drm_mm.c revision 1.9 1 1.9 riastrad /* $NetBSD: drm_mm.c,v 1.9 2021/12/19 11:00:36 riastradh Exp $ */
2 1.4 riastrad
3 1.1 riastrad /**************************************************************************
4 1.1 riastrad *
5 1.1 riastrad * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
6 1.7 riastrad * Copyright 2016 Intel Corporation
7 1.1 riastrad * All Rights Reserved.
8 1.1 riastrad *
9 1.1 riastrad * Permission is hereby granted, free of charge, to any person obtaining a
10 1.1 riastrad * copy of this software and associated documentation files (the
11 1.1 riastrad * "Software"), to deal in the Software without restriction, including
12 1.1 riastrad * without limitation the rights to use, copy, modify, merge, publish,
13 1.1 riastrad * distribute, sub license, and/or sell copies of the Software, and to
14 1.1 riastrad * permit persons to whom the Software is furnished to do so, subject to
15 1.1 riastrad * the following conditions:
16 1.1 riastrad *
17 1.1 riastrad * The above copyright notice and this permission notice (including the
18 1.1 riastrad * next paragraph) shall be included in all copies or substantial portions
19 1.1 riastrad * of the Software.
20 1.1 riastrad *
21 1.1 riastrad * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22 1.1 riastrad * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 1.1 riastrad * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
24 1.1 riastrad * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
25 1.1 riastrad * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
26 1.1 riastrad * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
27 1.1 riastrad * USE OR OTHER DEALINGS IN THE SOFTWARE.
28 1.1 riastrad *
29 1.1 riastrad *
30 1.1 riastrad **************************************************************************/
31 1.1 riastrad
32 1.1 riastrad /*
33 1.1 riastrad * Generic simple memory manager implementation. Intended to be used as a base
34 1.1 riastrad * class implementation for more advanced memory managers.
35 1.1 riastrad *
36 1.1 riastrad * Note that the algorithm used is quite simple and there might be substantial
37 1.7 riastrad * performance gains if a smarter free list is implemented. Currently it is
38 1.7 riastrad * just an unordered stack of free regions. This could easily be improved if
39 1.7 riastrad * an RB-tree is used instead. At least if we expect heavy fragmentation.
40 1.1 riastrad *
41 1.1 riastrad * Aligned allocations can also see improvement.
42 1.1 riastrad *
43 1.1 riastrad * Authors:
44 1.1 riastrad * Thomas Hellstrm <thomas-at-tungstengraphics-dot-com>
45 1.1 riastrad */
46 1.1 riastrad
47 1.4 riastrad #include <sys/cdefs.h>
48 1.9 riastrad __KERNEL_RCSID(0, "$NetBSD: drm_mm.c,v 1.9 2021/12/19 11:00:36 riastradh Exp $");
49 1.7 riastrad
50 1.7 riastrad #include <linux/export.h>
51 1.7 riastrad #include <linux/interval_tree_generic.h>
52 1.7 riastrad #include <linux/seq_file.h>
53 1.7 riastrad #include <linux/slab.h>
54 1.7 riastrad #include <linux/stacktrace.h>
55 1.4 riastrad
56 1.1 riastrad #include <drm/drm_mm.h>
57 1.1 riastrad
58 1.3 riastrad /**
59 1.3 riastrad * DOC: Overview
60 1.3 riastrad *
61 1.3 riastrad * drm_mm provides a simple range allocator. The drivers are free to use the
62 1.3 riastrad * resource allocator from the linux core if it suits them, the upside of drm_mm
63 1.3 riastrad * is that it's in the DRM core. Which means that it's easier to extend for
64 1.3 riastrad * some of the crazier special purpose needs of gpus.
65 1.3 riastrad *
66 1.3 riastrad * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
67 1.3 riastrad * Drivers are free to embed either of them into their own suitable
68 1.7 riastrad * datastructures. drm_mm itself will not do any memory allocations of its own,
69 1.7 riastrad * so if drivers choose not to embed nodes they need to still allocate them
70 1.3 riastrad * themselves.
71 1.3 riastrad *
72 1.3 riastrad * The range allocator also supports reservation of preallocated blocks. This is
73 1.3 riastrad * useful for taking over initial mode setting configurations from the firmware,
74 1.3 riastrad * where an object needs to be created which exactly matches the firmware's
75 1.3 riastrad * scanout target. As long as the range is still free it can be inserted anytime
76 1.3 riastrad * after the allocator is initialized, which helps with avoiding looped
77 1.7 riastrad * dependencies in the driver load sequence.
78 1.3 riastrad *
79 1.3 riastrad * drm_mm maintains a stack of most recently freed holes, which of all
80 1.3 riastrad * simplistic datastructures seems to be a fairly decent approach to clustering
81 1.3 riastrad * allocations and avoiding too much fragmentation. This means free space
82 1.3 riastrad * searches are O(num_holes). Given that all the fancy features drm_mm supports
83 1.3 riastrad * something better would be fairly complex and since gfx thrashing is a fairly
84 1.3 riastrad * steep cliff not a real concern. Removing a node again is O(1).
85 1.3 riastrad *
86 1.3 riastrad * drm_mm supports a few features: Alignment and range restrictions can be
87 1.7 riastrad * supplied. Furthermore every &drm_mm_node has a color value (which is just an
88 1.7 riastrad * opaque unsigned long) which in conjunction with a driver callback can be used
89 1.3 riastrad * to implement sophisticated placement restrictions. The i915 DRM driver uses
90 1.3 riastrad * this to implement guard pages between incompatible caching domains in the
91 1.3 riastrad * graphics TT.
92 1.3 riastrad *
93 1.7 riastrad * Two behaviors are supported for searching and allocating: bottom-up and
94 1.7 riastrad * top-down. The default is bottom-up. Top-down allocation can be used if the
95 1.7 riastrad * memory area has different restrictions, or just to reduce fragmentation.
96 1.1 riastrad *
97 1.3 riastrad * Finally iteration helpers to walk all nodes and all holes are provided as are
98 1.3 riastrad * some basic allocator dumpers for debugging.
99 1.7 riastrad *
100 1.7 riastrad * Note that this range allocator is not thread-safe, drivers need to protect
101 1.7 riastrad * modifications with their own locking. The idea behind this is that for a full
102 1.7 riastrad * memory manager additional data needs to be protected anyway, hence internal
103 1.7 riastrad * locking would be fully redundant.
