get_edid(connector, &port->aux.ddc);
4061 }
4062 break;
4063 case DP_PEER_DEVICE_DP_LEGACY_CONV:
4064 if (port->ldps)
4065 ret = connector_status_connected;
4066 break;
4067 }
4068 out:
4069 drm_dp_mst_topology_put_port(port);
4070 return ret;
4071 }
4072 EXPORT_SYMBOL(drm_dp_mst_detect_port);
4073
4074 /**
4075 * drm_dp_mst_port_has_audio() - Check whether port has audio capability or not
4076 * @mgr: manager for this port
4077 * @port: unverified pointer to a port.
4078 *
4079 * This returns whether the port supports audio or not.
4080 */
4081 bool drm_dp_mst_port_has_audio(struct drm_dp_mst_topology_mgr *mgr,
4082 struct drm_dp_mst_port *port)
4083 {
4084 bool ret = false;
4085
4086 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4087 if (!port)
4088 return ret;
4089 ret = port->has_audio;
4090 drm_dp_mst_topology_put_port(port);
4091 return ret;
4092 }
4093 EXPORT_SYMBOL(drm_dp_mst_port_has_audio);
4094
4095 /**
4096 * drm_dp_mst_get_edid() - get EDID for an MST port
4097 * @connector: toplevel connector to get EDID for
4098 * @mgr: manager for this port
4099 * @port: unverified pointer to a port.
4100 *
4101 * This returns an EDID for the port connected to a connector,
4102 * It validates the pointer still exists so the caller doesn't require a
4103 * reference.
4104 */
4105 struct edid *drm_dp_mst_get_edid(struct drm_connector *connector, struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4106 {
4107 struct edid *edid = NULL;
4108
4109 /* we need to search for the port in the mgr in case it's gone */
4110 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4111 if (!port)
4112 return NULL;
4113
4114 if (port->cached_edid)
4115 edid = drm_edid_duplicate(port->cached_edid);
4116 else {
4117 edid = drm_get_edid(connector, &port->aux.ddc);
4118 }
4119 port->has_audio = drm_detect_monitor_audio(edid);
4120 drm_dp_mst_topology_put_port(port);
4121 return edid;
4122 }
4123 EXPORT_SYMBOL(drm_dp_mst_get_edid);
4124
4125 /**
4126 * drm_dp_find_vcpi_slots() - Find VCPI slots for this PBN value
4127 * @mgr: manager to use
4128 * @pbn: payload bandwidth to convert into slots.
4129 *
4130 * Calculate the number of VCPI slots that will be required for the given PBN
4131 * value. This function is deprecated, and should not be used in atomic
4132 * drivers.
4133 *
4134 * RETURNS:
4135 * The total slots required for this port, or error.
4136 */
4137 int drm_dp_find_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr,
4138 int pbn)
4139 {
4140 int num_slots;
4141
4142 num_slots = DIV_ROUND_UP(pbn, mgr->pbn_div);
4143
4144 /* max. time slots - one slot for MTP header */
4145 if (num_slots > 63)
4146 return -ENOSPC;
4147 return num_slots;
4148 }
4149 EXPORT_SYMBOL(drm_dp_find_vcpi_slots);
4150
4151 static int drm_dp_init_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4152 struct drm_dp_vcpi *vcpi, int pbn, int slots)
4153 {
4154 int ret;
4155
4156 /* max. time slots - one slot for MTP header */
4157 if (slots > 63)
4158 return -ENOSPC;
4159
4160 vcpi->pbn = pbn;
4161 vcpi->aligned_pbn = slots * mgr->pbn_div;
4162 vcpi->num_slots = slots;
4163
4164 ret = drm_dp_mst_assign_payload_id(mgr, vcpi);
4165 if (ret < 0)
4166 return ret;
4167 return 0;
4168 }
4169
4170 /**
4171 * drm_dp_atomic_find_vcpi_slots() - Find and add VCPI slots to the state
4172 * @state: global atomic state
4173 * @mgr: MST topology manager for the port
4174 * @port: port to find vcpi slots for
4175 * @pbn: bandwidth required for the mode in PBN
4176 * @pbn_div: divider for DSC mode that takes FEC into account
4177 *
4178 * Allocates VCPI slots to @port, replacing any previous VCPI allocations it
4179 * may have had. Any atomic drivers which support MST must call this function
4180 * in their &drm_encoder_helper_funcs.atomic_check() callback to change the
4181 * current VCPI allocation for the new state, but only when
4182 * &drm_crtc_state.mode_changed or &drm_crtc_state.connectors_changed is set
4183 * to ensure compatibility with userspace applications that still use the
4184 * legacy modesetting UAPI.
4185 *
4186 * Allocations set by this function are not checked against the bandwidth
4187 * restraints of @mgr until the driver calls drm_dp_mst_atomic_check().
4188 *
4189 * Additionally, it is OK to call this function multiple times on the same
4190 * @port as needed. It is not OK however, to call this function and
4191 * drm_dp_atomic_release_vcpi_slots() in the same atomic check phase.
4192 *
4193 * See also:
4194 * drm_dp_atomic_release_vcpi_slots()
4195 * drm_dp_mst_atomic_check()
4196 *
4197 * Returns:
4198 * Total slots in the atomic state assigned for this port, or a negative error
4199 * code if the port no longer exists
4200 */
4201 int drm_dp_atomic_find_vcpi_slots(struct drm_atomic_state *state,
4202 struct drm_dp_mst_topology_mgr *mgr,
4203 struct drm_dp_mst_port *port, int pbn,
4204 int pbn_div)
4205 {
4206 struct drm_dp_mst_topology_state *topology_state;
4207 struct drm_dp_vcpi_allocation *pos, *vcpi = NULL;
4208 int prev_slots, prev_bw, req_slots;
4209
4210 topology_state = drm_atomic_get_mst_topology_state(state, mgr);
4211 if (IS_ERR(topology_state))
4212 return PTR_ERR(topology_state);
4213
4214 /* Find the current allocation for this port, if any */
4215 list_for_each_entry(pos, &topology_state->vcpis, next) {
4216 if (pos->port == port) {
4217 vcpi = pos;
4218 prev_slots = vcpi->vcpi;
4219 prev_bw = vcpi->pbn;
4220
4221 /*
4222 * This should never happen, unless the driver tries
4223 * releasing and allocating the same VCPI allocation,
4224 * which is an error
4225 */
4226 if (WARN_ON(!prev_slots)) {
4227 DRM_ERROR("cannot allocate and release VCPI on [MST PORT:%p] in the same state\n",
4228 port);
4229 return -EINVAL;
4230 }
4231
4232 break;
4233 }
4234 }
4235 if (!vcpi) {
4236 prev_slots = 0;
4237 prev_bw = 0;
4238 }
4239
4240 if (pbn_div <= 0)
4241 pbn_div = mgr->pbn_div;
4242
4243 req_slots = DIV_ROUND_UP(pbn, pbn_div);
4244
4245 DRM_DEBUG_ATOMIC("[CONNECTOR:%d:%s] [MST PORT:%p] VCPI %d -> %d\n",
4246 port->connector->base.id, port->connector->name,
4247 port, prev_slots, req_slots);
4248 DRM_DEBUG_ATOMIC("[CONNECTOR:%d:%s] [MST PORT:%p] PBN %d -> %d\n",
4249 port->connector->base.id, port->connector->name,
4250 port, prev_bw, pbn);
4251
4252 /* Add the new allocation to the state */
4253 if (!vcpi) {
4254 vcpi = kzalloc(sizeof(*vcpi), GFP_KERNEL);
4255 if (!vcpi)
4256 return -ENOMEM;
4257
4258 drm_dp_mst_get_port_malloc(port);
4259 vcpi->port = port;
4260 list_add(&vcpi->next, &topology_state->vcpis);
4261 }
4262 vcpi->vcpi = req_slots;
4263 vcpi->pbn = pbn;
4264
4265 return req_slots;
4266 }
4267 EXPORT_SYMBOL(drm_dp_atomic_find_vcpi_slots);
4268
4269 /**
4270 * drm_dp_atomic_release_vcpi_slots() - Release allocated vcpi slots
4271 * @state: global atomic state
4272 * @mgr: MST topology manager for the port
4273 * @port: The port to release the VCPI slots from
4274 *
4275 * Releases any VCPI slots that have been allocated to a port in the atomic
4276 * state. Any atomic drivers which support MST must call this function in
4277 * their &drm_connector_helper_funcs.atomic_check() callback when the
4278 * connector will no longer have VCPI allocated (e.g. because its CRTC was
4279 * removed) when it had VCPI allocated in the previous atomic state.
