drm_prime.c revision 1.12 1 /* $NetBSD: drm_prime.c,v 1.12 2021/12/19 01:53:39 riastradh Exp $ */
2
3 /*
4 * Copyright 2012 Red Hat
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Dave Airlie <airlied (at) redhat.com>
27 * Rob Clark <rob.clark (at) linaro.org>
28 *
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: drm_prime.c,v 1.12 2021/12/19 01:53:39 riastradh Exp $");
33
34 #include <linux/export.h>
35 #include <linux/dma-buf.h>
36 #include <linux/rbtree.h>
37
38 #include <drm/drm.h>
39 #include <drm/drm_drv.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_framebuffer.h>
42 #include <drm/drm_gem.h>
43 #include <drm/drm_prime.h>
44
45 #include "drm_internal.h"
46
47 #ifdef __NetBSD__
48
49 #include <drm/bus_dma_hacks.h>
50
51 #include <linux/nbsd-namespace.h>
52
53 /*
54 * We use struct sg_table just to pass around an array of pages from
55 * one device to another in drm prime. Since this is _not_ a complete
56 * implementation of Linux's sg table abstraction (e.g., it does not
57 * remember DMA addresses and RAM pages separately, and it doesn't
58 * support the nested chained iteration of Linux scatterlists), we
59 * isolate it to this file and make all callers go through a few extra
60 * subroutines (drm_prime_sg_size, drm_prime_sg_free, &c.) to use it.
61 * Don't use this outside drm prime!
62 */
63
64 struct sg_table {
65 paddr_t *sgt_pgs;
66 unsigned sgt_npgs;
67 };
68
69 static int
70 sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
71 unsigned npages, bus_size_t offset, bus_size_t size, gfp_t gfp)
72 {
73 unsigned i;
74
75 KASSERT(offset == 0);
76 KASSERT(size == npages << PAGE_SHIFT);
77
78 sgt->sgt_pgs = kcalloc(npages, sizeof(sgt->sgt_pgs[0]), gfp);
79 if (sgt->sgt_pgs == NULL)
80 return -ENOMEM;
81 sgt->sgt_npgs = npages;
82
83 for (i = 0; i < npages; i++)
84 sgt->sgt_pgs[i] = VM_PAGE_TO_PHYS(&pages[i]->p_vmp);
85
86 return 0;
87 }
88
89 static int
90 sg_alloc_table_from_pglist(struct sg_table *sgt, const struct pglist *pglist,
91 unsigned npages, bus_size_t offset, bus_size_t size, gfp_t gfp)
92 {
93 struct vm_page *pg;
94 unsigned i;
95
96 KASSERT(offset == 0);
97 KASSERT(size == npages << PAGE_SHIFT);
98
99 sgt->sgt_pgs = kcalloc(npages, sizeof(sgt->sgt_pgs[0]), gfp);
100 if (sgt->sgt_pgs == NULL)
101 return -ENOMEM;
102 sgt->sgt_npgs = npages;
103
104 i = 0;
105 TAILQ_FOREACH(pg, pglist, pageq.queue) {
106 KASSERT(i < npages);
107 sgt->sgt_pgs[i] = VM_PAGE_TO_PHYS(pg);
108 }
109 KASSERT(i == npages);
110
111 return 0;
112 }
113
114 static int
115 sg_alloc_table_from_bus_dmamem(struct sg_table *sgt, bus_dma_tag_t dmat,
116 const bus_dma_segment_t *segs, int nsegs, gfp_t gfp)
117 {
118 int ret;
119
120 KASSERT(nsegs > 0);
121 sgt->sgt_pgs = kcalloc(nsegs, sizeof(sgt->sgt_pgs[0]), gfp);
122 if (sgt->sgt_pgs == NULL)
123 return -ENOMEM;
124 sgt->sgt_npgs = nsegs;
125
126 /* XXX errno NetBSD->Linux */
127 ret = -bus_dmamem_export_pages(dmat, segs, nsegs, sgt->sgt_pgs,
128 sgt->sgt_npgs);
129 if (ret)
130 return ret;
131
132 return 0;
133 }
134
135 static void
136 sg_free_table(struct sg_table *sgt)
137 {
138
139 kfree(sgt->sgt_pgs);
140 sgt->sgt_pgs = NULL;
141 sgt->sgt_npgs = 0;
142 }
143
144 #endif /* __NetBSD__ */
145
146 /**
147 * DOC: overview and lifetime rules
148 *
149 * Similar to GEM global names, PRIME file descriptors are also used to share
150 * buffer objects across processes. They offer additional security: as file
151 * descriptors must be explicitly sent over UNIX domain sockets to be shared
152 * between applications, they can't be guessed like the globally unique GEM
153 * names.
154 *
155 * Drivers that support the PRIME API implement the
156 * &drm_driver.prime_handle_to_fd and &drm_driver.prime_fd_to_handle operations.
157 * GEM based drivers must use drm_gem_prime_handle_to_fd() and
158 * drm_gem_prime_fd_to_handle() to implement these. For GEM based drivers the
159 * actual driver interfaces is provided through the &drm_gem_object_funcs.export
160 * and &drm_driver.gem_prime_import hooks.
161 *
162 * &dma_buf_ops implementations for GEM drivers are all individually exported
163 * for drivers which need to overwrite or reimplement some of them.
164 *
165 * Reference Counting for GEM Drivers
166 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
167 *
168 * On the export the &dma_buf holds a reference to the exported buffer object,
169 * usually a &drm_gem_object. It takes this reference in the PRIME_HANDLE_TO_FD
170 * IOCTL, when it first calls &drm_gem_object_funcs.export
171 * and stores the exporting GEM object in the &dma_buf.priv field. This
172 * reference needs to be released when the final reference to the &dma_buf
173 * itself is dropped and its &dma_buf_ops.release function is called. For
174 * GEM-based drivers, the &dma_buf should be exported using
175 * drm_gem_dmabuf_export() and then released by drm_gem_dmabuf_release().
176 *
177 * Thus the chain of references always flows in one direction, avoiding loops:
178 * importing GEM object -> dma-buf -> exported GEM bo. A further complication
179 * are the lookup caches for import and export. These are required to guarantee
180 * that any given object will always have only one uniqe userspace handle. This
181 * is required to allow userspace to detect duplicated imports, since some GEM
182 * drivers do fail command submissions if a given buffer object is listed more
183 * than once. These import and export caches in &drm_prime_file_private only
184 * retain a weak reference, which is cleaned up when the corresponding object is
185 * released.