104 1.1 riastrad */
105 1.1 riastrad
106 1.7 riastrad #ifdef CONFIG_DRM_DEBUG_MM
107 1.7 riastrad #include <linux/stackdepot.h>
108 1.7 riastrad
109 1.7 riastrad #define STACKDEPTH 32
110 1.7 riastrad #define BUFSZ 4096
111 1.7 riastrad
112 1.7 riastrad static noinline void save_stack(struct drm_mm_node *node)
113 1.7 riastrad {
114 1.7 riastrad unsigned long entries[STACKDEPTH];
115 1.7 riastrad unsigned int n;
116 1.7 riastrad
117 1.7 riastrad n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
118 1.7 riastrad
119 1.7 riastrad /* May be called under spinlock, so avoid sleeping */
120 1.7 riastrad node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
121 1.7 riastrad }
122 1.7 riastrad
123 1.7 riastrad static void show_leaks(struct drm_mm *mm)
124 1.7 riastrad {
125 1.7 riastrad struct drm_mm_node *node;
126 1.7 riastrad unsigned long *entries;
127 1.7 riastrad unsigned int nr_entries;
128 1.7 riastrad char *buf;
129 1.7 riastrad
130 1.7 riastrad buf = kmalloc(BUFSZ, GFP_KERNEL);
131 1.7 riastrad if (!buf)
132 1.7 riastrad return;
133 1.7 riastrad
134 1.7 riastrad list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
135 1.7 riastrad if (!node->stack) {
136 1.7 riastrad DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
137 1.7 riastrad node->start, node->size);
138 1.7 riastrad continue;
139 1.7 riastrad }
140 1.7 riastrad
141 1.7 riastrad nr_entries = stack_depot_fetch(node->stack, &entries);
142 1.7 riastrad stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
143 1.7 riastrad DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
144 1.7 riastrad node->start, node->size, buf);
145 1.7 riastrad }
146 1.7 riastrad
147 1.7 riastrad kfree(buf);
148 1.7 riastrad }
149 1.7 riastrad
150 1.7 riastrad #undef STACKDEPTH
151 1.7 riastrad #undef BUFSZ
152 1.7 riastrad #else
153 1.7 riastrad static void save_stack(struct drm_mm_node *node) { }
154 1.7 riastrad static void show_leaks(struct drm_mm *mm) { }
155 1.7 riastrad #endif
156 1.7 riastrad
157 1.7 riastrad #define START(node) ((node)->start)
158 1.7 riastrad #define LAST(node) ((node)->start + (node)->size - 1)
159 1.7 riastrad
160 1.7 riastrad INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
161 1.7 riastrad u64, __subtree_last,
162 1.7 riastrad START, LAST, static inline, drm_mm_interval_tree)
163 1.7 riastrad
164 1.7 riastrad struct drm_mm_node *
165 1.9 riastrad __drm_mm_interval_first(const struct drm_mm *mm_const, u64 start, u64 last)
166 1.7 riastrad {
167 1.9 riastrad struct drm_mm *mm = __UNCONST(mm_const);
168 1.7 riastrad return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
169 1.7 riastrad start, last) ?: (struct drm_mm_node *)&mm->head_node;
170 1.7 riastrad }
171 1.7 riastrad EXPORT_SYMBOL(__drm_mm_interval_first);
172 1.7 riastrad
173 1.7 riastrad static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
174 1.7 riastrad struct drm_mm_node *node)
175 1.1 riastrad {
176 1.1 riastrad struct drm_mm *mm = hole_node->mm;
177 1.7 riastrad struct rb_node **link, *rb;
178 1.7 riastrad struct drm_mm_node *parent;
179 1.7 riastrad bool leftmost;
180 1.7 riastrad
181 1.7 riastrad node->__subtree_last = LAST(node);
182 1.7 riastrad
183 1.7 riastrad if (drm_mm_node_allocated(hole_node)) {
184 1.7 riastrad rb = &hole_node->rb;
185 1.7 riastrad while (rb) {
186 1.7 riastrad parent = rb_entry(rb, struct drm_mm_node, rb);
187 1.7 riastrad if (parent->__subtree_last >= node->__subtree_last)
188 1.7 riastrad break;
189 1.7 riastrad
190 1.7 riastrad parent->__subtree_last = node->__subtree_last;
191 1.7 riastrad rb = rb_parent(rb);
192 1.7 riastrad }
193 1.7 riastrad
194 1.7 riastrad rb = &hole_node->rb;
195 1.7 riastrad link = &hole_node->rb.rb_right;
196 1.7 riastrad leftmost = false;
197 1.7 riastrad } else {
198 1.7 riastrad rb = NULL;
199 1.7 riastrad link = &mm->interval_tree.rb_root.rb_node;
200 1.7 riastrad leftmost = true;
201 1.7 riastrad }
202 1.7 riastrad
203 1.7 riastrad while (*link) {
204 1.7 riastrad rb = *link;
205 1.7 riastrad parent = rb_entry(rb, struct drm_mm_node, rb);
206 1.7 riastrad if (parent->__subtree_last < node->__subtree_last)
207 1.7 riastrad parent->__subtree_last = node->__subtree_last;
208 1.7 riastrad if (node->start < parent->start) {
209 1.7 riastrad link = &parent->rb.rb_left;
210 1.7 riastrad } else {
211 1.7 riastrad link = &parent->rb.rb_right;
212 1.7 riastrad leftmost = false;
213 1.7 riastrad }
214 1.7 riastrad }
215 1.7 riastrad
216 1.7 riastrad rb_link_node(&node->rb, rb, link);
217 1.7 riastrad rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
218 1.7 riastrad &drm_mm_interval_tree_augment);
219 1.7 riastrad }
220 1.7 riastrad
221 1.9 riastrad #ifdef __NetBSD__
222 1.9 riastrad
223 1.9 riastrad static int
224 1.9 riastrad compare_hole_addrs(void *cookie, const void *va, const void *vb)
225 1.9 riastrad {
226 1.9 riastrad const struct drm_mm_node *a = va, *b = vb;
227 1.9 riastrad const u64 aa = __drm_mm_hole_node_start(a);
228 1.9 riastrad const u64 ba = __drm_mm_hole_node_start(b);
229 1.9 riastrad
230 1.9 riastrad if (aa < ba)
231 1.9 riastrad return -1;
232 1.9 riastrad if (aa > ba)
233 1.9 riastrad return +1;
234 1.9 riastrad return 0;
235 1.9 riastrad }
236 1.9 riastrad
237 1.9 riastrad static int
238 1.9 riastrad compare_hole_addr_key(void *cookie, const void *vn, const void *vk)
239 1.9 riastrad {
240 1.9 riastrad const struct drm_mm_node *n = vn;
241 1.9 riastrad const u64 a = __drm_mm_hole_node_start(n);
242 1.9 riastrad const u64 *k = vk;
243 1.9 riastrad
244 1.9 riastrad if (a < *k)
245 1.9 riastrad return -1;
246 1.9 riastrad if (a > *k)
247 1.9 riastrad return +1;
248 1.9 riastrad return 0;
249 1.9 riastrad }
250 1.9 riastrad
251 1.9 riastrad static const rb_tree_ops_t holes_addr_rb_ops = {
252 1.9 riastrad .rbto_compare_nodes = compare_hole_addrs,
253 1.9 riastrad .rbto_compare_key = compare_hole_addr_key,
254 1.9 riastrad .rbto_node_offset = offsetof(struct drm_mm_node, rb_hole_addr),
255 1.9 riastrad };
256 1.9 riastrad
257 1.9 riastrad #else
258 1.9 riastrad
259 1.7 riastrad #define RB_INSERT(root, member, expr) do { \