4280 *
4281 * It is OK to call this even if @port has been removed from the system.
4282 * Additionally, it is OK to call this function multiple times on the same
4283 * @port as needed. It is not OK however, to call this function and
4284 * drm_dp_atomic_find_vcpi_slots() on the same @port in a single atomic check
4285 * phase.
4286 *
4287 * See also:
4288 * drm_dp_atomic_find_vcpi_slots()
4289 * drm_dp_mst_atomic_check()
4290 *
4291 * Returns:
4292 * 0 if all slots for this port were added back to
4293 * &drm_dp_mst_topology_state.avail_slots or negative error code
4294 */
4295 int drm_dp_atomic_release_vcpi_slots(struct drm_atomic_state *state,
4296 struct drm_dp_mst_topology_mgr *mgr,
4297 struct drm_dp_mst_port *port)
4298 {
4299 struct drm_dp_mst_topology_state *topology_state;
4300 struct drm_dp_vcpi_allocation *pos;
4301 bool found = false;
4302
4303 topology_state = drm_atomic_get_mst_topology_state(state, mgr);
4304 if (IS_ERR(topology_state))
4305 return PTR_ERR(topology_state);
4306
4307 list_for_each_entry(pos, &topology_state->vcpis, next) {
4308 if (pos->port == port) {
4309 found = true;
4310 break;
4311 }
4312 }
4313 if (WARN_ON(!found)) {
4314 DRM_ERROR("no VCPI for [MST PORT:%p] found in mst state %p\n",
4315 port, &topology_state->base);
4316 return -EINVAL;
4317 }
4318
4319 DRM_DEBUG_ATOMIC("[MST PORT:%p] VCPI %d -> 0\n", port, pos->vcpi);
4320 if (pos->vcpi) {
4321 drm_dp_mst_put_port_malloc(port);
4322 pos->vcpi = 0;
4323 }
4324
4325 return 0;
4326 }
4327 EXPORT_SYMBOL(drm_dp_atomic_release_vcpi_slots);
4328
4329 /**
4330 * drm_dp_mst_allocate_vcpi() - Allocate a virtual channel
4331 * @mgr: manager for this port
4332 * @port: port to allocate a virtual channel for.
4333 * @pbn: payload bandwidth number to request
4334 * @slots: returned number of slots for this PBN.
4335 */
4336 bool drm_dp_mst_allocate_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4337 struct drm_dp_mst_port *port, int pbn, int slots)
4338 {
4339 int ret;
4340
4341 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4342 if (!port)
4343 return false;
4344
4345 if (slots < 0)
4346 return false;
4347
4348 if (port->vcpi.vcpi > 0) {
4349 DRM_DEBUG_KMS("payload: vcpi %d already allocated for pbn %d - requested pbn %d\n",
4350 port->vcpi.vcpi, port->vcpi.pbn, pbn);
4351 if (pbn == port->vcpi.pbn) {
4352 drm_dp_mst_topology_put_port(port);
4353 return true;
4354 }
4355 }
4356
4357 ret = drm_dp_init_vcpi(mgr, &port->vcpi, pbn, slots);
4358 if (ret) {
4359 DRM_DEBUG_KMS("failed to init vcpi slots=%d max=63 ret=%d\n",
4360 DIV_ROUND_UP(pbn, mgr->pbn_div), ret);
4361 goto out;
4362 }
4363 DRM_DEBUG_KMS("initing vcpi for pbn=%d slots=%d\n",
4364 pbn, port->vcpi.num_slots);
4365
4366 /* Keep port allocated until its payload has been removed */
4367 drm_dp_mst_get_port_malloc(port);
4368 drm_dp_mst_topology_put_port(port);
4369 return true;
4370 out:
4371 return false;
4372 }
4373 EXPORT_SYMBOL(drm_dp_mst_allocate_vcpi);
4374
4375 int drm_dp_mst_get_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4376 {
4377 int slots = 0;
4378 port = drm_dp_mst_topology_get_port_validated(mgr, port);
4379 if (!port)
4380 return slots;
4381
4382 slots = port->vcpi.num_slots;
4383 drm_dp_mst_topology_put_port(port);
4384 return slots;
4385 }
4386 EXPORT_SYMBOL(drm_dp_mst_get_vcpi_slots);
4387
4388 /**
4389 * drm_dp_mst_reset_vcpi_slots() - Reset number of slots to 0 for VCPI
4390 * @mgr: manager for this port
4391 * @port: unverified pointer to a port.
4392 *
4393 * This just resets the number of slots for the ports VCPI for later programming.
4394 */
4395 void drm_dp_mst_reset_vcpi_slots(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port)
4396 {
4397 /*
4398 * A port with VCPI will remain allocated until its VCPI is
4399 * released, no verified ref needed
4400 */
4401
4402 port->vcpi.num_slots = 0;
4403 }
4404 EXPORT_SYMBOL(drm_dp_mst_reset_vcpi_slots);
4405
4406 /**
4407 * drm_dp_mst_deallocate_vcpi() - deallocate a VCPI
4408 * @mgr: manager for this port
4409 * @port: port to deallocate vcpi for
4410 *
4411 * This can be called unconditionally, regardless of whether
4412 * drm_dp_mst_allocate_vcpi() succeeded or not.
4413 */
4414 void drm_dp_mst_deallocate_vcpi(struct drm_dp_mst_topology_mgr *mgr,
4415 struct drm_dp_mst_port *port)
4416 {
4417 if (!port->vcpi.vcpi)
4418 return;
4419
4420 drm_dp_mst_put_payload_id(mgr, port->vcpi.vcpi);
4421 port->vcpi.num_slots = 0;
4422 port->vcpi.pbn = 0;
4423 port->vcpi.aligned_pbn = 0;
4424 port->vcpi.vcpi = 0;
4425 drm_dp_mst_put_port_malloc(port);
4426 }
4427 EXPORT_SYMBOL(drm_dp_mst_deallocate_vcpi);
4428
4429 static int drm_dp_dpcd_write_payload(struct drm_dp_mst_topology_mgr *mgr,
4430 int id, struct drm_dp_payload *payload)
4431 {
4432 u8 payload_alloc[3], status;
4433 int ret;
4434 int retries = 0;
4435
4436 drm_dp_dpcd_writeb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
4437 DP_PAYLOAD_TABLE_UPDATED);
4438
4439 payload_alloc[0] = id;
4440 payload_alloc[1] = payload->start_slot;
4441 payload_alloc[2] = payload->num_slots;
4442
4443 ret = drm_dp_dpcd_write(mgr->aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
4444 if (ret != 3) {
4445 DRM_DEBUG_KMS("failed to write payload allocation %d\n", ret);
4446 goto fail;
4447 }
4448
4449 retry:
4450 ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
4451 if (ret < 0) {
4452 DRM_DEBUG_KMS("failed to read payload table status %d\n", ret);
4453 goto fail;
4454 }
4455
4456 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
4457 retries++;
4458 if (retries < 20) {
4459 usleep_range(10000, 20000);
4460 goto retry;
4461 }
4462 DRM_DEBUG_KMS("status not set after read payload table status %d\n", status);
4463 ret = -EINVAL;
4464 goto fail;
4465 }
4466 ret = 0;
4467 fail:
4468 return ret;
4469 }
4470
4471
4472 /**
4473 * drm_dp_check_act_status() - Check ACT handled status.