186 *
187 * Self-importing: If userspace is using PRIME as a replacement for flink then
188 * it will get a fd->handle request for a GEM object that it created. Drivers
189 * should detect this situation and return back the underlying object from the
190 * dma-buf private. For GEM based drivers this is handled in
191 * drm_gem_prime_import() already.
192 */
193
194 struct drm_prime_member {
195 struct dma_buf *dma_buf;
196 uint32_t handle;
197
198 struct rb_node dmabuf_rb;
199 struct rb_node handle_rb;
200 };
201
202 #ifdef __NetBSD__
203 static int
204 compare_dmabufs(void *cookie, const void *va, const void *vb)
205 {
206 const struct drm_prime_member *ma = va;
207 const struct drm_prime_member *mb = vb;
208
209 if (ma->dma_buf < mb->dma_buf)
210 return -1;
211 if (ma->dma_buf > mb->dma_buf)
212 return +1;
213 return 0;
214 }
215
216 static int
217 compare_dmabuf_key(void *cookie, const void *vm, const void *vk)
218 {
219 const struct drm_prime_member *m = vm;
220 const struct dma_buf *const *kp = vk;
221
222 if (m->dma_buf < *kp)
223 return -1;
224 if (m->dma_buf > *kp)
225 return +1;
226 return 0;
227 }
228
229 static int
230 compare_handles(void *cookie, const void *va, const void *vb)
231 {
232 const struct drm_prime_member *ma = va;
233 const struct drm_prime_member *mb = vb;
234
235 if (ma->handle < mb->handle)
236 return -1;
237 if (ma->handle > mb->handle)
238 return +1;
239 return 0;
240 }
241
242 static int
243 compare_handle_key(void *cookie, const void *vm, const void *vk)
244 {
245 const struct drm_prime_member *m = vm;
246 const uint32_t *kp = vk;
247
248 if (m->handle < *kp)
249 return -1;
250 if (m->handle > *kp)
251 return +1;
252 return 0;
253 }
254
255 static const rb_tree_ops_t dmabuf_ops = {
256 .rbto_compare_nodes = compare_dmabufs,
257 .rbto_compare_key = compare_dmabuf_key,
258 .rbto_node_offset = offsetof(struct drm_prime_member, dmabuf_rb),
259 };
260
261 static const rb_tree_ops_t handle_ops = {
262 .rbto_compare_nodes = compare_handles,
263 .rbto_compare_key = compare_handle_key,
264 .rbto_node_offset = offsetof(struct drm_prime_member, handle_rb),
265 };
266 #endif
267
268 static int drm_prime_add_buf_handle(struct drm_prime_file_private *prime_fpriv,
269 struct dma_buf *dma_buf, uint32_t handle)
270 {
271 struct drm_prime_member *member;
272 #ifdef __NetBSD__
273 struct drm_prime_member *collision __diagused;
274 #else
275 struct rb_node **p, *rb;
276 #endif
277
278 member = kmalloc(sizeof(*member), GFP_KERNEL);
279 if (!member)
280 return -ENOMEM;
281
282 get_dma_buf(dma_buf);
283 member->dma_buf = dma_buf;
284 member->handle = handle;
285
286 #ifdef __NetBSD__
287 collision = rb_tree_insert_node(&prime_fpriv->dmabufs.rbr_tree,
288 member);
289 KASSERT(collision == NULL);
290 #else
291 rb = NULL;
292 p = &prime_fpriv->dmabufs.rb_node;
293 while (*p) {
294 struct drm_prime_member *pos;
295
296 rb = *p;
297 pos = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
298 if (dma_buf > pos->dma_buf)
299 p = &rb->rb_right;
300 else
301 p = &rb->rb_left;
302 }
303 rb_link_node(&member->dmabuf_rb, rb, p);
304 rb_insert_color(&member->dmabuf_rb, &prime_fpriv->dmabufs);
305 #endif
306
307 #ifdef __NetBSD__
308 collision = rb_tree_insert_node(&prime_fpriv->handles.rbr_tree,
309 member);
310 KASSERT(collision == NULL);
311 #else
312 rb = NULL;
313 p = &prime_fpriv->handles.rb_node;
314 while (*p) {
315 struct drm_prime_member *pos;
316
317 rb = *p;
318 pos = rb_entry(rb, struct drm_prime_member, handle_rb);
319 if (handle > pos->handle)
320 p = &rb->rb_right;
321 else
322 p = &rb->rb_left;
323 }
324 rb_link_node(&member->handle_rb, rb, p);
325 rb_insert_color(&member->handle_rb, &prime_fpriv->handles);
326 #endif
327
328 return 0;
329 }
330
331 static struct dma_buf *drm_prime_lookup_buf_by_handle(struct drm_prime_file_private *prime_fpriv,
332 uint32_t handle)
333 {
334 #ifdef __NetBSD__
335 return rb_tree_find_node(&prime_fpriv->handles.rbr_tree, &handle);
336 #else
337 struct rb_node *rb;
338
339 rb = prime_fpriv->handles.rb_node;
340 while (rb) {
341 struct drm_prime_member *member;
342
343 member = rb_entry(rb, struct drm_prime_member, handle_rb);
344 if (member->handle == handle)
345 return member->dma_buf;
346 else if (member->handle < handle)
347 rb = rb->rb_right;
348 else
349 rb = rb->rb_left;
350 }
351
352 return NULL;
353 #endif
354 }
355
356 static int drm_prime_lookup_buf_handle(struct drm_prime_file_private *prime_fpriv,
357 struct dma_buf *dma_buf,
358 uint32_t *handle)
359 {
360 #ifdef __NetBSD__
361 struct drm_prime_member *member;
362
363 member = rb_tree_find_node(&prime_fpriv->dmabufs.rbr_tree, &dma_buf);
364 if (member == NULL)
365 return -ENOENT;
