drm_edid.c revision 1.6 1 /* $NetBSD: drm_edid.c,v 1.6 2018/08/27 04:58:19 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2006 Luc Verhaegen (quirks list)
5 * Copyright (c) 2007-2008 Intel Corporation
6 * Jesse Barnes <jesse.barnes (at) intel.com>
7 * Copyright 2010 Red Hat, Inc.
8 *
9 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
10 * FB layer.
11 * Copyright (C) 2006 Dennis Munsie <dmunsie (at) cecropia.com>
12 *
13 * Permission is hereby granted, free of charge, to any person obtaining a
14 * copy of this software and associated documentation files (the "Software"),
15 * to deal in the Software without restriction, including without limitation
16 * the rights to use, copy, modify, merge, publish, distribute, sub license,
17 * and/or sell copies of the Software, and to permit persons to whom the
18 * Software is furnished to do so, subject to the following conditions:
19 *
20 * The above copyright notice and this permission notice (including the
21 * next paragraph) shall be included in all copies or substantial portions
22 * of the Software.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
27 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
30 * DEALINGS IN THE SOFTWARE.
31 */
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: drm_edid.c,v 1.6 2018/08/27 04:58:19 riastradh Exp $");
34
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/hdmi.h>
38 #include <linux/i2c.h>
39 #include <linux/module.h>
40 #include <linux/moduleparam.h>
41 #include <linux/export.h>
42 #include <linux/printk.h>
43 #include <linux/device.h>
44 #include <linux/string.h>
45 #include <linux/errno.h>
46 #include <asm/byteorder.h>
47 #include <drm/drmP.h>
48 #include <drm/drm_edid.h>
49 #include <drm/drm_displayid.h>
50
51 #define version_greater(edid, maj, min) \
52 (((edid)->version > (maj)) || \
53 ((edid)->version == (maj) && (edid)->revision > (min)))
54
55 #define EDID_EST_TIMINGS 16
56 #define EDID_STD_TIMINGS 8
57 #define EDID_DETAILED_TIMINGS 4
58
59 /*
60 * EDID blocks out in the wild have a variety of bugs, try to collect
61 * them here (note that userspace may work around broken monitors first,
62 * but fixes should make their way here so that the kernel "just works"
63 * on as many displays as possible).
64 */
65
66 /* First detailed mode wrong, use largest 60Hz mode */
67 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
68 /* Reported 135MHz pixel clock is too high, needs adjustment */
69 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
70 /* Prefer the largest mode at 75 Hz */
71 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
72 /* Detail timing is in cm not mm */
73 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
74 /* Detailed timing descriptors have bogus size values, so just take the
75 * maximum size and use that.
76 */
77 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
78 /* Monitor forgot to set the first detailed is preferred bit. */
79 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
80 /* use +hsync +vsync for detailed mode */
81 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
82 /* Force reduced-blanking timings for detailed modes */
83 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
84 /* Force 8bpc */
85 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
86 /* Force 12bpc */
87 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
88 /* Force 6bpc */
89 #define EDID_QUIRK_FORCE_6BPC (1 << 10)
90 /* Force 10bpc */
91 #define EDID_QUIRK_FORCE_10BPC (1 << 11)
92
93 struct detailed_mode_closure {
94 struct drm_connector *connector;
95 struct edid *edid;
96 bool preferred;
97 u32 quirks;
98 int modes;
99 };
100
101 #define LEVEL_DMT 0
102 #define LEVEL_GTF 1
103 #define LEVEL_GTF2 2
104 #define LEVEL_CVT 3
105
106 static struct edid_quirk {
107 char vendor[4];
108 int product_id;
109 u32 quirks;
110 } edid_quirk_list[] = {
111 /* Acer AL1706 */
112 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
113 /* Acer F51 */
114 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
115 /* Unknown Acer */
116 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
117
118 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
119 { "AEO", 0, EDID_QUIRK_FORCE_6BPC },
120
121 /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */
122 { "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC },
123
124 /* Belinea 10 15 55 */
125 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
126 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
127
128 /* Envision Peripherals, Inc. EN-7100e */
129 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
130 /* Envision EN2028 */
131 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
132
133 /* Funai Electronics PM36B */
134 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
135 EDID_QUIRK_DETAILED_IN_CM },
136
137 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
138 { "LGD", 764, EDID_QUIRK_FORCE_10BPC },
139
140 /* LG Philips LCD LP154W01-A5 */
141 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
142 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
143
144 /* Philips 107p5 CRT */
145 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
146
147 /* Proview AY765C */
148 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
149
150 /* Samsung SyncMaster 205BW. Note: irony */
151 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
152 /* Samsung SyncMaster 22[5-6]BW */
153 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
154 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
155
156 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
157 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
158
159 /* ViewSonic VA2026w */
160 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
161
162 /* Medion MD 30217 PG */
163 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
164
165 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
166 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
167
168 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
169 { "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
170 };
171
172 /*
173 * Autogenerated from the DMT spec.
174 * This table is copied from xfree86/modes/xf86EdidModes.c.
175 */
176 static const struct drm_display_mode drm_dmt_modes[] = {
177 /* 0x01 - 640x350@85Hz */
178 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
179 736, 832, 0, 350, 382, 385, 445, 0,
180 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
181 /* 0x02 - 640x400@85Hz */
182 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
183 736, 832, 0, 400, 401, 404, 445, 0,
184 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
185 /* 0x03 - 720x400@85Hz */
186 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
187 828, 936, 0, 400, 401, 404, 446, 0,
188 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
189 /* 0x04 - 640x480@60Hz */
190 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
191 752, 800, 0, 480, 490, 492, 525, 0,
192 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
193 /* 0x05 - 640x480@72Hz */
194 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
195 704, 832, 0, 480, 489, 492, 520, 0,
196 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
197 /* 0x06 - 640x480@75Hz */
198 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
199 720, 840, 0, 480, 481, 484, 500, 0,
200 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
201 /* 0x07 - 640x480@85Hz */
202 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
203 752, 832, 0, 480, 481, 484, 509, 0,
204 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
205 /* 0x08 - 800x600@56Hz */
206 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
207 896, 1024, 0, 600, 601, 603, 625, 0,
208 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
209 /* 0x09 - 800x600@60Hz */
210 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
211 968, 1056, 0, 600, 601, 605, 628, 0,
212 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
213 /* 0x0a - 800x600@72Hz */
214 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
215 976, 1040, 0, 600, 637, 643, 666, 0,
216 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
217 /* 0x0b - 800x600@75Hz */
218 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
219 896, 1056, 0, 600, 601, 604, 625, 0,
220 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
221 /* 0x0c - 800x600@85Hz */
222 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
223 896, 1048, 0, 600, 601, 604, 631, 0,
224 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
225 /* 0x0d - 800x600@120Hz RB */
226 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
227 880, 960, 0, 600, 603, 607, 636, 0,
228 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
229 /* 0x0e - 848x480@60Hz */
230 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
231 976, 1088, 0, 480, 486, 494, 517, 0,
232 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
233 /* 0x0f - 1024x768@43Hz, interlace */
234 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
235 1208, 1264, 0, 768, 768, 772, 817, 0,
236 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
237 DRM_MODE_FLAG_INTERLACE) },
238 /* 0x10 - 1024x768@60Hz */
239 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
240 1184, 1344, 0, 768, 771, 777, 806, 0,
241 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
242 /* 0x11 - 1024x768@70Hz */
243 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
244 1184, 1328, 0, 768, 771, 777, 806, 0,
245 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
246 /* 0x12 - 1024x768@75Hz */
247 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
248 1136, 1312, 0, 768, 769, 772, 800, 0,
249 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
250 /* 0x13 - 1024x768@85Hz */
251 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
252 1168, 1376, 0, 768, 769, 772, 808, 0,
253 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
254 /* 0x14 - 1024x768@120Hz RB */
255 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
256 1104, 1184, 0, 768, 771, 775, 813, 0,
257 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
258 /* 0x15 - 1152x864@75Hz */
259 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
260 1344, 1600, 0, 864, 865, 868, 900, 0,
261 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
262 /* 0x55 - 1280x720@60Hz */
263 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
264 1430, 1650, 0, 720, 725, 730, 750, 0,
265 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
266 /* 0x16 - 1280x768@60Hz RB */
267 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
268 1360, 1440, 0, 768, 771, 778, 790, 0,
269 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
270 /* 0x17 - 1280x768@60Hz */
271 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
272 1472, 1664, 0, 768, 771, 778, 798, 0,
273 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
274 /* 0x18 - 1280x768@75Hz */
275 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
276 1488, 1696, 0, 768, 771, 778, 805, 0,
277 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
278 /* 0x19 - 1280x768@85Hz */
279 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
280 1496, 1712, 0, 768, 771, 778, 809, 0,
281 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
282 /* 0x1a - 1280x768@120Hz RB */
283 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
284 1360, 1440, 0, 768, 771, 778, 813, 0,
285 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
286 /* 0x1b - 1280x800@60Hz RB */
287 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
288 1360, 1440, 0, 800, 803, 809, 823, 0,
289 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
290 /* 0x1c - 1280x800@60Hz */
291 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
292 1480, 1680, 0, 800, 803, 809, 831, 0,
293 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
294 /* 0x1d - 1280x800@75Hz */
295 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
296 1488, 1696, 0, 800, 803, 809, 838, 0,
297 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
298 /* 0x1e - 1280x800@85Hz */
299 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
300 1496, 1712, 0, 800, 803, 809, 843, 0,
301 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
302 /* 0x1f - 1280x800@120Hz RB */
303 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
304 1360, 1440, 0, 800, 803, 809, 847, 0,
305 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
306 /* 0x20 - 1280x960@60Hz */
307 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
308 1488, 1800, 0, 960, 961, 964, 1000, 0,
309 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
310 /* 0x21 - 1280x960@85Hz */
311 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
312 1504, 1728, 0, 960, 961, 964, 1011, 0,
313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
314 /* 0x22 - 1280x960@120Hz RB */
315 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
316 1360, 1440, 0, 960, 963, 967, 1017, 0,
317 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
318 /* 0x23 - 1280x1024@60Hz */
319 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
320 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
321 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
322 /* 0x24 - 1280x1024@75Hz */
323 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
324 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
325 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
326 /* 0x25 - 1280x1024@85Hz */
327 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
328 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
329 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 /* 0x26 - 1280x1024@120Hz RB */
331 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
332 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
334 /* 0x27 - 1360x768@60Hz */
335 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
336 1536, 1792, 0, 768, 771, 777, 795, 0,
337 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
338 /* 0x28 - 1360x768@120Hz RB */
339 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
340 1440, 1520, 0, 768, 771, 776, 813, 0,
341 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
342 /* 0x51 - 1366x768@60Hz */
343 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
344 1579, 1792, 0, 768, 771, 774, 798, 0,
345 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
346 /* 0x56 - 1366x768@60Hz */
347 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
348 1436, 1500, 0, 768, 769, 772, 800, 0,
349 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
350 /* 0x29 - 1400x1050@60Hz RB */
351 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
352 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
353 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
354 /* 0x2a - 1400x1050@60Hz */
355 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
356 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
357 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
358 /* 0x2b - 1400x1050@75Hz */
359 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
360 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
361 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
362 /* 0x2c - 1400x1050@85Hz */
363 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
364 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
365 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 /* 0x2d - 1400x1050@120Hz RB */
367 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
368 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
370 /* 0x2e - 1440x900@60Hz RB */
371 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
372 1520, 1600, 0, 900, 903, 909, 926, 0,
373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
374 /* 0x2f - 1440x900@60Hz */
375 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
376 1672, 1904, 0, 900, 903, 909, 934, 0,
377 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 /* 0x30 - 1440x900@75Hz */
379 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
380 1688, 1936, 0, 900, 903, 909, 942, 0,
381 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
382 /* 0x31 - 1440x900@85Hz */
383 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
384 1696, 1952, 0, 900, 903, 909, 948, 0,
385 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
386 /* 0x32 - 1440x900@120Hz RB */
387 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
388 1520, 1600, 0, 900, 903, 909, 953, 0,
389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
390 /* 0x53 - 1600x900@60Hz */
391 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
392 1704, 1800, 0, 900, 901, 904, 1000, 0,
393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
394 /* 0x33 - 1600x1200@60Hz */
395 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
396 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
397 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
398 /* 0x34 - 1600x1200@65Hz */
399 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
400 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
401 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 /* 0x35 - 1600x1200@70Hz */
403 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
404 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
405 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
406 /* 0x36 - 1600x1200@75Hz */
407 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
408 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
409 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
410 /* 0x37 - 1600x1200@85Hz */
411 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
412 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
413 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 /* 0x38 - 1600x1200@120Hz RB */
415 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
416 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
417 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
418 /* 0x39 - 1680x1050@60Hz RB */
419 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
420 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
421 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
422 /* 0x3a - 1680x1050@60Hz */
423 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
424 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
425 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 /* 0x3b - 1680x1050@75Hz */
427 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
428 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
429 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 /* 0x3c - 1680x1050@85Hz */
431 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
432 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
433 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
434 /* 0x3d - 1680x1050@120Hz RB */
435 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
436 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
437 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 /* 0x3e - 1792x1344@60Hz */
439 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
440 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
441 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
442 /* 0x3f - 1792x1344@75Hz */
443 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
444 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
445 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 /* 0x40 - 1792x1344@120Hz RB */
447 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
448 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
449 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
450 /* 0x41 - 1856x1392@60Hz */
451 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
452 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
453 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
454 /* 0x42 - 1856x1392@75Hz */
455 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
456 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
457 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
458 /* 0x43 - 1856x1392@120Hz RB */
459 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
460 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
461 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
462 /* 0x52 - 1920x1080@60Hz */
463 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
464 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
465 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
466 /* 0x44 - 1920x1200@60Hz RB */
467 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
468 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
469 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
470 /* 0x45 - 1920x1200@60Hz */
471 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
472 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
473 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 /* 0x46 - 1920x1200@75Hz */
475 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
476 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
477 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
478 /* 0x47 - 1920x1200@85Hz */
479 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
480 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
481 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
482 /* 0x48 - 1920x1200@120Hz RB */
483 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
484 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
485 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
486 /* 0x49 - 1920x1440@60Hz */
487 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
488 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
489 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 /* 0x4a - 1920x1440@75Hz */
491 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
492 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
493 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
494 /* 0x4b - 1920x1440@120Hz RB */
495 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
496 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
497 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
498 /* 0x54 - 2048x1152@60Hz */
499 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
500 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
502 /* 0x4c - 2560x1600@60Hz RB */
503 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
504 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
505 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
506 /* 0x4d - 2560x1600@60Hz */
507 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
508 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
509 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
510 /* 0x4e - 2560x1600@75Hz */
511 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
512 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
513 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
514 /* 0x4f - 2560x1600@85Hz */
515 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
516 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
517 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
518 /* 0x50 - 2560x1600@120Hz RB */
519 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
520 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
521 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
522 /* 0x57 - 4096x2160@60Hz RB */
523 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
524 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
525 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
526 /* 0x58 - 4096x2160 (at) 59.94Hz RB */
527 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
528 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
529 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
530 };
531
532 /*
533 * These more or less come from the DMT spec. The 720x400 modes are
534 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
535 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
536 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
537 * mode.
