drm_mm.c revision 1.7 1 /* $NetBSD: drm_mm.c,v 1.7 2021/12/18 23:44:57 riastradh Exp $ */
2
3 /**************************************************************************
4 *
5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
6 * Copyright 2016 Intel Corporation
7 * All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the
11 * "Software"), to deal in the Software without restriction, including
12 * without limitation the rights to use, copy, modify, merge, publish,
13 * distribute, sub license, and/or sell copies of the Software, and to
14 * permit persons to whom the Software is furnished to do so, subject to
15 * the following conditions:
16 *
17 * The above copyright notice and this permission notice (including the
18 * next paragraph) shall be included in all copies or substantial portions
19 * of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
24 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
25 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
26 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
27 * USE OR OTHER DEALINGS IN THE SOFTWARE.
28 *
29 *
30 **************************************************************************/
31
32 /*
33 * Generic simple memory manager implementation. Intended to be used as a base
34 * class implementation for more advanced memory managers.
35 *
36 * Note that the algorithm used is quite simple and there might be substantial
37 * performance gains if a smarter free list is implemented. Currently it is
38 * just an unordered stack of free regions. This could easily be improved if
39 * an RB-tree is used instead. At least if we expect heavy fragmentation.
40 *
41 * Aligned allocations can also see improvement.
42 *
43 * Authors:
44 * Thomas Hellstrm <thomas-at-tungstengraphics-dot-com>
45 */
46
47 #include <sys/cdefs.h>
48 __KERNEL_RCSID(0, "$NetBSD: drm_mm.c,v 1.7 2021/12/18 23:44:57 riastradh Exp $");
49
50 #include <linux/export.h>
51 #include <linux/interval_tree_generic.h>
52 #include <linux/seq_file.h>
53 #include <linux/slab.h>
54 #include <linux/stacktrace.h>
55
56 #include <drm/drm_mm.h>
57
58 /**
59 * DOC: Overview
60 *
61 * drm_mm provides a simple range allocator. The drivers are free to use the
62 * resource allocator from the linux core if it suits them, the upside of drm_mm
63 * is that it's in the DRM core. Which means that it's easier to extend for
64 * some of the crazier special purpose needs of gpus.
65 *
66 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
67 * Drivers are free to embed either of them into their own suitable
68 * datastructures. drm_mm itself will not do any memory allocations of its own,
69 * so if drivers choose not to embed nodes they need to still allocate them
70 * themselves.
71 *
72 * The range allocator also supports reservation of preallocated blocks. This is
73 * useful for taking over initial mode setting configurations from the firmware,
74 * where an object needs to be created which exactly matches the firmware's
75 * scanout target. As long as the range is still free it can be inserted anytime
76 * after the allocator is initialized, which helps with avoiding looped
77 * dependencies in the driver load sequence.
78 *
79 * drm_mm maintains a stack of most recently freed holes, which of all
80 * simplistic datastructures seems to be a fairly decent approach to clustering
81 * allocations and avoiding too much fragmentation. This means free space
82 * searches are O(num_holes). Given that all the fancy features drm_mm supports
83 * something better would be fairly complex and since gfx thrashing is a fairly
84 * steep cliff not a real concern. Removing a node again is O(1).
85 *
86 * drm_mm supports a few features: Alignment and range restrictions can be
87 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
88 * opaque unsigned long) which in conjunction with a driver callback can be used
89 * to implement sophisticated placement restrictions. The i915 DRM driver uses
90 * this to implement guard pages between incompatible caching domains in the
91 * graphics TT.
92 *
93 * Two behaviors are supported for searching and allocating: bottom-up and
94 * top-down. The default is bottom-up. Top-down allocation can be used if the
95 * memory area has different restrictions, or just to reduce fragmentation.
96 *
97 * Finally iteration helpers to walk all nodes and all holes are provided as are
98 * some basic allocator dumpers for debugging.