260 1.7 riastrad struct rb_node **link = &root.rb_node, *rb = NULL; \
261 1.7 riastrad u64 x = expr(node); \
262 1.7 riastrad while (*link) { \
263 1.7 riastrad rb = *link; \
264 1.7 riastrad if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
265 1.7 riastrad link = &rb->rb_left; \
266 1.7 riastrad else \
267 1.7 riastrad link = &rb->rb_right; \
268 1.7 riastrad } \
269 1.7 riastrad rb_link_node(&node->member, rb, link); \
270 1.7 riastrad rb_insert_color(&node->member, &root); \
271 1.7 riastrad } while (0)
272 1.9 riastrad
273 1.8 riastrad #endif
274 1.7 riastrad
275 1.7 riastrad #define HOLE_SIZE(NODE) ((NODE)->hole_size)
276 1.7 riastrad #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
277 1.7 riastrad
278 1.7 riastrad static u64 rb_to_hole_size(struct rb_node *rb)
279 1.7 riastrad {
280 1.7 riastrad return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
281 1.7 riastrad }
282 1.7 riastrad
283 1.9 riastrad static int
284 1.9 riastrad compare_hole_sizes(void *cookie, const void *va, const void *vb)
285 1.9 riastrad {
286 1.9 riastrad const struct drm_mm_node *a = va, *b = vb;
287 1.9 riastrad
288 1.9 riastrad if (a->hole_size < b->hole_size)
289 1.9 riastrad return -1;
290 1.9 riastrad if (a->hole_size > b->hole_size)
291 1.9 riastrad return +1;
292 1.9 riastrad return 0;
293 1.9 riastrad }
294 1.9 riastrad
295 1.9 riastrad static int
296 1.9 riastrad compare_hole_size_key(void *cookie, const void *vn, const void *vk)
297 1.9 riastrad {
298 1.9 riastrad const struct drm_mm_node *n = vn;
299 1.9 riastrad const u64 *k = vk;
300 1.9 riastrad
301 1.9 riastrad if (n->hole_size < *k)
302 1.9 riastrad return -1;
303 1.9 riastrad if (n->hole_size > *k)
304 1.9 riastrad return +1;
305 1.9 riastrad return 0;
306 1.9 riastrad }
307 1.9 riastrad
308 1.9 riastrad static const rb_tree_ops_t holes_size_rb_ops = {
309 1.9 riastrad .rbto_compare_nodes = compare_hole_sizes,
310 1.9 riastrad .rbto_compare_key = compare_hole_size_key,
311 1.9 riastrad .rbto_node_offset = offsetof(struct drm_mm_node, rb_hole_size),
312 1.9 riastrad };
313 1.9 riastrad
314 1.7 riastrad static void insert_hole_size(struct rb_root_cached *root,
315 1.7 riastrad struct drm_mm_node *node)
316 1.7 riastrad {
317 1.9 riastrad #ifdef __NetBSD__
318 1.9 riastrad struct drm_mm_node *collision __diagused;
319 1.9 riastrad collision = rb_tree_insert_node(&root->rb_root.rbr_tree, node);
320 1.9 riastrad KASSERT(collision == node);
321 1.9 riastrad #else
322 1.7 riastrad struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
323 1.7 riastrad u64 x = node->hole_size;
324 1.7 riastrad bool first = true;
325 1.7 riastrad
326 1.7 riastrad while (*link) {
327 1.7 riastrad rb = *link;
328 1.7 riastrad if (x > rb_to_hole_size(rb)) {
329 1.7 riastrad link = &rb->rb_left;
330 1.7 riastrad } else {
331 1.7 riastrad link = &rb->rb_right;
332 1.7 riastrad first = false;
333 1.7 riastrad }
334 1.7 riastrad }
335 1.7 riastrad
336 1.7 riastrad rb_link_node(&node->rb_hole_size, rb, link);
337 1.7 riastrad rb_insert_color_cached(&node->rb_hole_size, root, first);
338 1.9 riastrad #endif
339 1.7 riastrad }
340 1.7 riastrad
341 1.7 riastrad static void add_hole(struct drm_mm_node *node)
342 1.7 riastrad {
343 1.7 riastrad struct drm_mm *mm = node->mm;
344 1.7 riastrad
345 1.7 riastrad node->hole_size =
346 1.7 riastrad __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
347 1.7 riastrad DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
348 1.1 riastrad
349 1.7 riastrad insert_hole_size(&mm->holes_size, node);
350 1.8 riastrad #ifdef __NetBSD__
351 1.9 riastrad struct drm_mm_node *collision __diagused;
352 1.9 riastrad collision = rb_tree_insert_node(&mm->holes_addr, node);
353 1.9 riastrad KASSERT(collision == node);
354 1.8 riastrad #else
355 1.7 riastrad RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
356 1.8 riastrad #endif
357 1.1 riastrad
358 1.7 riastrad list_add(&node->hole_stack, &mm->hole_stack);
359 1.7 riastrad }
360 1.7 riastrad
361 1.7 riastrad static void rm_hole(struct drm_mm_node *node)
362 1.7 riastrad {
363 1.7 riastrad DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
364 1.7 riastrad
365 1.7 riastrad list_del(&node->hole_stack);
366 1.7 riastrad rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
367 1.7 riastrad rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
368 1.7 riastrad node->hole_size = 0;
369 1.7 riastrad
370 1.7 riastrad DRM_MM_BUG_ON(drm_mm_hole_follows(node));
371 1.7 riastrad }
372 1.7 riastrad
373 1.7 riastrad static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
374 1.7 riastrad {
375 1.7 riastrad return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
376 1.7 riastrad }
377 1.7 riastrad
378 1.7 riastrad static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
379 1.7 riastrad {
380 1.7 riastrad return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
381 1.7 riastrad }
382 1.1 riastrad
383 1.7 riastrad static inline u64 rb_hole_size(struct rb_node *rb)
384 1.7 riastrad {
385 1.7 riastrad return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
386 1.7 riastrad }
387 1.3 riastrad
388 1.7 riastrad static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
389 1.7 riastrad {
390 1.7 riastrad struct rb_node *rb = mm->holes_size.rb_root.rb_node;
391 1.7 riastrad struct drm_mm_node *best = NULL;
392 1.4 riastrad
393 1.7 riastrad do {
394 1.7 riastrad struct drm_mm_node *node =
395 1.7 riastrad rb_entry(rb, struct drm_mm_node, rb_hole_size);
396 1.7 riastrad
397 1.7 riastrad if (size <= node->hole_size) {
398 1.7 riastrad best = node;
399 1.7 riastrad rb = rb->rb_right;
400 1.7 riastrad } else {
401 1.7 riastrad rb = rb->rb_left;
402 1.3 riastrad }
403 1.7 riastrad } while (rb);
404 1.7 riastrad
405 1.7 riastrad return best;
406 1.7 riastrad }
407 1.7 riastrad
408 1.7 riastrad static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
409 1.7 riastrad {
410 1.7 riastrad struct rb_node *rb = mm->holes_addr.rb_node;
411 1.7 riastrad struct drm_mm_node *node = NULL;
412 1.7 riastrad
413 1.7 riastrad while (rb) {
