drm_mm.c revision 1.18 1 /* $NetBSD: drm_mm.c,v 1.18 2022/02/14 13:22:30 riastradh Exp $ */
2
3 /**************************************************************************
4 *
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
6 * Copyright 2016 Intel Corporation
7 * All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the
11 * "Software"), to deal in the Software without restriction, including
12 * without limitation the rights to use, copy, modify, merge, publish,
13 * distribute, sub license, and/or sell copies of the Software, and to
14 * permit persons to whom the Software is furnished to do so, subject to
15 * the following conditions:
16 *
17 * The above copyright notice and this permission notice (including the
18 * next paragraph) shall be included in all copies or substantial portions
19 * of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
24 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
25 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
26 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
27 * USE OR OTHER DEALINGS IN THE SOFTWARE.
28 *
29 *
30 **************************************************************************/
31
32 /*
33 * Generic simple memory manager implementation. Intended to be used as a base
34 * class implementation for more advanced memory managers.
35 *
36 * Note that the algorithm used is quite simple and there might be substantial
37 * performance gains if a smarter free list is implemented. Currently it is
38 * just an unordered stack of free regions. This could easily be improved if
39 * an RB-tree is used instead. At least if we expect heavy fragmentation.
40 *
41 * Aligned allocations can also see improvement.
42 *
43 * Authors:
44 * Thomas Hellstrm <thomas-at-tungstengraphics-dot-com>
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: drm_mm.c,v 1.18 2022/02/14 13:22:30 riastradh Exp $");
49
50 #include <linux/export.h>
51 #include <linux/interval_tree_generic.h>
52 #include <linux/seq_file.h>
53 #include <linux/slab.h>
54 #include <linux/stacktrace.h>
55
56 #include <drm/drm_mm.h>
57
58 /**
59 * DOC: Overview
60 *
61 * drm_mm provides a simple range allocator. The drivers are free to use the
62 * resource allocator from the linux core if it suits them, the upside of drm_mm
63 * is that it's in the DRM core. Which means that it's easier to extend for
64 * some of the crazier special purpose needs of gpus.
65 *
66 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
67 * Drivers are free to embed either of them into their own suitable
68 * datastructures. drm_mm itself will not do any memory allocations of its own,
69 * so if drivers choose not to embed nodes they need to still allocate them
70 * themselves.
71 *
72 * The range allocator also supports reservation of preallocated blocks. This is
73 * useful for taking over initial mode setting configurations from the firmware,
74 * where an object needs to be created which exactly matches the firmware's
75 * scanout target. As long as the range is still free it can be inserted anytime
76 * after the allocator is initialized, which helps with avoiding looped
77 * dependencies in the driver load sequence.
78 *
79 * drm_mm maintains a stack of most recently freed holes, which of all
80 * simplistic datastructures seems to be a fairly decent approach to clustering
81 * allocations and avoiding too much fragmentation. This means free space
82 * searches are O(num_holes). Given that all the fancy features drm_mm supports
83 * something better would be fairly complex and since gfx thrashing is a fairly
84 * steep cliff not a real concern. Removing a node again is O(1).
85 *
86 * drm_mm supports a few features: Alignment and range restrictions can be
87 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
88 * opaque unsigned long) which in conjunction with a driver callback can be used
89 * to implement sophisticated placement restrictions. The i915 DRM driver uses
90 * this to implement guard pages between incompatible caching domains in the
91 * graphics TT.
92 *
93 * Two behaviors are supported for searching and allocating: bottom-up and
94 * top-down. The default is bottom-up. Top-down allocation can be used if the
95 * memory area has different restrictions, or just to reduce fragmentation.
96 *
97 * Finally iteration helpers to walk all nodes and all holes are provided as are
98 * some basic allocator dumpers for debugging.
99 *
100 * Note that this range allocator is not thread-safe, drivers need to protect
101 * modifications with their own locking. The idea behind this is that for a full
102 * memory manager additional data needs to be protected anyway, hence internal
103 * locking would be fully redundant.
