Home | History | Annotate | Line # | Download | only in drm
drm_vblank.c revision 1.10
      1 /*	$NetBSD: drm_vblank.c,v 1.10 2021/12/19 11:52:25 riastradh Exp $	*/
      2 
      3 /*
      4  * drm_irq.c IRQ and vblank support
      5  *
      6  * \author Rickard E. (Rik) Faith <faith (at) valinux.com>
      7  * \author Gareth Hughes <gareth (at) valinux.com>
      8  *
      9  * Permission is hereby granted, free of charge, to any person obtaining a
     10  * copy of this software and associated documentation files (the "Software"),
     11  * to deal in the Software without restriction, including without limitation
     12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     13  * and/or sell copies of the Software, and to permit persons to whom the
     14  * Software is furnished to do so, subject to the following conditions:
     15  *
     16  * The above copyright notice and this permission notice (including the next
     17  * paragraph) shall be included in all copies or substantial portions of the
     18  * Software.
     19  *
     20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     23  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     26  * OTHER DEALINGS IN THE SOFTWARE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: drm_vblank.c,v 1.10 2021/12/19 11:52:25 riastradh Exp $");
     31 
     32 #include <linux/export.h>
     33 #include <linux/moduleparam.h>
     34 #include <linux/math64.h>
     35 
     36 #include <drm/drm_crtc.h>
     37 #include <drm/drm_drv.h>
     38 #include <drm/drm_framebuffer.h>
     39 #include <drm/drm_print.h>
     40 #include <drm/drm_vblank.h>
     41 
     42 #include "drm_internal.h"
     43 #include "drm_trace.h"
     44 
     45 /**
     46  * DOC: vblank handling
     47  *
     48  * Vertical blanking plays a major role in graphics rendering. To achieve
     49  * tear-free display, users must synchronize page flips and/or rendering to
     50  * vertical blanking. The DRM API offers ioctls to perform page flips
     51  * synchronized to vertical blanking and wait for vertical blanking.
     52  *
     53  * The DRM core handles most of the vertical blanking management logic, which
     54  * involves filtering out spurious interrupts, keeping race-free blanking
     55  * counters, coping with counter wrap-around and resets and keeping use counts.
     56  * It relies on the driver to generate vertical blanking interrupts and
     57  * optionally provide a hardware vertical blanking counter.
     58  *
     59  * Drivers must initialize the vertical blanking handling core with a call to
     60  * drm_vblank_init(). Minimally, a driver needs to implement
     61  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
     62  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
     63  * support.
     64  *
     65  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
     66  * themselves (for instance to handle page flipping operations).  The DRM core
     67  * maintains a vertical blanking use count to ensure that the interrupts are not
     68  * disabled while a user still needs them. To increment the use count, drivers
     69  * call drm_crtc_vblank_get() and release the vblank reference again with
     70  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
     71  * guaranteed to be enabled.
     72  *
     73  * On many hardware disabling the vblank interrupt cannot be done in a race-free
     74  * manner, see &drm_driver.vblank_disable_immediate and
     75  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
     76  * vblanks after a timer has expired, which can be configured through the
     77  * ``vblankoffdelay`` module parameter.
     78  *
     79  * Lock order: event_lock -> vbl_lock -> vblank_time_lock
     80  */
     81 
     82 /* Retry timestamp calculation up to 3 times to satisfy
     83  * drm_timestamp_precision before giving up.
     84  */
     85 #define DRM_TIMESTAMP_MAXRETRIES 3
     86 
     87 /* Threshold in nanoseconds for detection of redundant
     88  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
     89  */
     90 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
     91 
     92 static bool
     93 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
     94 			  ktime_t *tvblank, bool in_vblank_irq);
     95 
     96 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
     97 
     98 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
     99 
    100 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
    101 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
    102 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
    103 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
    104 
    105 static void store_vblank(struct drm_device *dev, unsigned int pipe,
    106 			 u32 vblank_count_inc,
    107 			 ktime_t t_vblank, u32 last)
    108 {
    109 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    110 
    111 	assert_spin_locked(&dev->vblank_time_lock);
    112 
    113 	vblank->last = last;
    114 
    115 	write_seqlock(&vblank->seqlock);
    116 	vblank->time = t_vblank;
    117 	atomic64_add(vblank_count_inc, &vblank->count);
    118 	write_sequnlock(&vblank->seqlock);
    119 }
    120 
    121 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
    122 {
    123 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    124 
    125 	return vblank->max_vblank_count ?: dev->max_vblank_count;
    126 }
    127 
    128 /*
    129  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
    130  * if there is no useable hardware frame counter available.
