Home | History | Annotate | Line # | Download | only in drm
drm_rect.c revision 1.1.1.2
      1 /*	$NetBSD: drm_rect.c,v 1.1.1.2 2018/08/27 01:34:43 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 2011-2013 Intel Corporation
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the "Software"),
      8  * to deal in the Software without restriction, including without limitation
      9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     10  * and/or sell copies of the Software, and to permit persons to whom the
     11  * Software is furnished to do so, subject to the following conditions:
     12  *
     13  * The above copyright notice and this permission notice (including the next
     14  * paragraph) shall be included in all copies or substantial portions of the
     15  * Software.
     16  *
     17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     23  * SOFTWARE.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: drm_rect.c,v 1.1.1.2 2018/08/27 01:34:43 riastradh Exp $");
     28 
     29 #include <linux/errno.h>
     30 #include <linux/export.h>
     31 #include <linux/kernel.h>
     32 #include <drm/drmP.h>
     33 #include <drm/drm_rect.h>
     34 
     35 /**
     36  * drm_rect_intersect - intersect two rectangles
     37  * @r1: first rectangle
     38  * @r2: second rectangle
     39  *
     40  * Calculate the intersection of rectangles @r1 and @r2.
     41  * @r1 will be overwritten with the intersection.
     42  *
     43  * RETURNS:
     44  * %true if rectangle @r1 is still visible after the operation,
     45  * %false otherwise.
     46  */
     47 bool drm_rect_intersect(struct drm_rect *r1, const struct drm_rect *r2)
     48 {
     49 	r1->x1 = max(r1->x1, r2->x1);
     50 	r1->y1 = max(r1->y1, r2->y1);
     51 	r1->x2 = min(r1->x2, r2->x2);
     52 	r1->y2 = min(r1->y2, r2->y2);
     53 
     54 	return drm_rect_visible(r1);
     55 }
     56 EXPORT_SYMBOL(drm_rect_intersect);
     57 
     58 /**
     59  * drm_rect_clip_scaled - perform a scaled clip operation
     60  * @src: source window rectangle
     61  * @dst: destination window rectangle
     62  * @clip: clip rectangle
     63  * @hscale: horizontal scaling factor
     64  * @vscale: vertical scaling factor
     65  *
     66  * Clip rectangle @dst by rectangle @clip. Clip rectangle @src by the
     67  * same amounts multiplied by @hscale and @vscale.
     68  *
     69  * RETURNS:
     70  * %true if rectangle @dst is still visible after being clipped,
     71  * %false otherwise
     72  */
     73 bool drm_rect_clip_scaled(struct drm_rect *src, struct drm_rect *dst,
     74 			  const struct drm_rect *clip,
     75 			  int hscale, int vscale)
     76 {
     77 	int diff;
     78 
     79 	diff = clip->x1 - dst->x1;
     80 	if (diff > 0) {
     81 		int64_t tmp = src->x1 + (int64_t) diff * hscale;
     82 		src->x1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
     83 	}
     84 	diff = clip->y1 - dst->y1;
     85 	if (diff > 0) {
     86 		int64_t tmp = src->y1 + (int64_t) diff * vscale;
     87 		src->y1 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
     88 	}
     89 	diff = dst->x2 - clip->x2;
     90 	if (diff > 0) {
     91 		int64_t tmp = src->x2 - (int64_t) diff * hscale;
     92 		src->x2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
     93 	}
     94 	diff = dst->y2 - clip->y2;
     95 	if (diff > 0) {
     96 		int64_t tmp = src->y2 - (int64_t) diff * vscale;
     97 		src->y2 = clamp_t(int64_t, tmp, INT_MIN, INT_MAX);
     98 	}
     99 
    100 	return drm_rect_intersect(dst, clip);
    101 }
    102 EXPORT_SYMBOL(drm_rect_clip_scaled);
    103 
    104 static int drm_calc_scale(int src, int dst)
    105 {
    106 	int scale = 0;
    107 
    108 	if (src < 0 || dst < 0)
    109 		return -EINVAL;
    110 
    111 	if (dst == 0)
    112 		return 0;
    113 
    114 	scale = src / dst;
    115 
    116 	return scale;
    117 }
    118 
    119 /**
    120  * drm_rect_calc_hscale - calculate the horizontal scaling factor
    121  * @src: source window rectangle
    122  * @dst: destination window rectangle
    123  * @min_hscale: minimum allowed horizontal scaling factor
    124  * @max_hscale: maximum allowed horizontal scaling factor
    125  *
    126  * Calculate the horizontal scaling factor as
    127  * (@src width) / (@dst width).