104 */
105
106 #ifdef CONFIG_DRM_DEBUG_MM
107 #include <linux/stackdepot.h>
108
109 #define STACKDEPTH 32
110 #define BUFSZ 4096
111
112 static noinline void save_stack(struct drm_mm_node *node)
113 {
114 unsigned long entries[STACKDEPTH];
115 unsigned int n;
116
117 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
118
119 /* May be called under spinlock, so avoid sleeping */
120 node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
121 }
122
123 static void show_leaks(struct drm_mm *mm)
124 {
125 struct drm_mm_node *node;
126 unsigned long *entries;
127 unsigned int nr_entries;
128 char *buf;
129
130 buf = kmalloc(BUFSZ, GFP_KERNEL);
131 if (!buf)
132 return;
133
134 list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
135 if (!node->stack) {
136 DRM_ERROR("node [%08"PRIx64" + %08"PRIx64"]: unknown owner\n",
137 node->start, node->size);
138 continue;
139 }
140
141 nr_entries = stack_depot_fetch(node->stack, &entries);
142 stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
143 DRM_ERROR("node [%08"PRIx64" + %08"PRIx64"]: inserted at\n%s",
144 node->start, node->size, buf);
145 }
146
147 kfree(buf);
148 }
149
150 #undef STACKDEPTH
151 #undef BUFSZ
152 #else
153 static void save_stack(struct drm_mm_node *node) { }
154 static void show_leaks(struct drm_mm *mm) { }
155 #endif
156
157 #define START(node) ((node)->start)
158 #define LAST(node) ((node)->start + (node)->size - 1)
159
160 #ifndef __NetBSD__
161 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
162 u64, __subtree_last,
163 START, LAST, static inline, drm_mm_interval_tree)
164 #endif
165
166 struct drm_mm_node *
167 __drm_mm_interval_first(const struct drm_mm *mm_const, u64 start, u64 last)
168 {
169 struct drm_mm *mm = __UNCONST(mm_const);
170 #ifdef __NetBSD__
171 struct drm_mm_node *node;
172 list_for_each_entry(node, &mm->head_node.node_list, node_list) {
173 if (node->start <= start)
174 return node;
175 }
176 return NULL;
177 #else
178 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
179 start, last) ?: (struct drm_mm_node *)&mm->head_node;
180 #endif
181 }
182 EXPORT_SYMBOL(__drm_mm_interval_first);
183
184 #ifndef __NetBSD__
185 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
186 struct drm_mm_node *node)
187 {
188 struct drm_mm *mm = hole_node->mm;
189 struct rb_node **link, *rb;
190 struct drm_mm_node *parent;
191 bool leftmost;
192
193 node->__subtree_last = LAST(node);
194
195 if (drm_mm_node_allocated(hole_node)) {
196 rb = &hole_node->rb;
197 while (rb) {
198 parent = rb_entry(rb, struct drm_mm_node, rb);
199 if (parent->__subtree_last >= node->__subtree_last)
200 break;
201
202 parent->__subtree_last = node->__subtree_last;
203 rb = rb_parent(rb);
204 }
205
206 rb = &hole_node->rb;
207 link = &hole_node->rb.rb_right;
208 leftmost = false;
209 } else {
210 rb = NULL;
211 link = &mm->interval_tree.rb_root.rb_node;
212 leftmost = true;
213 }
214
215 while (*link) {
216 rb = *link;
217 parent = rb_entry(rb, struct drm_mm_node, rb);
218 if (parent->__subtree_last < node->__subtree_last)
219 parent->__subtree_last = node->__subtree_last;
220 if (node->start < parent->start) {
221 link = &parent->rb.rb_left;
222 } else {
223 link = &parent->rb.rb_right;
224 leftmost = false;
225 }
226 }
227
228 rb_link_node(&node->rb, rb, link);
229 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
230 &drm_mm_interval_tree_augment);
231 }
232 #endif
233
234 #ifdef __NetBSD__
235
236 static int
237 compare_hole_addrs(void *cookie, const void *va, const void *vb)
238 {
239 const struct drm_mm_node *a = va, *b = vb;
240 const u64 aa = __drm_mm_hole_node_start(a);
241 const u64 ba = __drm_mm_hole_node_start(b);
242
243 KASSERTMSG((aa == ba ||
244 aa + a->hole_size <= ba ||
245 aa >= ba + b->hole_size),
246 "overlapping holes: [0x%"PRIx64", 0x%"PRIx64"),"
247 " [0x%"PRIx64", 0x%"PRIx64")",
248 aa, aa + a->hole_size,
249 ba, ba + b->hole_size);
250 if (aa < ba)
251 return -1;
252 if (aa > ba)
253 return +1;
254 return 0;
255 }
256
257 static int
258 compare_hole_addr_key(void *cookie, const void *vn, const void *vk)
259 {
260 const struct drm_mm_node *n = vn;
261 const u64 a = __drm_mm_hole_node_start(n);
262 const u64 *k = vk;
263
264 if (a < *k)
265 return -1;
266 if (a + n->hole_size >= *k) /* allows range lookups */
267 return +1;
268 return 0;
269 }
270
271 static const rb_tree_ops_t holes_addr_rb_ops = {
272 .rbto_compare_nodes = compare_hole_addrs,
273 .rbto_compare_key = compare_hole_addr_key,
274 .rbto_node_offset = offsetof(struct drm_mm_node, rb_hole_addr),