    131  */
    132 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
    133 {
    134 	WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
    135 	return 0;
    136 }
    137 
    138 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
    139 {
    140 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
    141 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
    142 
    143 		if (WARN_ON(!crtc))
    144 			return 0;
    145 
    146 		if (crtc->funcs->get_vblank_counter)
    147 			return crtc->funcs->get_vblank_counter(crtc);
    148 	}
    149 
    150 	if (dev->driver->get_vblank_counter)
    151 		return dev->driver->get_vblank_counter(dev, pipe);
    152 
    153 	return drm_vblank_no_hw_counter(dev, pipe);
    154 }
    155 
    156 /*
    157  * Reset the stored timestamp for the current vblank count to correspond
    158  * to the last vblank occurred.
    159  *
    160  * Only to be called from drm_crtc_vblank_on().
    161  *
    162  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
    163  * device vblank fields.
    164  */
    165 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
    166 {
    167 	u32 cur_vblank;
    168 	bool rc;
    169 	ktime_t t_vblank;
    170 	int count = DRM_TIMESTAMP_MAXRETRIES;
    171 
    172 	assert_spin_locked(&dev->vbl_lock);
    173 
    174 	spin_lock(&dev->vblank_time_lock);
    175 
    176 	/*
    177 	 * sample the current counter to avoid random jumps
    178 	 * when drm_vblank_enable() applies the diff
    179 	 */
    180 	do {
    181 		cur_vblank = __get_vblank_counter(dev, pipe);
    182 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
    183 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
    184 
    185 	/*
    186 	 * Only reinitialize corresponding vblank timestamp if high-precision query
    187 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
    188 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
    189 	 */
    190 	if (!rc)
    191 		t_vblank = 0;
    192 
    193 	/*
    194 	 * +1 to make sure user will never see the same
    195 	 * vblank counter value before and after a modeset
    196 	 */
    197 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
    198 
    199 	spin_unlock(&dev->vblank_time_lock);
    200 }
    201 
    202 /*
    203  * Call back into the driver to update the appropriate vblank counter
    204  * (specified by @pipe).  Deal with wraparound, if it occurred, and
    205  * update the last read value so we can deal with wraparound on the next
    206  * call if necessary.
    207  *
    208  * Only necessary when going from off->on, to account for frames we
    209  * didn't get an interrupt for.
    210  *
    211  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
    212  * device vblank fields.
    213  */
    214 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
    215 				    bool in_vblank_irq)
    216 {
    217 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    218 	u32 cur_vblank, diff;
    219 	bool rc;
    220 	ktime_t t_vblank;
    221 	int count = DRM_TIMESTAMP_MAXRETRIES;
    222 	int framedur_ns = vblank->framedur_ns;
    223 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
    224 
    225 	assert_spin_locked(&dev->vbl_lock);
    226 
    227 	/*
    228 	 * Interrupts were disabled prior to this call, so deal with counter
    229 	 * wrap if needed.
    230 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
    231 	 * here if the register is small or we had vblank interrupts off for
    232 	 * a long time.
    233 	 *
    234 	 * We repeat the hardware vblank counter & timestamp query until
    235 	 * we get consistent results. This to prevent races between gpu
    236 	 * updating its hardware counter while we are retrieving the
    237 	 * corresponding vblank timestamp.
    238 	 */
    239 	do {
    240 		cur_vblank = __get_vblank_counter(dev, pipe);
    241 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
    242 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
    243 
    244 	if (max_vblank_count) {
    245 		/* trust the hw counter when it's around */
    246 		diff = (cur_vblank - vblank->last) & max_vblank_count;
    247 	} else if (rc && framedur_ns) {
    248 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
    249 
    250 		/*
    251 		 * Figure out how many vblanks we've missed based
    252 		 * on the difference in the timestamps and the
    253 		 * frame/field duration.
    254 		 */
    255 
    256 		DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
    257 			      " diff_ns = %lld, framedur_ns = %d)\n",
    258 			      pipe, (long long) diff_ns, framedur_ns);
    259 
    260 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
    261 
    262 		if (diff == 0 && in_vblank_irq)
    263 			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
    264 				      pipe);
    265 	} else {
    266 		/* some kind of default for drivers w/o accurate vbl timestamping */
    267 		diff = in_vblank_irq ? 1 : 0;
    268 	}
    269 
    270 	/*
    271 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
    272 	 * interval? If so then vblank irqs keep running and it will likely
    273 	 * happen that the hardware vblank counter is not trustworthy as it
    274 	 * might reset at some point in that interval and vblank timestamps
    275 	 * are not trustworthy either in that interval. Iow. this can result
    276 	 * in a bogus diff >> 1 which must be avoided as it would cause
    277 	 * random large forward jumps of the software vblank counter.