366 *handle = member->handle;
367 return 0;
368 #else
369 struct rb_node *rb;
370
371 rb = prime_fpriv->dmabufs.rb_node;
372 while (rb) {
373 struct drm_prime_member *member;
374
375 member = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
376 if (member->dma_buf == dma_buf) {
377 *handle = member->handle;
378 return 0;
379 } else if (member->dma_buf < dma_buf) {
380 rb = rb->rb_right;
381 } else {
382 rb = rb->rb_left;
383 }
384 }
385
386 return -ENOENT;
387 #endif
388 }
389
390 void drm_prime_remove_buf_handle_locked(struct drm_prime_file_private *prime_fpriv,
391 struct dma_buf *dma_buf)
392 {
393 #ifdef __NetBSD__
394 struct drm_prime_member *member;
395
396 member = rb_tree_find_node(&prime_fpriv->dmabufs.rbr_tree, &dma_buf);
397 if (member != NULL) {
398 rb_tree_remove_node(&prime_fpriv->handles.rbr_tree, member);
399 rb_tree_remove_node(&prime_fpriv->dmabufs.rbr_tree, member);
400 }
401 #else
402 struct rb_node *rb;
403
404 rb = prime_fpriv->dmabufs.rb_node;
405 while (rb) {
406 struct drm_prime_member *member;
407
408 member = rb_entry(rb, struct drm_prime_member, dmabuf_rb);
409 if (member->dma_buf == dma_buf) {
410 rb_erase(&member->handle_rb, &prime_fpriv->handles);
411 rb_erase(&member->dmabuf_rb, &prime_fpriv->dmabufs);
412
413 dma_buf_put(dma_buf);
414 kfree(member);
415 return;
416 } else if (member->dma_buf < dma_buf) {
417 rb = rb->rb_right;
418 } else {
419 rb = rb->rb_left;
420 }
421 }
422 #endif
423 }
424
425 void drm_prime_init_file_private(struct drm_prime_file_private *prime_fpriv)
426 {
427 #ifdef __NetBSD__
428 linux_mutex_init(&prime_fpriv->lock);
429 #else
430 mutex_init(&prime_fpriv->lock);
431 #endif
432 #ifdef __NetBSD__
433 rb_tree_init(&prime_fpriv->dmabufs.rbr_tree, &dmabuf_ops);
434 rb_tree_init(&prime_fpriv->handles.rbr_tree, &handle_ops);
435 #else
436 prime_fpriv->dmabufs = RB_ROOT;
437 prime_fpriv->handles = RB_ROOT;
438 #endif
439 }
440
441 void drm_prime_destroy_file_private(struct drm_prime_file_private *prime_fpriv)
442 {
443 #ifdef __NetBSD__ /* XXX post-merge linux doesn't destroy it's lock now? */
444 linux_mutex_destroy(&prime_fpriv->lock);
445 #endif
446 /* by now drm_gem_release should've made sure the list is empty */
447 WARN_ON(!RB_EMPTY_ROOT(&prime_fpriv->dmabufs));
448 }
449
450 /**
451 * drm_gem_dmabuf_export - &dma_buf export implementation for GEM
452 * @dev: parent device for the exported dmabuf
453 * @exp_info: the export information used by dma_buf_export()
454 *
455 * This wraps dma_buf_export() for use by generic GEM drivers that are using
456 * drm_gem_dmabuf_release(). In addition to calling dma_buf_export(), we take
457 * a reference to the &drm_device and the exported &drm_gem_object (stored in
458 * &dma_buf_export_info.priv) which is released by drm_gem_dmabuf_release().
459 *
460 * Returns the new dmabuf.
461 */
462 struct dma_buf *drm_gem_dmabuf_export(struct drm_device *dev,
463 struct dma_buf_export_info *exp_info)
464 {
465 struct drm_gem_object *obj = exp_info->priv;
466 struct dma_buf *dma_buf;
467
468 dma_buf = dma_buf_export(exp_info);
469 if (IS_ERR(dma_buf))
470 return dma_buf;
471
472 drm_dev_get(dev);
473 drm_gem_object_get(obj);
474 dma_buf->file->f_mapping = obj->dev->anon_inode->i_mapping;
475
476 return dma_buf;
477 }
478 EXPORT_SYMBOL(drm_gem_dmabuf_export);
479
480 /**
481 * drm_gem_dmabuf_release - &dma_buf release implementation for GEM
482 * @dma_buf: buffer to be released
483 *
484 * Generic release function for dma_bufs exported as PRIME buffers. GEM drivers
485 * must use this in their &dma_buf_ops structure as the release callback.
486 * drm_gem_dmabuf_release() should be used in conjunction with
487 * drm_gem_dmabuf_export().
488 */
489 void drm_gem_dmabuf_release(struct dma_buf *dma_buf)
490 {
491 struct drm_gem_object *obj = dma_buf->priv;
492 struct drm_device *dev = obj->dev;
493
494 /* drop the reference on the export fd holds */
495 drm_gem_object_put_unlocked(obj);
496
497 drm_dev_put(dev);
498 }
499 EXPORT_SYMBOL(drm_gem_dmabuf_release);
500
501 /**
502 * drm_gem_prime_fd_to_handle - PRIME import function for GEM drivers
503 * @dev: dev to export the buffer from
504 * @file_priv: drm file-private structure
505 * @prime_fd: fd id of the dma-buf which should be imported
506 * @handle: pointer to storage for the handle of the imported buffer object
507 *
508 * This is the PRIME import function which must be used mandatorily by GEM
509 * drivers to ensure correct lifetime management of the underlying GEM object.
510 * The actual importing of GEM object from the dma-buf is done through the
511 * &drm_driver.gem_prime_import driver callback.
512 *
513 * Returns 0 on success or a negative error code on failure.