275 };
276
277 #else
278
279 #define RB_INSERT(root, member, expr) do { \
280 struct rb_node **link = &root.rb_node, *rb = NULL; \
281 u64 x = expr(node); \
282 while (*link) { \
283 rb = *link; \
284 if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
285 link = &rb->rb_left; \
286 else \
287 link = &rb->rb_right; \
288 } \
289 rb_link_node(&node->member, rb, link); \
290 rb_insert_color(&node->member, &root); \
291 } while (0)
292
293 #endif
294
295 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
296 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
297
298 static u64 rb_to_hole_size(struct rb_node *rb)
299 {
300 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
301 }
302
303 static int
304 compare_hole_sizes(void *cookie, const void *va, const void *vb)
305 {
306 const struct drm_mm_node *a = va, *b = vb;
307
308 if (a->hole_size > b->hole_size)
309 return -1;
310 if (a->hole_size < b->hole_size)
311 return +1;
312 return (a < b ? -1 : a > b ? +1 : 0);
313 }
314
315 static int
316 compare_hole_size_key(void *cookie, const void *vn, const void *vk)
317 {
318 const struct drm_mm_node *n = vn;
319 const u64 *k = vk;
320
321 if (n->hole_size > *k)
322 return -1;
323 if (n->hole_size < *k)
324 return +1;
325 return 0;
326 }
327
328 static const rb_tree_ops_t holes_size_rb_ops = {
329 .rbto_compare_nodes = compare_hole_sizes,
330 .rbto_compare_key = compare_hole_size_key,
331 .rbto_node_offset = offsetof(struct drm_mm_node, rb_hole_size),
332 };
333
334 static void insert_hole_size(struct rb_root_cached *root,
335 struct drm_mm_node *node)
336 {
337 #ifdef __NetBSD__
338 struct drm_mm_node *collision __diagused;
339 collision = rb_tree_insert_node(&root->rb_root.rbr_tree, node);
340 KASSERT(collision == node);
341 #else
342 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
343 u64 x = node->hole_size;
344 bool first = true;
345
346 while (*link) {
347 rb = *link;
348 if (x > rb_to_hole_size(rb)) {
349 link = &rb->rb_left;
350 } else {
351 link = &rb->rb_right;
352 first = false;
353 }
354 }
355
356 rb_link_node(&node->rb_hole_size, rb, link);
357 rb_insert_color_cached(&node->rb_hole_size, root, first);
358 #endif
359 }
360
361 static void add_hole(struct drm_mm_node *node)
362 {
363 struct drm_mm *mm = node->mm;
364
365 node->hole_size =
366 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
367 DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
368
369 insert_hole_size(&mm->holes_size, node);
370 #ifdef __NetBSD__
371 struct drm_mm_node *collision __diagused;
372 collision = rb_tree_insert_node(&mm->holes_addr.rbr_tree, node);
373 KASSERT(collision == node);
374 #else
375 RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
376 #endif
377
378 list_add(&node->hole_stack, &mm->hole_stack);
379 }
380
381 static void rm_hole(struct drm_mm_node *node)
382 {
383 DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
384
385 list_del(&node->hole_stack);
386 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
387 rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
388 node->hole_size = 0;
389
390 DRM_MM_BUG_ON(drm_mm_hole_follows(node));
391 }
392
393 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
394 {
395 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
396 }
397
398 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
399 {
400 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
401 }
402
403 static inline u64 rb_hole_size(struct rb_node *rb)
404 {
405 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
406 }
407
408 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
409 {
410 #ifdef __NetBSD__
411 struct drm_mm_node *best;
412
413 best = rb_tree_find_node_leq(&mm->holes_size.rb_root.rbr_tree, &size);
414 KASSERT(best == NULL || size <= best->hole_size);
415
416 return best;
417 #else
418 struct rb_node *rb = mm->holes_size.rb_root.rb_node;
419 struct drm_mm_node *best = NULL;
420
421 do {
422 struct drm_mm_node *node =
423 rb_entry(rb, struct drm_mm_node, rb_hole_size);
424
425 if (size <= node->hole_size) {
426 best = node;
427 rb = rb->rb_right;
428 } else {
429 rb = rb->rb_left;
430 }
431 } while (rb);
432
433 return best;
434 #endif
435 }
436
437 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
438 {
439 #ifdef __NetBSD__
440 struct drm_mm_node *node;
441
442 node = rb_tree_find_node(&mm->holes_addr.rbr_tree, &addr);
443 KASSERT(node == NULL || __drm_mm_hole_node_start(node) <= addr);
444 KASSERT(node == NULL || addr <
445 __drm_mm_hole_node_start(node) + node->hole_size);
446
447 return node;