538 *
539 * The DMT modes have been fact-checked; the rest are mild guesses.
540 */
541 static const struct drm_display_mode edid_est_modes[] = {
542 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
543 968, 1056, 0, 600, 601, 605, 628, 0,
544 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
545 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
546 896, 1024, 0, 600, 601, 603, 625, 0,
547 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
548 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
549 720, 840, 0, 480, 481, 484, 500, 0,
550 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
551 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
552 704, 832, 0, 480, 489, 491, 520, 0,
553 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
554 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
555 768, 864, 0, 480, 483, 486, 525, 0,
556 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
557 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
558 752, 800, 0, 480, 490, 492, 525, 0,
559 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
560 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
561 846, 900, 0, 400, 421, 423, 449, 0,
562 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
563 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
564 846, 900, 0, 400, 412, 414, 449, 0,
565 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
566 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
567 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
568 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
569 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
570 1136, 1312, 0, 768, 769, 772, 800, 0,
571 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
572 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
573 1184, 1328, 0, 768, 771, 777, 806, 0,
574 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
575 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
576 1184, 1344, 0, 768, 771, 777, 806, 0,
577 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
578 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
579 1208, 1264, 0, 768, 768, 776, 817, 0,
580 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
581 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
582 928, 1152, 0, 624, 625, 628, 667, 0,
583 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
584 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
585 896, 1056, 0, 600, 601, 604, 625, 0,
586 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
587 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
588 976, 1040, 0, 600, 637, 643, 666, 0,
589 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
590 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
591 1344, 1600, 0, 864, 865, 868, 900, 0,
592 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
593 };
594
595 struct minimode {
596 short w;
597 short h;
598 short r;
599 short rb;
600 };
601
602 static const struct minimode est3_modes[] = {
603 /* byte 6 */
604 { 640, 350, 85, 0 },
605 { 640, 400, 85, 0 },
606 { 720, 400, 85, 0 },
607 { 640, 480, 85, 0 },
608 { 848, 480, 60, 0 },
609 { 800, 600, 85, 0 },
610 { 1024, 768, 85, 0 },
611 { 1152, 864, 75, 0 },
612 /* byte 7 */
613 { 1280, 768, 60, 1 },
614 { 1280, 768, 60, 0 },
615 { 1280, 768, 75, 0 },
616 { 1280, 768, 85, 0 },
617 { 1280, 960, 60, 0 },
618 { 1280, 960, 85, 0 },
619 { 1280, 1024, 60, 0 },
620 { 1280, 1024, 85, 0 },
621 /* byte 8 */
622 { 1360, 768, 60, 0 },
623 { 1440, 900, 60, 1 },
624 { 1440, 900, 60, 0 },
625 { 1440, 900, 75, 0 },
626 { 1440, 900, 85, 0 },
627 { 1400, 1050, 60, 1 },
628 { 1400, 1050, 60, 0 },
629 { 1400, 1050, 75, 0 },
630 /* byte 9 */
631 { 1400, 1050, 85, 0 },
632 { 1680, 1050, 60, 1 },
633 { 1680, 1050, 60, 0 },
634 { 1680, 1050, 75, 0 },
635 { 1680, 1050, 85, 0 },
636 { 1600, 1200, 60, 0 },
637 { 1600, 1200, 65, 0 },
638 { 1600, 1200, 70, 0 },
639 /* byte 10 */
640 { 1600, 1200, 75, 0 },
641 { 1600, 1200, 85, 0 },
642 { 1792, 1344, 60, 0 },
643 { 1792, 1344, 75, 0 },
644 { 1856, 1392, 60, 0 },
645 { 1856, 1392, 75, 0 },
646 { 1920, 1200, 60, 1 },
647 { 1920, 1200, 60, 0 },
648 /* byte 11 */
649 { 1920, 1200, 75, 0 },
650 { 1920, 1200, 85, 0 },
651 { 1920, 1440, 60, 0 },
652 { 1920, 1440, 75, 0 },
653 };
654
655 static const struct minimode extra_modes[] = {
656 { 1024, 576, 60, 0 },
657 { 1366, 768, 60, 0 },
658 { 1600, 900, 60, 0 },
659 { 1680, 945, 60, 0 },
660 { 1920, 1080, 60, 0 },
661 { 2048, 1152, 60, 0 },
662 { 2048, 1536, 60, 0 },
663 };
664
665 /*
666 * Probably taken from CEA-861 spec.
667 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
668 */
669 static const struct drm_display_mode edid_cea_modes[] = {
670 /* 1 - 640x480@60Hz */
671 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
672 752, 800, 0, 480, 490, 492, 525, 0,
673 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
674 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
675 /* 2 - 720x480@60Hz */
676 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
677 798, 858, 0, 480, 489, 495, 525, 0,
678 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
679 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
680 /* 3 - 720x480@60Hz */
681 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
682 798, 858, 0, 480, 489, 495, 525, 0,
683 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
684 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
685 /* 4 - 1280x720@60Hz */
686 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
687 1430, 1650, 0, 720, 725, 730, 750, 0,
688 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
689 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
690 /* 5 - 1920x1080i@60Hz */
691 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
692 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
693 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
694 DRM_MODE_FLAG_INTERLACE),
695 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
696 /* 6 - 720(1440)x480i@60Hz */
697 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
698 801, 858, 0, 480, 488, 494, 525, 0,
699 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
700 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
701 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
702 /* 7 - 720(1440)x480i@60Hz */
703 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
704 801, 858, 0, 480, 488, 494, 525, 0,
705 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
706 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
707 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
708 /* 8 - 720(1440)x240@60Hz */
709 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
710 801, 858, 0, 240, 244, 247, 262, 0,
711 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
712 DRM_MODE_FLAG_DBLCLK),
713 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
714 /* 9 - 720(1440)x240@60Hz */
715 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
716 801, 858, 0, 240, 244, 247, 262, 0,
717 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
718 DRM_MODE_FLAG_DBLCLK),
719 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
720 /* 10 - 2880x480i@60Hz */
721 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
722 3204, 3432, 0, 480, 488, 494, 525, 0,
723 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
724 DRM_MODE_FLAG_INTERLACE),
725 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
726 /* 11 - 2880x480i@60Hz */
727 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
728 3204, 3432, 0, 480, 488, 494, 525, 0,
729 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
730 DRM_MODE_FLAG_INTERLACE),
731 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
732 /* 12 - 2880x240@60Hz */
733 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
734 3204, 3432, 0, 240, 244, 247, 262, 0,
735 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
736 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
737 /* 13 - 2880x240@60Hz */
738 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
739 3204, 3432, 0, 240, 244, 247, 262, 0,
740 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
741 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
742 /* 14 - 1440x480@60Hz */
743 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
744 1596, 1716, 0, 480, 489, 495, 525, 0,
745 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
746 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
747 /* 15 - 1440x480@60Hz */
748 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
749 1596, 1716, 0, 480, 489, 495, 525, 0,
750 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
751 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
752 /* 16 - 1920x1080@60Hz */
753 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
754 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
755 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
756 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
757 /* 17 - 720x576@50Hz */
758 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
759 796, 864, 0, 576, 581, 586, 625, 0,
760 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
761 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
762 /* 18 - 720x576@50Hz */
763 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
764 796, 864, 0, 576, 581, 586, 625, 0,
765 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
766 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
767 /* 19 - 1280x720@50Hz */
768 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
769 1760, 1980, 0, 720, 725, 730, 750, 0,
770 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
771 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
772 /* 20 - 1920x1080i@50Hz */
773 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
774 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
775 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
776 DRM_MODE_FLAG_INTERLACE),
777 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
778 /* 21 - 720(1440)x576i@50Hz */
779 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
780 795, 864, 0, 576, 580, 586, 625, 0,
781 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
782 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
783 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
784 /* 22 - 720(1440)x576i@50Hz */
785 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
786 795, 864, 0, 576, 580, 586, 625, 0,
787 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
788 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
789 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
790 /* 23 - 720(1440)x288@50Hz */
791 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
792 795, 864, 0, 288, 290, 293, 312, 0,
793 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
794 DRM_MODE_FLAG_DBLCLK),
795 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
796 /* 24 - 720(1440)x288@50Hz */
797 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
798 795, 864, 0, 288, 290, 293, 312, 0,
799 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
800 DRM_MODE_FLAG_DBLCLK),
801 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
802 /* 25 - 2880x576i@50Hz */
803 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
804 3180, 3456, 0, 576, 580, 586, 625, 0,
805 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
806 DRM_MODE_FLAG_INTERLACE),
807 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
808 /* 26 - 2880x576i@50Hz */
809 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
810 3180, 3456, 0, 576, 580, 586, 625, 0,
811 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
812 DRM_MODE_FLAG_INTERLACE),
813 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
814 /* 27 - 2880x288@50Hz */
815 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
816 3180, 3456, 0, 288, 290, 293, 312, 0,
817 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
818 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
819 /* 28 - 2880x288@50Hz */
820 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
821 3180, 3456, 0, 288, 290, 293, 312, 0,
822 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
823 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
824 /* 29 - 1440x576@50Hz */
825 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
826 1592, 1728, 0, 576, 581, 586, 625, 0,
827 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
828 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
829 /* 30 - 1440x576@50Hz */
830 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
831 1592, 1728, 0, 576, 581, 586, 625, 0,
832 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
833 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
834 /* 31 - 1920x1080@50Hz */
835 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
836 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
837 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
838 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
839 /* 32 - 1920x1080@24Hz */
840 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
841 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
842 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
843 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
844 /* 33 - 1920x1080@25Hz */
845 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
846 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
847 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
848 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 /* 34 - 1920x1080@30Hz */
850 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
851 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
852 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
853 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 /* 35 - 2880x480@60Hz */
855 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
856 3192, 3432, 0, 480, 489, 495, 525, 0,
857 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
858 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
859 /* 36 - 2880x480@60Hz */
860 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
861 3192, 3432, 0, 480, 489, 495, 525, 0,
862 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
863 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
864 /* 37 - 2880x576@50Hz */
865 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
866 3184, 3456, 0, 576, 581, 586, 625, 0,
867 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
868 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
869 /* 38 - 2880x576@50Hz */
870 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
871 3184, 3456, 0, 576, 581, 586, 625, 0,
872 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
873 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
874 /* 39 - 1920x1080i@50Hz */
875 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
876 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
877 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
878 DRM_MODE_FLAG_INTERLACE),
879 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
880 /* 40 - 1920x1080i@100Hz */
881 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
882 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
883 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
884 DRM_MODE_FLAG_INTERLACE),
885 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
886 /* 41 - 1280x720@100Hz */
887 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
888 1760, 1980, 0, 720, 725, 730, 750, 0,
889 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
890 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
891 /* 42 - 720x576@100Hz */
892 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
893 796, 864, 0, 576, 581, 586, 625, 0,
894 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
895 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
896 /* 43 - 720x576@100Hz */
897 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
898 796, 864, 0, 576, 581, 586, 625, 0,
899 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
900 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
901 /* 44 - 720(1440)x576i@100Hz */
902 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
903 795, 864, 0, 576, 580, 586, 625, 0,
904 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
905 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
906 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
907 /* 45 - 720(1440)x576i@100Hz */
908 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
909 795, 864, 0, 576, 580, 586, 625, 0,
910 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
911 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
912 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
913 /* 46 - 1920x1080i@120Hz */
914 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
915 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
916 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
917 DRM_MODE_FLAG_INTERLACE),
918 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
919 /* 47 - 1280x720@120Hz */
920 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
921 1430, 1650, 0, 720, 725, 730, 750, 0,
922 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
923 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
924 /* 48 - 720x480@120Hz */
925 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
926 798, 858, 0, 480, 489, 495, 525, 0,
927 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
928 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
929 /* 49 - 720x480@120Hz */
930 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
931 798, 858, 0, 480, 489, 495, 525, 0,
932 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
933 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
934 /* 50 - 720(1440)x480i@120Hz */
935 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
936 801, 858, 0, 480, 488, 494, 525, 0,
937 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
938 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
939 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
940 /* 51 - 720(1440)x480i@120Hz */
941 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
942 801, 858, 0, 480, 488, 494, 525, 0,
943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
944 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
945 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
946 /* 52 - 720x576@200Hz */
947 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
948 796, 864, 0, 576, 581, 586, 625, 0,
949 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
950 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
951 /* 53 - 720x576@200Hz */
952 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
953 796, 864, 0, 576, 581, 586, 625, 0,
954 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
955 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
956 /* 54 - 720(1440)x576i@200Hz */
957 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
958 795, 864, 0, 576, 580, 586, 625, 0,
959 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
960 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
961 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
962 /* 55 - 720(1440)x576i@200Hz */
963 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
964 795, 864, 0, 576, 580, 586, 625, 0,
965 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
966 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
967 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
968 /* 56 - 720x480@240Hz */
969 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
970 798, 858, 0, 480, 489, 495, 525, 0,
971 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
972 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
973 /* 57 - 720x480@240Hz */
974 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
975 798, 858, 0, 480, 489, 495, 525, 0,
976 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
977 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
978 /* 58 - 720(1440)x480i@240 */
979 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
980 801, 858, 0, 480, 488, 494, 525, 0,
981 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
982 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
983 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
984 /* 59 - 720(1440)x480i@240 */
985 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
986 801, 858, 0, 480, 488, 494, 525, 0,
987 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
988 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
989 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 /* 60 - 1280x720@24Hz */
991 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
992 3080, 3300, 0, 720, 725, 730, 750, 0,
993 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
994 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
995 /* 61 - 1280x720@25Hz */
996 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
997 3740, 3960, 0, 720, 725, 730, 750, 0,
998 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
999 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1000 /* 62 - 1280x720@30Hz */
1001 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1002 3080, 3300, 0, 720, 725, 730, 750, 0,
1003 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1004 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1005 /* 63 - 1920x1080@120Hz */
1006 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
1007 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
1008 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1009 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1010 /* 64 - 1920x1080@100Hz */
1011 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
1012 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
1013 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1014 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1015 };
1016
1017 /*
1018 * HDMI 1.4 4k modes.