4474 * @mgr: manager to use
4475 *
4476 * Check the payload status bits in the DPCD for ACT handled completion.
4477 */
4478 int drm_dp_check_act_status(struct drm_dp_mst_topology_mgr *mgr)
4479 {
4480 u8 status;
4481 int ret;
4482 int count = 0;
4483
4484 do {
4485 ret = drm_dp_dpcd_readb(mgr->aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
4486
4487 if (ret < 0) {
4488 DRM_DEBUG_KMS("failed to read payload table status %d\n", ret);
4489 goto fail;
4490 }
4491
4492 if (status & DP_PAYLOAD_ACT_HANDLED)
4493 break;
4494 count++;
4495 udelay(100);
4496
4497 } while (count < 30);
4498
4499 if (!(status & DP_PAYLOAD_ACT_HANDLED)) {
4500 DRM_DEBUG_KMS("failed to get ACT bit %d after %d retries\n", status, count);
4501 ret = -EINVAL;
4502 goto fail;
4503 }
4504 return 0;
4505 fail:
4506 return ret;
4507 }
4508 EXPORT_SYMBOL(drm_dp_check_act_status);
4509
4510 /**
4511 * drm_dp_calc_pbn_mode() - Calculate the PBN for a mode.
4512 * @clock: dot clock for the mode
4513 * @bpp: bpp for the mode.
4514 * @dsc: DSC mode. If true, bpp has units of 1/16 of a bit per pixel
4515 *
4516 * This uses the formula in the spec to calculate the PBN value for a mode.
4517 */
4518 int drm_dp_calc_pbn_mode(int clock, int bpp, bool dsc)
4519 {
4520 /*
4521 * margin 5300ppm + 300ppm ~ 0.6% as per spec, factor is 1.006
4522 * The unit of 54/64Mbytes/sec is an arbitrary unit chosen based on
4523 * common multiplier to render an integer PBN for all link rate/lane
4524 * counts combinations
4525 * calculate
4526 * peak_kbps *= (1006/1000)
4527 * peak_kbps *= (64/54)
4528 * peak_kbps *= 8 convert to bytes
4529 *
4530 * If the bpp is in units of 1/16, further divide by 16. Put this
4531 * factor in the numerator rather than the denominator to avoid
4532 * integer overflow
4533 */
4534
4535 if (dsc)
4536 return DIV_ROUND_UP_ULL(mul_u32_u32(clock * (bpp / 16), 64 * 1006),
4537 8 * 54 * 1000 * 1000);
4538
4539 return DIV_ROUND_UP_ULL(mul_u32_u32(clock * bpp, 64 * 1006),
4540 8 * 54 * 1000 * 1000);
4541 }
4542 EXPORT_SYMBOL(drm_dp_calc_pbn_mode);
4543
4544 /* we want to kick the TX after we've ack the up/down IRQs. */
4545 static void drm_dp_mst_kick_tx(struct drm_dp_mst_topology_mgr *mgr)
4546 {
4547 queue_work(system_long_wq, &mgr->tx_work);
4548 }
4549
4550 #if IS_ENABLED(CONFIG_DEBUG_FS)
4551 static void drm_dp_mst_dump_mstb(struct seq_file *m,
4552 struct drm_dp_mst_branch *mstb)
4553 {
4554 struct drm_dp_mst_port *port;
4555 int tabs = mstb->lct;
4556 char prefix[10];
4557 int i;
4558
4559 for (i = 0; i < tabs; i++)
4560 prefix[i] = '\t';
4561 prefix[i] = '\0';
4562
4563 seq_printf(m, "%smst: %p, %d\n", prefix, mstb, mstb->num_ports);
4564 list_for_each_entry(port, &mstb->ports, next) {
4565 seq_printf(m, "%sport: %d: input: %d: pdt: %d, ddps: %d ldps: %d, sdp: %d/%d, %p, conn: %p\n", prefix, port->port_num, port->input, port->pdt, port->ddps, port->ldps, port->num_sdp_streams, port->num_sdp_stream_sinks, port, port->connector);
4566 if (port->mstb)
4567 drm_dp_mst_dump_mstb(m, port->mstb);
4568 }
4569 }
4570
4571 #define DP_PAYLOAD_TABLE_SIZE 64
4572
4573 static bool dump_dp_payload_table(struct drm_dp_mst_topology_mgr *mgr,
4574 char *buf)
4575 {
4576 int i;
4577
4578 for (i = 0; i < DP_PAYLOAD_TABLE_SIZE; i += 16) {
4579 if (drm_dp_dpcd_read(mgr->aux,
4580 DP_PAYLOAD_TABLE_UPDATE_STATUS + i,
4581 &buf[i], 16) != 16)
4582 return false;
4583 }
4584 return true;
4585 }
4586
4587 static void fetch_monitor_name(struct drm_dp_mst_topology_mgr *mgr,
4588 struct drm_dp_mst_port *port, char *name,
4589 int namelen)
4590 {
4591 struct edid *mst_edid;
4592
4593 mst_edid = drm_dp_mst_get_edid(port->connector, mgr, port);
4594 drm_edid_get_monitor_name(mst_edid, name, namelen);
4595 }
4596
4597 /**
4598 * drm_dp_mst_dump_topology(): dump topology to seq file.
4599 * @m: seq_file to dump output to
4600 * @mgr: manager to dump current topology for.
4601 *
4602 * helper to dump MST topology to a seq file for debugfs.