448 #else
449 struct rb_node *rb = mm->holes_addr.rb_node;
450 struct drm_mm_node *node = NULL;
451
452 while (rb) {
453 u64 hole_start;
454
455 node = rb_hole_addr_to_node(rb);
456 hole_start = __drm_mm_hole_node_start(node);
457
458 if (addr < hole_start)
459 rb = node->rb_hole_addr.rb_left;
460 else if (addr > hole_start + node->hole_size)
461 rb = node->rb_hole_addr.rb_right;
462 else
463 break;
464 }
465
466 return node;
467 #endif
468 }
469
470 static struct drm_mm_node *
471 first_hole(struct drm_mm *mm,
472 u64 start, u64 end, u64 size,
473 enum drm_mm_insert_mode mode)
474 {
475 switch (mode) {
476 default:
477 case DRM_MM_INSERT_BEST:
478 return best_hole(mm, size);
479
480 case DRM_MM_INSERT_LOW:
481 #ifdef __NetBSD__
482 return rb_tree_find_node_geq(&mm->holes_addr.rbr_tree, &start);
483 #else
484 return find_hole(mm, start);
485 #endif
486
487 case DRM_MM_INSERT_HIGH:
488 #ifdef __NetBSD__
489 return rb_tree_find_node_leq(&mm->holes_addr.rbr_tree, &end);
490 #else
491 return find_hole(mm, end);
492 #endif
493
494 case DRM_MM_INSERT_EVICT:
495 return list_first_entry_or_null(&mm->hole_stack,
496 struct drm_mm_node,
497 hole_stack);
498 }
499 }
500
501 static struct drm_mm_node *
502 next_hole(struct drm_mm *mm,
503 struct drm_mm_node *node,
504 enum drm_mm_insert_mode mode)
505 {
506 switch (mode) {
507 default:
508 case DRM_MM_INSERT_BEST:
509 #ifdef __NetBSD__
510 return RB_TREE_PREV(&mm->holes_size.rb_root.rbr_tree, node);
511 #else
512 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
513 #endif
514
515 case DRM_MM_INSERT_LOW:
516 #ifdef __NetBSD__
517 return RB_TREE_NEXT(&mm->holes_addr.rbr_tree, node);
518 #else
519 return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
520 #endif
521
522 case DRM_MM_INSERT_HIGH:
523 #ifdef __NetBSD__
524 return RB_TREE_PREV(&mm->holes_addr.rbr_tree, node);
525 #else
526 return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
527 #endif
528
529 case DRM_MM_INSERT_EVICT:
530 node = list_next_entry(node, hole_stack);
531 return &node->hole_stack == &mm->hole_stack ? NULL : node;
532 }
533 }
534
535 /**
536 * drm_mm_reserve_node - insert an pre-initialized node
537 * @mm: drm_mm allocator to insert @node into
538 * @node: drm_mm_node to insert
539 *
540 * This functions inserts an already set-up &drm_mm_node into the allocator,
541 * meaning that start, size and color must be set by the caller. All other
542 * fields must be cleared to 0. This is useful to initialize the allocator with
543 * preallocated objects which must be set-up before the range allocator can be
544 * set-up, e.g. when taking over a firmware framebuffer.
545 *
546 * Returns:
547 * 0 on success, -ENOSPC if there's no hole where @node is.
548 */
549 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
550 {
551 u64 end = node->start + node->size;
552 struct drm_mm_node *hole;
553 u64 hole_start, hole_end;
554 u64 adj_start, adj_end;
555
556 end = node->start + node->size;
557 if (unlikely(end <= node->start))
558 return -ENOSPC;
559
560 /* Find the relevant hole to add our node to */
561 hole = find_hole(mm, node->start);
562 if (!hole)
563 return -ENOSPC;
564
565 adj_start = hole_start = __drm_mm_hole_node_start(hole);
566 adj_end = hole_end = hole_start + hole->hole_size;
567
568 if (mm->color_adjust)
569 mm->color_adjust(hole, node->color, &adj_start, &adj_end);
570
571 if (adj_start > node->start || adj_end < end)
572 return -ENOSPC;
573
574 node->mm = mm;
575
576 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
577 list_add(&node->node_list, &hole->node_list);
578 #ifndef __NetBSD__
579 drm_mm_interval_tree_add_node(hole, node);
580 #endif
581 node->hole_size = 0;
582
583 rm_hole(hole);
584 if (node->start > hole_start)
585 add_hole(hole);
586 if (end < hole_end)
587 add_hole(node);
588
589 save_stack(node);
590 return 0;
591 }
592 EXPORT_SYMBOL(drm_mm_reserve_node);
593
594 static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
595 {
596 return rb ? rb_to_hole_size(rb) : 0;
597 }
598
599 /**
600 * drm_mm_insert_node_in_range - ranged search for space and insert @node
601 * @mm: drm_mm to allocate from
602 * @node: preallocate node to insert
603 * @size: size of the allocation
604 * @alignment: alignment of the allocation
605 * @color: opaque tag value to use for this node
606 * @range_start: start of the allowed range for this node
607 * @range_end: end of the allowed range for this node
608 * @mode: fine-tune the allocation search and placement
609 *
610 * The preallocated @node must be cleared to 0.