1019 */
1020 static const struct drm_display_mode edid_4k_modes[] = {
1021 /* 1 - 3840x2160@30Hz */
1022 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1023 3840, 4016, 4104, 4400, 0,
1024 2160, 2168, 2178, 2250, 0,
1025 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1026 .vrefresh = 30, },
1027 /* 2 - 3840x2160@25Hz */
1028 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1029 3840, 4896, 4984, 5280, 0,
1030 2160, 2168, 2178, 2250, 0,
1031 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1032 .vrefresh = 25, },
1033 /* 3 - 3840x2160@24Hz */
1034 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1035 3840, 5116, 5204, 5500, 0,
1036 2160, 2168, 2178, 2250, 0,
1037 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1038 .vrefresh = 24, },
1039 /* 4 - 4096x2160@24Hz (SMPTE) */
1040 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1041 4096, 5116, 5204, 5500, 0,
1042 2160, 2168, 2178, 2250, 0,
1043 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1044 .vrefresh = 24, },
1045 };
1046
1047 /*** DDC fetch and block validation ***/
1048
1049 static const u8 edid_header[] = {
1050 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1051 };
1052
1053 /**
1054 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1055 * @raw_edid: pointer to raw base EDID block
1056 *
1057 * Sanity check the header of the base EDID block.
1058 *
1059 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1060 */
1061 int drm_edid_header_is_valid(const u8 *raw_edid)
1062 {
1063 int i, score = 0;
1064
1065 for (i = 0; i < sizeof(edid_header); i++)
1066 if (raw_edid[i] == edid_header[i])
1067 score++;
1068
1069 return score;
1070 }
1071 EXPORT_SYMBOL(drm_edid_header_is_valid);
1072
1073 static int edid_fixup __read_mostly = 6;
1074 module_param_named(edid_fixup, edid_fixup, int, 0400);
1075 MODULE_PARM_DESC(edid_fixup,
1076 "Minimum number of valid EDID header bytes (0-8, default 6)");
1077
1078 static void drm_get_displayid(struct drm_connector *connector,
1079 struct edid *edid);
1080
1081 static int drm_edid_block_checksum(const u8 *raw_edid)
1082 {
1083 int i;
1084 u8 csum = 0;
1085 for (i = 0; i < EDID_LENGTH; i++)
1086 csum += raw_edid[i];
1087
1088 return csum;
1089 }
1090
1091 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1092 {
1093 if (memchr_inv(in_edid, 0, length))
1094 return false;
1095
1096 return true;
1097 }
1098
1099 /**
1100 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1101 * @raw_edid: pointer to raw EDID block
1102 * @block: type of block to validate (0 for base, extension otherwise)
1103 * @print_bad_edid: if true, dump bad EDID blocks to the console
1104 * @edid_corrupt: if true, the header or checksum is invalid
1105 *
1106 * Validate a base or extension EDID block and optionally dump bad blocks to
1107 * the console.
1108 *
1109 * Return: True if the block is valid, false otherwise.
1110 */
1111 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1112 bool *edid_corrupt)
1113 {
1114 u8 csum;
1115 struct edid *edid = (struct edid *)raw_edid;
1116
1117 if (WARN_ON(!raw_edid))
1118 return false;
1119
1120 if (edid_fixup > 8 || edid_fixup < 0)
1121 edid_fixup = 6;
1122
1123 if (block == 0) {
1124 int score = drm_edid_header_is_valid(raw_edid);
1125 if (score == 8) {
1126 if (edid_corrupt)
1127 *edid_corrupt = false;
1128 } else if (score >= edid_fixup) {
1129 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1130 * The corrupt flag needs to be set here otherwise, the
1131 * fix-up code here will correct the problem, the
1132 * checksum is correct and the test fails
1133 */
1134 if (edid_corrupt)
1135 *edid_corrupt = true;
1136 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1137 memcpy(raw_edid, edid_header, sizeof(edid_header));
1138 } else {
1139 if (edid_corrupt)
1140 *edid_corrupt = true;
1141 goto bad;
1142 }
1143 }
1144
1145 csum = drm_edid_block_checksum(raw_edid);
1146 if (csum) {
1147 if (print_bad_edid) {
1148 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1149 }
1150
1151 if (edid_corrupt)
1152 *edid_corrupt = true;
1153
1154 /* allow CEA to slide through, switches mangle this */
1155 if (raw_edid[0] != 0x02)
1156 goto bad;
1157 }
1158
1159 /* per-block-type checks */
1160 switch (raw_edid[0]) {
1161 case 0: /* base */
1162 if (edid->version != 1) {
1163 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1164 goto bad;
1165 }
1166
1167 if (edid->revision > 4)
1168 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1169 break;
1170
1171 default:
1172 break;
1173 }
1174
1175 return true;
1176
1177 bad:
1178 if (print_bad_edid) {
1179 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1180 printk(KERN_ERR "EDID block is all zeroes\n");
1181 } else {
1182 printk(KERN_ERR "Raw EDID:\n");
1183 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1184 raw_edid, EDID_LENGTH, false);
1185 }
1186 }
1187 return false;
1188 }
1189 EXPORT_SYMBOL(drm_edid_block_valid);
1190
1191 /**
1192 * drm_edid_is_valid - sanity check EDID data
1193 * @edid: EDID data
1194 *
1195 * Sanity-check an entire EDID record (including extensions)
1196 *
1197 * Return: True if the EDID data is valid, false otherwise.
1198 */
1199 bool drm_edid_is_valid(struct edid *edid)
1200 {
1201 int i;
1202 u8 *raw = (u8 *)edid;
1203
1204 if (!edid)
1205 return false;
1206
1207 for (i = 0; i <= edid->extensions; i++)
1208 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1209 return false;
1210
1211 return true;
1212 }
1213 EXPORT_SYMBOL(drm_edid_is_valid);
1214
1215 #define DDC_SEGMENT_ADDR 0x30
1216 /**
1217 * drm_do_probe_ddc_edid() - get EDID information via I2C
1218 * @data: I2C device adapter
1219 * @buf: EDID data buffer to be filled
1220 * @block: 128 byte EDID block to start fetching from
1221 * @len: EDID data buffer length to fetch
1222 *
1223 * Try to fetch EDID information by calling I2C driver functions.
1224 *
1225 * Return: 0 on success or -1 on failure.
1226 */
1227 static int
1228 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1229 {
1230 struct i2c_adapter *adapter = data;
1231 unsigned char start = block * EDID_LENGTH;
1232 unsigned char segment = block >> 1;
1233 unsigned char xfers = segment ? 3 : 2;
1234 int ret, retries = 5;
1235
1236 /*
1237 * The core I2C driver will automatically retry the transfer if the
1238 * adapter reports EAGAIN. However, we find that bit-banging transfers
1239 * are susceptible to errors under a heavily loaded machine and
1240 * generate spurious NAKs and timeouts. Retrying the transfer
1241 * of the individual block a few times seems to overcome this.
1242 */
1243 do {
1244 struct i2c_msg msgs[] = {
1245 {
1246 .addr = DDC_SEGMENT_ADDR,
1247 .flags = 0,
1248 .len = 1,
1249 .buf = &segment,
1250 }, {
1251 .addr = DDC_ADDR,
1252 .flags = 0,
1253 .len = 1,
1254 .buf = &start,
1255 }, {
1256 .addr = DDC_ADDR,
1257 .flags = I2C_M_RD,
1258 .len = len,
1259 .buf = buf,
1260 }
1261 };
1262
1263 /*
1264 * Avoid sending the segment addr to not upset non-compliant
1265 * DDC monitors.
1266 */
1267 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1268
1269 if (ret == -ENXIO) {
1270 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1271 adapter->name);
1272 break;
1273 }
1274 } while (ret != xfers && --retries);
1275
1276 return ret == xfers ? 0 : -1;
1277 }
1278
1279 /**
1280 * drm_do_get_edid - get EDID data using a custom EDID block read function
1281 * @connector: connector we're probing
1282 * @get_edid_block: EDID block read function
1283 * @data: private data passed to the block read function
1284 *
1285 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1286 * exposes a different interface to read EDID blocks this function can be used
1287 * to get EDID data using a custom block read function.
1288 *
1289 * As in the general case the DDC bus is accessible by the kernel at the I2C
1290 * level, drivers must make all reasonable efforts to expose it as an I2C
1291 * adapter and use drm_get_edid() instead of abusing this function.
1292 *
1293 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1294 */
1295 struct edid *drm_do_get_edid(struct drm_connector *connector,
1296 int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1297 size_t len),
1298 void *data)
1299 {
1300 int i, j = 0, valid_extensions = 0;
1301 u8 *block, *new;
1302 bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1303
1304 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1305 return NULL;
1306
1307 /* base block fetch */
1308 for (i = 0; i < 4; i++) {
1309 if (get_edid_block(data, block, 0, EDID_LENGTH))
1310 goto out;
1311 if (drm_edid_block_valid(block, 0, print_bad_edid,
1312 &connector->edid_corrupt))
1313 break;
1314 if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1315 connector->null_edid_counter++;
1316 goto carp;
1317 }
1318 }
1319 if (i == 4)
1320 goto carp;
1321
1322 /* if there's no extensions, we're done */
1323 if (block[0x7e] == 0)
1324 return (struct edid *)block;
1325
1326 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1327 if (!new)
1328 goto out;
1329 block = new;
1330
1331 for (j = 1; j <= block[0x7e]; j++) {
1332 for (i = 0; i < 4; i++) {
1333 if (get_edid_block(data,
1334 block + (valid_extensions + 1) * EDID_LENGTH,
1335 j, EDID_LENGTH))
1336 goto out;
1337 if (drm_edid_block_valid(block + (valid_extensions + 1)
1338 * EDID_LENGTH, j,
1339 print_bad_edid,
1340 NULL)) {
1341 valid_extensions++;
1342 break;
1343 }
1344 }
1345
1346 if (i == 4 && print_bad_edid) {
1347 dev_warn(connector->dev->dev,
1348 "%s: Ignoring invalid EDID block %d.\n",
1349 connector->name, j);
1350
1351 connector->bad_edid_counter++;
1352 }
1353 }
1354
1355 if (valid_extensions != block[0x7e]) {
1356 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1357 block[0x7e] = valid_extensions;
1358 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1359 if (!new)
1360 goto out;
1361 block = new;
1362 }
1363
1364 return (struct edid *)block;
1365
1366 carp:
1367 if (print_bad_edid) {
1368 dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1369 connector->name, j);
1370 }
1371 connector->bad_edid_counter++;
1372
1373 out:
1374 kfree(block);
1375 return NULL;
1376 }
1377 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1378
1379 /**
1380 * drm_probe_ddc() - probe DDC presence
1381 * @adapter: I2C adapter to probe
1382 *
1383 * Return: True on success, false on failure.
1384 */
1385 bool
1386 drm_probe_ddc(struct i2c_adapter *adapter)
1387 {
1388 unsigned char out;
1389
1390 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1391 }
1392 EXPORT_SYMBOL(drm_probe_ddc);
1393
1394 /**
1395 * drm_get_edid - get EDID data, if available
1396 * @connector: connector we're probing
1397 * @adapter: I2C adapter to use for DDC
1398 *
1399 * Poke the given I2C channel to grab EDID data if possible. If found,
1400 * attach it to the connector.
1401 *
1402 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1403 */
1404 struct edid *drm_get_edid(struct drm_connector *connector,
1405 struct i2c_adapter *adapter)
1406 {
1407 struct edid *edid;
1408
1409 if (!drm_probe_ddc(adapter))
1410 return NULL;
1411
1412 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1413 if (edid)
1414 drm_get_displayid(connector, edid);
1415 return edid;
1416 }
1417 EXPORT_SYMBOL(drm_get_edid);
1418
1419 /**
1420 * drm_edid_duplicate - duplicate an EDID and the extensions
1421 * @edid: EDID to duplicate
1422 *
1423 * Return: Pointer to duplicated EDID or NULL on allocation failure.
1424 */
1425 struct edid *drm_edid_duplicate(const struct edid *edid)
1426 {
1427 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1428 }
1429 EXPORT_SYMBOL(drm_edid_duplicate);
1430
1431 /*** EDID parsing ***/
1432
1433 /**
1434 * edid_vendor - match a string against EDID's obfuscated vendor field
1435 * @edid: EDID to match
1436 * @vendor: vendor string
1437 *
1438 * Returns true if @vendor is in @edid, false otherwise
1439 */
1440 static bool edid_vendor(struct edid *edid, char *vendor)
1441 {
1442 char edid_vendor[3];
1443
1444 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1445 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1446 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1447 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1448
1449 return !strncmp(edid_vendor, vendor, 3);
1450 }
1451
1452 /**
1453 * edid_get_quirks - return quirk flags for a given EDID
1454 * @edid: EDID to process
1455 *
1456 * This tells subsequent routines what fixes they need to apply.
1457 */
1458 static u32 edid_get_quirks(struct edid *edid)
1459 {
1460 struct edid_quirk *quirk;
1461 int i;
1462
1463 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1464 quirk = &edid_quirk_list[i];
1465
1466 if (edid_vendor(edid, quirk->vendor) &&
1467 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1468 return quirk->quirks;
1469 }
1470
1471 return 0;
1472 }
1473
1474 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1475 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1476
1477 /**
1478 * edid_fixup_preferred - set preferred modes based on quirk list
1479 * @connector: has mode list to fix up
1480 * @quirks: quirks list
1481 *
1482 * Walk the mode list for @connector, clearing the preferred status
1483 * on existing modes and setting it anew for the right mode ala @quirks.
1484 */
1485 static void edid_fixup_preferred(struct drm_connector *connector,
1486 u32 quirks)
1487 {
1488 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1489 int target_refresh = 0;
1490 int cur_vrefresh, preferred_vrefresh;
1491
1492 if (list_empty(&connector->probed_modes))
1493 return;
1494
1495 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1496 target_refresh = 60;
1497 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1498 target_refresh = 75;
1499
1500 preferred_mode = list_first_entry(&connector->probed_modes,
1501 struct drm_display_mode, head);
1502
1503 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1504 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1505
1506 if (cur_mode == preferred_mode)
1507 continue;
1508
1509 /* Largest mode is preferred */
1510 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1511 preferred_mode = cur_mode;
1512
1513 cur_vrefresh = cur_mode->vrefresh ?
1514 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1515 preferred_vrefresh = preferred_mode->vrefresh ?
1516 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1517 /* At a given size, try to get closest to target refresh */
1518 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1519 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1520 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1521 preferred_mode = cur_mode;
1522 }
1523 }
1524
1525 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1526 }
1527
1528 static bool
1529 mode_is_rb(const struct drm_display_mode *mode)
1530 {
1531 return (mode->htotal - mode->hdisplay == 160) &&
1532 (mode->hsync_end - mode->hdisplay == 80) &&
1533 (mode->hsync_end - mode->hsync_start == 32) &&
1534 (mode->vsync_start - mode->vdisplay == 3);
1535 }
1536
1537 /*
1538 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1539 * @dev: Device to duplicate against
1540 * @hsize: Mode width
1541 * @vsize: Mode height
1542 * @fresh: Mode refresh rate
1543 * @rb: Mode reduced-blanking-ness
1544 *
1545 * Walk the DMT mode list looking for a match for the given parameters.
1546 *
1547 * Return: A newly allocated copy of the mode, or NULL if not found.