414 1.7 riastrad u64 hole_start;
415 1.7 riastrad
416 1.7 riastrad node = rb_hole_addr_to_node(rb);
417 1.7 riastrad hole_start = __drm_mm_hole_node_start(node);
418 1.7 riastrad
419 1.7 riastrad if (addr < hole_start)
420 1.7 riastrad rb = node->rb_hole_addr.rb_left;
421 1.7 riastrad else if (addr > hole_start + node->hole_size)
422 1.7 riastrad rb = node->rb_hole_addr.rb_right;
423 1.7 riastrad else
424 1.7 riastrad break;
425 1.1 riastrad }
426 1.1 riastrad
427 1.7 riastrad return node;
428 1.7 riastrad }
429 1.7 riastrad
430 1.7 riastrad static struct drm_mm_node *
431 1.7 riastrad first_hole(struct drm_mm *mm,
432 1.7 riastrad u64 start, u64 end, u64 size,
433 1.7 riastrad enum drm_mm_insert_mode mode)
434 1.7 riastrad {
435 1.7 riastrad switch (mode) {
436 1.7 riastrad default:
437 1.7 riastrad case DRM_MM_INSERT_BEST:
438 1.7 riastrad return best_hole(mm, size);
439 1.7 riastrad
440 1.7 riastrad case DRM_MM_INSERT_LOW:
441 1.7 riastrad return find_hole(mm, start);
442 1.3 riastrad
443 1.7 riastrad case DRM_MM_INSERT_HIGH:
444 1.7 riastrad return find_hole(mm, end);
445 1.7 riastrad
446 1.7 riastrad case DRM_MM_INSERT_EVICT:
447 1.7 riastrad return list_first_entry_or_null(&mm->hole_stack,
448 1.7 riastrad struct drm_mm_node,
449 1.7 riastrad hole_stack);
450 1.1 riastrad }
451 1.7 riastrad }
452 1.1 riastrad
453 1.7 riastrad static struct drm_mm_node *
454 1.7 riastrad next_hole(struct drm_mm *mm,
455 1.7 riastrad struct drm_mm_node *node,
456 1.7 riastrad enum drm_mm_insert_mode mode)
457 1.7 riastrad {
458 1.7 riastrad switch (mode) {
459 1.7 riastrad default:
460 1.7 riastrad case DRM_MM_INSERT_BEST:
461 1.9 riastrad #ifdef __NetBSD__
462 1.9 riastrad return RB_TREE_NEXT(&mm->holes_size.rb_root.rbr_tree, node);
463 1.9 riastrad #else
464 1.7 riastrad return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
465 1.9 riastrad #endif
466 1.1 riastrad
467 1.7 riastrad case DRM_MM_INSERT_LOW:
468 1.9 riastrad #ifdef __NetBSD__
469 1.9 riastrad return RB_TREE_NEXT(&mm->holes_addr.rbr_tree, node);
470 1.9 riastrad #else
471 1.7 riastrad return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
472 1.9 riastrad #endif
473 1.1 riastrad
474 1.7 riastrad case DRM_MM_INSERT_HIGH:
475 1.9 riastrad #ifdef __NetBSD__
476 1.9 riastrad return RB_TREE_PREV(&mm->holes_addr.rbr_tree, node);
477 1.9 riastrad #else
478 1.7 riastrad return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
479 1.9 riastrad #endif
480 1.1 riastrad
481 1.7 riastrad case DRM_MM_INSERT_EVICT:
482 1.7 riastrad node = list_next_entry(node, hole_stack);
483 1.7 riastrad return &node->hole_stack == &mm->hole_stack ? NULL : node;
484 1.1 riastrad }
485 1.1 riastrad }
486 1.1 riastrad
487 1.3 riastrad /**
488 1.3 riastrad * drm_mm_reserve_node - insert an pre-initialized node
489 1.3 riastrad * @mm: drm_mm allocator to insert @node into
490 1.3 riastrad * @node: drm_mm_node to insert
491 1.3 riastrad *
492 1.7 riastrad * This functions inserts an already set-up &drm_mm_node into the allocator,
493 1.7 riastrad * meaning that start, size and color must be set by the caller. All other
494 1.7 riastrad * fields must be cleared to 0. This is useful to initialize the allocator with
495 1.7 riastrad * preallocated objects which must be set-up before the range allocator can be
496 1.7 riastrad * set-up, e.g. when taking over a firmware framebuffer.
497 1.3 riastrad *
498 1.3 riastrad * Returns:
499 1.3 riastrad * 0 on success, -ENOSPC if there's no hole where @node is.
500 1.3 riastrad */
501 1.3 riastrad int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
502 1.1 riastrad {
503 1.7 riastrad u64 end = node->start + node->size;
504 1.3 riastrad struct drm_mm_node *hole;
505 1.7 riastrad u64 hole_start, hole_end;
506 1.7 riastrad u64 adj_start, adj_end;
507 1.3 riastrad
508 1.7 riastrad end = node->start + node->size;
509 1.7 riastrad if (unlikely(end <= node->start))
510 1.7 riastrad return -ENOSPC;
511 1.3 riastrad
512 1.3 riastrad /* Find the relevant hole to add our node to */
513 1.7 riastrad hole = find_hole(mm, node->start);
514 1.7 riastrad if (!hole)
515 1.7 riastrad return -ENOSPC;
516 1.1 riastrad
517 1.7 riastrad adj_start = hole_start = __drm_mm_hole_node_start(hole);
518 1.7 riastrad adj_end = hole_end = hole_start + hole->hole_size;
519 1.1 riastrad
520 1.7 riastrad if (mm->color_adjust)
521 1.7 riastrad mm->color_adjust(hole, node->color, &adj_start, &adj_end);
522 1.1 riastrad
523 1.7 riastrad if (adj_start > node->start || adj_end < end)
524 1.7 riastrad return -ENOSPC;
525 1.3 riastrad
526 1.7 riastrad node->mm = mm;
527 1.3 riastrad
528 1.7 riastrad __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
529 1.7 riastrad list_add(&node->node_list, &hole->node_list);
530 1.7 riastrad drm_mm_interval_tree_add_node(hole, node);
531 1.7 riastrad node->hole_size = 0;
532 1.7 riastrad
533 1.7 riastrad rm_hole(hole);
534 1.7 riastrad if (node->start > hole_start)
535 1.7 riastrad add_hole(hole);
536 1.7 riastrad if (end < hole_end)
537 1.7 riastrad add_hole(node);
538 1.3 riastrad
539 1.7 riastrad save_stack(node);
540 1.7 riastrad return 0;
541 1.1 riastrad }
542 1.3 riastrad EXPORT_SYMBOL(drm_mm_reserve_node);
543 1.1 riastrad
544 1.7 riastrad static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
545 1.7 riastrad {
546 1.7 riastrad return rb ? rb_to_hole_size(rb) : 0;
547 1.7 riastrad }
548 1.7 riastrad
549 1.1 riastrad /**
550 1.7 riastrad * drm_mm_insert_node_in_range - ranged search for space and insert @node
551 1.3 riastrad * @mm: drm_mm to allocate from
552 1.3 riastrad * @node: preallocate node to insert
553 1.3 riastrad * @size: size of the allocation
554 1.3 riastrad * @alignment: alignment of the allocation
555 1.3 riastrad * @color: opaque tag value to use for this node
556 1.7 riastrad * @range_start: start of the allowed range for this node
557 1.7 riastrad * @range_end: end of the allowed range for this node
558 1.7 riastrad * @mode: fine-tune the allocation search and placement
559 1.3 riastrad *
560 1.7 riastrad * The preallocated @node must be cleared to 0.