    278 	 */
    279 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
    280 		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
    281 			      " due to pre-modeset.\n", pipe, diff);
    282 		diff = 1;
    283 	}
    284 
    285 	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
    286 		      " current=%"PRIu64", diff=%u, hw=%u hw_last=%u\n",
    287 		      pipe, atomic64_read(&vblank->count), diff,
    288 		      cur_vblank, vblank->last);
    289 
    290 	if (diff == 0) {
    291 		WARN_ON_ONCE(cur_vblank != vblank->last);
    292 		return;
    293 	}
    294 
    295 	/*
    296 	 * Only reinitialize corresponding vblank timestamp if high-precision query
    297 	 * available and didn't fail, or we were called from the vblank interrupt.
    298 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
    299 	 * for now, to mark the vblanktimestamp as invalid.
    300 	 */
    301 	if (!rc && !in_vblank_irq)
    302 		t_vblank = 0;
    303 
    304 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
    305 }
    306 
    307 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
    308 {
    309 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    310 	u64 count;
    311 
    312 	if (WARN_ON(pipe >= dev->num_crtcs))
    313 		return 0;
    314 
    315 	count = atomic64_read(&vblank->count);
    316 
    317 	/*
    318 	 * This read barrier corresponds to the implicit write barrier of the
    319 	 * write seqlock in store_vblank(). Note that this is the only place
    320 	 * where we need an explicit barrier, since all other access goes
    321 	 * through drm_vblank_count_and_time(), which already has the required
    322 	 * read barrier curtesy of the read seqlock.
    323 	 */
    324 	smp_rmb();
    325 
    326 	return count;
    327 }
    328 
    329 /**
    330  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
    331  * @crtc: which counter to retrieve
    332  *
    333  * This function is similar to drm_crtc_vblank_count() but this function
    334  * interpolates to handle a race with vblank interrupts using the high precision
    335  * timestamping support.
    336  *
    337  * This is mostly useful for hardware that can obtain the scanout position, but
    338  * doesn't have a hardware frame counter.
    339  */
    340 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
    341 {
    342 	struct drm_device *dev = crtc->dev;
    343 	unsigned int pipe = drm_crtc_index(crtc);
    344 	u64 vblank;
    345 	unsigned long flags;
    346 
    347 	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
    348 		  "This function requires support for accurate vblank timestamps.");
    349 
    350 	spin_lock(&dev->vbl_lock);
    351 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
    352 
    353 	drm_update_vblank_count(dev, pipe, false);
    354 	vblank = drm_vblank_count(dev, pipe);
    355 
    356 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
    357 	spin_unlock(&dev->vbl_lock);
    358 
    359 	return vblank;
    360 }
    361 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
    362 
    363 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
    364 {
    365 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
    366 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
    367 
    368 		if (WARN_ON(!crtc))
    369 			return;
    370 
    371 		if (crtc->funcs->disable_vblank) {
    372 			crtc->funcs->disable_vblank(crtc);
    373 			return;
    374 		}
    375 	}
    376 
    377 	dev->driver->disable_vblank(dev, pipe);
    378 }
    379 
    380 /*
    381  * Disable vblank irq's on crtc, make sure that last vblank count
    382  * of hardware and corresponding consistent software vblank counter
    383  * are preserved, even if there are any spurious vblank irq's after
    384  * disable.
    385  */
    386 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
    387 {
    388 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    389 	unsigned long irqflags;
    390 
    391 	assert_spin_locked(&dev->vbl_lock);
    392 
    393 	/* Prevent vblank irq processing while disabling vblank irqs,
    394 	 * so no updates of timestamps or count can happen after we've
    395 	 * disabled. Needed to prevent races in case of delayed irq's.
    396 	 */
    397 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
    398 
    399 	/*
    400 	 * Update vblank count and disable vblank interrupts only if the
    401 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
    402 	 * operation in atomic context with the hardware potentially runtime
    403 	 * suspended.