1548 */
1549 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1550 int hsize, int vsize, int fresh,
1551 bool rb)
1552 {
1553 int i;
1554
1555 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1556 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1557 if (hsize != ptr->hdisplay)
1558 continue;
1559 if (vsize != ptr->vdisplay)
1560 continue;
1561 if (fresh != drm_mode_vrefresh(ptr))
1562 continue;
1563 if (rb != mode_is_rb(ptr))
1564 continue;
1565
1566 return drm_mode_duplicate(dev, ptr);
1567 }
1568
1569 return NULL;
1570 }
1571 EXPORT_SYMBOL(drm_mode_find_dmt);
1572
1573 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1574
1575 static void
1576 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1577 {
1578 int i, n = 0;
1579 u8 d = ext[0x02];
1580 u8 *det_base = ext + d;
1581
1582 n = (127 - d) / 18;
1583 for (i = 0; i < n; i++)
1584 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1585 }
1586
1587 static void
1588 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1589 {
1590 unsigned int i, n = min((int)ext[0x02], 6);
1591 u8 *det_base = ext + 5;
1592
1593 if (ext[0x01] != 1)
1594 return; /* unknown version */
1595
1596 for (i = 0; i < n; i++)
1597 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1598 }
1599
1600 static void
1601 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1602 {
1603 int i;
1604 struct edid *edid = (struct edid *)raw_edid;
1605
1606 if (edid == NULL)
1607 return;
1608
1609 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1610 cb(&(edid->detailed_timings[i]), closure);
1611
1612 for (i = 1; i <= raw_edid[0x7e]; i++) {
1613 u8 *ext = raw_edid + (i * EDID_LENGTH);
1614 switch (*ext) {
1615 case CEA_EXT:
1616 cea_for_each_detailed_block(ext, cb, closure);
1617 break;
1618 case VTB_EXT:
1619 vtb_for_each_detailed_block(ext, cb, closure);
1620 break;
1621 default:
1622 break;
1623 }
1624 }
1625 }
1626
1627 static void
1628 is_rb(struct detailed_timing *t, void *data)
1629 {
1630 u8 *r = (u8 *)t;
1631 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1632 if (r[15] & 0x10)
1633 *(bool *)data = true;
1634 }
1635
1636 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
1637 static bool
1638 drm_monitor_supports_rb(struct edid *edid)
1639 {
1640 if (edid->revision >= 4) {
1641 bool ret = false;
1642 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1643 return ret;
1644 }
1645
1646 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1647 }
1648
1649 static void
1650 find_gtf2(struct detailed_timing *t, void *data)
1651 {
1652 u8 *r = (u8 *)t;
1653 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1654 *(u8 **)data = r;
1655 }
1656
1657 /* Secondary GTF curve kicks in above some break frequency */
1658 static int
1659 drm_gtf2_hbreak(struct edid *edid)
1660 {
1661 u8 *r = NULL;
1662 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1663 return r ? (r[12] * 2) : 0;
1664 }
1665
1666 static int
1667 drm_gtf2_2c(struct edid *edid)
1668 {
1669 u8 *r = NULL;
1670 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1671 return r ? r[13] : 0;
1672 }
1673
1674 static int
1675 drm_gtf2_m(struct edid *edid)
1676 {
1677 u8 *r = NULL;
1678 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1679 return r ? (r[15] << 8) + r[14] : 0;
1680 }
1681
1682 static int
1683 drm_gtf2_k(struct edid *edid)
1684 {
1685 u8 *r = NULL;
1686 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1687 return r ? r[16] : 0;
1688 }
1689
1690 static int
1691 drm_gtf2_2j(struct edid *edid)
1692 {
1693 u8 *r = NULL;
1694 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1695 return r ? r[17] : 0;
1696 }
1697
1698 /**
1699 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1700 * @edid: EDID block to scan
1701 */
1702 static int standard_timing_level(struct edid *edid)
1703 {
1704 if (edid->revision >= 2) {
1705 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1706 return LEVEL_CVT;
1707 if (drm_gtf2_hbreak(edid))
1708 return LEVEL_GTF2;
1709 return LEVEL_GTF;
1710 }
1711 return LEVEL_DMT;
1712 }
1713
1714 /*
1715 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
1716 * monitors fill with ascii space (0x20) instead.
1717 */
1718 static int
1719 bad_std_timing(u8 a, u8 b)
1720 {
1721 return (a == 0x00 && b == 0x00) ||
1722 (a == 0x01 && b == 0x01) ||
1723 (a == 0x20 && b == 0x20);
1724 }
1725
1726 /**
1727 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1728 * @connector: connector of for the EDID block
1729 * @edid: EDID block to scan
1730 * @t: standard timing params
1731 *
1732 * Take the standard timing params (in this case width, aspect, and refresh)
1733 * and convert them into a real mode using CVT/GTF/DMT.
1734 */
1735 static struct drm_display_mode *
1736 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1737 struct std_timing *t)
1738 {
1739 struct drm_device *dev = connector->dev;
1740 struct drm_display_mode *m, *mode = NULL;
1741 int hsize, vsize;
1742 int vrefresh_rate;
1743 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1744 >> EDID_TIMING_ASPECT_SHIFT;
1745 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1746 >> EDID_TIMING_VFREQ_SHIFT;
1747 int timing_level = standard_timing_level(edid);
1748
1749 if (bad_std_timing(t->hsize, t->vfreq_aspect))
1750 return NULL;
1751
1752 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1753 hsize = t->hsize * 8 + 248;
1754 /* vrefresh_rate = vfreq + 60 */
1755 vrefresh_rate = vfreq + 60;
1756 /* the vdisplay is calculated based on the aspect ratio */
1757 if (aspect_ratio == 0) {
1758 if (edid->revision < 3)
1759 vsize = hsize;
1760 else
1761 vsize = (hsize * 10) / 16;
1762 } else if (aspect_ratio == 1)
1763 vsize = (hsize * 3) / 4;
1764 else if (aspect_ratio == 2)
1765 vsize = (hsize * 4) / 5;
1766 else
1767 vsize = (hsize * 9) / 16;
1768
1769 /* HDTV hack, part 1 */
1770 if (vrefresh_rate == 60 &&
1771 ((hsize == 1360 && vsize == 765) ||
1772 (hsize == 1368 && vsize == 769))) {
1773 hsize = 1366;
1774 vsize = 768;
1775 }
1776
1777 /*
1778 * If this connector already has a mode for this size and refresh
1779 * rate (because it came from detailed or CVT info), use that
1780 * instead. This way we don't have to guess at interlace or
1781 * reduced blanking.
1782 */
1783 list_for_each_entry(m, &connector->probed_modes, head)
1784 if (m->hdisplay == hsize && m->vdisplay == vsize &&
1785 drm_mode_vrefresh(m) == vrefresh_rate)
1786 return NULL;
1787
1788 /* HDTV hack, part 2 */
1789 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1790 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1791 false);
1792 mode->hdisplay = 1366;
1793 mode->hsync_start = mode->hsync_start - 1;
1794 mode->hsync_end = mode->hsync_end - 1;
1795 return mode;
1796 }
1797
1798 /* check whether it can be found in default mode table */
1799 if (drm_monitor_supports_rb(edid)) {
1800 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1801 true);
1802 if (mode)
1803 return mode;
1804 }
1805 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1806 if (mode)
1807 return mode;
1808
1809 /* okay, generate it */
1810 switch (timing_level) {
1811 case LEVEL_DMT:
1812 break;
1813 case LEVEL_GTF:
1814 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1815 break;
1816 case LEVEL_GTF2:
1817 /*
1818 * This is potentially wrong if there's ever a monitor with
1819 * more than one ranges section, each claiming a different
1820 * secondary GTF curve. Please don't do that.
1821 */
1822 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1823 if (!mode)
1824 return NULL;
1825 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1826 drm_mode_destroy(dev, mode);
1827 mode = drm_gtf_mode_complex(dev, hsize, vsize,
1828 vrefresh_rate, 0, 0,
1829 drm_gtf2_m(edid),
1830 drm_gtf2_2c(edid),
1831 drm_gtf2_k(edid),
1832 drm_gtf2_2j(edid));
1833 }
1834 break;
1835 case LEVEL_CVT:
1836 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1837 false);
1838 break;
1839 }
1840 return mode;
1841 }
1842
1843 /*
1844 * EDID is delightfully ambiguous about how interlaced modes are to be
1845 * encoded. Our internal representation is of frame height, but some
1846 * HDTV detailed timings are encoded as field height.
1847 *
1848 * The format list here is from CEA, in frame size. Technically we
1849 * should be checking refresh rate too. Whatever.
1850 */
1851 static void
1852 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1853 struct detailed_pixel_timing *pt)
1854 {
1855 int i;
1856 static const struct {
1857 int w, h;
1858 } cea_interlaced[] = {
1859 { 1920, 1080 },
1860 { 720, 480 },
1861 { 1440, 480 },
1862 { 2880, 480 },
1863 { 720, 576 },
1864 { 1440, 576 },
1865 { 2880, 576 },
1866 };
1867
1868 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1869 return;
1870
1871 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1872 if ((mode->hdisplay == cea_interlaced[i].w) &&
1873 (mode->vdisplay == cea_interlaced[i].h / 2)) {
1874 mode->vdisplay *= 2;
1875 mode->vsync_start *= 2;
1876 mode->vsync_end *= 2;
1877 mode->vtotal *= 2;
1878 mode->vtotal |= 1;
1879 }
1880 }
1881
1882 mode->flags |= DRM_MODE_FLAG_INTERLACE;
1883 }
1884
1885 /**
1886 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1887 * @dev: DRM device (needed to create new mode)
1888 * @edid: EDID block
1889 * @timing: EDID detailed timing info
1890 * @quirks: quirks to apply
1891 *
1892 * An EDID detailed timing block contains enough info for us to create and
1893 * return a new struct drm_display_mode.
1894 */
1895 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1896 struct edid *edid,
1897 struct detailed_timing *timing,
1898 u32 quirks)
1899 {
1900 struct drm_display_mode *mode;
1901 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1902 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1903 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1904 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1905 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1906 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1907 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1908 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1909 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1910
1911 /* ignore tiny modes */
1912 if (hactive < 64 || vactive < 64)
1913 return NULL;
1914
1915 if (pt->misc & DRM_EDID_PT_STEREO) {
1916 DRM_DEBUG_KMS("stereo mode not supported\n");
1917 return NULL;
1918 }
1919 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1920 DRM_DEBUG_KMS("composite sync not supported\n");
1921 }
1922
1923 /* it is incorrect if hsync/vsync width is zero */
1924 if (!hsync_pulse_width || !vsync_pulse_width) {
1925 DRM_DEBUG_KMS("Incorrect Detailed timing. "
1926 "Wrong Hsync/Vsync pulse width\n");
1927 return NULL;
1928 }
1929
1930 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1931 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1932 if (!mode)
1933 return NULL;
1934
1935 goto set_size;
1936 }
1937
1938 mode = drm_mode_create(dev);
1939 if (!mode)
1940 return NULL;
1941
1942 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1943 timing->pixel_clock = cpu_to_le16(1088);
1944
1945 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1946
1947 mode->hdisplay = hactive;
1948 mode->hsync_start = mode->hdisplay + hsync_offset;
1949 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1950 mode->htotal = mode->hdisplay + hblank;
1951
1952 mode->vdisplay = vactive;
1953 mode->vsync_start = mode->vdisplay + vsync_offset;
1954 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1955 mode->vtotal = mode->vdisplay + vblank;
1956
1957 /* Some EDIDs have bogus h/vtotal values */
1958 if (mode->hsync_end > mode->htotal)
1959 mode->htotal = mode->hsync_end + 1;
1960 if (mode->vsync_end > mode->vtotal)
1961 mode->vtotal = mode->vsync_end + 1;
1962
1963 drm_mode_do_interlace_quirk(mode, pt);
1964
1965 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1966 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1967 }
1968
1969 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1970 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1971 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1972 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1973
1974 set_size:
1975 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1976 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1977
1978 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1979 mode->width_mm *= 10;
1980 mode->height_mm *= 10;
1981 }
1982
1983 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1984 mode->width_mm = edid->width_cm * 10;
1985 mode->height_mm = edid->height_cm * 10;
1986 }
1987
1988 mode->type = DRM_MODE_TYPE_DRIVER;
1989 mode->vrefresh = drm_mode_vrefresh(mode);
1990 drm_mode_set_name(mode);
1991
1992 return mode;
1993 }
1994
1995 static bool
1996 mode_in_hsync_range(const struct drm_display_mode *mode,
1997 struct edid *edid, u8 *t)
1998 {
1999 int hsync, hmin, hmax;
2000
2001 hmin = t[7];
2002 if (edid->revision >= 4)
2003 hmin += ((t[4] & 0x04) ? 255 : 0);
2004 hmax = t[8];
2005 if (edid->revision >= 4)
2006 hmax += ((t[4] & 0x08) ? 255 : 0);
2007 hsync = drm_mode_hsync(mode);
2008
2009 return (hsync <= hmax && hsync >= hmin);
2010 }
2011
2012 static bool
2013 mode_in_vsync_range(const struct drm_display_mode *mode,
2014 struct edid *edid, u8 *t)
2015 {
2016 int vsync, vmin, vmax;
2017
2018 vmin = t[5];
2019 if (edid->revision >= 4)
2020 vmin += ((t[4] & 0x01) ? 255 : 0);
2021 vmax = t[6];
2022 if (edid->revision >= 4)
2023 vmax += ((t[4] & 0x02) ? 255 : 0);
2024 vsync = drm_mode_vrefresh(mode);
2025
2026 return (vsync <= vmax && vsync >= vmin);
2027 }
2028
2029 static u32
2030 range_pixel_clock(struct edid *edid, u8 *t)
2031 {
2032 /* unspecified */
2033 if (t[9] == 0 || t[9] == 255)
2034 return 0;
2035
2036 /* 1.4 with CVT support gives us real precision, yay */
2037 if (edid->revision >= 4 && t[10] == 0x04)
2038 return (t[9] * 10000) - ((t[12] >> 2) * 250);
2039
2040 /* 1.3 is pathetic, so fuzz up a bit */
2041 return t[9] * 10000 + 5001;
2042 }
2043
2044 static bool
2045 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2046 struct detailed_timing *timing)
2047 {
2048 u32 max_clock;
2049 u8 *t = (u8 *)timing;
2050
2051 if (!mode_in_hsync_range(mode, edid, t))
2052 return false;
2053
2054 if (!mode_in_vsync_range(mode, edid, t))