611 *
612 * Returns:
613 * 0 on success, -ENOSPC if there's no suitable hole.
614 */
615 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
616 struct drm_mm_node * const node,
617 u64 size, u64 alignment,
618 unsigned long color,
619 u64 range_start, u64 range_end,
620 enum drm_mm_insert_mode mode)
621 {
622 struct drm_mm_node *hole;
623 u64 remainder_mask;
624 bool once;
625
626 DRM_MM_BUG_ON(range_start > range_end);
627
628 if (unlikely(size == 0 || range_end - range_start < size))
629 return -ENOSPC;
630
631 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
632 return -ENOSPC;
633
634 if (alignment <= 1)
635 alignment = 0;
636
637 once = mode & DRM_MM_INSERT_ONCE;
638 mode &= ~DRM_MM_INSERT_ONCE;
639
640 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
641 for (hole = first_hole(mm, range_start, range_end, size, mode);
642 hole;
643 hole = once ? NULL : next_hole(mm, hole, mode)) {
644 u64 hole_start = __drm_mm_hole_node_start(hole);
645 u64 hole_end = hole_start + hole->hole_size;
646 u64 adj_start, adj_end;
647 u64 col_start, col_end;
648
649 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
650 break;
651
652 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
653 break;
654
655 col_start = hole_start;
656 col_end = hole_end;
657 if (mm->color_adjust)
658 mm->color_adjust(hole, color, &col_start, &col_end);
659
660 adj_start = max(col_start, range_start);
661 adj_end = min(col_end, range_end);
662
663 if (adj_end <= adj_start || adj_end - adj_start < size)
664 continue;
665
666 if (mode == DRM_MM_INSERT_HIGH)
667 adj_start = adj_end - size;
668
669 if (alignment) {
670 u64 rem;
671
672 if (likely(remainder_mask))
673 rem = adj_start & remainder_mask;
674 else
675 div64_u64_rem(adj_start, alignment, &rem);
676 if (rem) {
677 adj_start -= rem;
678 if (mode != DRM_MM_INSERT_HIGH)
679 adj_start += alignment;
680
681 if (adj_start < max(col_start, range_start) ||
682 min(col_end, range_end) - adj_start < size)
683 continue;
684
685 if (adj_end <= adj_start ||
686 adj_end - adj_start < size)
687 continue;
688 }
689 }
690
691 node->mm = mm;
692 node->size = size;
693 node->start = adj_start;
694 node->color = color;
695 node->hole_size = 0;
696
697 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
698 list_add(&node->node_list, &hole->node_list);
699 #ifndef __NetBSD__
700 drm_mm_interval_tree_add_node(hole, node);
701 #endif
702
703 rm_hole(hole);
704 if (adj_start > hole_start)
705 add_hole(hole);
706 if (adj_start + size < hole_end)
707 add_hole(node);
708
709 save_stack(node);
710 return 0;
711 }
712
713 return -ENOSPC;
714 }
715 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
716
717 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
718 {
719 return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
720 }
721
722 /**
723 * drm_mm_remove_node - Remove a memory node from the allocator.
724 * @node: drm_mm_node to remove
725 *
726 * This just removes a node from its drm_mm allocator. The node does not need to
727 * be cleared again before it can be re-inserted into this or any other drm_mm
728 * allocator. It is a bug to call this function on a unallocated node.
729 */
730 void drm_mm_remove_node(struct drm_mm_node *node)
731 {
732 struct drm_mm *mm = node->mm;
733 struct drm_mm_node *prev_node;
734
735 DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
736 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
737
738 prev_node = list_prev_entry(node, node_list);
739
740 if (drm_mm_hole_follows(node))
741 rm_hole(node);
742
743 #ifdef __NetBSD__
744 __USE(mm);
745 #else
746 drm_mm_interval_tree_remove(node, &mm->interval_tree);
747 #endif
748 list_del(&node->node_list);
749
750 if (drm_mm_hole_follows(prev_node))
751 rm_hole(prev_node);
752 add_hole(prev_node);
753
754 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
755 }
756 EXPORT_SYMBOL(drm_mm_remove_node);
757
758 /**
759 * drm_mm_replace_node - move an allocation from @old to @new
760 * @old: drm_mm_node to remove from the allocator
761 * @new: drm_mm_node which should inherit @old's allocation
762 *
763 * This is useful for when drivers embed the drm_mm_node structure and hence
764 * can't move allocations by reassigning pointers. It's a combination of remove
765 * and insert with the guarantee that the allocation start will match.