99 *
100 * Note that this range allocator is not thread-safe, drivers need to protect
101 * modifications with their own locking. The idea behind this is that for a full
102 * memory manager additional data needs to be protected anyway, hence internal
103 * locking would be fully redundant.
104 */
105
106 #ifdef CONFIG_DRM_DEBUG_MM
107 #include <linux/stackdepot.h>
108
109 #define STACKDEPTH 32
110 #define BUFSZ 4096
111
112 static noinline void save_stack(struct drm_mm_node *node)
113 {
114 unsigned long entries[STACKDEPTH];
115 unsigned int n;
116
117 n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
118
119 /* May be called under spinlock, so avoid sleeping */
120 node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
121 }
122
123 static void show_leaks(struct drm_mm *mm)
124 {
125 struct drm_mm_node *node;
126 unsigned long *entries;
127 unsigned int nr_entries;
128 char *buf;
129
130 buf = kmalloc(BUFSZ, GFP_KERNEL);
131 if (!buf)
132 return;
133
134 list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
135 if (!node->stack) {
136 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
137 node->start, node->size);
138 continue;
139 }
140
141 nr_entries = stack_depot_fetch(node->stack, &entries);
142 stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
143 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
144 node->start, node->size, buf);
145 }
146
147 kfree(buf);
148 }
149
150 #undef STACKDEPTH
151 #undef BUFSZ
152 #else
153 static void save_stack(struct drm_mm_node *node) { }
154 static void show_leaks(struct drm_mm *mm) { }
155 #endif
156
157 #define START(node) ((node)->start)
158 #define LAST(node) ((node)->start + (node)->size - 1)
159
160 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
161 u64, __subtree_last,
162 START, LAST, static inline, drm_mm_interval_tree)
163
164 struct drm_mm_node *
165 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
166 {
167 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
168 start, last) ?: (struct drm_mm_node *)&mm->head_node;
169 }
170 EXPORT_SYMBOL(__drm_mm_interval_first);
171
172 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
173 struct drm_mm_node *node)
174 {
175 struct drm_mm *mm = hole_node->mm;
176 struct rb_node **link, *rb;
177 struct drm_mm_node *parent;
178 bool leftmost;
179
180 node->__subtree_last = LAST(node);
181
182 if (drm_mm_node_allocated(hole_node)) {
183 rb = &hole_node->rb;
184 while (rb) {
185 parent = rb_entry(rb, struct drm_mm_node, rb);
186 if (parent->__subtree_last >= node->__subtree_last)
187 break;
188
189 parent->__subtree_last = node->__subtree_last;
190 rb = rb_parent(rb);
191 }
192
193 rb = &hole_node->rb;
194 link = &hole_node->rb.rb_right;
195 leftmost = false;
196 } else {
197 rb = NULL;
198 link = &mm->interval_tree.rb_root.rb_node;
199 leftmost = true;
200 }
201
202 while (*link) {
203 rb = *link;
204 parent = rb_entry(rb, struct drm_mm_node, rb);
205 if (parent->__subtree_last < node->__subtree_last)
206 parent->__subtree_last = node->__subtree_last;
207 if (node->start < parent->start) {
208 link = &parent->rb.rb_left;
209 } else {
210 link = &parent->rb.rb_right;
211 leftmost = false;
212 }
213 }
214
215 rb_link_node(&node->rb, rb, link);
216 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
217 &drm_mm_interval_tree_augment);
218 }
219
220 #define RB_INSERT(root, member, expr) do { \
221 struct rb_node **link = &root.rb_node, *rb = NULL; \
222 u64 x = expr(node); \
223 while (*link) { \
224 rb = *link; \
225 if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
226 link = &rb->rb_left; \
227 else \
228 link = &rb->rb_right; \
229 } \
230 rb_link_node(&node->member, rb, link); \
231 rb_insert_color(&node->member, &root); \
232 } while (0)
233
234 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
235 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
236
237 static u64 rb_to_hole_size(struct rb_node *rb)
238 {
239 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
240 }
241
242 static void insert_hole_size(struct rb_root_cached *root,
243 struct drm_mm_node *node)
244 {