514 */
515 int drm_gem_prime_fd_to_handle(struct drm_device *dev,
516 struct drm_file *file_priv, int prime_fd,
517 uint32_t *handle)
518 {
519 struct dma_buf *dma_buf;
520 struct drm_gem_object *obj;
521 int ret;
522
523 dma_buf = dma_buf_get(prime_fd);
524 if (IS_ERR(dma_buf))
525 return PTR_ERR(dma_buf);
526
527 mutex_lock(&file_priv->prime.lock);
528
529 ret = drm_prime_lookup_buf_handle(&file_priv->prime,
530 dma_buf, handle);
531 if (ret == 0)
532 goto out_put;
533
534 /* never seen this one, need to import */
535 mutex_lock(&dev->object_name_lock);
536 if (dev->driver->gem_prime_import)
537 obj = dev->driver->gem_prime_import(dev, dma_buf);
538 else
539 obj = drm_gem_prime_import(dev, dma_buf);
540 if (IS_ERR(obj)) {
541 ret = PTR_ERR(obj);
542 goto out_unlock;
543 }
544
545 if (obj->dma_buf) {
546 WARN_ON(obj->dma_buf != dma_buf);
547 } else {
548 obj->dma_buf = dma_buf;
549 get_dma_buf(dma_buf);
550 }
551
552 /* _handle_create_tail unconditionally unlocks dev->object_name_lock. */
553 ret = drm_gem_handle_create_tail(file_priv, obj, handle);
554 drm_gem_object_put_unlocked(obj);
555 if (ret)
556 goto out_put;
557
558 ret = drm_prime_add_buf_handle(&file_priv->prime,
559 dma_buf, *handle);
560 mutex_unlock(&file_priv->prime.lock);
561 if (ret)
562 goto fail;
563
564 dma_buf_put(dma_buf);
565
566 return 0;
567
568 fail:
569 /* hmm, if driver attached, we are relying on the free-object path
570 * to detach.. which seems ok..
571 */
572 drm_gem_handle_delete(file_priv, *handle);
573 dma_buf_put(dma_buf);
574 return ret;
575
576 out_unlock:
577 mutex_unlock(&dev->object_name_lock);
578 out_put:
579 mutex_unlock(&file_priv->prime.lock);
580 dma_buf_put(dma_buf);
581 return ret;
582 }
583 EXPORT_SYMBOL(drm_gem_prime_fd_to_handle);
584
585 int drm_prime_fd_to_handle_ioctl(struct drm_device *dev, void *data,
586 struct drm_file *file_priv)
587 {
588 struct drm_prime_handle *args = data;
589
590 if (!dev->driver->prime_fd_to_handle)
591 return -ENOSYS;
592
593 return dev->driver->prime_fd_to_handle(dev, file_priv,
594 args->fd, &args->handle);
595 }
596
597 static struct dma_buf *export_and_register_object(struct drm_device *dev,
598 struct drm_gem_object *obj,
599 uint32_t flags)
600 {
601 struct dma_buf *dmabuf;
602
603 /* prevent races with concurrent gem_close. */
604 if (obj->handle_count == 0) {
605 dmabuf = ERR_PTR(-ENOENT);
606 return dmabuf;
607 }
608
609 if (obj->funcs && obj->funcs->export)
610 dmabuf = obj->funcs->export(obj, flags);
611 else if (dev->driver->gem_prime_export)
612 dmabuf = dev->driver->gem_prime_export(obj, flags);
613 else
614 dmabuf = drm_gem_prime_export(obj, flags);
615 if (IS_ERR(dmabuf)) {
616 /* normally the created dma-buf takes ownership of the ref,
617 * but if that fails then drop the ref
618 */
619 return dmabuf;
620 }
621
622 /*
623 * Note that callers do not need to clean up the export cache
624 * since the check for obj->handle_count guarantees that someone
625 * will clean it up.
626 */
627 obj->dma_buf = dmabuf;
628 get_dma_buf(obj->dma_buf);
629
630 return dmabuf;
631 }
632
633 /**
634 * drm_gem_prime_handle_to_fd - PRIME export function for GEM drivers
635 * @dev: dev to export the buffer from
636 * @file_priv: drm file-private structure
637 * @handle: buffer handle to export
638 * @flags: flags like DRM_CLOEXEC
639 * @prime_fd: pointer to storage for the fd id of the create dma-buf
640 *
641 * This is the PRIME export function which must be used mandatorily by GEM
642 * drivers to ensure correct lifetime management of the underlying GEM object.
643 * The actual exporting from GEM object to a dma-buf is done through the
644 * &drm_driver.gem_prime_export driver callback.
645 */
646 int drm_gem_prime_handle_to_fd(struct drm_device *dev,
647 struct drm_file *file_priv, uint32_t handle,
648 uint32_t flags,
649 int *prime_fd)
650 {
651 struct drm_gem_object *obj;
652 int ret = 0;
653 struct dma_buf *dmabuf;
654
655 mutex_lock(&file_priv->prime.lock);
656 obj = drm_gem_object_lookup(file_priv, handle);
657 if (!obj) {
658 ret = -ENOENT;
659 goto out_unlock;
660 }
661
662 dmabuf = drm_prime_lookup_buf_by_handle(&file_priv->prime, handle);
663 if (dmabuf) {
664 get_dma_buf(dmabuf);
665 goto out_have_handle;
666 }
667
668 mutex_lock(&dev->object_name_lock);
669 /* re-export the original imported object */
670 if (obj->import_attach) {
671 dmabuf = obj->import_attach->dmabuf;
672 get_dma_buf(dmabuf);
673 goto out_have_obj;
674 }
675
676 if (obj->dma_buf) {
677 get_dma_buf(obj->dma_buf);
678 dmabuf = obj->dma_buf;
679 goto out_have_obj;
680 }
681
682 dmabuf = export_and_register_object(dev, obj, flags);
683 if (IS_ERR(dmabuf)) {
684 /* normally the created dma-buf takes ownership of the ref,
685 * but if that fails then drop the ref
686 */
687 ret = PTR_ERR(dmabuf);
688 mutex_unlock(&dev->object_name_lock);
689 goto out;
690 }
691
692 out_have_obj:
693 /*
694 * If we've exported this buffer then cheat and add it to the import list
695 * so we get the correct handle back. We must do this under the
696 * protection of dev->object_name_lock to ensure that a racing gem close
697 * ioctl doesn't miss to remove this buffer handle from the cache.
698 */
699 ret = drm_prime_add_buf_handle(&file_priv->prime,
700 dmabuf, handle);
701 mutex_unlock(&dev->object_name_lock);
702 if (ret)
703 goto fail_put_dmabuf;
704
705 out_have_handle:
706 ret = dma_buf_fd(dmabuf, flags);
707 /*
708 * We must _not_ remove the buffer from the handle cache since the newly
709 * created dma buf is already linked in the global obj->dma_buf pointer,
710 * and that is invariant as long as a userspace gem handle exists.
711 * Closing the handle will clean out the cache anyway, so we don't leak.