4603 */
4604 void drm_dp_mst_dump_topology(struct seq_file *m,
4605 struct drm_dp_mst_topology_mgr *mgr)
4606 {
4607 int i;
4608 struct drm_dp_mst_port *port;
4609
4610 mutex_lock(&mgr->lock);
4611 if (mgr->mst_primary)
4612 drm_dp_mst_dump_mstb(m, mgr->mst_primary);
4613
4614 /* dump VCPIs */
4615 mutex_unlock(&mgr->lock);
4616
4617 mutex_lock(&mgr->payload_lock);
4618 seq_printf(m, "vcpi: %lx %lx %d\n", mgr->payload_mask, mgr->vcpi_mask,
4619 mgr->max_payloads);
4620
4621 for (i = 0; i < mgr->max_payloads; i++) {
4622 if (mgr->proposed_vcpis[i]) {
4623 char name[14];
4624
4625 port = container_of(mgr->proposed_vcpis[i], struct drm_dp_mst_port, vcpi);
4626 fetch_monitor_name(mgr, port, name, sizeof(name));
4627 seq_printf(m, "vcpi %d: %d %d %d sink name: %s\n", i,
4628 port->port_num, port->vcpi.vcpi,
4629 port->vcpi.num_slots,
4630 (*name != 0) ? name : "Unknown");
4631 } else
4632 seq_printf(m, "vcpi %d:unused\n", i);
4633 }
4634 for (i = 0; i < mgr->max_payloads; i++) {
4635 seq_printf(m, "payload %d: %d, %d, %d\n",
4636 i,
4637 mgr->payloads[i].payload_state,
4638 mgr->payloads[i].start_slot,
4639 mgr->payloads[i].num_slots);
4640
4641
4642 }
4643 mutex_unlock(&mgr->payload_lock);
4644
4645 mutex_lock(&mgr->lock);
4646 if (mgr->mst_primary) {
4647 u8 buf[DP_PAYLOAD_TABLE_SIZE];
4648 int ret;
4649
4650 ret = drm_dp_dpcd_read(mgr->aux, DP_DPCD_REV, buf, DP_RECEIVER_CAP_SIZE);
4651 seq_printf(m, "dpcd: %*ph\n", DP_RECEIVER_CAP_SIZE, buf);
4652 ret = drm_dp_dpcd_read(mgr->aux, DP_FAUX_CAP, buf, 2);
4653 seq_printf(m, "faux/mst: %*ph\n", 2, buf);
4654 ret = drm_dp_dpcd_read(mgr->aux, DP_MSTM_CTRL, buf, 1);
4655 seq_printf(m, "mst ctrl: %*ph\n", 1, buf);
4656
4657 /* dump the standard OUI branch header */
4658 ret = drm_dp_dpcd_read(mgr->aux, DP_BRANCH_OUI, buf, DP_BRANCH_OUI_HEADER_SIZE);
4659 seq_printf(m, "branch oui: %*phN devid: ", 3, buf);
4660 for (i = 0x3; i < 0x8 && buf[i]; i++)
4661 seq_printf(m, "%c", buf[i]);
4662 seq_printf(m, " revision: hw: %x.%x sw: %x.%x\n",
4663 buf[0x9] >> 4, buf[0x9] & 0xf, buf[0xa], buf[0xb]);
4664 if (dump_dp_payload_table(mgr, buf))
4665 seq_printf(m, "payload table: %*ph\n", DP_PAYLOAD_TABLE_SIZE, buf);
4666 }
4667
4668 mutex_unlock(&mgr->lock);
4669
4670 }
4671 EXPORT_SYMBOL(drm_dp_mst_dump_topology);
4672 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
4673
4674 static void drm_dp_tx_work(struct work_struct *work)
4675 {
4676 struct drm_dp_mst_topology_mgr *mgr = container_of(work, struct drm_dp_mst_topology_mgr, tx_work);
4677
4678 mutex_lock(&mgr->qlock);
4679 if (!list_empty(&mgr->tx_msg_downq) && !mgr->is_waiting_for_dwn_reply)
4680 process_single_down_tx_qlock(mgr);
4681 mutex_unlock(&mgr->qlock);
4682 }
4683
4684 static inline void
4685 drm_dp_delayed_destroy_port(struct drm_dp_mst_port *port)
4686 {
4687 if (port->connector)
4688 port->mgr->cbs->destroy_connector(port->mgr, port->connector);
4689
4690 drm_dp_port_set_pdt(port, DP_PEER_DEVICE_NONE, port->mcs);
4691 drm_dp_mst_put_port_malloc(port);
4692 }
4693
4694 static inline void
4695 drm_dp_delayed_destroy_mstb(struct drm_dp_mst_branch *mstb)
4696 {
4697 struct drm_dp_mst_topology_mgr *mgr = mstb->mgr;
4698 struct drm_dp_mst_port *port, *tmp;
4699 bool wake_tx = false;
4700
4701 mutex_lock(&mgr->lock);
4702 list_for_each_entry_safe(port, tmp, &mstb->ports, next) {
4703 list_del(&port->next);
4704 drm_dp_mst_topology_put_port(port);
4705 }
4706 mutex_unlock(&mgr->lock);
4707
4708 /* drop any tx slots msg */
4709 mutex_lock(&mstb->mgr->qlock);
4710 if (mstb->tx_slots[0]) {
4711 mstb->tx_slots[0]->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
4712 mstb->tx_slots[0] = NULL;
4713 wake_tx = true;
4714 }
4715 if (mstb->tx_slots[1]) {
4716 mstb->tx_slots[1]->state = DRM_DP_SIDEBAND_TX_TIMEOUT;
4717 mstb->tx_slots[1] = NULL;
4718 wake_tx = true;
4719 }
4720 mutex_unlock(&mstb->mgr->qlock);
4721
4722 if (wake_tx)
4723 {
4724 #ifdef __NetBSD__
4725 DRM_WAKEUP_ALL(&mstb->mgr->tx_waitq, &mstb->mgr->qlock);
4726 #else
4727 wake_up_all(&mstb->mgr->tx_waitq);
4728 #endif
4729 }
4730
4731 drm_dp_mst_put_mstb_malloc(mstb);
4732 }
4733
4734 static void drm_dp_delayed_destroy_work(struct work_struct *work)
4735 {
4736 struct drm_dp_mst_topology_mgr *mgr =
4737 container_of(work, struct drm_dp_mst_topology_mgr,
4738 delayed_destroy_work);
4739 bool send_hotplug = false, go_again;
4740
4741 /*
4742 * Not a regular list traverse as we have to drop the destroy
4743 * connector lock before destroying the mstb/port, to avoid AB->BA
4744 * ordering between this lock and the config mutex.
4745 */
4746 do {
4747 go_again = false;
4748
4749 for (;;) {
4750 struct drm_dp_mst_branch *mstb;
4751
4752 mutex_lock(&mgr->delayed_destroy_lock);
4753 mstb = list_first_entry_or_null(&mgr->destroy_branch_device_list,
4754 struct drm_dp_mst_branch,
4755 destroy_next);
4756 if (mstb)
4757 list_del(&mstb->destroy_next);
4758 mutex_unlock(&mgr->delayed_destroy_lock);
4759
4760 if (!mstb)
4761 break;
4762
4763 drm_dp_delayed_destroy_mstb(mstb);
4764 go_again = true;
4765 }
4766
4767 for (;;) {
4768 struct drm_dp_mst_port *port;
4769
4770 mutex_lock(&mgr->delayed_destroy_lock);
4771 port = list_first_entry_or_null(&mgr->destroy_port_list,
4772 struct drm_dp_mst_port,
4773 next);
4774 if (port)
4775 list_del(&port->next);
4776 mutex_unlock(&mgr->delayed_destroy_lock);
4777
4778 if (!port)
4779 break;
4780
4781 drm_dp_delayed_destroy_port(port);
4782 send_hotplug = true;
4783 go_again = true;
4784 }
4785 } while (go_again);
4786
4787 if (send_hotplug)
4788 drm_kms_helper_hotplug_event(mgr->dev);
4789 }
4790
4791 static struct drm_private_state *
4792 drm_dp_mst_duplicate_state(struct drm_private_obj *obj)
4793 {
4794 struct drm_dp_mst_topology_state *state, *old_state =
4795 to_dp_mst_topology_state(obj->state);
4796 struct drm_dp_vcpi_allocation *pos, *vcpi;
4797
4798 state = kmemdup(old_state, sizeof(*state), GFP_KERNEL);
4799 if (!state)
4800 return NULL;
4801
4802 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
4803
4804 INIT_LIST_HEAD(&state->vcpis);
4805
4806 list_for_each_entry(pos, &old_state->vcpis, next) {
4807 /* Prune leftover freed VCPI allocations */
4808 if (!pos->vcpi)
4809 continue;
4810
4811 vcpi = kmemdup(pos, sizeof(*vcpi), GFP_KERNEL);
4812 if (!vcpi)