766 */
767 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
768 {
769 struct drm_mm *mm = old->mm;
770
771 DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
772
773 *new = *old;
774
775 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
776 list_replace(&old->node_list, &new->node_list);
777 #ifndef __NetBSD__
778 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
779 #endif
780
781 if (drm_mm_hole_follows(old)) {
782 list_replace(&old->hole_stack, &new->hole_stack);
783 rb_replace_node_cached(&old->rb_hole_size,
784 &new->rb_hole_size,
785 &mm->holes_size);
786 rb_replace_node(&old->rb_hole_addr,
787 &new->rb_hole_addr,
788 &mm->holes_addr);
789 }
790
791 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
792 }
793 EXPORT_SYMBOL(drm_mm_replace_node);
794
795 /**
796 * DOC: lru scan roster
797 *
798 * Very often GPUs need to have continuous allocations for a given object. When
799 * evicting objects to make space for a new one it is therefore not most
800 * efficient when we simply start to select all objects from the tail of an LRU
801 * until there's a suitable hole: Especially for big objects or nodes that
802 * otherwise have special allocation constraints there's a good chance we evict
803 * lots of (smaller) objects unnecessarily.
804 *
805 * The DRM range allocator supports this use-case through the scanning
806 * interfaces. First a scan operation needs to be initialized with
807 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
808 * objects to the roster, probably by walking an LRU list, but this can be
809 * freely implemented. Eviction candiates are added using
810 * drm_mm_scan_add_block() until a suitable hole is found or there are no
811 * further evictable objects. Eviction roster metadata is tracked in &struct
812 * drm_mm_scan.
813 *
814 * The driver must walk through all objects again in exactly the reverse
815 * order to restore the allocator state. Note that while the allocator is used
816 * in the scan mode no other operation is allowed.
817 *
818 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
819 * reported true) in the scan, and any overlapping nodes after color adjustment
820 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
821 * since freeing a node is also O(1) the overall complexity is
822 * O(scanned_objects). So like the free stack which needs to be walked before a
823 * scan operation even begins this is linear in the number of objects. It
824 * doesn't seem to hurt too badly.
825 */
826
827 /**
828 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
829 * @scan: scan state
830 * @mm: drm_mm to scan
831 * @size: size of the allocation
832 * @alignment: alignment of the allocation
833 * @color: opaque tag value to use for the allocation
834 * @start: start of the allowed range for the allocation
835 * @end: end of the allowed range for the allocation
836 * @mode: fine-tune the allocation search and placement
837 *
838 * This simply sets up the scanning routines with the parameters for the desired
839 * hole.
840 *
841 * Warning:
842 * As long as the scan list is non-empty, no other operations than
843 * adding/removing nodes to/from the scan list are allowed.
844 */
845 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
846 struct drm_mm *mm,
847 u64 size,
848 u64 alignment,
849 unsigned long color,
850 u64 start,
851 u64 end,
852 enum drm_mm_insert_mode mode)
853 {
854 DRM_MM_BUG_ON(start >= end);
855 DRM_MM_BUG_ON(!size || size > end - start);
856 DRM_MM_BUG_ON(mm->scan_active);
857
858 scan->mm = mm;
859
860 if (alignment <= 1)
861 alignment = 0;
862
863 scan->color = color;
864 scan->alignment = alignment;
865 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
866 scan->size = size;
867 scan->mode = mode;
868
869 DRM_MM_BUG_ON(end <= start);
870 scan->range_start = start;
871 scan->range_end = end;
872
873 scan->hit_start = U64_MAX;
874 scan->hit_end = 0;
875 }
876 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
877
878 /**
879 * drm_mm_scan_add_block - add a node to the scan list
880 * @scan: the active drm_mm scanner
881 * @node: drm_mm_node to add
882 *
883 * Add a node to the scan list that might be freed to make space for the desired
884 * hole.
885 *
886 * Returns:
887 * True if a hole has been found, false otherwise.