712 */
713 if (ret < 0) {
714 goto fail_put_dmabuf;
715 } else {
716 *prime_fd = ret;
717 ret = 0;
718 }
719
720 goto out;
721
722 fail_put_dmabuf:
723 dma_buf_put(dmabuf);
724 out:
725 drm_gem_object_put_unlocked(obj);
726 out_unlock:
727 mutex_unlock(&file_priv->prime.lock);
728
729 return ret;
730 }
731 EXPORT_SYMBOL(drm_gem_prime_handle_to_fd);
732
733 int drm_prime_handle_to_fd_ioctl(struct drm_device *dev, void *data,
734 struct drm_file *file_priv)
735 {
736 struct drm_prime_handle *args = data;
737
738 if (!dev->driver->prime_handle_to_fd)
739 return -ENOSYS;
740
741 /* check flags are valid */
742 if (args->flags & ~(DRM_CLOEXEC | DRM_RDWR))
743 return -EINVAL;
744
745 return dev->driver->prime_handle_to_fd(dev, file_priv,
746 args->handle, args->flags, &args->fd);
747 }
748
749 /**
750 * DOC: PRIME Helpers
751 *
752 * Drivers can implement &drm_gem_object_funcs.export and
753 * &drm_driver.gem_prime_import in terms of simpler APIs by using the helper
754 * functions drm_gem_prime_export() and drm_gem_prime_import(). These functions
755 * implement dma-buf support in terms of some lower-level helpers, which are
756 * again exported for drivers to use individually:
757 *
758 * Exporting buffers
759 * ~~~~~~~~~~~~~~~~~
760 *
761 * Optional pinning of buffers is handled at dma-buf attach and detach time in
762 * drm_gem_map_attach() and drm_gem_map_detach(). Backing storage itself is
763 * handled by drm_gem_map_dma_buf() and drm_gem_unmap_dma_buf(), which relies on
764 * &drm_gem_object_funcs.get_sg_table.
765 *
766 * For kernel-internal access there's drm_gem_dmabuf_vmap() and
767 * drm_gem_dmabuf_vunmap(). Userspace mmap support is provided by
768 * drm_gem_dmabuf_mmap().
769 *
770 * Note that these export helpers can only be used if the underlying backing
771 * storage is fully coherent and either permanently pinned, or it is safe to pin
772 * it indefinitely.
773 *
774 * FIXME: The underlying helper functions are named rather inconsistently.
775 *
776 * Exporting buffers
777 * ~~~~~~~~~~~~~~~~~
778 *
779 * Importing dma-bufs using drm_gem_prime_import() relies on
780 * &drm_driver.gem_prime_import_sg_table.
781 *
782 * Note that similarly to the export helpers this permanently pins the
783 * underlying backing storage. Which is ok for scanout, but is not the best
784 * option for sharing lots of buffers for rendering.
785 */
786
787 /**
788 * drm_gem_map_attach - dma_buf attach implementation for GEM
789 * @dma_buf: buffer to attach device to
790 * @attach: buffer attachment data
791 *
792 * Calls &drm_gem_object_funcs.pin for device specific handling. This can be
793 * used as the &dma_buf_ops.attach callback. Must be used together with
794 * drm_gem_map_detach().
795 *
796 * Returns 0 on success, negative error code on failure.
797 */
798 int drm_gem_map_attach(struct dma_buf *dma_buf,
799 struct dma_buf_attachment *attach)
800 {
801 struct drm_gem_object *obj = dma_buf->priv;
802
803 return drm_gem_pin(obj);
804 }
805 EXPORT_SYMBOL(drm_gem_map_attach);
806
807 /**
808 * drm_gem_map_detach - dma_buf detach implementation for GEM
809 * @dma_buf: buffer to detach from
810 * @attach: attachment to be detached
811 *
812 * Calls &drm_gem_object_funcs.pin for device specific handling. Cleans up
813 * &dma_buf_attachment from drm_gem_map_attach(). This can be used as the
814 * &dma_buf_ops.detach callback.
815 */
816 void drm_gem_map_detach(struct dma_buf *dma_buf,
817 struct dma_buf_attachment *attach)
818 {
819 struct drm_gem_object *obj = dma_buf->priv;
820
821 drm_gem_unpin(obj);
822 }
823 EXPORT_SYMBOL(drm_gem_map_detach);
824
825 /**
826 * drm_gem_map_dma_buf - map_dma_buf implementation for GEM
827 * @attach: attachment whose scatterlist is to be returned
828 * @dir: direction of DMA transfer
829 *
830 * Calls &drm_gem_object_funcs.get_sg_table and then maps the scatterlist. This
831 * can be used as the &dma_buf_ops.map_dma_buf callback. Should be used together
832 * with drm_gem_unmap_dma_buf().
833 *
834 * Returns:sg_table containing the scatterlist to be returned; returns ERR_PTR
835 * on error. May return -EINTR if it is interrupted by a signal.
836 */
837 struct sg_table *drm_gem_map_dma_buf(struct dma_buf_attachment *attach,
838 enum dma_data_direction dir)
839 {
840 struct drm_gem_object *obj = attach->dmabuf->priv;
841 struct sg_table *sgt;
842
843 if (WARN_ON(dir == DMA_NONE))
844 return ERR_PTR(-EINVAL);
845
846 if (obj->funcs)
847 sgt = obj->funcs->get_sg_table(obj);
848 else
849 sgt = obj->dev->driver->gem_prime_get_sg_table(obj);
850
851 if (!dma_map_sg_attrs(attach->dev, sgt->sgl, sgt->nents, dir,
852 DMA_ATTR_SKIP_CPU_SYNC)) {
853 sg_free_table(sgt);
854 kfree(sgt);
855 sgt = ERR_PTR(-ENOMEM);
856 }
857
858 return sgt;
859 }
860 EXPORT_SYMBOL(drm_gem_map_dma_buf);
861
862 /**
863 * drm_gem_unmap_dma_buf - unmap_dma_buf implementation for GEM
864 * @attach: attachment to unmap buffer from
865 * @sgt: scatterlist info of the buffer to unmap
866 * @dir: direction of DMA transfer
867 *
868 * This can be used as the &dma_buf_ops.unmap_dma_buf callback.