4813 goto fail;
4814
4815 drm_dp_mst_get_port_malloc(vcpi->port);
4816 list_add(&vcpi->next, &state->vcpis);
4817 }
4818
4819 return &state->base;
4820
4821 fail:
4822 list_for_each_entry_safe(pos, vcpi, &state->vcpis, next) {
4823 drm_dp_mst_put_port_malloc(pos->port);
4824 kfree(pos);
4825 }
4826 kfree(state);
4827
4828 return NULL;
4829 }
4830
4831 static void drm_dp_mst_destroy_state(struct drm_private_obj *obj,
4832 struct drm_private_state *state)
4833 {
4834 struct drm_dp_mst_topology_state *mst_state =
4835 to_dp_mst_topology_state(state);
4836 struct drm_dp_vcpi_allocation *pos, *tmp;
4837
4838 list_for_each_entry_safe(pos, tmp, &mst_state->vcpis, next) {
4839 /* We only keep references to ports with non-zero VCPIs */
4840 if (pos->vcpi)
4841 drm_dp_mst_put_port_malloc(pos->port);
4842 kfree(pos);
4843 }
4844
4845 kfree(mst_state);
4846 }
4847
4848 static bool drm_dp_mst_port_downstream_of_branch(struct drm_dp_mst_port *port,
4849 struct drm_dp_mst_branch *branch)
4850 {
4851 while (port->parent) {
4852 if (port->parent == branch)
4853 return true;
4854
4855 if (port->parent->port_parent)
4856 port = port->parent->port_parent;
4857 else
4858 break;
4859 }
4860 return false;
4861 }
4862
4863 static inline
4864 int drm_dp_mst_atomic_check_bw_limit(struct drm_dp_mst_branch *branch,
4865 struct drm_dp_mst_topology_state *mst_state)
4866 {
4867 struct drm_dp_mst_port *port;
4868 struct drm_dp_vcpi_allocation *vcpi;
4869 int pbn_limit = 0, pbn_used = 0;
4870
4871 list_for_each_entry(port, &branch->ports, next) {
4872 if (port->mstb)
4873 if (drm_dp_mst_atomic_check_bw_limit(port->mstb, mst_state))
4874 return -ENOSPC;
4875
4876 if (port->available_pbn > 0)
4877 pbn_limit = port->available_pbn;
4878 }
4879 DRM_DEBUG_ATOMIC("[MST BRANCH:%p] branch has %d PBN available\n",
4880 branch, pbn_limit);
4881
4882 list_for_each_entry(vcpi, &mst_state->vcpis, next) {
4883 if (!vcpi->pbn)
4884 continue;
4885
4886 if (drm_dp_mst_port_downstream_of_branch(vcpi->port, branch))
4887 pbn_used += vcpi->pbn;
4888 }
4889 DRM_DEBUG_ATOMIC("[MST BRANCH:%p] branch used %d PBN\n",
4890 branch, pbn_used);
4891
4892 if (pbn_used > pbn_limit) {
4893 DRM_DEBUG_ATOMIC("[MST BRANCH:%p] No available bandwidth\n",
4894 branch);
4895 return -ENOSPC;
4896 }
4897 return 0;
4898 }
4899
4900 static inline int
4901 drm_dp_mst_atomic_check_vcpi_alloc_limit(struct drm_dp_mst_topology_mgr *mgr,
4902 struct drm_dp_mst_topology_state *mst_state)
4903 {
4904 struct drm_dp_vcpi_allocation *vcpi;
4905 int avail_slots = 63, payload_count = 0;
4906
4907 list_for_each_entry(vcpi, &mst_state->vcpis, next) {
4908 /* Releasing VCPI is always OK-even if the port is gone */
4909 if (!vcpi->vcpi) {
4910 DRM_DEBUG_ATOMIC("[MST PORT:%p] releases all VCPI slots\n",
4911 vcpi->port);
4912 continue;
4913 }
4914
4915 DRM_DEBUG_ATOMIC("[MST PORT:%p] requires %d vcpi slots\n",
4916 vcpi->port, vcpi->vcpi);
4917
4918 avail_slots -= vcpi->vcpi;
4919 if (avail_slots < 0) {
4920 DRM_DEBUG_ATOMIC("[MST PORT:%p] not enough VCPI slots in mst state %p (avail=%d)\n",
4921 vcpi->port, mst_state,
4922 avail_slots + vcpi->vcpi);
4923 return -ENOSPC;
4924 }
4925
4926 if (++payload_count > mgr->max_payloads) {
4927 DRM_DEBUG_ATOMIC("[MST MGR:%p] state %p has too many payloads (max=%d)\n",
4928 mgr, mst_state, mgr->max_payloads);
4929 return -EINVAL;
4930 }
4931 }
4932 DRM_DEBUG_ATOMIC("[MST MGR:%p] mst state %p VCPI avail=%d used=%d\n",
4933 mgr, mst_state, avail_slots,
4934 63 - avail_slots);
4935
4936 return 0;
4937 }
4938
4939 /**
4940 * drm_dp_mst_add_affected_dsc_crtcs
4941 * @state: Pointer to the new struct drm_dp_mst_topology_state
4942 * @mgr: MST topology manager
4943 *
4944 * Whenever there is a change in mst topology
4945 * DSC configuration would have to be recalculated
4946 * therefore we need to trigger modeset on all affected
4947 * CRTCs in that topology
4948 *
4949 * See also:
4950 * drm_dp_mst_atomic_enable_dsc()
4951 */
4952 int drm_dp_mst_add_affected_dsc_crtcs(struct drm_atomic_state *state, struct drm_dp_mst_topology_mgr *mgr)
4953 {
4954 struct drm_dp_mst_topology_state *mst_state;
4955 struct drm_dp_vcpi_allocation *pos;
4956 struct drm_connector *connector;
4957 struct drm_connector_state *conn_state;
4958 struct drm_crtc *crtc;
4959 struct drm_crtc_state *crtc_state;
4960
4961 mst_state = drm_atomic_get_mst_topology_state(state, mgr);
4962
4963 if (IS_ERR(mst_state))
4964 return -EINVAL;
4965
4966 list_for_each_entry(pos, &mst_state->vcpis, next) {
4967
4968 connector = pos->port->connector;
4969
4970 if (!connector)
4971 return -EINVAL;
4972
4973 conn_state = drm_atomic_get_connector_state(state, connector);
4974
4975 if (IS_ERR(conn_state))
4976 return PTR_ERR(conn_state);
4977
4978 crtc = conn_state->crtc;
4979
4980 if (WARN_ON(!crtc))
4981 return -EINVAL;
4982
4983 if (!drm_dp_mst_dsc_aux_for_port(pos->port))
4984 continue;
4985
4986 crtc_state = drm_atomic_get_crtc_state(mst_state->base.state, crtc);
4987
4988 if (IS_ERR(crtc_state))
4989 return PTR_ERR(crtc_state);
4990
4991 DRM_DEBUG_ATOMIC("[MST MGR:%p] Setting mode_changed flag on CRTC %p\n",
4992 mgr, crtc);
4993
4994 crtc_state->mode_changed = true;
4995 }
4996 return 0;
4997 }
4998 EXPORT_SYMBOL(drm_dp_mst_add_affected_dsc_crtcs);
4999
5000 /**
5001 * drm_dp_mst_atomic_enable_dsc - Set DSC Enable Flag to On/Off
5002 * @state: Pointer to the new drm_atomic_state
5003 * @port: Pointer to the affected MST Port
5004 * @pbn: Newly recalculated bw required for link with DSC enabled
5005 * @pbn_div: Divider to calculate correct number of pbn per slot
5006 * @enable: Boolean flag to enable or disable DSC on the port
5007 *
5008 * This function enables DSC on the given Port
5009 * by recalculating its vcpi from pbn provided
5010 * and sets dsc_enable flag to keep track of which
5011 * ports have DSC enabled
5012 *
5013 */
5014 int drm_dp_mst_atomic_enable_dsc(struct drm_atomic_state *state,
5015 struct drm_dp_mst_port *port,
5016 int pbn, int pbn_div,
5017 bool enable)
5018 {
5019 struct drm_dp_mst_topology_state *mst_state;
5020 struct drm_dp_vcpi_allocation *pos;
5021 bool found = false;
5022 int vcpi = 0;
5023
5024 mst_state = drm_atomic_get_mst_topology_state(state, port->mgr);
5025
5026 if (IS_ERR(mst_state))
5027 return PTR_ERR(mst_state);