888 */
889 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
890 struct drm_mm_node *node)
891 {
892 struct drm_mm *mm = scan->mm;
893 struct drm_mm_node *hole;
894 u64 hole_start, hole_end;
895 u64 col_start, col_end;
896 u64 adj_start, adj_end;
897
898 DRM_MM_BUG_ON(node->mm != mm);
899 DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
900 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
901 __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
902 mm->scan_active++;
903
904 /* Remove this block from the node_list so that we enlarge the hole
905 * (distance between the end of our previous node and the start of
906 * or next), without poisoning the link so that we can restore it
907 * later in drm_mm_scan_remove_block().
908 */
909 hole = list_prev_entry(node, node_list);
910 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
911 __list_del_entry(&node->node_list);
912
913 hole_start = __drm_mm_hole_node_start(hole);
914 hole_end = __drm_mm_hole_node_end(hole);
915
916 col_start = hole_start;
917 col_end = hole_end;
918 if (mm->color_adjust)
919 mm->color_adjust(hole, scan->color, &col_start, &col_end);
920
921 adj_start = max(col_start, scan->range_start);
922 adj_end = min(col_end, scan->range_end);
923 if (adj_end <= adj_start || adj_end - adj_start < scan->size)
924 return false;
925
926 if (scan->mode == DRM_MM_INSERT_HIGH)
927 adj_start = adj_end - scan->size;
928
929 if (scan->alignment) {
930 u64 rem;
931
932 if (likely(scan->remainder_mask))
933 rem = adj_start & scan->remainder_mask;
934 else
935 div64_u64_rem(adj_start, scan->alignment, &rem);
936 if (rem) {
937 adj_start -= rem;
938 if (scan->mode != DRM_MM_INSERT_HIGH)
939 adj_start += scan->alignment;
940 if (adj_start < max(col_start, scan->range_start) ||
941 min(col_end, scan->range_end) - adj_start < scan->size)
942 return false;
943
944 if (adj_end <= adj_start ||
945 adj_end - adj_start < scan->size)
946 return false;
947 }
948 }
949
950 scan->hit_start = adj_start;
951 scan->hit_end = adj_start + scan->size;
952
953 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
954 DRM_MM_BUG_ON(scan->hit_start < hole_start);
955 DRM_MM_BUG_ON(scan->hit_end > hole_end);
956
957 return true;
958 }
959 EXPORT_SYMBOL(drm_mm_scan_add_block);
960
961 /**
962 * drm_mm_scan_remove_block - remove a node from the scan list
963 * @scan: the active drm_mm scanner
964 * @node: drm_mm_node to remove
965 *
966 * Nodes **must** be removed in exactly the reverse order from the scan list as
967 * they have been added (e.g. using list_add() as they are added and then
968 * list_for_each() over that eviction list to remove), otherwise the internal
969 * state of the memory manager will be corrupted.
970 *
971 * When the scan list is empty, the selected memory nodes can be freed. An
972 * immediately following drm_mm_insert_node_in_range_generic() or one of the
973 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
974 * the just freed block (because it's at the top of the free_stack list).
975 *
976 * Returns:
977 * True if this block should be evicted, false otherwise. Will always
978 * return false when no hole has been found.
979 */
980 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
981 struct drm_mm_node *node)
982 {
983 struct drm_mm_node *prev_node;
984
985 DRM_MM_BUG_ON(node->mm != scan->mm);
986 DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
987 __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
988
989 DRM_MM_BUG_ON(!node->mm->scan_active);
990 node->mm->scan_active--;
991
992 /* During drm_mm_scan_add_block() we decoupled this node leaving
993 * its pointers intact. Now that the caller is walking back along
994 * the eviction list we can restore this block into its rightful
995 * place on the full node_list. To confirm that the caller is walking
996 * backwards correctly we check that prev_node->next == node->next,
997 * i.e. both believe the same node should be on the other side of the
998 * hole.
999 */
1000 prev_node = list_prev_entry(node, node_list);
1001 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
1002 list_next_entry(node, node_list));
1003 list_add(&node->node_list, &prev_node->node_list);
1004
1005 return (node->start + node->size > scan->hit_start &&
1006 node->start < scan->hit_end);
1007 }
1008 EXPORT_SYMBOL(drm_mm_scan_remove_block);
1009
1010 /**
1011 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
1012 * @scan: drm_mm scan with target hole
1013 *
1014 * After completing an eviction scan and removing the selected nodes, we may
1015 * need to remove a few more nodes from either side of the target hole if
1016 * mm.color_adjust is being used.
1017 *
1018 * Returns:
1019 * A node to evict, or NULL if there are no overlapping nodes.