869 */
870 void drm_gem_unmap_dma_buf(struct dma_buf_attachment *attach,
871 struct sg_table *sgt,
872 enum dma_data_direction dir)
873 {
874 if (!sgt)
875 return;
876
877 dma_unmap_sg_attrs(attach->dev, sgt->sgl, sgt->nents, dir,
878 DMA_ATTR_SKIP_CPU_SYNC);
879 sg_free_table(sgt);
880 kfree(sgt);
881 }
882 EXPORT_SYMBOL(drm_gem_unmap_dma_buf);
883
884 /**
885 * drm_gem_dmabuf_vmap - dma_buf vmap implementation for GEM
886 * @dma_buf: buffer to be mapped
887 *
888 * Sets up a kernel virtual mapping. This can be used as the &dma_buf_ops.vmap
889 * callback. Calls into &drm_gem_object_funcs.vmap for device specific handling.
890 *
891 * Returns the kernel virtual address or NULL on failure.
892 */
893 void *drm_gem_dmabuf_vmap(struct dma_buf *dma_buf)
894 {
895 struct drm_gem_object *obj = dma_buf->priv;
896 void *vaddr;
897
898 vaddr = drm_gem_vmap(obj);
899 if (IS_ERR(vaddr))
900 vaddr = NULL;
901
902 return vaddr;
903 }
904 EXPORT_SYMBOL(drm_gem_dmabuf_vmap);
905
906 /**
907 * drm_gem_dmabuf_vunmap - dma_buf vunmap implementation for GEM
908 * @dma_buf: buffer to be unmapped
909 * @vaddr: the virtual address of the buffer
910 *
911 * Releases a kernel virtual mapping. This can be used as the
912 * &dma_buf_ops.vunmap callback. Calls into &drm_gem_object_funcs.vunmap for device specific handling.
913 */
914 void drm_gem_dmabuf_vunmap(struct dma_buf *dma_buf, void *vaddr)
915 {
916 struct drm_gem_object *obj = dma_buf->priv;
917
918 drm_gem_vunmap(obj, vaddr);
919 }
920 EXPORT_SYMBOL(drm_gem_dmabuf_vunmap);
921
922 /**
923 * drm_gem_prime_mmap - PRIME mmap function for GEM drivers
924 * @obj: GEM object
925 * @vma: Virtual address range
926 *
927 * This function sets up a userspace mapping for PRIME exported buffers using
928 * the same codepath that is used for regular GEM buffer mapping on the DRM fd.
929 * The fake GEM offset is added to vma->vm_pgoff and &drm_driver->fops->mmap is
930 * called to set up the mapping.
931 *
932 * Drivers can use this as their &drm_driver.gem_prime_mmap callback.
933 */
934 int drm_gem_prime_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
935 {
936 struct drm_file *priv;
937 struct file *fil;
938 int ret;
939
940 /* Add the fake offset */
941 vma->vm_pgoff += drm_vma_node_start(&obj->vma_node);
942
943 if (obj->funcs && obj->funcs->mmap) {
944 ret = obj->funcs->mmap(obj, vma);
945 if (ret)
946 return ret;
947 vma->vm_private_data = obj;
948 drm_gem_object_get(obj);
949 return 0;
950 }
951
952 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
953 fil = kzalloc(sizeof(*fil), GFP_KERNEL);
954 if (!priv || !fil) {
955 ret = -ENOMEM;
956 goto out;
957 }
958
959 /* Used by drm_gem_mmap() to lookup the GEM object */
960 priv->minor = obj->dev->primary;
961 fil->private_data = priv;
962
963 ret = drm_vma_node_allow(&obj->vma_node, priv);
964 if (ret)
965 goto out;
966
967 ret = obj->dev->driver->fops->mmap(fil, vma);
968
969 drm_vma_node_revoke(&obj->vma_node, priv);
970 out:
971 kfree(priv);
972 kfree(fil);
973
974 return ret;
975 }
976 EXPORT_SYMBOL(drm_gem_prime_mmap);
977
978 /**
979 * drm_gem_dmabuf_mmap - dma_buf mmap implementation for GEM
980 * @dma_buf: buffer to be mapped
981 * @vma: virtual address range
982 *
983 * Provides memory mapping for the buffer. This can be used as the
984 * &dma_buf_ops.mmap callback. It just forwards to &drm_driver.gem_prime_mmap,
985 * which should be set to drm_gem_prime_mmap().
986 *
987 * FIXME: There's really no point to this wrapper, drivers which need anything
988 * else but drm_gem_prime_mmap can roll their own &dma_buf_ops.mmap callback.
989 *
990 * Returns 0 on success or a negative error code on failure.
991 */
992 #ifdef __NetBSD__
993 static int
994 drm_gem_dmabuf_mmap(struct dma_buf *dma_buf, off_t *offp, size_t size,
995 int prot, int *flagsp, int *advicep, struct uvm_object **uobjp,
996 int *maxprotp)
997 #else
998 int drm_gem_dmabuf_mmap(struct dma_buf *dma_buf, struct vm_area_struct *vma)
999 #endif
1000 {
1001 struct drm_gem_object *obj = dma_buf->priv;
1002 struct drm_device *dev = obj->dev;
1003
1004 if (!dev->driver->gem_prime_mmap)
1005 return -ENOSYS;
1006
1007 #ifdef __NetBSD__
1008 return dev->driver->gem_prime_mmap(obj, offp, size, prot, flagsp,
1009 advicep, uobjp, maxprotp);
1010 #else
1011 return dev->driver->gem_prime_mmap(obj, vma);
1012 #endif
1013 }
1014 EXPORT_SYMBOL(drm_gem_dmabuf_mmap);
1015
1016 static const struct dma_buf_ops drm_gem_prime_dmabuf_ops = {
1017 .cache_sgt_mapping = true,
1018 .attach = drm_gem_map_attach,
1019 .detach = drm_gem_map_detach,
1020 .map_dma_buf = drm_gem_map_dma_buf,
1021 .unmap_dma_buf = drm_gem_unmap_dma_buf,
1022 .release = drm_gem_dmabuf_release,
1023 .mmap = drm_gem_dmabuf_mmap,
1024 .vmap = drm_gem_dmabuf_vmap,
1025 .vunmap = drm_gem_dmabuf_vunmap,
1026 };
1027
1028 /**
1029 * drm_prime_pages_to_sg - converts a page array into an sg list
1030 * @pages: pointer to the array of page pointers to convert
1031 * @nr_pages: length of the page vector
1032 *
1033 * This helper creates an sg table object from a set of pages
1034 * the driver is responsible for mapping the pages into the
1035 * importers address space for use with dma_buf itself.