5028
5029 list_for_each_entry(pos, &mst_state->vcpis, next) {
5030 if (pos->port == port) {
5031 found = true;
5032 break;
5033 }
5034 }
5035
5036 if (!found) {
5037 DRM_DEBUG_ATOMIC("[MST PORT:%p] Couldn't find VCPI allocation in mst state %p\n",
5038 port, mst_state);
5039 return -EINVAL;
5040 }
5041
5042 if (pos->dsc_enabled == enable) {
5043 DRM_DEBUG_ATOMIC("[MST PORT:%p] DSC flag is already set to %d, returning %d VCPI slots\n",
5044 port, enable, pos->vcpi);
5045 vcpi = pos->vcpi;
5046 }
5047
5048 if (enable) {
5049 vcpi = drm_dp_atomic_find_vcpi_slots(state, port->mgr, port, pbn, pbn_div);
5050 DRM_DEBUG_ATOMIC("[MST PORT:%p] Enabling DSC flag, reallocating %d VCPI slots on the port\n",
5051 port, vcpi);
5052 if (vcpi < 0)
5053 return -EINVAL;
5054 }
5055
5056 pos->dsc_enabled = enable;
5057
5058 return vcpi;
5059 }
5060 EXPORT_SYMBOL(drm_dp_mst_atomic_enable_dsc);
5061 /**
5062 * drm_dp_mst_atomic_check - Check that the new state of an MST topology in an
5063 * atomic update is valid
5064 * @state: Pointer to the new &struct drm_dp_mst_topology_state
5065 *
5066 * Checks the given topology state for an atomic update to ensure that it's
5067 * valid. This includes checking whether there's enough bandwidth to support
5068 * the new VCPI allocations in the atomic update.
5069 *
5070 * Any atomic drivers supporting DP MST must make sure to call this after
5071 * checking the rest of their state in their
5072 * &drm_mode_config_funcs.atomic_check() callback.
5073 *
5074 * See also:
5075 * drm_dp_atomic_find_vcpi_slots()
5076 * drm_dp_atomic_release_vcpi_slots()
5077 *
5078 * Returns:
5079 *
5080 * 0 if the new state is valid, negative error code otherwise.
5081 */
5082 int drm_dp_mst_atomic_check(struct drm_atomic_state *state)
5083 {
5084 struct drm_dp_mst_topology_mgr *mgr;
5085 struct drm_dp_mst_topology_state *mst_state;
5086 int i, ret = 0;
5087
5088 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
5089 if (!mgr->mst_state)
5090 continue;
5091
5092 ret = drm_dp_mst_atomic_check_vcpi_alloc_limit(mgr, mst_state);
5093 if (ret)
5094 break;
5095 ret = drm_dp_mst_atomic_check_bw_limit(mgr->mst_primary, mst_state);
5096 if (ret)
5097 break;
5098 }
5099
5100 return ret;
5101 }
5102 EXPORT_SYMBOL(drm_dp_mst_atomic_check);
5103
5104 const struct drm_private_state_funcs drm_dp_mst_topology_state_funcs = {
5105 .atomic_duplicate_state = drm_dp_mst_duplicate_state,
5106 .atomic_destroy_state = drm_dp_mst_destroy_state,
5107 };
5108 EXPORT_SYMBOL(drm_dp_mst_topology_state_funcs);
5109
5110 /**
5111 * drm_atomic_get_mst_topology_state: get MST topology state
5112 *
5113 * @state: global atomic state
5114 * @mgr: MST topology manager, also the private object in this case
5115 *
5116 * This function wraps drm_atomic_get_priv_obj_state() passing in the MST atomic
5117 * state vtable so that the private object state returned is that of a MST
5118 * topology object. Also, drm_atomic_get_private_obj_state() expects the caller
5119 * to care of the locking, so warn if don't hold the connection_mutex.
5120 *
5121 * RETURNS:
5122 *
5123 * The MST topology state or error pointer.
5124 */
5125 struct drm_dp_mst_topology_state *drm_atomic_get_mst_topology_state(struct drm_atomic_state *state,
5126 struct drm_dp_mst_topology_mgr *mgr)
5127 {
5128 return to_dp_mst_topology_state(drm_atomic_get_private_obj_state(state, &mgr->base));
5129 }
5130 EXPORT_SYMBOL(drm_atomic_get_mst_topology_state);
5131
5132 /**
5133 * drm_dp_mst_topology_mgr_init - initialise a topology manager
5134 * @mgr: manager struct to initialise
5135 * @dev: device providing this structure - for i2c addition.
5136 * @aux: DP helper aux channel to talk to this device
5137 * @max_dpcd_transaction_bytes: hw specific DPCD transaction limit
5138 * @max_payloads: maximum number of payloads this GPU can source
5139 * @conn_base_id: the connector object ID the MST device is connected to.
5140 *
5141 * Return 0 for success, or negative error code on failure
5142 */
5143 int drm_dp_mst_topology_mgr_init(struct drm_dp_mst_topology_mgr *mgr,
5144 struct drm_device *dev, struct drm_dp_aux *aux,
5145 int max_dpcd_transaction_bytes,
5146 int max_payloads, int conn_base_id)
5147 {
5148 struct drm_dp_mst_topology_state *mst_state;
5149
5150 mutex_init(&mgr->lock);
5151 mutex_init(&mgr->qlock);
5152 mutex_init(&mgr->payload_lock);
5153 mutex_init(&mgr->delayed_destroy_lock);
5154 mutex_init(&mgr->up_req_lock);
5155 mutex_init(&mgr->probe_lock);
5156 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
5157 mutex_init(&mgr->topology_ref_history_lock);
5158 #endif
5159 INIT_LIST_HEAD(&mgr->tx_msg_downq);
5160 INIT_LIST_HEAD(&mgr->destroy_port_list);
5161 INIT_LIST_HEAD(&mgr->destroy_branch_device_list);
5162 INIT_LIST_HEAD(&mgr->up_req_list);
5163 INIT_WORK(&mgr->work, drm_dp_mst_link_probe_work);
5164 INIT_WORK(&mgr->tx_work, drm_dp_tx_work);
5165 INIT_WORK(&mgr->delayed_destroy_work, drm_dp_delayed_destroy_work);
5166 INIT_WORK(&mgr->up_req_work, drm_dp_mst_up_req_work);
5167 #ifdef __NetBSD__
5168 DRM_INIT_WAITQUEUE(&mgr->tx_waitq, "dpmstwait");
5169 #else
5170 init_waitqueue_head(&mgr->tx_waitq);
5171 #endif
5172 mgr->dev = dev;
5173 mgr->aux = aux;
5174 mgr->max_dpcd_transaction_bytes = max_dpcd_transaction_bytes;
5175 mgr->max_payloads = max_payloads;
5176 mgr->conn_base_id = conn_base_id;
5177 if (max_payloads + 1 > sizeof(mgr->payload_mask) * 8 ||
5178 max_payloads + 1 > sizeof(mgr->vcpi_mask) * 8)
5179 return -EINVAL;
5180 mgr->payloads = kcalloc(max_payloads, sizeof(struct drm_dp_payload), GFP_KERNEL);
5181 if (!mgr->payloads)
5182 return -ENOMEM;
5183 mgr->proposed_vcpis = kcalloc(max_payloads, sizeof(struct drm_dp_vcpi *), GFP_KERNEL);
5184 if (!mgr->proposed_vcpis)
5185 return -ENOMEM;
5186 set_bit(0, &mgr->payload_mask);
5187
5188 mst_state = kzalloc(sizeof(*mst_state), GFP_KERNEL);
5189 if (mst_state == NULL)
5190 return -ENOMEM;
5191
5192 mst_state->mgr = mgr;
5193 INIT_LIST_HEAD(&mst_state->vcpis);
5194
5195 drm_atomic_private_obj_init(dev, &mgr->base,
5196 &mst_state->base,
5197 &drm_dp_mst_topology_state_funcs);
5198
5199 return 0;
5200 }
5201 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_init);
5202
5203 /**
5204 * drm_dp_mst_topology_mgr_destroy() - destroy topology manager.