245 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
246 u64 x = node->hole_size;
247 bool first = true;
248
249 while (*link) {
250 rb = *link;
251 if (x > rb_to_hole_size(rb)) {
252 link = &rb->rb_left;
253 } else {
254 link = &rb->rb_right;
255 first = false;
256 }
257 }
258
259 rb_link_node(&node->rb_hole_size, rb, link);
260 rb_insert_color_cached(&node->rb_hole_size, root, first);
261 }
262
263 static void add_hole(struct drm_mm_node *node)
264 {
265 struct drm_mm *mm = node->mm;
266
267 node->hole_size =
268 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
269 DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
270
271 insert_hole_size(&mm->holes_size, node);
272 RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
273
274 list_add(&node->hole_stack, &mm->hole_stack);
275 }
276
277 static void rm_hole(struct drm_mm_node *node)
278 {
279 DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
280
281 list_del(&node->hole_stack);
282 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
283 rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
284 node->hole_size = 0;
285
286 DRM_MM_BUG_ON(drm_mm_hole_follows(node));
287 }
288
289 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
290 {
291 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
292 }
293
294 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
295 {
296 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
297 }
298
299 static inline u64 rb_hole_size(struct rb_node *rb)
300 {
301 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
302 }
303
304 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
305 {
306 struct rb_node *rb = mm->holes_size.rb_root.rb_node;
307 struct drm_mm_node *best = NULL;
308
309 do {
310 struct drm_mm_node *node =
311 rb_entry(rb, struct drm_mm_node, rb_hole_size);
312
313 if (size <= node->hole_size) {
314 best = node;
315 rb = rb->rb_right;
316 } else {
317 rb = rb->rb_left;
318 }
319 } while (rb);
320
321 return best;
322 }
323
324 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
325 {
326 struct rb_node *rb = mm->holes_addr.rb_node;
327 struct drm_mm_node *node = NULL;
328
329 while (rb) {
330 u64 hole_start;
331
332 node = rb_hole_addr_to_node(rb);
333 hole_start = __drm_mm_hole_node_start(node);
334
335 if (addr < hole_start)
336 rb = node->rb_hole_addr.rb_left;
337 else if (addr > hole_start + node->hole_size)
338 rb = node->rb_hole_addr.rb_right;
339 else
340 break;
341 }
342
343 return node;
344 }
345
346 static struct drm_mm_node *
347 first_hole(struct drm_mm *mm,
348 u64 start, u64 end, u64 size,
349 enum drm_mm_insert_mode mode)
350 {
351 switch (mode) {
352 default:
353 case DRM_MM_INSERT_BEST:
354 return best_hole(mm, size);
355
356 case DRM_MM_INSERT_LOW:
357 return find_hole(mm, start);
358
359 case DRM_MM_INSERT_HIGH:
360 return find_hole(mm, end);
361
362 case DRM_MM_INSERT_EVICT:
363 return list_first_entry_or_null(&mm->hole_stack,
364 struct drm_mm_node,
365 hole_stack);
366 }
367 }
368
369 static struct drm_mm_node *
370 next_hole(struct drm_mm *mm,
371 struct drm_mm_node *node,
372 enum drm_mm_insert_mode mode)
373 {
374 switch (mode) {
375 default:
376 case DRM_MM_INSERT_BEST:
377 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
378
379 case DRM_MM_INSERT_LOW:
380 return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
381
382 case DRM_MM_INSERT_HIGH:
383 return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
384
385 case DRM_MM_INSERT_EVICT:
386 node = list_next_entry(node, hole_stack);
387 return &node->hole_stack == &mm->hole_stack ? NULL : node;
388 }
389 }
390
391 /**
392 * drm_mm_reserve_node - insert an pre-initialized node
393 * @mm: drm_mm allocator to insert @node into
394 * @node: drm_mm_node to insert
395 *
396 * This functions inserts an already set-up &drm_mm_node into the allocator,
397 * meaning that start, size and color must be set by the caller. All other
398 * fields must be cleared to 0. This is useful to initialize the allocator with
399 * preallocated objects which must be set-up before the range allocator can be
400 * set-up, e.g. when taking over a firmware framebuffer.