561 1.3 riastrad *
562 1.3 riastrad * Returns:
563 1.3 riastrad * 0 on success, -ENOSPC if there's no suitable hole.
564 1.1 riastrad */
565 1.7 riastrad int drm_mm_insert_node_in_range(struct drm_mm * const mm,
566 1.7 riastrad struct drm_mm_node * const node,
567 1.7 riastrad u64 size, u64 alignment,
568 1.7 riastrad unsigned long color,
569 1.7 riastrad u64 range_start, u64 range_end,
570 1.7 riastrad enum drm_mm_insert_mode mode)
571 1.7 riastrad {
572 1.7 riastrad struct drm_mm_node *hole;
573 1.7 riastrad u64 remainder_mask;
574 1.7 riastrad bool once;
575 1.7 riastrad
576 1.7 riastrad DRM_MM_BUG_ON(range_start > range_end);
577 1.7 riastrad
578 1.7 riastrad if (unlikely(size == 0 || range_end - range_start < size))
579 1.7 riastrad return -ENOSPC;
580 1.7 riastrad
581 1.7 riastrad if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
582 1.1 riastrad return -ENOSPC;
583 1.1 riastrad
584 1.7 riastrad if (alignment <= 1)
585 1.7 riastrad alignment = 0;
586 1.1 riastrad
587 1.7 riastrad once = mode & DRM_MM_INSERT_ONCE;
588 1.7 riastrad mode &= ~DRM_MM_INSERT_ONCE;
589 1.1 riastrad
590 1.7 riastrad remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
591 1.7 riastrad for (hole = first_hole(mm, range_start, range_end, size, mode);
592 1.7 riastrad hole;
593 1.7 riastrad hole = once ? NULL : next_hole(mm, hole, mode)) {
594 1.7 riastrad u64 hole_start = __drm_mm_hole_node_start(hole);
595 1.7 riastrad u64 hole_end = hole_start + hole->hole_size;
596 1.7 riastrad u64 adj_start, adj_end;
597 1.7 riastrad u64 col_start, col_end;
598 1.7 riastrad
599 1.7 riastrad if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
600 1.7 riastrad break;
601 1.7 riastrad
602 1.7 riastrad if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
603 1.7 riastrad break;
604 1.7 riastrad
605 1.7 riastrad col_start = hole_start;
606 1.7 riastrad col_end = hole_end;
607 1.7 riastrad if (mm->color_adjust)
608 1.7 riastrad mm->color_adjust(hole, color, &col_start, &col_end);
609 1.1 riastrad
610 1.7 riastrad adj_start = max(col_start, range_start);
611 1.7 riastrad adj_end = min(col_end, range_end);
612 1.4 riastrad
613 1.7 riastrad if (adj_end <= adj_start || adj_end - adj_start < size)
614 1.7 riastrad continue;
615 1.1 riastrad
616 1.7 riastrad if (mode == DRM_MM_INSERT_HIGH)
617 1.7 riastrad adj_start = adj_end - size;
618 1.3 riastrad
619 1.7 riastrad if (alignment) {
620 1.7 riastrad u64 rem;
621 1.1 riastrad
622 1.7 riastrad if (likely(remainder_mask))
623 1.7 riastrad rem = adj_start & remainder_mask;
624 1.7 riastrad else
625 1.7 riastrad div64_u64_rem(adj_start, alignment, &rem);
626 1.7 riastrad if (rem) {
627 1.4 riastrad adj_start -= rem;
628 1.7 riastrad if (mode != DRM_MM_INSERT_HIGH)
629 1.7 riastrad adj_start += alignment;
630 1.7 riastrad
631 1.7 riastrad if (adj_start < max(col_start, range_start) ||
632 1.7 riastrad min(col_end, range_end) - adj_start < size)
633 1.7 riastrad continue;
634 1.7 riastrad
635 1.7 riastrad if (adj_end <= adj_start ||
636 1.7 riastrad adj_end - adj_start < size)
637 1.7 riastrad continue;
638 1.7 riastrad }
639 1.3 riastrad }
640 1.1 riastrad
641 1.7 riastrad node->mm = mm;
642 1.7 riastrad node->size = size;
643 1.7 riastrad node->start = adj_start;
644 1.7 riastrad node->color = color;
645 1.7 riastrad node->hole_size = 0;
646 1.1 riastrad
647 1.7 riastrad __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
648 1.7 riastrad list_add(&node->node_list, &hole->node_list);
649 1.7 riastrad drm_mm_interval_tree_add_node(hole, node);
650 1.1 riastrad
651 1.7 riastrad rm_hole(hole);
652 1.7 riastrad if (adj_start > hole_start)
653 1.7 riastrad add_hole(hole);
654 1.7 riastrad if (adj_start + size < hole_end)
655 1.7 riastrad add_hole(node);
656 1.1 riastrad
657 1.7 riastrad save_stack(node);
658 1.7 riastrad return 0;
659 1.7 riastrad }
660 1.1 riastrad
661 1.7 riastrad return -ENOSPC;
662 1.1 riastrad }
663 1.7 riastrad EXPORT_SYMBOL(drm_mm_insert_node_in_range);
664 1.1 riastrad
665 1.7 riastrad static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
666 1.7 riastrad {
667 1.7 riastrad return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
668 1.1 riastrad }
669 1.1 riastrad
670 1.1 riastrad /**
671 1.3 riastrad * drm_mm_remove_node - Remove a memory node from the allocator.
672 1.3 riastrad * @node: drm_mm_node to remove
673 1.3 riastrad *
674 1.3 riastrad * This just removes a node from its drm_mm allocator. The node does not need to
675 1.3 riastrad * be cleared again before it can be re-inserted into this or any other drm_mm
676 1.7 riastrad * allocator. It is a bug to call this function on a unallocated node.
677 1.1 riastrad */
678 1.1 riastrad void drm_mm_remove_node(struct drm_mm_node *node)
679 1.1 riastrad {
680 1.1 riastrad struct drm_mm *mm = node->mm;
681 1.1 riastrad struct drm_mm_node *prev_node;
682 1.1 riastrad
683 1.7 riastrad DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
684 1.7 riastrad DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
685 1.1 riastrad
686 1.7 riastrad prev_node = list_prev_entry(node, node_list);
687 1.1 riastrad
688 1.7 riastrad if (drm_mm_hole_follows(node))
689 1.7 riastrad rm_hole(node);
690 1.1 riastrad
691 1.7 riastrad drm_mm_interval_tree_remove(node, &mm->interval_tree);
692 1.1 riastrad list_del(&node->node_list);
693 1.4 riastrad
694 1.7 riastrad if (drm_mm_hole_follows(prev_node))
695 1.7 riastrad rm_hole(prev_node);
696 1.7 riastrad add_hole(prev_node);
697 1.1 riastrad
698 1.7 riastrad clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
699 1.1 riastrad }
700 1.7 riastrad EXPORT_SYMBOL(drm_mm_remove_node);
701 1.1 riastrad
702 1.1 riastrad /**
703 1.3 riastrad * drm_mm_replace_node - move an allocation from @old to @new
704 1.3 riastrad * @old: drm_mm_node to remove from the allocator
705 1.3 riastrad * @new: drm_mm_node which should inherit @old's allocation
706 1.3 riastrad *
707 1.3 riastrad * This is useful for when drivers embed the drm_mm_node structure and hence
708 1.3 riastrad * can't move allocations by reassigning pointers. It's a combination of remove
709 1.3 riastrad * and insert with the guarantee that the allocation start will match.