    128  *
    129  * RETURNS:
    130  * The horizontal scaling factor, or errno of out of limits.
    131  */
    132 int drm_rect_calc_hscale(const struct drm_rect *src,
    133 			 const struct drm_rect *dst,
    134 			 int min_hscale, int max_hscale)
    135 {
    136 	int src_w = drm_rect_width(src);
    137 	int dst_w = drm_rect_width(dst);
    138 	int hscale = drm_calc_scale(src_w, dst_w);
    139 
    140 	if (hscale < 0 || dst_w == 0)
    141 		return hscale;
    142 
    143 	if (hscale < min_hscale || hscale > max_hscale)
    144 		return -ERANGE;
    145 
    146 	return hscale;
    147 }
    148 EXPORT_SYMBOL(drm_rect_calc_hscale);
    149 
    150 /**
    151  * drm_rect_calc_vscale - calculate the vertical scaling factor
    152  * @src: source window rectangle
    153  * @dst: destination window rectangle
    154  * @min_vscale: minimum allowed vertical scaling factor
    155  * @max_vscale: maximum allowed vertical scaling factor
    156  *
    157  * Calculate the vertical scaling factor as
    158  * (@src height) / (@dst height).
    159  *
    160  * RETURNS:
    161  * The vertical scaling factor, or errno of out of limits.
    162  */
    163 int drm_rect_calc_vscale(const struct drm_rect *src,
    164 			 const struct drm_rect *dst,
    165 			 int min_vscale, int max_vscale)
    166 {
    167 	int src_h = drm_rect_height(src);
    168 	int dst_h = drm_rect_height(dst);
    169 	int vscale = drm_calc_scale(src_h, dst_h);
    170 
    171 	if (vscale < 0 || dst_h == 0)
    172 		return vscale;
    173 
    174 	if (vscale < min_vscale || vscale > max_vscale)
    175 		return -ERANGE;
    176 
    177 	return vscale;
    178 }
    179 EXPORT_SYMBOL(drm_rect_calc_vscale);
    180 
    181 /**
    182  * drm_calc_hscale_relaxed - calculate the horizontal scaling factor
    183  * @src: source window rectangle
    184  * @dst: destination window rectangle
    185  * @min_hscale: minimum allowed horizontal scaling factor
    186  * @max_hscale: maximum allowed horizontal scaling factor
    187  *
    188  * Calculate the horizontal scaling factor as
    189  * (@src width) / (@dst width).
    190  *
    191  * If the calculated scaling factor is below @min_vscale,
    192  * decrease the height of rectangle @dst to compensate.
    193  *
    194  * If the calculated scaling factor is above @max_vscale,
    195  * decrease the height of rectangle @src to compensate.
    196  *
    197  * RETURNS:
    198  * The horizontal scaling factor.
    199  */
    200 int drm_rect_calc_hscale_relaxed(struct drm_rect *src,
    201 				 struct drm_rect *dst,
    202 				 int min_hscale, int max_hscale)
    203 {
    204 	int src_w = drm_rect_width(src);
    205 	int dst_w = drm_rect_width(dst);
    206 	int hscale = drm_calc_scale(src_w, dst_w);
    207 
    208 	if (hscale < 0 || dst_w == 0)
    209 		return hscale;
    210 
    211 	if (hscale < min_hscale) {
    212 		int max_dst_w = src_w / min_hscale;
    213 
    214 		drm_rect_adjust_size(dst, max_dst_w - dst_w, 0);
    215 
    216 		return min_hscale;
    217 	}
    218 
    219 	if (hscale > max_hscale) {
    220 		int max_src_w = dst_w * max_hscale;
    221 
    222 		drm_rect_adjust_size(src, max_src_w - src_w, 0);
    223 
    224 		return max_hscale;
    225 	}
    226 
    227 	return hscale;
    228 }
    229 EXPORT_SYMBOL(drm_rect_calc_hscale_relaxed);
    230 
    231 /**
    232  * drm_rect_calc_vscale_relaxed - calculate the vertical scaling factor
    233  * @src: source window rectangle
    234  * @dst: destination window rectangle
    235  * @min_vscale: minimum allowed vertical scaling factor
    236  * @max_vscale: maximum allowed vertical scaling factor
    237  *
    238  * Calculate the vertical scaling factor as
    239  * (@src height) / (@dst height).