1036 *
1037 * This is useful for implementing &drm_gem_object_funcs.get_sg_table.
1038 */
1039 struct sg_table *drm_prime_pages_to_sg(struct page **pages, unsigned int nr_pages)
1040 {
1041 struct sg_table *sg = NULL;
1042 int ret;
1043
1044 sg = kmalloc(sizeof(struct sg_table), GFP_KERNEL);
1045 if (!sg) {
1046 ret = -ENOMEM;
1047 goto out;
1048 }
1049
1050 ret = sg_alloc_table_from_pages(sg, pages, nr_pages, 0,
1051 nr_pages << PAGE_SHIFT, GFP_KERNEL);
1052 if (ret)
1053 goto out;
1054
1055 return sg;
1056 out:
1057 kfree(sg);
1058 return ERR_PTR(ret);
1059 }
1060 EXPORT_SYMBOL(drm_prime_pages_to_sg);
1061
1062 /**
1063 * drm_gem_prime_export - helper library implementation of the export callback
1064 * @obj: GEM object to export
1065 * @flags: flags like DRM_CLOEXEC and DRM_RDWR
1066 *
1067 * This is the implementation of the &drm_gem_object_funcs.export functions for GEM drivers
1068 * using the PRIME helpers. It is used as the default in
1069 * drm_gem_prime_handle_to_fd().
1070 */
1071 struct dma_buf *drm_gem_prime_export(struct drm_gem_object *obj,
1072 int flags)
1073 {
1074 struct drm_device *dev = obj->dev;
1075 struct dma_buf_export_info exp_info = {
1076 #ifndef __NetBSD__
1077 .exp_name = KBUILD_MODNAME, /* white lie for debug */
1078 .owner = dev->driver->fops->owner,
1079 #endif
1080 .ops = &drm_gem_prime_dmabuf_ops,
1081 .size = obj->size,
1082 .flags = flags,
1083 .priv = obj,
1084 .resv = obj->resv,
1085 };
1086
1087 return drm_gem_dmabuf_export(dev, &exp_info);
1088 }
1089 EXPORT_SYMBOL(drm_gem_prime_export);
1090
1091 /**
1092 * drm_gem_prime_import_dev - core implementation of the import callback
1093 * @dev: drm_device to import into
1094 * @dma_buf: dma-buf object to import
1095 * @attach_dev: struct device to dma_buf attach
1096 *
1097 * This is the core of drm_gem_prime_import(). It's designed to be called by
1098 * drivers who want to use a different device structure than &drm_device.dev for
1099 * attaching via dma_buf. This function calls
1100 * &drm_driver.gem_prime_import_sg_table internally.
1101 *
1102 * Drivers must arrange to call drm_prime_gem_destroy() from their
1103 * &drm_gem_object_funcs.free hook when using this function.
1104 */
1105 struct drm_gem_object *drm_gem_prime_import_dev(struct drm_device *dev,
1106 struct dma_buf *dma_buf,
1107 struct device *attach_dev)
1108 {
1109 struct dma_buf_attachment *attach;
1110 struct sg_table *sgt;
1111 struct drm_gem_object *obj;
1112 int ret;
1113
1114 if (dma_buf->ops == &drm_gem_prime_dmabuf_ops) {
1115 obj = dma_buf->priv;
1116 if (obj->dev == dev) {
1117 /*
1118 * Importing dmabuf exported from out own gem increases
1119 * refcount on gem itself instead of f_count of dmabuf.
1120 */
1121 drm_gem_object_get(obj);
1122 return obj;
1123 }
1124 }
1125
1126 if (!dev->driver->gem_prime_import_sg_table)
1127 return ERR_PTR(-EINVAL);
1128
1129 attach = dma_buf_attach(dma_buf, attach_dev);
1130 if (IS_ERR(attach))
1131 return ERR_CAST(attach);
1132
1133 get_dma_buf(dma_buf);
1134
1135 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
1136 if (IS_ERR(sgt)) {
1137 ret = PTR_ERR(sgt);
1138 goto fail_detach;
1139 }
1140
1141 obj = dev->driver->gem_prime_import_sg_table(dev, attach, sgt);
1142 if (IS_ERR(obj)) {
1143 ret = PTR_ERR(obj);
1144 goto fail_unmap;
1145 }
1146
1147 obj->import_attach = attach;
1148 obj->resv = dma_buf->resv;
1149
1150 return obj;
1151
1152 fail_unmap:
1153 dma_buf_unmap_attachment(attach, sgt, DMA_BIDIRECTIONAL);
1154 fail_detach:
1155 dma_buf_detach(dma_buf, attach);
1156 dma_buf_put(dma_buf);
1157
1158 return ERR_PTR(ret);
1159 }
1160 EXPORT_SYMBOL(drm_gem_prime_import_dev);
1161
1162 /**
1163 * drm_gem_prime_import - helper library implementation of the import callback
1164 * @dev: drm_device to import into
1165 * @dma_buf: dma-buf object to import
1166 *
1167 * This is the implementation of the gem_prime_import functions for GEM drivers
1168 * using the PRIME helpers. Drivers can use this as their
1169 * &drm_driver.gem_prime_import implementation. It is used as the default
1170 * implementation in drm_gem_prime_fd_to_handle().
1171 *
1172 * Drivers must arrange to call drm_prime_gem_destroy() from their
1173 * &drm_gem_object_funcs.free hook when using this function.