2055 return false;
2056
2057 if ((max_clock = range_pixel_clock(edid, t)))
2058 if (mode->clock > max_clock)
2059 return false;
2060
2061 /* 1.4 max horizontal check */
2062 if (edid->revision >= 4 && t[10] == 0x04)
2063 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2064 return false;
2065
2066 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2067 return false;
2068
2069 return true;
2070 }
2071
2072 static bool valid_inferred_mode(const struct drm_connector *connector,
2073 const struct drm_display_mode *mode)
2074 {
2075 const struct drm_display_mode *m;
2076 bool ok = false;
2077
2078 list_for_each_entry(m, &connector->probed_modes, head) {
2079 if (mode->hdisplay == m->hdisplay &&
2080 mode->vdisplay == m->vdisplay &&
2081 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2082 return false; /* duplicated */
2083 if (mode->hdisplay <= m->hdisplay &&
2084 mode->vdisplay <= m->vdisplay)
2085 ok = true;
2086 }
2087 return ok;
2088 }
2089
2090 static int
2091 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2092 struct detailed_timing *timing)
2093 {
2094 int i, modes = 0;
2095 struct drm_display_mode *newmode;
2096 struct drm_device *dev = connector->dev;
2097
2098 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2099 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2100 valid_inferred_mode(connector, drm_dmt_modes + i)) {
2101 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2102 if (newmode) {
2103 drm_mode_probed_add(connector, newmode);
2104 modes++;
2105 }
2106 }
2107 }
2108
2109 return modes;
2110 }
2111
2112 /* fix up 1366x768 mode from 1368x768;
2113 * GFT/CVT can't express 1366 width which isn't dividable by 8
2114 */
2115 static void fixup_mode_1366x768(struct drm_display_mode *mode)
2116 {
2117 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2118 mode->hdisplay = 1366;
2119 mode->hsync_start--;
2120 mode->hsync_end--;
2121 drm_mode_set_name(mode);
2122 }
2123 }
2124
2125 static int
2126 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2127 struct detailed_timing *timing)
2128 {
2129 int i, modes = 0;
2130 struct drm_display_mode *newmode;
2131 struct drm_device *dev = connector->dev;
2132
2133 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2134 const struct minimode *m = &extra_modes[i];
2135 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2136 if (!newmode)
2137 return modes;
2138
2139 fixup_mode_1366x768(newmode);
2140 if (!mode_in_range(newmode, edid, timing) ||
2141 !valid_inferred_mode(connector, newmode)) {
2142 drm_mode_destroy(dev, newmode);
2143 continue;
2144 }
2145
2146 drm_mode_probed_add(connector, newmode);
2147 modes++;
2148 }
2149
2150 return modes;
2151 }
2152
2153 static int
2154 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2155 struct detailed_timing *timing)
2156 {
2157 int i, modes = 0;
2158 struct drm_display_mode *newmode;
2159 struct drm_device *dev = connector->dev;
2160 bool rb = drm_monitor_supports_rb(edid);
2161
2162 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2163 const struct minimode *m = &extra_modes[i];
2164 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2165 if (!newmode)
2166 return modes;
2167
2168 fixup_mode_1366x768(newmode);
2169 if (!mode_in_range(newmode, edid, timing) ||
2170 !valid_inferred_mode(connector, newmode)) {
2171 drm_mode_destroy(dev, newmode);
2172 continue;
2173 }
2174
2175 drm_mode_probed_add(connector, newmode);
2176 modes++;
2177 }
2178
2179 return modes;
2180 }
2181
2182 static void
2183 do_inferred_modes(struct detailed_timing *timing, void *c)
2184 {
2185 struct detailed_mode_closure *closure = c;
2186 struct detailed_non_pixel *data = &timing->data.other_data;
2187 struct detailed_data_monitor_range *range = &data->data.range;
2188
2189 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2190 return;
2191
2192 closure->modes += drm_dmt_modes_for_range(closure->connector,
2193 closure->edid,
2194 timing);
2195
2196 if (!version_greater(closure->edid, 1, 1))
2197 return; /* GTF not defined yet */
2198
2199 switch (range->flags) {
2200 case 0x02: /* secondary gtf, XXX could do more */
2201 case 0x00: /* default gtf */
2202 closure->modes += drm_gtf_modes_for_range(closure->connector,
2203 closure->edid,
2204 timing);
2205 break;
2206 case 0x04: /* cvt, only in 1.4+ */
2207 if (!version_greater(closure->edid, 1, 3))
2208 break;
2209
2210 closure->modes += drm_cvt_modes_for_range(closure->connector,
2211 closure->edid,
2212 timing);
2213 break;
2214 case 0x01: /* just the ranges, no formula */
2215 default:
2216 break;
2217 }
2218 }
2219
2220 static int
2221 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2222 {
2223 struct detailed_mode_closure closure = {
2224 .connector = connector,
2225 .edid = edid,
2226 };
2227
2228 if (version_greater(edid, 1, 0))
2229 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2230 &closure);
2231
2232 return closure.modes;
2233 }
2234
2235 static int
2236 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2237 {
2238 int i, j, m, modes = 0;
2239 struct drm_display_mode *mode;
2240 u8 *est = ((u8 *)timing) + 5;
2241
2242 for (i = 0; i < 6; i++) {
2243 for (j = 7; j >= 0; j--) {
2244 m = (i * 8) + (7 - j);
2245 if (m >= ARRAY_SIZE(est3_modes))
2246 break;
2247 if (est[i] & (1 << j)) {
2248 mode = drm_mode_find_dmt(connector->dev,
2249 est3_modes[m].w,
2250 est3_modes[m].h,
2251 est3_modes[m].r,
2252 est3_modes[m].rb);
2253 if (mode) {
2254 drm_mode_probed_add(connector, mode);
2255 modes++;
2256 }
2257 }
2258 }
2259 }
2260
2261 return modes;
2262 }
2263
2264 static void
2265 do_established_modes(struct detailed_timing *timing, void *c)
2266 {
2267 struct detailed_mode_closure *closure = c;
2268 struct detailed_non_pixel *data = &timing->data.other_data;
2269
2270 if (data->type == EDID_DETAIL_EST_TIMINGS)
2271 closure->modes += drm_est3_modes(closure->connector, timing);
2272 }
2273
2274 /**
2275 * add_established_modes - get est. modes from EDID and add them
2276 * @connector: connector to add mode(s) to
2277 * @edid: EDID block to scan
2278 *
2279 * Each EDID block contains a bitmap of the supported "established modes" list
2280 * (defined above). Tease them out and add them to the global modes list.
2281 */
2282 static int
2283 add_established_modes(struct drm_connector *connector, struct edid *edid)
2284 {
2285 struct drm_device *dev = connector->dev;
2286 unsigned long est_bits = edid->established_timings.t1 |
2287 (edid->established_timings.t2 << 8) |
2288 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2289 int i, modes = 0;
2290 struct detailed_mode_closure closure = {
2291 .connector = connector,
2292 .edid = edid,
2293 };
2294
2295 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2296 if (est_bits & (1<<i)) {
2297 struct drm_display_mode *newmode;
2298 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2299 if (newmode) {
2300 drm_mode_probed_add(connector, newmode);
2301 modes++;
2302 }
2303 }
2304 }
2305
2306 if (version_greater(edid, 1, 0))
2307 drm_for_each_detailed_block((u8 *)edid,
2308 do_established_modes, &closure);
2309
2310 return modes + closure.modes;
2311 }
2312
2313 static void
2314 do_standard_modes(struct detailed_timing *timing, void *c)
2315 {
2316 struct detailed_mode_closure *closure = c;
2317 struct detailed_non_pixel *data = &timing->data.other_data;
2318 struct drm_connector *connector = closure->connector;
2319 struct edid *edid = closure->edid;
2320
2321 if (data->type == EDID_DETAIL_STD_MODES) {
2322 int i;
2323 for (i = 0; i < 6; i++) {
2324 struct std_timing *std;
2325 struct drm_display_mode *newmode;
2326
2327 std = &data->data.timings[i];
2328 newmode = drm_mode_std(connector, edid, std);
2329 if (newmode) {
2330 drm_mode_probed_add(connector, newmode);
2331 closure->modes++;
2332 }
2333 }
2334 }
2335 }
2336
2337 /**
2338 * add_standard_modes - get std. modes from EDID and add them
2339 * @connector: connector to add mode(s) to
2340 * @edid: EDID block to scan
2341 *
2342 * Standard modes can be calculated using the appropriate standard (DMT,
2343 * GTF or CVT. Grab them from @edid and add them to the list.
2344 */
2345 static int
2346 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2347 {
2348 int i, modes = 0;
2349 struct detailed_mode_closure closure = {
2350 .connector = connector,
2351 .edid = edid,
2352 };
2353
2354 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2355 struct drm_display_mode *newmode;
2356
2357 newmode = drm_mode_std(connector, edid,
2358 &edid->standard_timings[i]);
2359 if (newmode) {
2360 drm_mode_probed_add(connector, newmode);
2361 modes++;
2362 }
2363 }
2364
2365 if (version_greater(edid, 1, 0))
2366 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2367 &closure);
2368
2369 /* XXX should also look for standard codes in VTB blocks */
2370
2371 return modes + closure.modes;
2372 }
2373
2374 static int drm_cvt_modes(struct drm_connector *connector,
2375 struct detailed_timing *timing)
2376 {
2377 int i, j, modes = 0;
2378 struct drm_display_mode *newmode;
2379 struct drm_device *dev = connector->dev;
2380 struct cvt_timing *cvt;
2381 const int rates[] = { 60, 85, 75, 60, 50 };
2382 const u8 empty[3] = { 0, 0, 0 };
2383
2384 for (i = 0; i < 4; i++) {
2385 int uninitialized_var(width), height;
2386 cvt = &(timing->data.other_data.data.cvt[i]);
2387
2388 if (!memcmp(cvt->code, empty, 3))
2389 continue;
2390
2391 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2392 switch (cvt->code[1] & 0x0c) {
2393 case 0x00:
2394 width = height * 4 / 3;
2395 break;
2396 case 0x04:
2397 width = height * 16 / 9;
2398 break;
2399 case 0x08:
2400 width = height * 16 / 10;
2401 break;
2402 case 0x0c:
2403 width = height * 15 / 9;
2404 break;
2405 }
2406
2407 for (j = 1; j < 5; j++) {
2408 if (cvt->code[2] & (1 << j)) {
2409 newmode = drm_cvt_mode(dev, width, height,
2410 rates[j], j == 0,
2411 false, false);
2412 if (newmode) {
2413 drm_mode_probed_add(connector, newmode);
2414 modes++;
2415 }
2416 }
2417 }
2418 }
2419
2420 return modes;
2421 }
2422
2423 static void
2424 do_cvt_mode(struct detailed_timing *timing, void *c)
2425 {
2426 struct detailed_mode_closure *closure = c;
2427 struct detailed_non_pixel *data = &timing->data.other_data;
2428
2429 if (data->type == EDID_DETAIL_CVT_3BYTE)
2430 closure->modes += drm_cvt_modes(closure->connector, timing);
2431 }
2432
2433 static int
2434 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2435 {
2436 struct detailed_mode_closure closure = {
2437 .connector = connector,
2438 .edid = edid,
2439 };
2440
2441 if (version_greater(edid, 1, 2))
2442 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2443
2444 /* XXX should also look for CVT codes in VTB blocks */
2445
2446 return closure.modes;
2447 }
2448
2449 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2450
2451 static void
2452 do_detailed_mode(struct detailed_timing *timing, void *c)
2453 {
2454 struct detailed_mode_closure *closure = c;
2455 struct drm_display_mode *newmode;
2456
2457 if (timing->pixel_clock) {
2458 newmode = drm_mode_detailed(closure->connector->dev,
2459 closure->edid, timing,
2460 closure->quirks);
2461 if (!newmode)
2462 return;
2463
2464 if (closure->preferred)
2465 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2466
2467 /*
2468 * Detailed modes are limited to 10kHz pixel clock resolution,
2469 * so fix up anything that looks like CEA/HDMI mode, but the clock
2470 * is just slightly off.
2471 */
2472 fixup_detailed_cea_mode_clock(newmode);
2473
2474 drm_mode_probed_add(closure->connector, newmode);
2475 closure->modes++;
2476 closure->preferred = 0;
2477 }
2478 }
2479
2480 /*
2481 * add_detailed_modes - Add modes from detailed timings
2482 * @connector: attached connector
2483 * @edid: EDID block to scan
2484 * @quirks: quirks to apply
2485 */
2486 static int
2487 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2488 u32 quirks)
2489 {
2490 struct detailed_mode_closure closure = {
2491 .connector = connector,
2492 .edid = edid,
2493 .preferred = 1,
2494 .quirks = quirks,
2495 };
2496
2497 if (closure.preferred && !version_greater(edid, 1, 3))
2498 closure.preferred =
2499 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2500
2501 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2502
2503 return closure.modes;
2504 }
2505
2506 #define AUDIO_BLOCK 0x01
2507 #define VIDEO_BLOCK 0x02
2508 #define VENDOR_BLOCK 0x03
2509 #define SPEAKER_BLOCK 0x04
2510 #define VIDEO_CAPABILITY_BLOCK 0x07
2511 #define EDID_BASIC_AUDIO (1 << 6)
2512 #define EDID_CEA_YCRCB444 (1 << 5)
2513 #define EDID_CEA_YCRCB422 (1 << 4)
2514 #define EDID_CEA_VCDB_QS (1 << 6)
2515
2516 /*
2517 * Search EDID for CEA extension block.
2518 */
2519 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
2520 {
2521 u8 *edid_ext = NULL;
2522 int i;
2523
2524 /* No EDID or EDID extensions */
2525 if (edid == NULL || edid->extensions == 0)
2526 return NULL;
2527
2528 /* Find CEA extension */
2529 for (i = 0; i < edid->extensions; i++) {
2530 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2531 if (edid_ext[0] == ext_id)
2532 break;
2533 }
2534
2535 if (i == edid->extensions)
2536 return NULL;
2537
2538 return edid_ext;
2539 }
2540
2541 static u8 *drm_find_cea_extension(struct edid *edid)
2542 {
2543 return drm_find_edid_extension(edid, CEA_EXT);
2544 }
2545
2546 static u8 *drm_find_displayid_extension(struct edid *edid)
2547 {
2548 return drm_find_edid_extension(edid, DISPLAYID_EXT);
2549 }
2550
2551 /*
2552 * Calculate the alternate clock for the CEA mode
2553 * (60Hz vs. 59.94Hz etc.)
2554 */
2555 static unsigned int
2556 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2557 {
2558 unsigned int clock = cea_mode->clock;
2559
2560 if (cea_mode->vrefresh % 6 != 0)
2561 return clock;
2562
2563 /*
2564 * edid_cea_modes contains the 59.94Hz
2565 * variant for 240 and 480 line modes,
2566 * and the 60Hz variant otherwise.
2567 */
2568 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2569 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2570 else
2571 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2572
2573 return clock;
2574 }
2575
2576 /**
2577 * drm_match_cea_mode - look for a CEA mode matching given mode
2578 * @to_match: display mode
2579 *
2580 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2581 * mode.