401 *
402 * Returns:
403 * 0 on success, -ENOSPC if there's no hole where @node is.
404 */
405 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
406 {
407 u64 end = node->start + node->size;
408 struct drm_mm_node *hole;
409 u64 hole_start, hole_end;
410 u64 adj_start, adj_end;
411
412 end = node->start + node->size;
413 if (unlikely(end <= node->start))
414 return -ENOSPC;
415
416 /* Find the relevant hole to add our node to */
417 hole = find_hole(mm, node->start);
418 if (!hole)
419 return -ENOSPC;
420
421 adj_start = hole_start = __drm_mm_hole_node_start(hole);
422 adj_end = hole_end = hole_start + hole->hole_size;
423
424 if (mm->color_adjust)
425 mm->color_adjust(hole, node->color, &adj_start, &adj_end);
426
427 if (adj_start > node->start || adj_end < end)
428 return -ENOSPC;
429
430 node->mm = mm;
431
432 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
433 list_add(&node->node_list, &hole->node_list);
434 drm_mm_interval_tree_add_node(hole, node);
435 node->hole_size = 0;
436
437 rm_hole(hole);
438 if (node->start > hole_start)
439 add_hole(hole);
440 if (end < hole_end)
441 add_hole(node);
442
443 save_stack(node);
444 return 0;
445 }
446 EXPORT_SYMBOL(drm_mm_reserve_node);
447
448 static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
449 {
450 return rb ? rb_to_hole_size(rb) : 0;
451 }
452
453 /**
454 * drm_mm_insert_node_in_range - ranged search for space and insert @node
455 * @mm: drm_mm to allocate from
456 * @node: preallocate node to insert
457 * @size: size of the allocation
458 * @alignment: alignment of the allocation
459 * @color: opaque tag value to use for this node
460 * @range_start: start of the allowed range for this node
461 * @range_end: end of the allowed range for this node
462 * @mode: fine-tune the allocation search and placement
463 *
464 * The preallocated @node must be cleared to 0.
465 *
466 * Returns:
467 * 0 on success, -ENOSPC if there's no suitable hole.
468 */
469 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
470 struct drm_mm_node * const node,
471 u64 size, u64 alignment,
472 unsigned long color,
473 u64 range_start, u64 range_end,
474 enum drm_mm_insert_mode mode)
475 {
476 struct drm_mm_node *hole;
477 u64 remainder_mask;
478 bool once;
479
480 DRM_MM_BUG_ON(range_start > range_end);
481
482 if (unlikely(size == 0 || range_end - range_start < size))
483 return -ENOSPC;
484
485 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
486 return -ENOSPC;
487
488 if (alignment <= 1)
489 alignment = 0;
490
491 once = mode & DRM_MM_INSERT_ONCE;
492 mode &= ~DRM_MM_INSERT_ONCE;
493
494 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
495 for (hole = first_hole(mm, range_start, range_end, size, mode);
496 hole;
497 hole = once ? NULL : next_hole(mm, hole, mode)) {
498 u64 hole_start = __drm_mm_hole_node_start(hole);
499 u64 hole_end = hole_start + hole->hole_size;
500 u64 adj_start, adj_end;
501 u64 col_start, col_end;
502
503 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
504 break;
505
506 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
507 break;
508
509 col_start = hole_start;
510 col_end = hole_end;
511 if (mm->color_adjust)
512 mm->color_adjust(hole, color, &col_start, &col_end);
513
514 adj_start = max(col_start, range_start);
515 adj_end = min(col_end, range_end);
516
517 if (adj_end <= adj_start || adj_end - adj_start < size)
518 continue;
519
520 if (mode == DRM_MM_INSERT_HIGH)
521 adj_start = adj_end - size;
522
523 if (alignment) {
524 u64 rem;
525
526 if (likely(remainder_mask))
527 rem = adj_start & remainder_mask;
528 else
529 div64_u64_rem(adj_start, alignment, &rem);
530 if (rem) {
531 adj_start -= rem;