1174 */
1175 struct drm_gem_object *drm_gem_prime_import(struct drm_device *dev,
1176 struct dma_buf *dma_buf)
1177 {
1178 return drm_gem_prime_import_dev(dev, dma_buf, dev->dev);
1179 }
1180 EXPORT_SYMBOL(drm_gem_prime_import);
1181
1182 #ifdef __NetBSD__
1183 /**
1184
1185 struct sg_table *
1186 drm_prime_bus_dmamem_to_sg(bus_dma_tag_t dmat, const bus_dma_segment_t *segs,
1187 int nsegs)
1188 {
1189 struct sg_table *sg;
1190 int ret;
1191
1192 sg = kmalloc(sizeof(*sg), GFP_KERNEL);
1193 if (sg == NULL) {
1194 ret = -ENOMEM;
1195 goto out;
1196 }
1197
1198 ret = sg_alloc_table_from_bus_dmamem(sg, dmat, segs, nsegs,
1199 GFP_KERNEL);
1200 if (ret)
1201 goto out;
1202
1203 return sg;
1204 out:
1205 kfree(sg);
1206 return ERR_PTR(ret);
1207 }
1208
1209 struct sg_table *
1210 drm_prime_pglist_to_sg(struct pglist *pglist, unsigned npages)
1211 {
1212 struct sg_table *sg;
1213 int ret;
1214
1215 sg = kmalloc(sizeof(*sg), GFP_KERNEL);
1216 if (sg == NULL) {
1217 ret = -ENOMEM;
1218 goto out;
1219 }
1220
1221 ret = sg_alloc_table_from_pglist(sg, pglist, 0, npages << PAGE_SHIFT,
1222 npages, GFP_KERNEL);
1223 if (ret)
1224 goto out;
1225
1226 return sg;
1227
1228 out:
1229 kfree(sg);
1230 return ERR_PTR(ret);
1231 }
1232
1233 bus_size_t
1234 drm_prime_sg_size(struct sg_table *sg)
1235 {
1236
1237 return sg->sgt_npgs << PAGE_SHIFT;
1238 }
1239
1240 void
1241 drm_prime_sg_free(struct sg_table *sg)
1242 {
1243
1244 sg_free_table(sg);
1245 kfree(sg);
1246 }
1247
1248 int
1249 drm_prime_sg_to_bus_dmamem(bus_dma_tag_t dmat, bus_dma_segment_t *segs,
1250 int nsegs, int *rsegs, const struct sg_table *sgt)
1251 {
1252
1253 /* XXX errno NetBSD->Linux */
1254 return -bus_dmamem_import_pages(dmat, segs, nsegs, rsegs, sgt->sgt_pgs,
1255 sgt->sgt_npgs);
1256 }
1257
1258 int
1259 drm_prime_bus_dmamap_load_sgt(bus_dma_tag_t dmat, bus_dmamap_t map,
1260 struct sg_table *sgt)
1261 {
1262 bus_dma_segment_t *segs;
1263 bus_size_t size = drm_prime_sg_size(sgt);
1264 int nsegs = sgt->sgt_npgs;
1265 int ret;
1266
1267 segs = kcalloc(sgt->sgt_npgs, sizeof(segs[0]), GFP_KERNEL);
1268 if (segs == NULL) {
1269 ret = -ENOMEM;
1270 goto out0;
1271 }
1272
1273 ret = drm_prime_sg_to_bus_dmamem(dmat, segs, nsegs, &nsegs, sgt);
1274 if (ret)
1275 goto out1;
1276 KASSERT(nsegs <= sgt->sgt_npgs);
1277
1278 /* XXX errno NetBSD->Linux */
1279 ret = -bus_dmamap_load_raw(dmat, map, segs, nsegs, size,
1280 BUS_DMA_NOWAIT);
1281 if (ret)
1282 goto out1;
1283
1284 out1: kfree(segs);
1285 out0: return ret;
1286 }
1287
1288 bool
1289 drm_prime_sg_importable(bus_dma_tag_t dmat, struct sg_table *sgt)
1290 {
1291 unsigned i;
1292
1293 for (i = 0; i < sgt->sgt_npgs; i++) {
1294 if (bus_dmatag_bounces_paddr(dmat, sgt->sgt_pgs[i]))
1295 return false;
1296 }
1297 return true;
1298 }
1299
1300 #else /* !__NetBSD__ */
1301
1302 /**
1303 * drm_prime_sg_to_page_addr_arrays - convert an sg table into a page array
1304 * @sgt: scatter-gather table to convert
1305 * @pages: optional array of page pointers to store the page array in
1306 * @addrs: optional array to store the dma bus address of each page
1307 * @max_entries: size of both the passed-in arrays
1308 *
1309 * Exports an sg table into an array of pages and addresses. This is currently
1310 * required by the TTM driver in order to do correct fault handling.
1311 *
1312 * Drivers can use this in their &drm_driver.gem_prime_import_sg_table
1313 * implementation.
1314 */
1315 int drm_prime_sg_to_page_addr_arrays(struct sg_table *sgt, struct page **pages,
1316 dma_addr_t *addrs, int max_entries)
1317 {
1318 unsigned count;
1319 struct scatterlist *sg;
1320 struct page *page;
1321 u32 len, index;
1322 dma_addr_t addr;
1323
1324 index = 0;
1325 for_each_sg(sgt->sgl, sg, sgt->nents, count) {
1326 len = sg->length;
1327 page = sg_page(sg);
1328 addr = sg_dma_address(sg);
1329
1330 while (len > 0) {
1331 if (WARN_ON(index >= max_entries))
1332 return -1;
1333 if (pages)
1334 pages[index] = page;
1335 if (addrs)
1336 addrs[index] = addr;
1337
1338 page++;
1339 addr += PAGE_SIZE;
1340 len -= PAGE_SIZE;
1341 index++;
1342 }
1343 }
1344 return 0;
1345 }
1346 EXPORT_SYMBOL(drm_prime_sg_to_page_addr_arrays);
1347
1348 #endif /* __NetBSD__ */
1349
1350 /**
1351 * drm_prime_gem_destroy - helper to clean up a PRIME-imported GEM object
1352 * @obj: GEM object which was created from a dma-buf
1353 * @sg: the sg-table which was pinned at import time
1354 *
1355 * This is the cleanup functions which GEM drivers need to call when they use
1356 * drm_gem_prime_import() or drm_gem_prime_import_dev() to import dma-bufs.
1357 */
1358 void drm_prime_gem_destroy(struct drm_gem_object *obj, struct sg_table *sg)
1359 {
1360 struct dma_buf_attachment *attach;
1361 struct dma_buf *dma_buf;
1362 attach = obj->import_attach;
1363 if (sg)
1364 dma_buf_unmap_attachment(attach, sg, DMA_BIDIRECTIONAL);
1365 dma_buf = attach->dmabuf;
1366 dma_buf_detach(attach->dmabuf, attach);
1367 /* remove the reference */
1368 dma_buf_put(dma_buf);
1369 }
1370 EXPORT_SYMBOL(drm_prime_gem_destroy);
1371