2582 */
2583 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2584 {
2585 u8 mode;
2586
2587 if (!to_match->clock)
2588 return 0;
2589
2590 for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2591 const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2592 unsigned int clock1, clock2;
2593
2594 /* Check both 60Hz and 59.94Hz */
2595 clock1 = cea_mode->clock;
2596 clock2 = cea_mode_alternate_clock(cea_mode);
2597
2598 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2599 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2600 drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2601 return mode + 1;
2602 }
2603 return 0;
2604 }
2605 EXPORT_SYMBOL(drm_match_cea_mode);
2606
2607 /**
2608 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2609 * the input VIC from the CEA mode list
2610 * @video_code: ID given to each of the CEA modes
2611 *
2612 * Returns picture aspect ratio
2613 */
2614 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
2615 {
2616 /* return picture aspect ratio for video_code - 1 to access the
2617 * right array element
2618 */
2619 return edid_cea_modes[video_code-1].picture_aspect_ratio;
2620 }
2621 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2622
2623 /*
2624 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2625 * specific block).
2626 *
2627 * It's almost like cea_mode_alternate_clock(), we just need to add an
2628 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2629 * one.
2630 */
2631 static unsigned int
2632 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2633 {
2634 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2635 return hdmi_mode->clock;
2636
2637 return cea_mode_alternate_clock(hdmi_mode);
2638 }
2639
2640 /*
2641 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2642 * @to_match: display mode
2643 *
2644 * An HDMI mode is one defined in the HDMI vendor specific block.
2645 *
2646 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2647 */
2648 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2649 {
2650 u8 mode;
2651
2652 if (!to_match->clock)
2653 return 0;
2654
2655 for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2656 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2657 unsigned int clock1, clock2;
2658
2659 /* Make sure to also match alternate clocks */
2660 clock1 = hdmi_mode->clock;
2661 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2662
2663 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2664 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2665 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2666 return mode + 1;
2667 }
2668 return 0;
2669 }
2670
2671 static int
2672 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2673 {
2674 struct drm_device *dev = connector->dev;
2675 struct drm_display_mode *mode, *tmp;
2676 struct list_head list = LIST_HEAD_INIT(list);
2677 int modes = 0;
2678
2679 /* Don't add CEA modes if the CEA extension block is missing */
2680 if (!drm_find_cea_extension(edid))
2681 return 0;
2682
2683 /*
2684 * Go through all probed modes and create a new mode
2685 * with the alternate clock for certain CEA modes.
2686 */
2687 list_for_each_entry(mode, &connector->probed_modes, head) {
2688 const struct drm_display_mode *cea_mode = NULL;
2689 struct drm_display_mode *newmode;
2690 u8 mode_idx = drm_match_cea_mode(mode) - 1;
2691 unsigned int clock1, clock2;
2692
2693 if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2694 cea_mode = &edid_cea_modes[mode_idx];
2695 clock2 = cea_mode_alternate_clock(cea_mode);
2696 } else {
2697 mode_idx = drm_match_hdmi_mode(mode) - 1;
2698 if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2699 cea_mode = &edid_4k_modes[mode_idx];
2700 clock2 = hdmi_mode_alternate_clock(cea_mode);
2701 }
2702 }
2703
2704 if (!cea_mode)
2705 continue;
2706
2707 clock1 = cea_mode->clock;
2708
2709 if (clock1 == clock2)
2710 continue;
2711
2712 if (mode->clock != clock1 && mode->clock != clock2)
2713 continue;
2714
2715 newmode = drm_mode_duplicate(dev, cea_mode);
2716 if (!newmode)
2717 continue;
2718
2719 /* Carry over the stereo flags */
2720 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2721
2722 /*
2723 * The current mode could be either variant. Make
2724 * sure to pick the "other" clock for the new mode.
2725 */
2726 if (mode->clock != clock1)
2727 newmode->clock = clock1;
2728 else
2729 newmode->clock = clock2;
2730
2731 list_add_tail(&newmode->head, &list);
2732 }
2733
2734 list_for_each_entry_safe(mode, tmp, &list, head) {
2735 list_del(&mode->head);
2736 drm_mode_probed_add(connector, mode);
2737 modes++;
2738 }
2739
2740 return modes;
2741 }
2742
2743 static struct drm_display_mode *
2744 drm_display_mode_from_vic_index(struct drm_connector *connector,
2745 const u8 *video_db, u8 video_len,
2746 u8 video_index)
2747 {
2748 struct drm_device *dev = connector->dev;
2749 struct drm_display_mode *newmode;
2750 u8 cea_mode;
2751
2752 if (video_db == NULL || video_index >= video_len)
2753 return NULL;
2754
2755 /* CEA modes are numbered 1..127 */
2756 cea_mode = (video_db[video_index] & 127) - 1;
2757 if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
2758 return NULL;
2759
2760 newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2761 if (!newmode)
2762 return NULL;
2763
2764 newmode->vrefresh = 0;
2765
2766 return newmode;
2767 }
2768
2769 static int
2770 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2771 {
2772 int i, modes = 0;
2773
2774 for (i = 0; i < len; i++) {
2775 struct drm_display_mode *mode;
2776 mode = drm_display_mode_from_vic_index(connector, db, len, i);
2777 if (mode) {
2778 drm_mode_probed_add(connector, mode);
2779 modes++;
2780 }
2781 }
2782
2783 return modes;
2784 }
2785
2786 struct stereo_mandatory_mode {
2787 int width, height, vrefresh;
2788 unsigned int flags;
2789 };
2790
2791 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2792 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2793 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2794 { 1920, 1080, 50,
2795 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2796 { 1920, 1080, 60,
2797 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2798 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2799 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2800 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2801 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2802 };
2803
2804 static bool
2805 stereo_match_mandatory(const struct drm_display_mode *mode,
2806 const struct stereo_mandatory_mode *stereo_mode)
2807 {
2808 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2809
2810 return mode->hdisplay == stereo_mode->width &&
2811 mode->vdisplay == stereo_mode->height &&
2812 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2813 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2814 }
2815
2816 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2817 {
2818 struct drm_device *dev = connector->dev;
2819 const struct drm_display_mode *mode;
2820 struct list_head stereo_modes;
2821 int modes = 0, i;
2822
2823 INIT_LIST_HEAD(&stereo_modes);
2824
2825 list_for_each_entry(mode, &connector->probed_modes, head) {
2826 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2827 const struct stereo_mandatory_mode *mandatory;
2828 struct drm_display_mode *new_mode;
2829
2830 if (!stereo_match_mandatory(mode,
2831 &stereo_mandatory_modes[i]))
2832 continue;
2833
2834 mandatory = &stereo_mandatory_modes[i];
2835 new_mode = drm_mode_duplicate(dev, mode);
2836 if (!new_mode)
2837 continue;
2838
2839 new_mode->flags |= mandatory->flags;
2840 list_add_tail(&new_mode->head, &stereo_modes);
2841 modes++;
2842 }
2843 }
2844
2845 list_splice_tail(&stereo_modes, &connector->probed_modes);
2846
2847 return modes;
2848 }
2849
2850 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2851 {
2852 struct drm_device *dev = connector->dev;
2853 struct drm_display_mode *newmode;
2854
2855 vic--; /* VICs start at 1 */
2856 if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2857 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2858 return 0;
2859 }
2860
2861 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2862 if (!newmode)
2863 return 0;
2864
2865 drm_mode_probed_add(connector, newmode);
2866
2867 return 1;
2868 }
2869
2870 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2871 const u8 *video_db, u8 video_len, u8 video_index)
2872 {
2873 struct drm_display_mode *newmode;
2874 int modes = 0;
2875
2876 if (structure & (1 << 0)) {
2877 newmode = drm_display_mode_from_vic_index(connector, video_db,
2878 video_len,
2879 video_index);
2880 if (newmode) {
2881 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2882 drm_mode_probed_add(connector, newmode);
2883 modes++;
2884 }
2885 }
2886 if (structure & (1 << 6)) {
2887 newmode = drm_display_mode_from_vic_index(connector, video_db,
2888 video_len,
2889 video_index);
2890 if (newmode) {
2891 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2892 drm_mode_probed_add(connector, newmode);
2893 modes++;
2894 }
2895 }
2896 if (structure & (1 << 8)) {
2897 newmode = drm_display_mode_from_vic_index(connector, video_db,
2898 video_len,
2899 video_index);
2900 if (newmode) {
2901 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2902 drm_mode_probed_add(connector, newmode);
2903 modes++;
2904 }
2905 }
2906
2907 return modes;
2908 }
2909
2910 /*
2911 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2912 * @connector: connector corresponding to the HDMI sink
2913 * @db: start of the CEA vendor specific block
2914 * @len: length of the CEA block payload, ie. one can access up to db[len]
2915 *
2916 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2917 * also adds the stereo 3d modes when applicable.
2918 */
2919 static int
2920 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2921 const u8 *video_db, u8 video_len)
2922 {
2923 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2924 u8 vic_len, hdmi_3d_len = 0;
2925 u16 mask;
2926 u16 structure_all;
2927
2928 if (len < 8)
2929 goto out;
2930
2931 /* no HDMI_Video_Present */
2932 if (!(db[8] & (1 << 5)))
2933 goto out;
2934
2935 /* Latency_Fields_Present */
2936 if (db[8] & (1 << 7))
2937 offset += 2;
2938
2939 /* I_Latency_Fields_Present */
2940 if (db[8] & (1 << 6))
2941 offset += 2;
2942
2943 /* the declared length is not long enough for the 2 first bytes
2944 * of additional video format capabilities */
2945 if (len < (8 + offset + 2))
2946 goto out;
2947
2948 /* 3D_Present */
2949 offset++;
2950 if (db[8 + offset] & (1 << 7)) {
2951 modes += add_hdmi_mandatory_stereo_modes(connector);
2952
2953 /* 3D_Multi_present */
2954 multi_present = (db[8 + offset] & 0x60) >> 5;
2955 }
2956
2957 offset++;
2958 vic_len = db[8 + offset] >> 5;
2959 hdmi_3d_len = db[8 + offset] & 0x1f;
2960
2961 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2962 u8 vic;
2963
2964 vic = db[9 + offset + i];
2965 modes += add_hdmi_mode(connector, vic);
2966 }
2967 offset += 1 + vic_len;
2968
2969 if (multi_present == 1)
2970 multi_len = 2;
2971 else if (multi_present == 2)
2972 multi_len = 4;
2973 else
2974 multi_len = 0;
2975
2976 if (len < (8 + offset + hdmi_3d_len - 1))
2977 goto out;
2978
2979 if (hdmi_3d_len < multi_len)
2980 goto out;
2981
2982 if (multi_present == 1 || multi_present == 2) {
2983 /* 3D_Structure_ALL */
2984 structure_all = (db[8 + offset] << 8) | db[9 + offset];
2985
2986 /* check if 3D_MASK is present */
2987 if (multi_present == 2)
2988 mask = (db[10 + offset] << 8) | db[11 + offset];
2989 else
2990 mask = 0xffff;
2991
2992 for (i = 0; i < 16; i++) {
2993 if (mask & (1 << i))
2994 modes += add_3d_struct_modes(connector,
2995 structure_all,
2996 video_db,
2997 video_len, i);
2998 }
2999 }
3000
3001 offset += multi_len;
3002
3003 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
3004 int vic_index;
3005 struct drm_display_mode *newmode = NULL;
3006 unsigned int newflag = 0;
3007 bool detail_present;
3008
3009 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3010
3011 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3012 break;
3013
3014 /* 2D_VIC_order_X */
3015 vic_index = db[8 + offset + i] >> 4;
3016
3017 /* 3D_Structure_X */
3018 switch (db[8 + offset + i] & 0x0f) {
3019 case 0:
3020 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3021 break;
3022 case 6:
3023 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3024 break;
3025 case 8:
3026 /* 3D_Detail_X */
3027 if ((db[9 + offset + i] >> 4) == 1)
3028 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3029 break;
3030 }
3031
3032 if (newflag != 0) {
3033 newmode = drm_display_mode_from_vic_index(connector,
3034 video_db,
3035 video_len,
3036 vic_index);
3037
3038 if (newmode) {
3039 newmode->flags |= newflag;
3040 drm_mode_probed_add(connector, newmode);
3041 modes++;
3042 }
3043 }
3044
3045 if (detail_present)
3046 i++;
3047 }
3048
3049 out:
3050 return modes;
3051 }
3052
3053 static int
3054 cea_db_payload_len(const u8 *db)
3055 {
3056 return db[0] & 0x1f;
3057 }
3058
3059 static int
3060 cea_db_tag(const u8 *db)
3061 {
3062 return db[0] >> 5;
3063 }
3064
3065 static int
3066 cea_revision(const u8 *cea)
3067 {
3068 return cea[1];
3069 }
3070
3071 static int
3072 cea_db_offsets(const u8 *cea, int *start, int *end)
3073 {
3074 /* Data block offset in CEA extension block */
3075 *start = 4;
3076 *end = cea[2];
3077 if (*end == 0)
3078 *end = 127;
3079 if (*end < 4 || *end > 127)
3080 return -ERANGE;
3081 return 0;
3082 }
3083
3084 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3085 {
3086 int hdmi_id;
3087
3088 if (cea_db_tag(db) != VENDOR_BLOCK)
3089 return false;
3090
3091 if (cea_db_payload_len(db) < 5)
3092 return false;
3093
3094 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3095
3096 return hdmi_id == HDMI_IEEE_OUI;
3097 }
3098
3099 #define for_each_cea_db(cea, i, start, end) \
3100 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3101
3102 static int
3103 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3104 {
3105 const u8 *cea = drm_find_cea_extension(edid);
3106 const u8 *db, *hdmi = NULL, *video = NULL;
3107 u8 dbl, hdmi_len, video_len = 0;
3108 int modes = 0;
3109
3110 if (cea && cea_revision(cea) >= 3) {
3111 int i, start, end;
3112
3113 if (cea_db_offsets(cea, &start, &end))
3114 return 0;
3115
3116 for_each_cea_db(cea, i, start, end) {
3117 db = &cea[i];
3118 dbl = cea_db_payload_len(db);
3119
3120 if (cea_db_tag(db) == VIDEO_BLOCK) {
3121 video = db + 1;
3122 video_len = dbl;
3123 modes += do_cea_modes(connector, video, dbl);
3124 }
3125 else if (cea_db_is_hdmi_vsdb(db)) {
3126 hdmi = db;
3127 hdmi_len = dbl;
3128 }
3129 }
3130 }
3131
3132 /*
3133 * We parse the HDMI VSDB after having added the cea modes as we will
3134 * be patching their flags when the sink supports stereo 3D.