532 if (mode != DRM_MM_INSERT_HIGH)
533 adj_start += alignment;
534
535 if (adj_start < max(col_start, range_start) ||
536 min(col_end, range_end) - adj_start < size)
537 continue;
538
539 if (adj_end <= adj_start ||
540 adj_end - adj_start < size)
541 continue;
542 }
543 }
544
545 node->mm = mm;
546 node->size = size;
547 node->start = adj_start;
548 node->color = color;
549 node->hole_size = 0;
550
551 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
552 list_add(&node->node_list, &hole->node_list);
553 drm_mm_interval_tree_add_node(hole, node);
554
555 rm_hole(hole);
556 if (adj_start > hole_start)
557 add_hole(hole);
558 if (adj_start + size < hole_end)
559 add_hole(node);
560
561 save_stack(node);
562 return 0;
563 }
564
565 return -ENOSPC;
566 }
567 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
568
569 static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
570 {
571 return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
572 }
573
574 /**
575 * drm_mm_remove_node - Remove a memory node from the allocator.
576 * @node: drm_mm_node to remove
577 *
578 * This just removes a node from its drm_mm allocator. The node does not need to
579 * be cleared again before it can be re-inserted into this or any other drm_mm
580 * allocator. It is a bug to call this function on a unallocated node.
581 */
582 void drm_mm_remove_node(struct drm_mm_node *node)
583 {
584 struct drm_mm *mm = node->mm;
585 struct drm_mm_node *prev_node;
586
587 DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
588 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
589
590 prev_node = list_prev_entry(node, node_list);
591
592 if (drm_mm_hole_follows(node))
593 rm_hole(node);
594
595 drm_mm_interval_tree_remove(node, &mm->interval_tree);
596 list_del(&node->node_list);
597
598 if (drm_mm_hole_follows(prev_node))
599 rm_hole(prev_node);
600 add_hole(prev_node);
601
602 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
603 }
604 EXPORT_SYMBOL(drm_mm_remove_node);
605
606 /**
607 * drm_mm_replace_node - move an allocation from @old to @new
608 * @old: drm_mm_node to remove from the allocator
609 * @new: drm_mm_node which should inherit @old's allocation
610 *
611 * This is useful for when drivers embed the drm_mm_node structure and hence
612 * can't move allocations by reassigning pointers. It's a combination of remove
613 * and insert with the guarantee that the allocation start will match.
614 */
615 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
616 {
617 struct drm_mm *mm = old->mm;
618
619 DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
620
621 *new = *old;
622
623 __set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
624 list_replace(&old->node_list, &new->node_list);
625 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
626
627 if (drm_mm_hole_follows(old)) {
628 list_replace(&old->hole_stack, &new->hole_stack);
629 rb_replace_node_cached(&old->rb_hole_size,
630 &new->rb_hole_size,
631 &mm->holes_size);
632 rb_replace_node(&old->rb_hole_addr,
633 &new->rb_hole_addr,
634 &mm->holes_addr);
635 }
636
637 clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
638 }
639 EXPORT_SYMBOL(drm_mm_replace_node);
640
641 /**
642 * DOC: lru scan roster
643 *
644 * Very often GPUs need to have continuous allocations for a given object. When
645 * evicting objects to make space for a new one it is therefore not most
646 * efficient when we simply start to select all objects from the tail of an LRU
647 * until there's a suitable hole: Especially for big objects or nodes that
648 * otherwise have special allocation constraints there's a good chance we evict
649 * lots of (smaller) objects unnecessarily.