    240  *
    241  * If the calculated scaling factor is below @min_vscale,
    242  * decrease the height of rectangle @dst to compensate.
    243  *
    244  * If the calculated scaling factor is above @max_vscale,
    245  * decrease the height of rectangle @src to compensate.
    246  *
    247  * RETURNS:
    248  * The vertical scaling factor.
    249  */
    250 int drm_rect_calc_vscale_relaxed(struct drm_rect *src,
    251 				 struct drm_rect *dst,
    252 				 int min_vscale, int max_vscale)
    253 {
    254 	int src_h = drm_rect_height(src);
    255 	int dst_h = drm_rect_height(dst);
    256 	int vscale = drm_calc_scale(src_h, dst_h);
    257 
    258 	if (vscale < 0 || dst_h == 0)
    259 		return vscale;
    260 
    261 	if (vscale < min_vscale) {
    262 		int max_dst_h = src_h / min_vscale;
    263 
    264 		drm_rect_adjust_size(dst, 0, max_dst_h - dst_h);
    265 
    266 		return min_vscale;
    267 	}
    268 
    269 	if (vscale > max_vscale) {
    270 		int max_src_h = dst_h * max_vscale;
    271 
    272 		drm_rect_adjust_size(src, 0, max_src_h - src_h);
    273 
    274 		return max_vscale;
    275 	}
    276 
    277 	return vscale;
    278 }
    279 EXPORT_SYMBOL(drm_rect_calc_vscale_relaxed);
    280 
    281 /**
    282  * drm_rect_debug_print - print the rectangle information
    283  * @r: rectangle to print
    284  * @fixed_point: rectangle is in 16.16 fixed point format
    285  */
    286 void drm_rect_debug_print(const struct drm_rect *r, bool fixed_point)
    287 {
    288 	int w = drm_rect_width(r);
    289 	int h = drm_rect_height(r);
    290 
    291 	if (fixed_point)
    292 		DRM_DEBUG_KMS("%d.%06ux%d.%06u%+d.%06u%+d.%06u\n",
    293 			      w >> 16, ((w & 0xffff) * 15625) >> 10,
    294 			      h >> 16, ((h & 0xffff) * 15625) >> 10,
    295 			      r->x1 >> 16, ((r->x1 & 0xffff) * 15625) >> 10,
    296 			      r->y1 >> 16, ((r->y1 & 0xffff) * 15625) >> 10);
    297 	else
    298 		DRM_DEBUG_KMS("%dx%d%+d%+d\n", w, h, r->x1, r->y1);
    299 }
    300 EXPORT_SYMBOL(drm_rect_debug_print);
    301 
    302 /**
    303  * drm_rect_rotate - Rotate the rectangle
    304  * @r: rectangle to be rotated
    305  * @width: Width of the coordinate space
    306  * @height: Height of the coordinate space
    307  * @rotation: Transformation to be applied
    308  *
    309  * Apply @rotation to the coordinates of rectangle @r.
    310  *
    311  * @width and @height combined with @rotation define
    312  * the location of the new origin.
    313  *
    314  * @width correcsponds to the horizontal and @height
    315  * to the vertical axis of the untransformed coordinate
    316  * space.