1020 */
1021 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
1022 {
1023 struct drm_mm *mm = scan->mm;
1024 struct drm_mm_node *hole;
1025 u64 hole_start, hole_end;
1026
1027 DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
1028
1029 if (!mm->color_adjust)
1030 return NULL;
1031
1032 /*
1033 * The hole found during scanning should ideally be the first element
1034 * in the hole_stack list, but due to side-effects in the driver it
1035 * may not be.
1036 */
1037 list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
1038 hole_start = __drm_mm_hole_node_start(hole);
1039 hole_end = hole_start + hole->hole_size;
1040
1041 if (hole_start <= scan->hit_start &&
1042 hole_end >= scan->hit_end)
1043 break;
1044 }
1045
1046 /* We should only be called after we found the hole previously */
1047 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
1048 if (unlikely(&hole->hole_stack == &mm->hole_stack))
1049 return NULL;
1050
1051 DRM_MM_BUG_ON(hole_start > scan->hit_start);
1052 DRM_MM_BUG_ON(hole_end < scan->hit_end);
1053
1054 mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
1055 if (hole_start > scan->hit_start)
1056 return hole;
1057 if (hole_end < scan->hit_end)
1058 return list_next_entry(hole, node_list);
1059
1060 return NULL;
1061 }
1062 EXPORT_SYMBOL(drm_mm_scan_color_evict);
1063
1064 /**
1065 * drm_mm_init - initialize a drm-mm allocator
1066 * @mm: the drm_mm structure to initialize
1067 * @start: start of the range managed by @mm
1068 * @size: end of the range managed by @mm
1069 *
1070 * Note that @mm must be cleared to 0 before calling this function.
1071 */
1072 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
1073 {
1074 DRM_MM_BUG_ON(start + size <= start);
1075
1076 mm->color_adjust = NULL;
1077
1078 INIT_LIST_HEAD(&mm->hole_stack);
1079 #ifdef __NetBSD__
1080 /* XXX interval tree */
1081 rb_tree_init(&mm->holes_size.rb_root.rbr_tree, &holes_size_rb_ops);
1082 rb_tree_init(&mm->holes_addr.rbr_tree, &holes_addr_rb_ops);
1083 #else
1084 mm->interval_tree = RB_ROOT_CACHED;
1085 mm->holes_size = RB_ROOT_CACHED;
1086 mm->holes_addr = RB_ROOT;
1087 #endif
1088
1089 /* Clever trick to avoid a special case in the free hole tracking. */
1090 INIT_LIST_HEAD(&mm->head_node.node_list);
1091 mm->head_node.flags = 0;
1092 mm->head_node.mm = mm;
1093 mm->head_node.start = start + size;
1094 mm->head_node.size = -size;
1095 add_hole(&mm->head_node);
1096
1097 mm->scan_active = 0;
1098 }
1099 EXPORT_SYMBOL(drm_mm_init);
1100
1101 /**
1102 * drm_mm_takedown - clean up a drm_mm allocator
1103 * @mm: drm_mm allocator to clean up
1104 *
1105 * Note that it is a bug to call this function on an allocator which is not
1106 * clean.
1107 */
1108 void drm_mm_takedown(struct drm_mm *mm)
1109 {
1110 if (WARN(!drm_mm_clean(mm),
1111 "Memory manager not clean during takedown.\n"))
1112 show_leaks(mm);
1113 }
1114 EXPORT_SYMBOL(drm_mm_takedown);
1115
1116 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
1117 {
1118 u64 start, size;
1119
1120 size = entry->hole_size;
1121 if (size) {
1122 start = drm_mm_hole_node_start(entry);
1123 drm_printf(p, "%#018"PRIx64"-%#018"PRIx64": %"PRIu64": free\n",
1124 start, start + size, size);
1125 }
1126
1127 return size;
1128 }
1129 /**
1130 * drm_mm_print - print allocator state
1131 * @mm: drm_mm allocator to print
1132 * @p: DRM printer to use
1133 */
1134 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
1135 {
1136 const struct drm_mm_node *entry;
1137 u64 total_used = 0, total_free = 0, total = 0;
1138
1139 total_free += drm_mm_dump_hole(p, &mm->head_node);
1140
1141 drm_mm_for_each_node(entry, mm) {
1142 drm_printf(p, "%#018"PRIx64"-%#018"PRIx64": %"PRIu64": used\n", entry->start,
1143 entry->start + entry->size, entry->size);
1144 total_used += entry->size;
1145 total_free += drm_mm_dump_hole(p, entry);
1146 }
1147 total = total_free + total_used;
1148
1149 drm_printf(p, "total: %"PRIu64", used %"PRIu64" free %"PRIu64"\n", total,
1150 total_used, total_free);
1151 }
1152 EXPORT_SYMBOL(drm_mm_print);
1153