650 *
651 * The DRM range allocator supports this use-case through the scanning
652 * interfaces. First a scan operation needs to be initialized with
653 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
654 * objects to the roster, probably by walking an LRU list, but this can be
655 * freely implemented. Eviction candiates are added using
656 * drm_mm_scan_add_block() until a suitable hole is found or there are no
657 * further evictable objects. Eviction roster metadata is tracked in &struct
658 * drm_mm_scan.
659 *
660 * The driver must walk through all objects again in exactly the reverse
661 * order to restore the allocator state. Note that while the allocator is used
662 * in the scan mode no other operation is allowed.
663 *
664 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
665 * reported true) in the scan, and any overlapping nodes after color adjustment
666 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
667 * since freeing a node is also O(1) the overall complexity is
668 * O(scanned_objects). So like the free stack which needs to be walked before a
669 * scan operation even begins this is linear in the number of objects. It
670 * doesn't seem to hurt too badly.
671 */
672
673 /**
674 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
675 * @scan: scan state
676 * @mm: drm_mm to scan
677 * @size: size of the allocation
678 * @alignment: alignment of the allocation
679 * @color: opaque tag value to use for the allocation
680 * @start: start of the allowed range for the allocation
681 * @end: end of the allowed range for the allocation
682 * @mode: fine-tune the allocation search and placement
683 *
684 * This simply sets up the scanning routines with the parameters for the desired
685 * hole.
686 *
687 * Warning:
688 * As long as the scan list is non-empty, no other operations than
689 * adding/removing nodes to/from the scan list are allowed.
690 */
691 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
692 struct drm_mm *mm,
693 u64 size,
694 u64 alignment,
695 unsigned long color,
696 u64 start,
697 u64 end,
698 enum drm_mm_insert_mode mode)
699 {
700 DRM_MM_BUG_ON(start >= end);
701 DRM_MM_BUG_ON(!size || size > end - start);
702 DRM_MM_BUG_ON(mm->scan_active);
703
704 scan->mm = mm;
705
706 if (alignment <= 1)
707 alignment = 0;
708
709 scan->color = color;
710 scan->alignment = alignment;
711 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
712 scan->size = size;
713 scan->mode = mode;
714
715 DRM_MM_BUG_ON(end <= start);
716 scan->range_start = start;
717 scan->range_end = end;
718
719 scan->hit_start = U64_MAX;
720 scan->hit_end = 0;
721 }
722 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
723
724 /**
725 * drm_mm_scan_add_block - add a node to the scan list
726 * @scan: the active drm_mm scanner
727 * @node: drm_mm_node to add
728 *
729 * Add a node to the scan list that might be freed to make space for the desired
730 * hole.
731 *
732 * Returns:
733 * True if a hole has been found, false otherwise.
734 */
735 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
736 struct drm_mm_node *node)
737 {
738 struct drm_mm *mm = scan->mm;
739 struct drm_mm_node *hole;
740 u64 hole_start, hole_end;
741 u64 col_start, col_end;
742 u64 adj_start, adj_end;
743
744 DRM_MM_BUG_ON(node->mm != mm);
745 DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
746 DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
747 __set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
748 mm->scan_active++;
749
750 /* Remove this block from the node_list so that we enlarge the hole
751 * (distance between the end of our previous node and the start of
752 * or next), without poisoning the link so that we can restore it
753 * later in drm_mm_scan_remove_block().