    404 	 */
    405 	if (!vblank->enabled)
    406 		goto out;
    407 
    408 	/*
    409 	 * Update the count and timestamp to maintain the
    410 	 * appearance that the counter has been ticking all along until
    411 	 * this time. This makes the count account for the entire time
    412 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
    413 	 */
    414 	drm_update_vblank_count(dev, pipe, false);
    415 	__disable_vblank(dev, pipe);
    416 	vblank->enabled = false;
    417 
    418 out:
    419 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
    420 }
    421 
    422 static void
    423 vblank_disable_locked(struct drm_vblank_crtc *vblank, struct drm_device *dev,
    424     unsigned int pipe)
    425 {
    426 
    427 	BUG_ON(vblank != &dev->vblank[pipe]);
    428 	assert_spin_locked(&dev->vbl_lock);
    429 
    430 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
    431 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
    432 		drm_vblank_disable_and_save(dev, pipe);
    433 	}
    434 }
    435 
    436 static void vblank_disable_fn(struct timer_list *t)
    437 {
    438 	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
    439 	struct drm_device *dev = vblank->dev;
    440 	unsigned int pipe = vblank->pipe;
    441 	unsigned long irqflags;
    442 
    443 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
    444 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
    445 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
    446 		drm_vblank_disable_and_save(dev, pipe);
    447 	}
    448 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
    449 }
    450 
    451 void drm_vblank_cleanup(struct drm_device *dev)
    452 {
    453 	unsigned int pipe;
    454 
    455 	/* Bail if the driver didn't call drm_vblank_init() */
    456 	if (dev->num_crtcs == 0)
    457 		return;
    458 
    459 	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
    460 		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    461 
    462 		WARN_ON(READ_ONCE(vblank->enabled) &&
    463 			drm_core_check_feature(dev, DRIVER_MODESET));
    464 
    465 		del_timer_sync(&vblank->disable_timer);
    466 		teardown_timer(&vblank->disable_timer);
    467 		seqlock_destroy(&vblank->seqlock);
    468 	}
    469 
    470 	kfree(dev->vblank);
    471 
    472 	dev->num_crtcs = 0;
    473 }
    474 
    475 /**
    476  * drm_vblank_init - initialize vblank support
    477  * @dev: DRM device
    478  * @num_crtcs: number of CRTCs supported by @dev
    479  *
    480  * This function initializes vblank support for @num_crtcs display pipelines.
    481  * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
    482  * drivers with a &drm_driver.release callback.
    483  *
    484  * Returns:
    485  * Zero on success or a negative error code on failure.
    486  */
    487 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
    488 {
    489 	int ret = -ENOMEM;
    490 	unsigned int i;
    491 
    492 	spin_lock_init(&dev->vbl_lock);
    493 	spin_lock_init(&dev->vblank_time_lock);
    494 
    495 	dev->num_crtcs = num_crtcs;
    496 
    497 	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
    498 	if (!dev->vblank)
    499 		goto err;
    500 
    501 	for (i = 0; i < num_crtcs; i++) {
    502 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
    503 
    504 		vblank->dev = dev;
    505 		vblank->pipe = i;
    506 		DRM_INIT_WAITQUEUE(&vblank->queue, "drmvblnq");
    507 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
    508 		seqlock_init(&vblank->seqlock);
    509 	}
    510 
    511 	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
    512 
    513 	/* Driver specific high-precision vblank timestamping supported? */
    514 	if (dev->driver->get_vblank_timestamp)
    515 		DRM_INFO("Driver supports precise vblank timestamp query.\n");
    516 	else
    517 		DRM_INFO("No driver support for vblank timestamp query.\n");
    518 
    519 	/* Must have precise timestamping for reliable vblank instant disable */
    520 	if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
    521 		dev->vblank_disable_immediate = false;
    522 		DRM_INFO("Setting vblank_disable_immediate to false because "
    523 			 "get_vblank_timestamp == NULL\n");
    524 	}
    525 
    526 	return 0;
    527 
    528 err:
    529 	dev->num_crtcs = 0;
    530 	return ret;
    531 }
    532 EXPORT_SYMBOL(drm_vblank_init);
    533 
    534 /**
    535  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
    536  * @crtc: which CRTC's vblank waitqueue to retrieve
    537  *
    538  * This function returns a pointer to the vblank waitqueue for the CRTC.
    539  * Drivers can use this to implement vblank waits using wait_event() and related
    540  * functions.
    541  */
    542 drm_waitqueue_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
    543 {
    544 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
    545 }
    546 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
    547 
    548 
    549 /**
    550  * drm_calc_timestamping_constants - calculate vblank timestamp constants
    551  * @crtc: drm_crtc whose timestamp constants should be updated.