3135 */
3136 if (hdmi)
3137 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3138 video_len);
3139
3140 return modes;
3141 }
3142
3143 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3144 {
3145 const struct drm_display_mode *cea_mode;
3146 int clock1, clock2, clock;
3147 u8 mode_idx;
3148 const char *type;
3149
3150 mode_idx = drm_match_cea_mode(mode) - 1;
3151 if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
3152 type = "CEA";
3153 cea_mode = &edid_cea_modes[mode_idx];
3154 clock1 = cea_mode->clock;
3155 clock2 = cea_mode_alternate_clock(cea_mode);
3156 } else {
3157 mode_idx = drm_match_hdmi_mode(mode) - 1;
3158 if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
3159 type = "HDMI";
3160 cea_mode = &edid_4k_modes[mode_idx];
3161 clock1 = cea_mode->clock;
3162 clock2 = hdmi_mode_alternate_clock(cea_mode);
3163 } else {
3164 return;
3165 }
3166 }
3167
3168 /* pick whichever is closest */
3169 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3170 clock = clock1;
3171 else
3172 clock = clock2;
3173
3174 if (mode->clock == clock)
3175 return;
3176
3177 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3178 type, mode_idx + 1, mode->clock, clock);
3179 mode->clock = clock;
3180 }
3181
3182 static void
3183 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
3184 {
3185 u8 len = cea_db_payload_len(db);
3186
3187 if (len >= 5) {
3188 connector->physical_address = (db[4] << 8) | db[5];
3189 }
3190 if (len >= 6) {
3191 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */
3192 connector->dvi_dual = db[6] & 1;
3193 }
3194 if (len >= 7)
3195 connector->max_tmds_clock = db[7] * 5;
3196 if (len >= 8) {
3197 connector->latency_present[0] = db[8] >> 7;
3198 connector->latency_present[1] = (db[8] >> 6) & 1;
3199 }
3200 if (len >= 9)
3201 connector->video_latency[0] = db[9];
3202 if (len >= 10)
3203 connector->audio_latency[0] = db[10];
3204 if (len >= 11)
3205 connector->video_latency[1] = db[11];
3206 if (len >= 12)
3207 connector->audio_latency[1] = db[12];
3208
3209 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3210 "max TMDS clock %d, "
3211 "latency present %d %d, "
3212 "video latency %d %d, "
3213 "audio latency %d %d\n",
3214 connector->dvi_dual,
3215 connector->max_tmds_clock,
3216 (int) connector->latency_present[0],
3217 (int) connector->latency_present[1],
3218 connector->video_latency[0],
3219 connector->video_latency[1],
3220 connector->audio_latency[0],
3221 connector->audio_latency[1]);
3222 }
3223
3224 static void
3225 monitor_name(struct detailed_timing *t, void *data)
3226 {
3227 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3228 *(u8 **)data = t->data.other_data.data.str.str;
3229 }
3230
3231 /**
3232 * drm_edid_to_eld - build ELD from EDID
3233 * @connector: connector corresponding to the HDMI/DP sink
3234 * @edid: EDID to parse
3235 *
3236 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3237 * HDCP and Port_ID ELD fields are left for the graphics driver to fill in.
3238 */
3239 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3240 {
3241 uint8_t *eld = connector->eld;
3242 u8 *cea;
3243 u8 *name;
3244 u8 *db;
3245 int sad_count = 0;
3246 int mnl;
3247 int dbl;
3248
3249 memset(eld, 0, sizeof(connector->eld));
3250
3251 cea = drm_find_cea_extension(edid);
3252 if (!cea) {
3253 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3254 return;
3255 }
3256
3257 name = NULL;
3258 drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3259 for (mnl = 0; name && mnl < 13; mnl++) {
3260 if (name[mnl] == 0x0a)
3261 break;
3262 eld[20 + mnl] = name[mnl];
3263 }
3264 eld[4] = (cea[1] << 5) | mnl;
3265 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3266
3267 eld[0] = 2 << 3; /* ELD version: 2 */
3268
3269 eld[16] = edid->mfg_id[0];
3270 eld[17] = edid->mfg_id[1];
3271 eld[18] = edid->prod_code[0];
3272 eld[19] = edid->prod_code[1];
3273
3274 if (cea_revision(cea) >= 3) {
3275 int i, start, end;
3276
3277 if (cea_db_offsets(cea, &start, &end)) {
3278 start = 0;
3279 end = 0;
3280 }
3281
3282 for_each_cea_db(cea, i, start, end) {
3283 db = &cea[i];
3284 dbl = cea_db_payload_len(db);
3285
3286 switch (cea_db_tag(db)) {
3287 case AUDIO_BLOCK:
3288 /* Audio Data Block, contains SADs */
3289 sad_count = dbl / 3;
3290 if (dbl >= 1)
3291 memcpy(eld + 20 + mnl, &db[1], dbl);
3292 break;
3293 case SPEAKER_BLOCK:
3294 /* Speaker Allocation Data Block */
3295 if (dbl >= 1)
3296 eld[7] = db[1];
3297 break;
3298 case VENDOR_BLOCK:
3299 /* HDMI Vendor-Specific Data Block */
3300 if (cea_db_is_hdmi_vsdb(db))
3301 parse_hdmi_vsdb(connector, db);
3302 break;
3303 default:
3304 break;
3305 }
3306 }
3307 }
3308 eld[5] |= sad_count << 4;
3309
3310 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
3311 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3312 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP;
3313 else
3314 eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI;
3315
3316 eld[DRM_ELD_BASELINE_ELD_LEN] =
3317 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3318
3319 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3320 drm_eld_size(eld), sad_count);
3321 }
3322 EXPORT_SYMBOL(drm_edid_to_eld);
3323
3324 /**
3325 * drm_edid_to_sad - extracts SADs from EDID
3326 * @edid: EDID to parse
3327 * @sads: pointer that will be set to the extracted SADs
3328 *
3329 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3330 *
3331 * Note: The returned pointer needs to be freed using kfree().
3332 *
3333 * Return: The number of found SADs or negative number on error.
3334 */
3335 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3336 {
3337 int count = 0;
3338 int i, start, end, dbl;
3339 u8 *cea;
3340
3341 cea = drm_find_cea_extension(edid);
3342 if (!cea) {
3343 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3344 return -ENOENT;
3345 }
3346
3347 if (cea_revision(cea) < 3) {
3348 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3349 return -ENOTSUPP;
3350 }
3351
3352 if (cea_db_offsets(cea, &start, &end)) {
3353 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3354 return -EPROTO;
3355 }
3356
3357 for_each_cea_db(cea, i, start, end) {
3358 u8 *db = &cea[i];
3359
3360 if (cea_db_tag(db) == AUDIO_BLOCK) {
3361 int j;
3362 dbl = cea_db_payload_len(db);
3363
3364 count = dbl / 3; /* SAD is 3B */
3365 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3366 if (!*sads)
3367 return -ENOMEM;
3368 for (j = 0; j < count; j++) {
3369 u8 *sad = &db[1 + j * 3];
3370
3371 (*sads)[j].format = (sad[0] & 0x78) >> 3;
3372 (*sads)[j].channels = sad[0] & 0x7;
3373 (*sads)[j].freq = sad[1] & 0x7F;
3374 (*sads)[j].byte2 = sad[2];
3375 }
3376 break;
3377 }
3378 }
3379
3380 return count;
3381 }
3382 EXPORT_SYMBOL(drm_edid_to_sad);
3383
3384 /**
3385 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3386 * @edid: EDID to parse
3387 * @sadb: pointer to the speaker block
3388 *
3389 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3390 *
3391 * Note: The returned pointer needs to be freed using kfree().
3392 *
3393 * Return: The number of found Speaker Allocation Blocks or negative number on
3394 * error.
3395 */
3396 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3397 {
3398 int count = 0;
3399 int i, start, end, dbl;
3400 const u8 *cea;
3401
3402 cea = drm_find_cea_extension(edid);
3403 if (!cea) {
3404 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3405 return -ENOENT;
3406 }
3407
3408 if (cea_revision(cea) < 3) {
3409 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3410 return -ENOTSUPP;
3411 }
3412
3413 if (cea_db_offsets(cea, &start, &end)) {
3414 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3415 return -EPROTO;
3416 }
3417
3418 for_each_cea_db(cea, i, start, end) {
3419 const u8 *db = &cea[i];
3420
3421 if (cea_db_tag(db) == SPEAKER_BLOCK) {
3422 dbl = cea_db_payload_len(db);
3423
3424 /* Speaker Allocation Data Block */
3425 if (dbl == 3) {
3426 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
3427 if (!*sadb)
3428 return -ENOMEM;
3429 count = dbl;
3430 break;
3431 }
3432 }
3433 }
3434
3435 return count;
3436 }
3437 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3438
3439 /**
3440 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
3441 * @connector: connector associated with the HDMI/DP sink
3442 * @mode: the display mode
3443 *
3444 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
3445 * the sink doesn't support audio or video.
3446 */
3447 int drm_av_sync_delay(struct drm_connector *connector,
3448 const struct drm_display_mode *mode)
3449 {
3450 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3451 int a, v;
3452
3453 if (!connector->latency_present[0])
3454 return 0;
3455 if (!connector->latency_present[1])
3456 i = 0;
3457
3458 a = connector->audio_latency[i];
3459 v = connector->video_latency[i];
3460
3461 /*
3462 * HDMI/DP sink doesn't support audio or video?
3463 */
3464 if (a == 255 || v == 255)
3465 return 0;
3466
3467 /*
3468 * Convert raw EDID values to millisecond.
3469 * Treat unknown latency as 0ms.
3470 */
3471 if (a)
3472 a = min(2 * (a - 1), 500);
3473 if (v)
3474 v = min(2 * (v - 1), 500);
3475
3476 return max(v - a, 0);
3477 }
3478 EXPORT_SYMBOL(drm_av_sync_delay);
3479
3480 /**
3481 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3482 * @encoder: the encoder just changed display mode
3483 *
3484 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3485 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3486 *
3487 * Return: The connector associated with the first HDMI/DP sink that has ELD
3488 * attached to it.
3489 */
3490 struct drm_connector *drm_select_eld(struct drm_encoder *encoder)
3491 {
3492 struct drm_connector *connector;
3493 struct drm_device *dev = encoder->dev;
3494
3495 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
3496 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3497
3498 drm_for_each_connector(connector, dev)
3499 if (connector->encoder == encoder && connector->eld[0])
3500 return connector;
3501
3502 return NULL;
3503 }
3504 EXPORT_SYMBOL(drm_select_eld);
3505
3506 /**
3507 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3508 * @edid: monitor EDID information
3509 *
3510 * Parse the CEA extension according to CEA-861-B.
3511 *
3512 * Return: True if the monitor is HDMI, false if not or unknown.
3513 */
3514 bool drm_detect_hdmi_monitor(struct edid *edid)
3515 {
3516 u8 *edid_ext;
3517 int i;
3518 int start_offset, end_offset;
3519
3520 edid_ext = drm_find_cea_extension(edid);
3521 if (!edid_ext)
3522 return false;
3523
3524 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3525 return false;
3526
3527 /*
3528 * Because HDMI identifier is in Vendor Specific Block,
3529 * search it from all data blocks of CEA extension.
3530 */
3531 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3532 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3533 return true;
3534 }
3535
3536 return false;
3537 }
3538 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3539
3540 /**
3541 * drm_detect_monitor_audio - check monitor audio capability
3542 * @edid: EDID block to scan
3543 *
3544 * Monitor should have CEA extension block.
3545 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3546 * audio' only. If there is any audio extension block and supported
3547 * audio format, assume at least 'basic audio' support, even if 'basic
3548 * audio' is not defined in EDID.
3549 *
3550 * Return: True if the monitor supports audio, false otherwise.
3551 */
3552 bool drm_detect_monitor_audio(struct edid *edid)
3553 {
3554 u8 *edid_ext;
3555 int i, j;
3556 bool has_audio = false;
3557 int start_offset, end_offset;
3558
3559 edid_ext = drm_find_cea_extension(edid);
3560 if (!edid_ext)
3561 goto end;
3562
3563 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3564
3565 if (has_audio) {
3566 DRM_DEBUG_KMS("Monitor has basic audio support\n");
3567 goto end;
3568 }
3569
3570 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3571 goto end;
3572
3573 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3574 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3575 has_audio = true;
3576 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3577 DRM_DEBUG_KMS("CEA audio format %d\n",
3578 (edid_ext[i + j] >> 3) & 0xf);
3579 goto end;
3580 }
3581 }
3582 end:
3583 return has_audio;
3584 }
3585 EXPORT_SYMBOL(drm_detect_monitor_audio);
3586
3587 /**
3588 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3589 * @edid: EDID block to scan
3590 *
3591 * Check whether the monitor reports the RGB quantization range selection
3592 * as supported. The AVI infoframe can then be used to inform the monitor
3593 * which quantization range (full or limited) is used.
3594 *
3595 * Return: True if the RGB quantization range is selectable, false otherwise.
3596 */
3597 bool drm_rgb_quant_range_selectable(struct edid *edid)
3598 {
3599 u8 *edid_ext;
3600 int i, start, end;
3601
3602 edid_ext = drm_find_cea_extension(edid);
3603 if (!edid_ext)
3604 return false;
3605
3606 if (cea_db_offsets(edid_ext, &start, &end))
3607 return false;
3608
3609 for_each_cea_db(edid_ext, i, start, end) {
3610 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3611 cea_db_payload_len(&edid_ext[i]) == 2) {
3612 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3613 return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3614 }
3615 }
3616
3617 return false;
3618 }
3619 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3620
3621 /**
3622 * drm_assign_hdmi_deep_color_info - detect whether monitor supports
3623 * hdmi deep color modes and update drm_display_info if so.
3624 * @edid: monitor EDID information
3625 * @info: Updated with maximum supported deep color bpc and color format
3626 * if deep color supported.
3627 * @connector: DRM connector, used only for debug output
3628 *
3629 * Parse the CEA extension according to CEA-861-B.
3630 * Return true if HDMI deep color supported, false if not or unknown.
3631 */
3632 static bool drm_assign_hdmi_deep_color_info(struct edid *edid,
3633 struct drm_display_info *info,
3634 struct drm_connector *connector)
3635 {
3636 u8 *edid_ext, *hdmi;
3637 int i;
3638 int start_offset, end_offset;
3639 unsigned int dc_bpc = 0;
3640
3641 edid_ext = drm_find_cea_extension(edid);
3642 if (!edid_ext)
3643 return false;
3644
3645 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3646 return false;
3647
3648 /*
3649 * Because HDMI identifier is in Vendor Specific Block,
3650 * search it from all data blocks of CEA extension.