754 */
755 hole = list_prev_entry(node, node_list);
756 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
757 __list_del_entry(&node->node_list);
758
759 hole_start = __drm_mm_hole_node_start(hole);
760 hole_end = __drm_mm_hole_node_end(hole);
761
762 col_start = hole_start;
763 col_end = hole_end;
764 if (mm->color_adjust)
765 mm->color_adjust(hole, scan->color, &col_start, &col_end);
766
767 adj_start = max(col_start, scan->range_start);
768 adj_end = min(col_end, scan->range_end);
769 if (adj_end <= adj_start || adj_end - adj_start < scan->size)
770 return false;
771
772 if (scan->mode == DRM_MM_INSERT_HIGH)
773 adj_start = adj_end - scan->size;
774
775 if (scan->alignment) {
776 u64 rem;
777
778 if (likely(scan->remainder_mask))
779 rem = adj_start & scan->remainder_mask;
780 else
781 div64_u64_rem(adj_start, scan->alignment, &rem);
782 if (rem) {
783 adj_start -= rem;
784 if (scan->mode != DRM_MM_INSERT_HIGH)
785 adj_start += scan->alignment;
786 if (adj_start < max(col_start, scan->range_start) ||
787 min(col_end, scan->range_end) - adj_start < scan->size)
788 return false;
789
790 if (adj_end <= adj_start ||
791 adj_end - adj_start < scan->size)
792 return false;
793 }
794 }
795
796 scan->hit_start = adj_start;
797 scan->hit_end = adj_start + scan->size;
798
799 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
800 DRM_MM_BUG_ON(scan->hit_start < hole_start);
801 DRM_MM_BUG_ON(scan->hit_end > hole_end);
802
803 return true;
804 }
805 EXPORT_SYMBOL(drm_mm_scan_add_block);
806
807 /**
808 * drm_mm_scan_remove_block - remove a node from the scan list
809 * @scan: the active drm_mm scanner
810 * @node: drm_mm_node to remove
811 *
812 * Nodes **must** be removed in exactly the reverse order from the scan list as
813 * they have been added (e.g. using list_add() as they are added and then
814 * list_for_each() over that eviction list to remove), otherwise the internal
815 * state of the memory manager will be corrupted.
816 *
817 * When the scan list is empty, the selected memory nodes can be freed. An
818 * immediately following drm_mm_insert_node_in_range_generic() or one of the
819 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
820 * the just freed block (because it's at the top of the free_stack list).
821 *
822 * Returns:
823 * True if this block should be evicted, false otherwise. Will always
824 * return false when no hole has been found.
825 */
826 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
827 struct drm_mm_node *node)
828 {
829 struct drm_mm_node *prev_node;
830
831 DRM_MM_BUG_ON(node->mm != scan->mm);
832 DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
833 __clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
834
835 DRM_MM_BUG_ON(!node->mm->scan_active);
836 node->mm->scan_active--;
837
838 /* During drm_mm_scan_add_block() we decoupled this node leaving
839 * its pointers intact. Now that the caller is walking back along
840 * the eviction list we can restore this block into its rightful
841 * place on the full node_list. To confirm that the caller is walking
842 * backwards correctly we check that prev_node->next == node->next,
843 * i.e. both believe the same node should be on the other side of the
844 * hole.
845 */
846 prev_node = list_prev_entry(node, node_list);
847 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
848 list_next_entry(node, node_list));
849 list_add(&node->node_list, &prev_node->node_list);
850
851 return (node->start + node->size > scan->hit_start &&
852 node->start < scan->hit_end);
853 }
854 EXPORT_SYMBOL(drm_mm_scan_remove_block);
855
856 /**
857 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
858 * @scan: drm_mm scan with target hole
859 *
860 * After completing an eviction scan and removing the selected nodes, we may
861 * need to remove a few more nodes from either side of the target hole if
862 * mm.color_adjust is being used.
863 *
864 * Returns:
865 * A node to evict, or NULL if there are no overlapping nodes.