    552  * @mode: display mode containing the scanout timings
    553  *
    554  * Calculate and store various constants which are later needed by vblank and
    555  * swap-completion timestamping, e.g, by
    556  * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
    557  * scanout timing, so they take things like panel scaling or other adjustments
    558  * into account.
    559  */
    560 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
    561 				     const struct drm_display_mode *mode)
    562 {
    563 	struct drm_device *dev = crtc->dev;
    564 	unsigned int pipe = drm_crtc_index(crtc);
    565 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    566 	int linedur_ns = 0, framedur_ns = 0;
    567 	int dotclock = mode->crtc_clock;
    568 
    569 	if (!dev->num_crtcs)
    570 		return;
    571 
    572 	if (WARN_ON(pipe >= dev->num_crtcs))
    573 		return;
    574 
    575 	/* Valid dotclock? */
    576 	if (dotclock > 0) {
    577 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
    578 
    579 		/*
    580 		 * Convert scanline length in pixels and video
    581 		 * dot clock to line duration and frame duration
    582 		 * in nanoseconds:
    583 		 */
    584 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
    585 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
    586 
    587 		/*
    588 		 * Fields of interlaced scanout modes are only half a frame duration.
    589 		 */
    590 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
    591 			framedur_ns /= 2;
    592 	} else
    593 		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
    594 			  crtc->base.id);
    595 
    596 	vblank->linedur_ns  = linedur_ns;
    597 	vblank->framedur_ns = framedur_ns;
    598 	vblank->hwmode = *mode;
    599 
    600 	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
    601 		  crtc->base.id, mode->crtc_htotal,
    602 		  mode->crtc_vtotal, mode->crtc_vdisplay);
    603 	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
    604 		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
    605 }
    606 EXPORT_SYMBOL(drm_calc_timestamping_constants);
    607 
    608 /**
    609  * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
    610  * @dev: DRM device
    611  * @pipe: index of CRTC whose vblank timestamp to retrieve
    612  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
    613  *             On return contains true maximum error of timestamp
    614  * @vblank_time: Pointer to time which should receive the timestamp
    615  * @in_vblank_irq:
    616  *     True when called from drm_crtc_handle_vblank().  Some drivers
    617  *     need to apply some workarounds for gpu-specific vblank irq quirks
    618  *     if flag is set.
    619  *
    620  * Implements calculation of exact vblank timestamps from given drm_display_mode
    621  * timings and current video scanout position of a CRTC. This can be directly
    622  * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
    623  * if &drm_driver.get_scanout_position is implemented.
    624  *
    625  * The current implementation only handles standard video modes. For double scan
    626  * and interlaced modes the driver is supposed to adjust the hardware mode
    627  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
    628  * match the scanout position reported.
    629  *
    630  * Note that atomic drivers must call drm_calc_timestamping_constants() before
    631  * enabling a CRTC. The atomic helpers already take care of that in
    632  * drm_atomic_helper_update_legacy_modeset_state().
    633  *
    634  * Returns:
    635  *
    636  * Returns true on success, and false on failure, i.e. when no accurate
    637  * timestamp could be acquired.
    638  */
    639 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
    640 					   unsigned int pipe,
    641 					   int *max_error,
    642 					   ktime_t *vblank_time,
    643 					   bool in_vblank_irq)
    644 {
    645 	struct timespec64 ts_etime, ts_vblank_time;
    646 	ktime_t stime, etime;
    647 	bool vbl_status;
    648 	struct drm_crtc *crtc;
    649 	const struct drm_display_mode *mode;
    650 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    651 	int vpos, hpos, i;
    652 	int delta_ns, duration_ns;
    653 
    654 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
    655 		return false;
    656 
    657 	crtc = drm_crtc_from_index(dev, pipe);
    658 
    659 	if (pipe >= dev->num_crtcs || !crtc) {
    660 		DRM_ERROR("Invalid crtc %u\n", pipe);
    661 		return false;
    662 	}
    663 
    664 	/* Scanout position query not supported? Should not happen. */
    665 	if (!dev->driver->get_scanout_position) {
    666 		DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
    667 		return false;
    668 	}
    669 
    670 	if (drm_drv_uses_atomic_modeset(dev))
    671 		mode = &vblank->hwmode;
    672 	else
    673 		mode = &crtc->hwmode;
    674 
    675 	/* If mode timing undefined, just return as no-op:
    676 	 * Happens during initial modesetting of a crtc.