3651 */
3652 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3653 if (cea_db_is_hdmi_vsdb(&edid_ext[i])) {
3654 /* HDMI supports at least 8 bpc */
3655 info->bpc = 8;
3656
3657 hdmi = &edid_ext[i];
3658 if (cea_db_payload_len(hdmi) < 6)
3659 return false;
3660
3661 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3662 dc_bpc = 10;
3663 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3664 DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
3665 connector->name);
3666 }
3667
3668 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3669 dc_bpc = 12;
3670 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3671 DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
3672 connector->name);
3673 }
3674
3675 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3676 dc_bpc = 16;
3677 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3678 DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
3679 connector->name);
3680 }
3681
3682 if (dc_bpc > 0) {
3683 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
3684 connector->name, dc_bpc);
3685 info->bpc = dc_bpc;
3686
3687 /*
3688 * Deep color support mandates RGB444 support for all video
3689 * modes and forbids YCRCB422 support for all video modes per
3690 * HDMI 1.3 spec.
3691 */
3692 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3693
3694 /* YCRCB444 is optional according to spec. */
3695 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3696 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3697 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
3698 connector->name);
3699 }
3700
3701 /*
3702 * Spec says that if any deep color mode is supported at all,
3703 * then deep color 36 bit must be supported.
3704 */
3705 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
3706 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
3707 connector->name);
3708 }
3709
3710 return true;
3711 }
3712 else {
3713 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
3714 connector->name);
3715 }
3716 }
3717 }
3718
3719 return false;
3720 }
3721
3722 /**
3723 * drm_add_display_info - pull display info out if present
3724 * @edid: EDID data
3725 * @info: display info (attached to connector)
3726 * @connector: connector whose edid is used to build display info
3727 *
3728 * Grab any available display info and stuff it into the drm_display_info
3729 * structure that's part of the connector. Useful for tracking bpp and
3730 * color spaces.
3731 */
3732 static void drm_add_display_info(struct edid *edid,
3733 struct drm_display_info *info,
3734 struct drm_connector *connector)
3735 {
3736 u8 *edid_ext;
3737
3738 info->width_mm = edid->width_cm * 10;
3739 info->height_mm = edid->height_cm * 10;
3740
3741 /* driver figures it out in this case */
3742 info->bpc = 0;
3743 info->color_formats = 0;
3744
3745 if (edid->revision < 3)
3746 return;
3747
3748 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3749 return;
3750
3751 /* Get data from CEA blocks if present */
3752 edid_ext = drm_find_cea_extension(edid);
3753 if (edid_ext) {
3754 info->cea_rev = edid_ext[1];
3755
3756 /* The existence of a CEA block should imply RGB support */
3757 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3758 if (edid_ext[3] & EDID_CEA_YCRCB444)
3759 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3760 if (edid_ext[3] & EDID_CEA_YCRCB422)
3761 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3762 }
3763
3764 /* HDMI deep color modes supported? Assign to info, if so */
3765 drm_assign_hdmi_deep_color_info(edid, info, connector);
3766
3767 /* Only defined for 1.4 with digital displays */
3768 if (edid->revision < 4)
3769 return;
3770
3771 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3772 case DRM_EDID_DIGITAL_DEPTH_6:
3773 info->bpc = 6;
3774 break;
3775 case DRM_EDID_DIGITAL_DEPTH_8:
3776 info->bpc = 8;
3777 break;
3778 case DRM_EDID_DIGITAL_DEPTH_10:
3779 info->bpc = 10;
3780 break;
3781 case DRM_EDID_DIGITAL_DEPTH_12:
3782 info->bpc = 12;
3783 break;
3784 case DRM_EDID_DIGITAL_DEPTH_14:
3785 info->bpc = 14;
3786 break;
3787 case DRM_EDID_DIGITAL_DEPTH_16:
3788 info->bpc = 16;
3789 break;
3790 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3791 default:
3792 info->bpc = 0;
3793 break;
3794 }
3795
3796 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3797 connector->name, info->bpc);
3798
3799 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3800 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3801 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3802 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3803 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3804 }
3805
3806 /**
3807 * drm_add_edid_modes - add modes from EDID data, if available
3808 * @connector: connector we're probing
3809 * @edid: EDID data
3810 *
3811 * Add the specified modes to the connector's mode list.
3812 *
3813 * Return: The number of modes added or 0 if we couldn't find any.
3814 */
3815 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3816 {
3817 int num_modes = 0;
3818 u32 quirks;
3819
3820 if (edid == NULL) {
3821 return 0;
3822 }
3823 if (!drm_edid_is_valid(edid)) {
3824 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3825 connector->name);
3826 return 0;
3827 }
3828
3829 quirks = edid_get_quirks(edid);
3830
3831 /*
3832 * EDID spec says modes should be preferred in this order:
3833 * - preferred detailed mode
3834 * - other detailed modes from base block
3835 * - detailed modes from extension blocks
3836 * - CVT 3-byte code modes
3837 * - standard timing codes
3838 * - established timing codes
3839 * - modes inferred from GTF or CVT range information
3840 *
3841 * We get this pretty much right.
3842 *
3843 * XXX order for additional mode types in extension blocks?
3844 */
3845 num_modes += add_detailed_modes(connector, edid, quirks);
3846 num_modes += add_cvt_modes(connector, edid);
3847 num_modes += add_standard_modes(connector, edid);
3848 num_modes += add_established_modes(connector, edid);
3849 num_modes += add_cea_modes(connector, edid);
3850 num_modes += add_alternate_cea_modes(connector, edid);
3851 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3852 num_modes += add_inferred_modes(connector, edid);
3853
3854 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3855 edid_fixup_preferred(connector, quirks);
3856
3857 drm_add_display_info(edid, &connector->display_info, connector);
3858
3859 if (quirks & EDID_QUIRK_FORCE_6BPC)
3860 connector->display_info.bpc = 6;
3861
3862 if (quirks & EDID_QUIRK_FORCE_8BPC)
3863 connector->display_info.bpc = 8;
3864
3865 if (quirks & EDID_QUIRK_FORCE_10BPC)
3866 connector->display_info.bpc = 10;
3867
3868 if (quirks & EDID_QUIRK_FORCE_12BPC)
3869 connector->display_info.bpc = 12;
3870
3871 return num_modes;
3872 }
3873 EXPORT_SYMBOL(drm_add_edid_modes);
3874
3875 /**
3876 * drm_add_modes_noedid - add modes for the connectors without EDID
3877 * @connector: connector we're probing
3878 * @hdisplay: the horizontal display limit
3879 * @vdisplay: the vertical display limit
3880 *
3881 * Add the specified modes to the connector's mode list. Only when the
3882 * hdisplay/vdisplay is not beyond the given limit, it will be added.
3883 *
3884 * Return: The number of modes added or 0 if we couldn't find any.
3885 */
3886 int drm_add_modes_noedid(struct drm_connector *connector,
3887 int hdisplay, int vdisplay)
3888 {
3889 int i, count, num_modes = 0;
3890 struct drm_display_mode *mode;
3891 struct drm_device *dev = connector->dev;
3892
3893 count = ARRAY_SIZE(drm_dmt_modes);
3894 if (hdisplay < 0)
3895 hdisplay = 0;
3896 if (vdisplay < 0)
3897 vdisplay = 0;
3898
3899 for (i = 0; i < count; i++) {
3900 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3901 if (hdisplay && vdisplay) {
3902 /*
3903 * Only when two are valid, they will be used to check
3904 * whether the mode should be added to the mode list of
3905 * the connector.
3906 */
3907 if (ptr->hdisplay > hdisplay ||
3908 ptr->vdisplay > vdisplay)
3909 continue;
3910 }
3911 if (drm_mode_vrefresh(ptr) > 61)
3912 continue;
3913 mode = drm_mode_duplicate(dev, ptr);
3914 if (mode) {
3915 drm_mode_probed_add(connector, mode);
3916 num_modes++;
3917 }
3918 }
3919 return num_modes;
3920 }
3921 EXPORT_SYMBOL(drm_add_modes_noedid);
3922
3923 /**
3924 * drm_set_preferred_mode - Sets the preferred mode of a connector
3925 * @connector: connector whose mode list should be processed
3926 * @hpref: horizontal resolution of preferred mode
3927 * @vpref: vertical resolution of preferred mode
3928 *
3929 * Marks a mode as preferred if it matches the resolution specified by @hpref
3930 * and @vpref.
3931 */
3932 void drm_set_preferred_mode(struct drm_connector *connector,
3933 int hpref, int vpref)
3934 {
3935 struct drm_display_mode *mode;
3936
3937 list_for_each_entry(mode, &connector->probed_modes, head) {
3938 if (mode->hdisplay == hpref &&
3939 mode->vdisplay == vpref)
3940 mode->type |= DRM_MODE_TYPE_PREFERRED;
3941 }
3942 }
3943 EXPORT_SYMBOL(drm_set_preferred_mode);
3944
3945 /**
3946 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3947 * data from a DRM display mode
3948 * @frame: HDMI AVI infoframe
3949 * @mode: DRM display mode
3950 *
3951 * Return: 0 on success or a negative error code on failure.
3952 */
3953 int
3954 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3955 const struct drm_display_mode *mode)
3956 {
3957 int err;
3958
3959 if (!frame || !mode)
3960 return -EINVAL;
3961
3962 err = hdmi_avi_infoframe_init(frame);
3963 if (err < 0)
3964 return err;
3965
3966 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3967 frame->pixel_repeat = 1;
3968
3969 frame->video_code = drm_match_cea_mode(mode);
3970
3971 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3972
3973 /*
3974 * Populate picture aspect ratio from either
3975 * user input (if specified) or from the CEA mode list.
3976 */
3977 if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
3978 mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
3979 frame->picture_aspect = mode->picture_aspect_ratio;
3980 else if (frame->video_code > 0)
3981 frame->picture_aspect = drm_get_cea_aspect_ratio(
3982 frame->video_code);
3983
3984 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3985 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
3986
3987 return 0;
3988 }
3989 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3990
3991 static enum hdmi_3d_structure
3992 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3993 {
3994 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3995
3996 switch (layout) {
3997 case DRM_MODE_FLAG_3D_FRAME_PACKING:
3998 return HDMI_3D_STRUCTURE_FRAME_PACKING;
3999 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
4000 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
4001 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
4002 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
4003 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
4004 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
4005 case DRM_MODE_FLAG_3D_L_DEPTH:
4006 return HDMI_3D_STRUCTURE_L_DEPTH;
4007 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
4008 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
4009 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
4010 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
4011 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
4012 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
4013 default:
4014 return HDMI_3D_STRUCTURE_INVALID;
4015 }
4016 }
4017
4018 /**
4019 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
4020 * data from a DRM display mode
4021 * @frame: HDMI vendor infoframe
4022 * @mode: DRM display mode
4023 *
4024 * Note that there's is a need to send HDMI vendor infoframes only when using a
4025 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
4026 * function will return -EINVAL, error that can be safely ignored.
4027 *
4028 * Return: 0 on success or a negative error code on failure.
4029 */
4030 int
4031 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
4032 const struct drm_display_mode *mode)
4033 {
4034 int err;
4035 u32 s3d_flags;
4036 u8 vic;
4037
4038 if (!frame || !mode)
4039 return -EINVAL;
4040
4041 vic = drm_match_hdmi_mode(mode);
4042 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
4043
4044 if (!vic && !s3d_flags)
4045 return -EINVAL;
4046
4047 if (vic && s3d_flags)
4048 return -EINVAL;
4049
4050 err = hdmi_vendor_infoframe_init(frame);
4051 if (err < 0)
4052 return err;
4053
4054 if (vic)
4055 frame->vic = vic;
4056 else
4057 frame->s3d_struct = s3d_structure_from_display_mode(mode);
4058
4059 return 0;
4060 }
4061 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
4062
4063 static int drm_parse_display_id(struct drm_connector *connector,
4064 u8 *displayid, int length,
4065 bool is_edid_extension)
4066 {
4067 /* if this is an EDID extension the first byte will be 0x70 */
4068 int idx = 0;
4069 struct displayid_hdr *base;
4070 struct displayid_block *block;
4071 u8 csum = 0;
4072 int i;
4073
4074 if (is_edid_extension)
4075 idx = 1;
4076
4077 base = (struct displayid_hdr *)&displayid[idx];
4078
4079 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4080 base->rev, base->bytes, base->prod_id, base->ext_count);
4081
4082 if (base->bytes + 5 > length - idx)
4083 return -EINVAL;
4084
4085 for (i = idx; i <= base->bytes + 5; i++) {
4086 csum += displayid[i];
4087 }
4088 if (csum) {
4089 DRM_ERROR("DisplayID checksum invalid, remainder is %d\n", csum);
4090 return -EINVAL;
4091 }
4092
4093 block = (struct displayid_block *)&displayid[idx + 4];
4094 DRM_DEBUG_KMS("block id %d, rev %d, len %d\n",
4095 block->tag, block->rev, block->num_bytes);
4096
4097 switch (block->tag) {
4098 case DATA_BLOCK_TILED_DISPLAY: {
4099 struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
4100
4101 u16 w, h;
4102 u8 tile_v_loc, tile_h_loc;
4103 u8 num_v_tile, num_h_tile;
4104 struct drm_tile_group *tg;
4105
4106 w = tile->tile_size[0] | tile->tile_size[1] << 8;
4107 h = tile->tile_size[2] | tile->tile_size[3] << 8;
4108
4109 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
4110 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
4111 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
4112 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
4113
4114 connector->has_tile = true;
4115 if (tile->tile_cap & 0x80)
4116 connector->tile_is_single_monitor = true;
4117
4118 connector->num_h_tile = num_h_tile + 1;
4119 connector->num_v_tile = num_v_tile + 1;
4120 connector->tile_h_loc = tile_h_loc;
4121 connector->tile_v_loc = tile_v_loc;
4122 connector->tile_h_size = w + 1;
4123 connector->tile_v_size = h + 1;
4124
4125 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
4126 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
4127 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
4128 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
4129 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
4130
4131 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
4132 if (!tg) {
4133 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
4134 }
4135 if (!tg)
4136 return -ENOMEM;
4137
4138 if (connector->tile_group != tg) {
4139 /* if we haven't got a pointer,
4140 take the reference, drop ref to old tile group */
4141 if (connector->tile_group) {
4142 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4143 }
4144 connector->tile_group = tg;
4145 } else
4146 /* if same tile group, then release the ref we just took. */
4147 drm_mode_put_tile_group(connector->dev, tg);
4148 }
4149 break;
4150 default:
4151 printk("unknown displayid tag %d\n", block->tag);
4152 break;
4153 }
4154 return 0;
4155 }
4156
4157 static void drm_get_displayid(struct drm_connector *connector,
4158 struct edid *edid)
4159 {
4160 void *displayid = NULL;
4161 int ret;
4162 connector->has_tile = false;
4163 displayid = drm_find_displayid_extension(edid);
4164 if (!displayid) {
4165 /* drop reference to any tile group we had */
4166 goto out_drop_ref;
4167 }
4168
4169 ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
4170 if (ret < 0)
4171 goto out_drop_ref;
4172 if (!connector->has_tile)
4173 goto out_drop_ref;
4174 return;
4175 out_drop_ref:
4176 if (connector->tile_group) {
4177 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4178 connector->tile_group = NULL;
4179 }
4180 return;
4181 }
4182