5205 * @mgr: manager to destroy
5206 */
5207 void drm_dp_mst_topology_mgr_destroy(struct drm_dp_mst_topology_mgr *mgr)
5208 {
5209 drm_dp_mst_topology_mgr_set_mst(mgr, false);
5210 flush_work(&mgr->work);
5211 cancel_work_sync(&mgr->delayed_destroy_work);
5212 mutex_lock(&mgr->payload_lock);
5213 kfree(mgr->payloads);
5214 mgr->payloads = NULL;
5215 kfree(mgr->proposed_vcpis);
5216 mgr->proposed_vcpis = NULL;
5217 mutex_unlock(&mgr->payload_lock);
5218 mgr->dev = NULL;
5219 mgr->aux = NULL;
5220 drm_atomic_private_obj_fini(&mgr->base);
5221 mgr->funcs = NULL;
5222
5223 #ifdef __NetBSD__
5224 DRM_DESTROY_WAITQUEUE(&mgr->tx_waitq);
5225 #endif
5226 mutex_destroy(&mgr->delayed_destroy_lock);
5227 mutex_destroy(&mgr->payload_lock);
5228 mutex_destroy(&mgr->qlock);
5229 mutex_destroy(&mgr->lock);
5230 mutex_destroy(&mgr->up_req_lock);
5231 mutex_destroy(&mgr->probe_lock);
5232 #if IS_ENABLED(CONFIG_DRM_DEBUG_DP_MST_TOPOLOGY_REFS)
5233 mutex_destroy(&mgr->topology_ref_history_lock);
5234 #endif
5235 }
5236 EXPORT_SYMBOL(drm_dp_mst_topology_mgr_destroy);
5237
5238 static bool remote_i2c_read_ok(const struct i2c_msg msgs[], int num)
5239 {
5240 int i;
5241
5242 if (num - 1 > DP_REMOTE_I2C_READ_MAX_TRANSACTIONS)
5243 return false;
5244
5245 for (i = 0; i < num - 1; i++) {
5246 if (msgs[i].flags & I2C_M_RD ||
5247 msgs[i].len > 0xff)
5248 return false;
5249 }
5250
5251 return msgs[num - 1].flags & I2C_M_RD &&
5252 msgs[num - 1].len <= 0xff;
5253 }
5254
5255 /* I2C device */
5256 static int drm_dp_mst_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
5257 int num)
5258 {
5259 struct drm_dp_aux *aux = adapter->algo_data;
5260 struct drm_dp_mst_port *port = container_of(aux, struct drm_dp_mst_port, aux);
5261 struct drm_dp_mst_branch *mstb;
5262 struct drm_dp_mst_topology_mgr *mgr = port->mgr;
5263 unsigned int i;
5264 struct drm_dp_sideband_msg_req_body msg;
5265 struct drm_dp_sideband_msg_tx *txmsg = NULL;
5266 int ret;
5267
5268 mstb = drm_dp_mst_topology_get_mstb_validated(mgr, port->parent);
5269 if (!mstb)
5270 return -EREMOTEIO;
5271
5272 if (!remote_i2c_read_ok(msgs, num)) {
5273 DRM_DEBUG_KMS("Unsupported I2C transaction for MST device\n");
5274 ret = -EIO;
5275 goto out;
5276 }
5277
5278 memset(&msg, 0, sizeof(msg));
5279 msg.req_type = DP_REMOTE_I2C_READ;
5280 msg.u.i2c_read.num_transactions = num - 1;
5281 msg.u.i2c_read.port_number = port->port_num;
5282 for (i = 0; i < num - 1; i++) {
5283 msg.u.i2c_read.transactions[i].i2c_dev_id = msgs[i].addr;
5284 msg.u.i2c_read.transactions[i].num_bytes = msgs[i].len;
5285 msg.u.i2c_read.transactions[i].bytes = msgs[i].buf;
5286 msg.u.i2c_read.transactions[i].no_stop_bit = !(msgs[i].flags & I2C_M_STOP);
5287 }
5288 msg.u.i2c_read.read_i2c_device_id = msgs[num - 1].addr;
5289 msg.u.i2c_read.num_bytes_read = msgs[num - 1].len;
5290
5291 txmsg = kzalloc(sizeof(*txmsg), GFP_KERNEL);
5292 if (!txmsg) {
5293 ret = -ENOMEM;
5294 goto out;
5295 }
5296
5297 txmsg->dst = mstb;
5298 drm_dp_encode_sideband_req(&msg, txmsg);
5299
5300 drm_dp_queue_down_tx(mgr, txmsg);
5301
5302 ret = drm_dp_mst_wait_tx_reply(mstb, txmsg);
5303 if (ret > 0) {
5304
5305 if (txmsg->reply.reply_type == DP_SIDEBAND_REPLY_NAK) {
5306 ret = -EREMOTEIO;
5307 goto out;
5308 }
5309 if (txmsg->reply.u.remote_i2c_read_ack.num_bytes != msgs[num - 1].len) {
5310 ret = -EIO;
5311 goto out;
5312 }
5313 memcpy(msgs[num - 1].buf, txmsg->reply.u.remote_i2c_read_ack.bytes, msgs[num - 1].len);
5314 ret = num;
5315 }
5316 out:
5317 kfree(txmsg);
5318 drm_dp_mst_topology_put_mstb(mstb);
5319 return ret;
5320 }
5321
5322 static u32 drm_dp_mst_i2c_functionality(struct i2c_adapter *adapter)
5323 {
5324 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
5325 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
5326 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
5327 I2C_FUNC_10BIT_ADDR;
5328 }
5329
5330 static const struct i2c_algorithm drm_dp_mst_i2c_algo = {
5331 .functionality = drm_dp_mst_i2c_functionality,
5332 .master_xfer = drm_dp_mst_i2c_xfer,
5333 };
5334
5335 /**
5336 * drm_dp_mst_register_i2c_bus() - register an I2C adapter for I2C-over-AUX
5337 * @aux: DisplayPort AUX channel
5338 *
5339 * Returns 0 on success or a negative error code on failure.