710 1.1 riastrad */
711 1.1 riastrad void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
712 1.1 riastrad {
713 1.7 riastrad struct drm_mm *mm = old->mm;
714 1.7 riastrad
715 1.7 riastrad DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
716 1.7 riastrad
717 1.7 riastrad *new = *old;
718 1.7 riastrad
719 1.7 riastrad __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
720 1.1 riastrad list_replace(&old->node_list, &new->node_list);
721 1.7 riastrad rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
722 1.7 riastrad
723 1.7 riastrad if (drm_mm_hole_follows(old)) {
724 1.7 riastrad list_replace(&old->hole_stack, &new->hole_stack);
725 1.7 riastrad rb_replace_node_cached(&old->rb_hole_size,
726 1.7 riastrad &new->rb_hole_size,
727 1.7 riastrad &mm->holes_size);
728 1.7 riastrad rb_replace_node(&old->rb_hole_addr,
729 1.7 riastrad &new->rb_hole_addr,
730 1.7 riastrad &mm->holes_addr);
731 1.7 riastrad }
732 1.1 riastrad
733 1.7 riastrad clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
734 1.1 riastrad }
735 1.1 riastrad EXPORT_SYMBOL(drm_mm_replace_node);
736 1.1 riastrad
737 1.1 riastrad /**
738 1.7 riastrad * DOC: lru scan roster
739 1.3 riastrad *
740 1.3 riastrad * Very often GPUs need to have continuous allocations for a given object. When
741 1.3 riastrad * evicting objects to make space for a new one it is therefore not most
742 1.3 riastrad * efficient when we simply start to select all objects from the tail of an LRU
743 1.3 riastrad * until there's a suitable hole: Especially for big objects or nodes that
744 1.3 riastrad * otherwise have special allocation constraints there's a good chance we evict
745 1.7 riastrad * lots of (smaller) objects unnecessarily.
746 1.3 riastrad *
747 1.3 riastrad * The DRM range allocator supports this use-case through the scanning
748 1.3 riastrad * interfaces. First a scan operation needs to be initialized with
749 1.7 riastrad * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
750 1.7 riastrad * objects to the roster, probably by walking an LRU list, but this can be
751 1.7 riastrad * freely implemented. Eviction candiates are added using
752 1.7 riastrad * drm_mm_scan_add_block() until a suitable hole is found or there are no
753 1.7 riastrad * further evictable objects. Eviction roster metadata is tracked in &struct
754 1.7 riastrad * drm_mm_scan.
755 1.3 riastrad *
756 1.7 riastrad * The driver must walk through all objects again in exactly the reverse
757 1.3 riastrad * order to restore the allocator state. Note that while the allocator is used
758 1.3 riastrad * in the scan mode no other operation is allowed.
759 1.3 riastrad *
760 1.7 riastrad * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
761 1.7 riastrad * reported true) in the scan, and any overlapping nodes after color adjustment
762 1.7 riastrad * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
763 1.7 riastrad * since freeing a node is also O(1) the overall complexity is
764 1.7 riastrad * O(scanned_objects). So like the free stack which needs to be walked before a
765 1.7 riastrad * scan operation even begins this is linear in the number of objects. It
766 1.7 riastrad * doesn't seem to hurt too badly.
767 1.3 riastrad */
768 1.3 riastrad
769 1.3 riastrad /**
770 1.7 riastrad * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
771 1.7 riastrad * @scan: scan state
772 1.3 riastrad * @mm: drm_mm to scan
773 1.3 riastrad * @size: size of the allocation
774 1.3 riastrad * @alignment: alignment of the allocation
775 1.3 riastrad * @color: opaque tag value to use for the allocation
776 1.3 riastrad * @start: start of the allowed range for the allocation
777 1.3 riastrad * @end: end of the allowed range for the allocation
778 1.7 riastrad * @mode: fine-tune the allocation search and placement
779 1.1 riastrad *
780 1.1 riastrad * This simply sets up the scanning routines with the parameters for the desired
781 1.7 riastrad * hole.
782 1.1 riastrad *
783 1.3 riastrad * Warning:
784 1.3 riastrad * As long as the scan list is non-empty, no other operations than
785 1.1 riastrad * adding/removing nodes to/from the scan list are allowed.
786 1.1 riastrad */
787 1.7 riastrad void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
788 1.7 riastrad struct drm_mm *mm,
789 1.4 riastrad u64 size,
790 1.7 riastrad u64 alignment,
791 1.1 riastrad unsigned long color,
792 1.4 riastrad u64 start,
793 1.7 riastrad u64 end,
794 1.7 riastrad enum drm_mm_insert_mode mode)
795 1.1 riastrad {
796 1.7 riastrad DRM_MM_BUG_ON(start >= end);
797 1.7 riastrad DRM_MM_BUG_ON(!size || size > end - start);
798 1.7 riastrad DRM_MM_BUG_ON(mm->scan_active);
799 1.7 riastrad
800 1.7 riastrad scan->mm = mm;
801 1.7 riastrad
802 1.7 riastrad if (alignment <= 1)
803 1.7 riastrad alignment = 0;
804 1.7 riastrad
805 1.7 riastrad scan->color = color;
806 1.7 riastrad scan->alignment = alignment;
807 1.7 riastrad scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
808 1.7 riastrad scan->size = size;
809 1.7 riastrad scan->mode = mode;
810 1.7 riastrad
811 1.7 riastrad DRM_MM_BUG_ON(end <= start);
812 1.7 riastrad scan->range_start = start;
813 1.7 riastrad scan->range_end = end;
814 1.7 riastrad
815 1.7 riastrad scan->hit_start = U64_MAX;
816 1.7 riastrad scan->hit_end = 0;
817 1.1 riastrad }
818 1.7 riastrad EXPORT_SYMBOL(drm_mm_scan_init_with_range);
819 1.1 riastrad
820 1.1 riastrad /**
821 1.3 riastrad * drm_mm_scan_add_block - add a node to the scan list
822 1.7 riastrad * @scan: the active drm_mm scanner
823 1.3 riastrad * @node: drm_mm_node to add
824 1.3 riastrad *
825 1.1 riastrad * Add a node to the scan list that might be freed to make space for the desired
826 1.1 riastrad * hole.
827 1.1 riastrad *
828 1.3 riastrad * Returns:
829 1.3 riastrad * True if a hole has been found, false otherwise.