    317  */
    318 void drm_rect_rotate(struct drm_rect *r,
    319 		     int width, int height,
    320 		     unsigned int rotation)
    321 {
    322 	struct drm_rect tmp;
    323 
    324 	if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) {
    325 		tmp = *r;
    326 
    327 		if (rotation & BIT(DRM_REFLECT_X)) {
    328 			r->x1 = width - tmp.x2;
    329 			r->x2 = width - tmp.x1;
    330 		}
    331 
    332 		if (rotation & BIT(DRM_REFLECT_Y)) {
    333 			r->y1 = height - tmp.y2;
    334 			r->y2 = height - tmp.y1;
    335 		}
    336 	}
    337 
    338 	switch (rotation & DRM_ROTATE_MASK) {
    339 	case BIT(DRM_ROTATE_0):
    340 		break;
    341 	case BIT(DRM_ROTATE_90):
    342 		tmp = *r;
    343 		r->x1 = tmp.y1;
    344 		r->x2 = tmp.y2;
    345 		r->y1 = width - tmp.x2;
    346 		r->y2 = width - tmp.x1;
    347 		break;
    348 	case BIT(DRM_ROTATE_180):
    349 		tmp = *r;
    350 		r->x1 = width - tmp.x2;
    351 		r->x2 = width - tmp.x1;
    352 		r->y1 = height - tmp.y2;
    353 		r->y2 = height - tmp.y1;
    354 		break;
    355 	case BIT(DRM_ROTATE_270):
    356 		tmp = *r;
    357 		r->x1 = height - tmp.y2;
    358 		r->x2 = height - tmp.y1;
    359 		r->y1 = tmp.x1;
    360 		r->y2 = tmp.x2;
    361 		break;
    362 	default:
    363 		break;
    364 	}
    365 }
    366 EXPORT_SYMBOL(drm_rect_rotate);
    367 
    368 /**
    369  * drm_rect_rotate_inv - Inverse rotate the rectangle
    370  * @r: rectangle to be rotated
    371  * @width: Width of the coordinate space
    372  * @height: Height of the coordinate space
    373  * @rotation: Transformation whose inverse is to be applied
    374  *
    375  * Apply the inverse of @rotation to the coordinates
    376  * of rectangle @r.
    377  *
    378  * @width and @height combined with @rotation define
    379  * the location of the new origin.
    380  *
    381  * @width correcsponds to the horizontal and @height
    382  * to the vertical axis of the original untransformed
    383  * coordinate space, so that you never have to flip
    384  * them when doing a rotatation and its inverse.
    385  * That is, if you do:
    386  *
    387  * drm_rotate(&r, width, height, rotation);
    388  * drm_rotate_inv(&r, width, height, rotation);
    389  *
    390  * you will always get back the original rectangle.
    391  */
    392 void drm_rect_rotate_inv(struct drm_rect *r,
    393 			 int width, int height,
    394 			 unsigned int rotation)
    395 {
    396 	struct drm_rect tmp;
    397 
    398 	switch (rotation & DRM_ROTATE_MASK) {
    399 	case BIT(DRM_ROTATE_0):
    400 		break;
    401 	case BIT(DRM_ROTATE_90):
    402 		tmp = *r;
    403 		r->x1 = width - tmp.y2;
    404 		r->x2 = width - tmp.y1;
    405 		r->y1 = tmp.x1;
    406 		r->y2 = tmp.x2;
    407 		break;
    408 	case BIT(DRM_ROTATE_180):
    409 		tmp = *r;
    410 		r->x1 = width - tmp.x2;
    411 		r->x2 = width - tmp.x1;
    412 		r->y1 = height - tmp.y2;
    413 		r->y2 = height - tmp.y1;
    414 		break;
    415 	case BIT(DRM_ROTATE_270):
    416 		tmp = *r;
    417 		r->x1 = tmp.y1;
    418 		r->x2 = tmp.y2;
    419 		r->y1 = height - tmp.x2;
    420 		r->y2 = height - tmp.x1;
    421 		break;
    422 	default:
    423 		break;
    424 	}
    425 
    426 	if (rotation & (BIT(DRM_REFLECT_X) | BIT(DRM_REFLECT_Y))) {
    427 		tmp = *r;
    428 
    429 		if (rotation & BIT(DRM_REFLECT_X)) {
    430 			r->x1 = width - tmp.x2;
    431 			r->x2 = width - tmp.x1;
    432 		}
    433 
    434 		if (rotation & BIT(DRM_REFLECT_Y)) {
    435 			r->y1 = height - tmp.y2;
    436 			r->y2 = height - tmp.y1;
    437 		}
    438 	}
    439 }
    440 EXPORT_SYMBOL(drm_rect_rotate_inv);
    441