866 */
867 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
868 {
869 struct drm_mm *mm = scan->mm;
870 struct drm_mm_node *hole;
871 u64 hole_start, hole_end;
872
873 DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
874
875 if (!mm->color_adjust)
876 return NULL;
877
878 /*
879 * The hole found during scanning should ideally be the first element
880 * in the hole_stack list, but due to side-effects in the driver it
881 * may not be.
882 */
883 list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
884 hole_start = __drm_mm_hole_node_start(hole);
885 hole_end = hole_start + hole->hole_size;
886
887 if (hole_start <= scan->hit_start &&
888 hole_end >= scan->hit_end)
889 break;
890 }
891
892 /* We should only be called after we found the hole previously */
893 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
894 if (unlikely(&hole->hole_stack == &mm->hole_stack))
895 return NULL;
896
897 DRM_MM_BUG_ON(hole_start > scan->hit_start);
898 DRM_MM_BUG_ON(hole_end < scan->hit_end);
899
900 mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
901 if (hole_start > scan->hit_start)
902 return hole;
903 if (hole_end < scan->hit_end)
904 return list_next_entry(hole, node_list);
905
906 return NULL;
907 }
908 EXPORT_SYMBOL(drm_mm_scan_color_evict);
909
910 /**
911 * drm_mm_init - initialize a drm-mm allocator
912 * @mm: the drm_mm structure to initialize
913 * @start: start of the range managed by @mm
914 * @size: end of the range managed by @mm
915 *
916 * Note that @mm must be cleared to 0 before calling this function.
917 */
918 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
919 {
920 DRM_MM_BUG_ON(start + size <= start);
921
922 mm->color_adjust = NULL;
923
924 INIT_LIST_HEAD(&mm->hole_stack);
925 mm->interval_tree = RB_ROOT_CACHED;
926 mm->holes_size = RB_ROOT_CACHED;
927 mm->holes_addr = RB_ROOT;
928
929 /* Clever trick to avoid a special case in the free hole tracking. */
930 INIT_LIST_HEAD(&mm->head_node.node_list);
931 mm->head_node.flags = 0;
932 mm->head_node.mm = mm;
933 mm->head_node.start = start + size;
934 mm->head_node.size = -size;
935 add_hole(&mm->head_node);
936
937 mm->scan_active = 0;
938 }
939 EXPORT_SYMBOL(drm_mm_init);
940
941 /**
942 * drm_mm_takedown - clean up a drm_mm allocator
943 * @mm: drm_mm allocator to clean up
944 *
945 * Note that it is a bug to call this function on an allocator which is not
946 * clean.
947 */
948 void drm_mm_takedown(struct drm_mm *mm)
949 {
950 if (WARN(!drm_mm_clean(mm),
951 "Memory manager not clean during takedown.\n"))
952 show_leaks(mm);
953 }
954 EXPORT_SYMBOL(drm_mm_takedown);
955
956 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
957 {
958 u64 start, size;
959
960 size = entry->hole_size;
961 if (size) {
962 start = drm_mm_hole_node_start(entry);
963 drm_printf(p, "%#018"PRIx64"-%#018"PRIx64": %"PRIu64": free\n",
964 start, start + size, size);
965 }
966
967 return size;
968 }
969 /**
970 * drm_mm_print - print allocator state
971 * @mm: drm_mm allocator to print
972 * @p: DRM printer to use
973 */
974 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
975 {
976 const struct drm_mm_node *entry;
977 u64 total_used = 0, total_free = 0, total = 0;
978
979 total_free += drm_mm_dump_hole(p, &mm->head_node);
980
981 drm_mm_for_each_node(entry, mm) {
982 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
983 entry->start + entry->size, entry->size);
984 total_used += entry->size;
985 total_free += drm_mm_dump_hole(p, entry);
986 }
987 total = total_free + total_used;
988
989 drm_printf(p, "total: %llu, used %llu free %llu\n", total,
990 total_used, total_free);
991 }
992 EXPORT_SYMBOL(drm_mm_print);
993