5340 */
5341 static int drm_dp_mst_register_i2c_bus(struct drm_dp_aux *aux)
5342 {
5343 aux->ddc.algo = &drm_dp_mst_i2c_algo;
5344 aux->ddc.algo_data = aux;
5345 aux->ddc.retries = 3;
5346
5347 aux->ddc.class = I2C_CLASS_DDC;
5348 aux->ddc.owner = THIS_MODULE;
5349 aux->ddc.dev.parent = aux->dev;
5350 #ifndef __NetBSD__ /* XXX of? */
5351 aux->ddc.dev.of_node = aux->dev->of_node;
5352 #endif
5353
5354 strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
5355 sizeof(aux->ddc.name));
5356
5357 return i2c_add_adapter(&aux->ddc);
5358 }
5359
5360 /**
5361 * drm_dp_mst_unregister_i2c_bus() - unregister an I2C-over-AUX adapter
5362 * @aux: DisplayPort AUX channel
5363 */
5364 static void drm_dp_mst_unregister_i2c_bus(struct drm_dp_aux *aux)
5365 {
5366 i2c_del_adapter(&aux->ddc);
5367 }
5368
5369 /**
5370 * drm_dp_mst_is_virtual_dpcd() - Is the given port a virtual DP Peer Device
5371 * @port: The port to check
5372 *
5373 * A single physical MST hub object can be represented in the topology
5374 * by multiple branches, with virtual ports between those branches.
5375 *
5376 * As of DP1.4, An MST hub with internal (virtual) ports must expose
5377 * certain DPCD registers over those ports. See sections 2.6.1.1.1
5378 * and 2.6.1.1.2 of Display Port specification v1.4 for details.
5379 *
5380 * May acquire mgr->lock
5381 *
5382 * Returns:
5383 * true if the port is a virtual DP peer device, false otherwise
5384 */
5385 static bool drm_dp_mst_is_virtual_dpcd(struct drm_dp_mst_port *port)
5386 {
5387 struct drm_dp_mst_port *downstream_port;
5388
5389 if (!port || port->dpcd_rev < DP_DPCD_REV_14)
5390 return false;
5391
5392 /* Virtual DP Sink (Internal Display Panel) */
5393 if (port->port_num >= 8)
5394 return true;
5395
5396 /* DP-to-HDMI Protocol Converter */
5397 if (port->pdt == DP_PEER_DEVICE_DP_LEGACY_CONV &&
5398 !port->mcs &&
5399 port->ldps)
5400 return true;
5401
5402 /* DP-to-DP */
5403 mutex_lock(&port->mgr->lock);
5404 if (port->pdt == DP_PEER_DEVICE_MST_BRANCHING &&
5405 port->mstb &&
5406 port->mstb->num_ports == 2) {
5407 list_for_each_entry(downstream_port, &port->mstb->ports, next) {
5408 if (downstream_port->pdt == DP_PEER_DEVICE_SST_SINK &&
5409 !downstream_port->input) {
5410 mutex_unlock(&port->mgr->lock);
5411 return true;
5412 }
5413 }
5414 }
5415 mutex_unlock(&port->mgr->lock);
5416
5417 return false;
5418 }
5419
5420 /**
5421 * drm_dp_mst_dsc_aux_for_port() - Find the correct aux for DSC
5422 * @port: The port to check. A leaf of the MST tree with an attached display.
5423 *
5424 * Depending on the situation, DSC may be enabled via the endpoint aux,
5425 * the immediately upstream aux, or the connector's physical aux.
5426 *
5427 * This is both the correct aux to read DSC_CAPABILITY and the
5428 * correct aux to write DSC_ENABLED.
5429 *
5430 * This operation can be expensive (up to four aux reads), so
5431 * the caller should cache the return.
5432 *
5433 * Returns:
5434 * NULL if DSC cannot be enabled on this port, otherwise the aux device
5435 */
5436 struct drm_dp_aux *drm_dp_mst_dsc_aux_for_port(struct drm_dp_mst_port *port)
5437 {
5438 struct drm_dp_mst_port *immediate_upstream_port;
5439 struct drm_dp_mst_port *fec_port;
5440 struct drm_dp_desc desc = { 0 };
5441 u8 endpoint_fec;
5442 u8 endpoint_dsc;
5443
5444 if (!port)
5445 return NULL;
5446
5447 if (port->parent->port_parent)
5448 immediate_upstream_port = port->parent->port_parent;
5449 else
5450 immediate_upstream_port = NULL;
5451
5452 fec_port = immediate_upstream_port;
5453 while (fec_port) {
5454 /*
5455 * Each physical link (i.e. not a virtual port) between the
5456 * output and the primary device must support FEC
5457 */
5458 if (!drm_dp_mst_is_virtual_dpcd(fec_port) &&
5459 !fec_port->fec_capable)
5460 return NULL;
5461
5462 fec_port = fec_port->parent->port_parent;
5463 }
5464
5465 /* DP-to-DP peer device */
5466 if (drm_dp_mst_is_virtual_dpcd(immediate_upstream_port)) {
5467 u8 upstream_dsc;
5468
5469 if (drm_dp_dpcd_read(&port->aux,
5470 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1)
5471 return NULL;
5472 if (drm_dp_dpcd_read(&port->aux,
5473 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1)
5474 return NULL;
5475 if (drm_dp_dpcd_read(&immediate_upstream_port->aux,
5476 DP_DSC_SUPPORT, &upstream_dsc, 1) != 1)
5477 return NULL;
5478
5479 /* Enpoint decompression with DP-to-DP peer device */
5480 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) &&
5481 (endpoint_fec & DP_FEC_CAPABLE) &&
5482 (upstream_dsc & 0x2) /* DSC passthrough */)
5483 return &port->aux;
5484
5485 /* Virtual DPCD decompression with DP-to-DP peer device */
5486 return &immediate_upstream_port->aux;
5487 }
5488
5489 /* Virtual DPCD decompression with DP-to-HDMI or Virtual DP Sink */
5490 if (drm_dp_mst_is_virtual_dpcd(port))
5491 return &port->aux;
5492
5493 /*
5494 * Synaptics quirk
5495 * Applies to ports for which:
5496 * - Physical aux has Synaptics OUI
5497 * - DPv1.4 or higher
5498 * - Port is on primary branch device
5499 * - Not a VGA adapter (DP_DWN_STRM_PORT_TYPE_ANALOG)
5500 */
5501 if (drm_dp_read_desc(port->mgr->aux, &desc, true))
5502 return NULL;
5503
5504 if (drm_dp_has_quirk(&desc, DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) &&
5505 port->mgr->dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14 &&
5506 port->parent == port->mgr->mst_primary) {
5507 u8 downstreamport;
5508
5509 if (drm_dp_dpcd_read(&port->aux, DP_DOWNSTREAMPORT_PRESENT,
5510 &downstreamport, 1) < 0)
5511 return NULL;
5512
5513 if ((downstreamport & DP_DWN_STRM_PORT_PRESENT) &&
5514 ((downstreamport & DP_DWN_STRM_PORT_TYPE_MASK)
5515 != DP_DWN_STRM_PORT_TYPE_ANALOG))
5516 return port->mgr->aux;
5517 }
5518
5519 /*
5520 * The check below verifies if the MST sink
5521 * connected to the GPU is capable of DSC -
5522 * therefore the endpoint needs to be
5523 * both DSC and FEC capable.
5524 */
5525 if (drm_dp_dpcd_read(&port->aux,
5526 DP_DSC_SUPPORT, &endpoint_dsc, 1) != 1)
5527 return NULL;
5528 if (drm_dp_dpcd_read(&port->aux,
5529 DP_FEC_CAPABILITY, &endpoint_fec, 1) != 1)
5530 return NULL;
5531 if ((endpoint_dsc & DP_DSC_DECOMPRESSION_IS_SUPPORTED) &&
5532 (endpoint_fec & DP_FEC_CAPABLE))
5533 return &port->aux;
5534
5535 return NULL;
5536 }
5537 EXPORT_SYMBOL(drm_dp_mst_dsc_aux_for_port);
5538