830 1.1 riastrad */
831 1.7 riastrad bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
832 1.7 riastrad struct drm_mm_node *node)
833 1.1 riastrad {
834 1.7 riastrad struct drm_mm *mm = scan->mm;
835 1.7 riastrad struct drm_mm_node *hole;
836 1.4 riastrad u64 hole_start, hole_end;
837 1.7 riastrad u64 col_start, col_end;
838 1.4 riastrad u64 adj_start, adj_end;
839 1.1 riastrad
840 1.7 riastrad DRM_MM_BUG_ON(node->mm != mm);
841 1.7 riastrad DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
842 1.7 riastrad DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
843 1.7 riastrad __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
844 1.7 riastrad mm->scan_active++;
845 1.7 riastrad
846 1.7 riastrad /* Remove this block from the node_list so that we enlarge the hole
847 1.7 riastrad * (distance between the end of our previous node and the start of
848 1.7 riastrad * or next), without poisoning the link so that we can restore it
849 1.7 riastrad * later in drm_mm_scan_remove_block().
850 1.7 riastrad */
851 1.7 riastrad hole = list_prev_entry(node, node_list);
852 1.7 riastrad DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
853 1.7 riastrad __list_del_entry(&node->node_list);
854 1.1 riastrad
855 1.7 riastrad hole_start = __drm_mm_hole_node_start(hole);
856 1.7 riastrad hole_end = __drm_mm_hole_node_end(hole);
857 1.1 riastrad
858 1.7 riastrad col_start = hole_start;
859 1.7 riastrad col_end = hole_end;
860 1.7 riastrad if (mm->color_adjust)
861 1.7 riastrad mm->color_adjust(hole, scan->color, &col_start, &col_end);
862 1.1 riastrad
863 1.7 riastrad adj_start = max(col_start, scan->range_start);
864 1.7 riastrad adj_end = min(col_end, scan->range_end);
865 1.7 riastrad if (adj_end <= adj_start || adj_end - adj_start < scan->size)
866 1.7 riastrad return false;
867 1.7 riastrad
868 1.7 riastrad if (scan->mode == DRM_MM_INSERT_HIGH)
869 1.7 riastrad adj_start = adj_end - scan->size;
870 1.7 riastrad
871 1.7 riastrad if (scan->alignment) {
872 1.7 riastrad u64 rem;
873 1.7 riastrad
874 1.7 riastrad if (likely(scan->remainder_mask))
875 1.7 riastrad rem = adj_start & scan->remainder_mask;
876 1.7 riastrad else
877 1.7 riastrad div64_u64_rem(adj_start, scan->alignment, &rem);
878 1.7 riastrad if (rem) {
879 1.7 riastrad adj_start -= rem;
880 1.7 riastrad if (scan->mode != DRM_MM_INSERT_HIGH)
881 1.7 riastrad adj_start += scan->alignment;
882 1.7 riastrad if (adj_start < max(col_start, scan->range_start) ||
883 1.7 riastrad min(col_end, scan->range_end) - adj_start < scan->size)
884 1.7 riastrad return false;
885 1.7 riastrad
886 1.7 riastrad if (adj_end <= adj_start ||
887 1.7 riastrad adj_end - adj_start < scan->size)
888 1.7 riastrad return false;
889 1.7 riastrad }
890 1.1 riastrad }
891 1.1 riastrad
892 1.7 riastrad scan->hit_start = adj_start;
893 1.7 riastrad scan->hit_end = adj_start + scan->size;
894 1.1 riastrad
895 1.7 riastrad DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
896 1.7 riastrad DRM_MM_BUG_ON(scan->hit_start < hole_start);
897 1.7 riastrad DRM_MM_BUG_ON(scan->hit_end > hole_end);
898 1.1 riastrad
899 1.7 riastrad return true;
900 1.1 riastrad }
901 1.1 riastrad EXPORT_SYMBOL(drm_mm_scan_add_block);
902 1.1 riastrad
903 1.1 riastrad /**
904 1.3 riastrad * drm_mm_scan_remove_block - remove a node from the scan list
905 1.7 riastrad * @scan: the active drm_mm scanner
906 1.3 riastrad * @node: drm_mm_node to remove
907 1.1 riastrad *
908 1.7 riastrad * Nodes **must** be removed in exactly the reverse order from the scan list as
909 1.7 riastrad * they have been added (e.g. using list_add() as they are added and then
910 1.7 riastrad * list_for_each() over that eviction list to remove), otherwise the internal
911 1.7 riastrad * state of the memory manager will be corrupted.
912 1.1 riastrad *
913 1.1 riastrad * When the scan list is empty, the selected memory nodes can be freed. An
914 1.7 riastrad * immediately following drm_mm_insert_node_in_range_generic() or one of the
915 1.7 riastrad * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
916 1.7 riastrad * the just freed block (because it's at the top of the free_stack list).
917 1.1 riastrad *
918 1.3 riastrad * Returns:
919 1.3 riastrad * True if this block should be evicted, false otherwise. Will always
920 1.3 riastrad * return false when no hole has been found.
921 1.1 riastrad */
922 1.7 riastrad bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
923 1.7 riastrad struct drm_mm_node *node)
924 1.1 riastrad {
925 1.1 riastrad struct drm_mm_node *prev_node;
926 1.1 riastrad
927 1.7 riastrad DRM_MM_BUG_ON(node->mm != scan->mm);
928 1.7 riastrad DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
929 1.7 riastrad __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
930 1.7 riastrad
931 1.7 riastrad DRM_MM_BUG_ON(!node->mm->scan_active);
932 1.7 riastrad node->mm->scan_active--;
933 1.7 riastrad
934 1.7 riastrad /* During drm_mm_scan_add_block() we decoupled this node leaving
935 1.7 riastrad * its pointers intact. Now that the caller is walking back along
936 1.7 riastrad * the eviction list we can restore this block into its rightful
937 1.7 riastrad * place on the full node_list. To confirm that the caller is walking
938 1.7 riastrad * backwards correctly we check that prev_node->next == node->next,
939 1.7 riastrad * i.e. both believe the same node should be on the other side of the
940 1.7 riastrad * hole.
941 1.7 riastrad */
942 1.7 riastrad prev_node = list_prev_entry(node, node_list);
943 1.7 riastrad DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
944 1.7 riastrad list_next_entry(node, node_list));
945 1.1 riastrad list_add(&node->node_list, &prev_node->node_list);
946 1.1 riastrad
947 1.7 riastrad return (node->start + node->size > scan->hit_start &&
948 1.7 riastrad node->start < scan->hit_end);
949 1.1 riastrad }
950 1.1 riastrad EXPORT_SYMBOL(drm_mm_scan_remove_block);
951 1.1 riastrad
952 1.3 riastrad /**
953 1.7 riastrad * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
954 1.7 riastrad * @scan: drm_mm scan with target hole
955 1.7 riastrad *
956 1.7 riastrad * After completing an eviction scan and removing the selected nodes, we may
957 1.7 riastrad * need to remove a few more nodes from either side of the target hole if
958 1.7 riastrad * mm.color_adjust is being used.
959 1.3 riastrad *
960 1.3 riastrad * Returns:
961 1.7 riastrad * A node to evict, or NULL if there are no overlapping nodes.
962 1.3 riastrad */
963 1.7 riastrad struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
964 1.1 riastrad {
965 1.7 riastrad struct drm_mm *mm = scan->mm;
966 1.7 riastrad struct drm_mm_node *hole;
967 1.7 riastrad u64 hole_start, hole_end;
968 1.7 riastrad
969 1.7 riastrad DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
970 1.7 riastrad
971 1.7 riastrad if (!mm->color_adjust)
972 1.7 riastrad return NULL;
973 1.7 riastrad
974 1.7 riastrad /*
975 1.7 riastrad * The hole found during scanning should ideally be the first element
976 1.7 riastrad * in the hole_stack list, but due to side-effects in the driver it
977 1.7 riastrad * may not be.
978 1.7 riastrad */
979 1.7 riastrad list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
980 1.7 riastrad hole_start = __drm_mm_hole_node_start(hole);
981 1.7 riastrad hole_end = hole_start + hole->hole_size;
982 1.7 riastrad
983 1.7 riastrad if (hole_start <= scan->hit_start &&
984 1.7 riastrad hole_end >= scan->hit_end)
985 1.7 riastrad break;
986 1.7 riastrad }
987 1.7 riastrad
988 1.7 riastrad /* We should only be called after we found the hole previously */
989 1.7 riastrad DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
990 1.7 riastrad if (unlikely(&hole->hole_stack == &mm->hole_stack))
991 1.7 riastrad return NULL;
992 1.7 riastrad
993 1.7 riastrad DRM_MM_BUG_ON(hole_start > scan->hit_start);
994 1.7 riastrad DRM_MM_BUG_ON(hole_end < scan->hit_end);
995 1.7 riastrad
996 1.7 riastrad mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
997 1.7 riastrad if (hole_start > scan->hit_start)
998 1.7 riastrad return hole;
999 1.7 riastrad if (hole_end < scan->hit_end)
1000 1.7 riastrad return list_next_entry(hole, node_list);
1001 1.1 riastrad
1002 1.7 riastrad return NULL;
1003 1.1 riastrad }
1004 1.7 riastrad EXPORT_SYMBOL(drm_mm_scan_color_evict);
1005 1.1 riastrad
1006 1.3 riastrad /**
1007 1.3 riastrad * drm_mm_init - initialize a drm-mm allocator
1008 1.3 riastrad * @mm: the drm_mm structure to initialize
1009 1.3 riastrad * @start: start of the range managed by @mm
1010 1.3 riastrad * @size: end of the range managed by @mm
1011 1.3 riastrad *
1012 1.3 riastrad * Note that @mm must be cleared to 0 before calling this function.
1013 1.3 riastrad */
1014 1.7 riastrad void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
1015 1.1 riastrad {
1016 1.7 riastrad DRM_MM_BUG_ON(start + size <= start);
1017 1.7 riastrad
1018 1.7 riastrad mm->color_adjust = NULL;
1019 1.7 riastrad
1020 1.1 riastrad INIT_LIST_HEAD(&mm->hole_stack);
1021 1.9 riastrad #ifdef __NetBSD__
1022 1.9 riastrad drm_mm_interval_tree_init(&mm->interval_tree);
1023 1.9 riastrad rb_tree_init(&mm->holes_size.rb_root.rbr_tree, &holes_size_rb_ops);
1024 1.9 riastrad rb_tree_init(&mm->holes_addr.rbr_tree, &holes_addr_rb_ops);
1025 1.9 riastrad #else
1026 1.7 riastrad mm->interval_tree = RB_ROOT_CACHED;
1027 1.7 riastrad mm->holes_size = RB_ROOT_CACHED;
1028 1.7 riastrad mm->holes_addr = RB_ROOT;
1029 1.9 riastrad #endif
1030 1.1 riastrad
1031 1.1 riastrad /* Clever trick to avoid a special case in the free hole tracking. */
1032 1.1 riastrad INIT_LIST_HEAD(&mm->head_node.node_list);
1033 1.7 riastrad mm->head_node.flags = 0;
1034 1.1 riastrad mm->head_node.mm = mm;
1035 1.1 riastrad mm->head_node.start = start + size;
1036 1.7 riastrad mm->head_node.size = -size;
1037 1.7 riastrad add_hole(&mm->head_node);
1038 1.1 riastrad
1039 1.7 riastrad mm->scan_active = 0;
1040 1.1 riastrad }
1041 1.1 riastrad EXPORT_SYMBOL(drm_mm_init);
1042 1.1 riastrad
1043 1.3 riastrad /**
1044 1.3 riastrad * drm_mm_takedown - clean up a drm_mm allocator
1045 1.3 riastrad * @mm: drm_mm allocator to clean up
1046 1.3 riastrad *
1047 1.3 riastrad * Note that it is a bug to call this function on an allocator which is not
1048 1.3 riastrad * clean.
1049 1.3 riastrad */
1050 1.7 riastrad void drm_mm_takedown(struct drm_mm *mm)
1051 1.1 riastrad {
1052 1.7 riastrad if (WARN(!drm_mm_clean(mm),
1053 1.7 riastrad "Memory manager not clean during takedown.\n"))
1054 1.7 riastrad show_leaks(mm);
1055 1.3 riastrad }
1056 1.3 riastrad EXPORT_SYMBOL(drm_mm_takedown);
1057 1.1 riastrad
1058 1.7 riastrad static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
1059 1.3 riastrad {
1060 1.7 riastrad u64 start, size;
1061 1.1 riastrad
1062 1.7 riastrad size = entry->hole_size;
1063 1.7 riastrad if (size) {
1064 1.7 riastrad start = drm_mm_hole_node_start(entry);
1065 1.7 riastrad drm_printf(p, "%#018"PRIx64"-%#018"PRIx64": %"PRIu64": free\n",
1066 1.7 riastrad start, start + size, size);
1067 1.1 riastrad }
1068 1.1 riastrad
1069 1.7 riastrad return size;
1070 1.1 riastrad }
1071 1.3 riastrad /**
1072 1.7 riastrad * drm_mm_print - print allocator state
1073 1.7 riastrad * @mm: drm_mm allocator to print
1074 1.7 riastrad * @p: DRM printer to use
1075 1.3 riastrad */
1076 1.7 riastrad void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
1077 1.1 riastrad {
1078 1.7 riastrad const struct drm_mm_node *entry;
1079 1.4 riastrad u64 total_used = 0, total_free = 0, total = 0;
1080 1.1 riastrad
1081 1.7 riastrad total_free += drm_mm_dump_hole(p, &mm->head_node);
1082 1.1 riastrad
1083 1.1 riastrad drm_mm_for_each_node(entry, mm) {
1084 1.9 riastrad drm_printf(p, "%#018llx-%#018llx: %"PRIu64": used\n", entry->start,
1085 1.4 riastrad entry->start + entry->size, entry->size);
1086 1.1 riastrad total_used += entry->size;
1087 1.7 riastrad total_free += drm_mm_dump_hole(p, entry);
1088 1.1 riastrad }
1089 1.1 riastrad total = total_free + total_used;
1090 1.1 riastrad
1091 1.9 riastrad drm_printf(p, "total: %"PRIu64", used %"PRIu64" free %"PRIu64"\n", total,
1092 1.4 riastrad total_used, total_free);
1093 1.1 riastrad }
1094 1.7 riastrad EXPORT_SYMBOL(drm_mm_print);
1095