    677 	 */
    678 	if (mode->crtc_clock == 0) {
    679 		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
    680 		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
    681 
    682 		return false;
    683 	}
    684 
    685 	/* Get current scanout position with system timestamp.
    686 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
    687 	 * if single query takes longer than max_error nanoseconds.
    688 	 *
    689 	 * This guarantees a tight bound on maximum error if
    690 	 * code gets preempted or delayed for some reason.
    691 	 */
    692 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
    693 		/*
    694 		 * Get vertical and horizontal scanout position vpos, hpos,
    695 		 * and bounding timestamps stime, etime, pre/post query.
    696 		 */
    697 		vbl_status = dev->driver->get_scanout_position(dev, pipe,
    698 							       in_vblank_irq,
    699 							       &vpos, &hpos,
    700 							       &stime, &etime,
    701 							       mode);
    702 
    703 		/* Return as no-op if scanout query unsupported or failed. */
    704 		if (!vbl_status) {
    705 			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
    706 				  pipe);
    707 			return false;
    708 		}
    709 
    710 		/* Compute uncertainty in timestamp of scanout position query. */
    711 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
    712 
    713 		/* Accept result with <  max_error nsecs timing uncertainty. */
    714 		if (duration_ns <= *max_error)
    715 			break;
    716 	}
    717 
    718 	/* Noisy system timing? */
    719 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
    720 		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
    721 			  pipe, duration_ns/1000, *max_error/1000, i);
    722 	}
    723 
    724 	/* Return upper bound of timestamp precision error. */
    725 	*max_error = duration_ns;
    726 
    727 	/* Convert scanout position into elapsed time at raw_time query
    728 	 * since start of scanout at first display scanline. delta_ns
    729 	 * can be negative if start of scanout hasn't happened yet.
    730 	 */
    731 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
    732 			   mode->crtc_clock);
    733 
    734 	/* Subtract time delta from raw timestamp to get final
    735 	 * vblank_time timestamp for end of vblank.
    736 	 */
    737 	*vblank_time = ktime_sub_ns(etime, delta_ns);
    738 
    739 	if (!drm_debug_enabled(DRM_UT_VBL))
    740 		return true;
    741 
    742 	ts_etime = ktime_to_timespec64(etime);
    743 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
    744 
    745 	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %"PRId64".%06ld -> %"PRId64".%06ld [e %d us, %d rep]\n",
    746 		      pipe, hpos, vpos,
    747 		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
    748 		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
    749 		      duration_ns / 1000, i);
    750 
    751 	return true;
    752 }
    753 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
    754 
    755 /**
    756  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
    757  *                             vblank interval
    758  * @dev: DRM device
    759  * @pipe: index of CRTC whose vblank timestamp to retrieve
    760  * @tvblank: Pointer to target time which should receive the timestamp
    761  * @in_vblank_irq:
    762  *     True when called from drm_crtc_handle_vblank().  Some drivers
    763  *     need to apply some workarounds for gpu-specific vblank irq quirks
    764  *     if flag is set.
    765  *
    766  * Fetches the system timestamp corresponding to the time of the most recent
    767  * vblank interval on specified CRTC. May call into kms-driver to
    768  * compute the timestamp with a high-precision GPU specific method.
    769  *
    770  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
    771  * call, i.e., it isn't very precisely locked to the true vblank.
    772  *
    773  * Returns:
    774  * True if timestamp is considered to be very precise, false otherwise.
    775  */
    776 static bool
    777 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
    778 			  ktime_t *tvblank, bool in_vblank_irq)
    779 {
    780 	bool ret = false;
    781 
    782 	/* Define requested maximum error on timestamps (nanoseconds). */
    783 	int max_error = (int) drm_timestamp_precision * 1000;
    784 
    785 	/* Query driver if possible and precision timestamping enabled. */
    786 	if (dev->driver->get_vblank_timestamp && (max_error > 0))
    787 		ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
    788 							tvblank, in_vblank_irq);
    789 
    790 	/* GPU high precision timestamp query unsupported or failed.
    791 	 * Return current monotonic/gettimeofday timestamp as best estimate.
    792 	 */
    793 	if (!ret)
    794 		*tvblank = ktime_get();
    795 
    796 	return ret;
    797 }
    798 
    799 /**
    800  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
    801  * @crtc: which counter to retrieve
    802  *
    803  * Fetches the "cooked" vblank count value that represents the number of
    804  * vblank events since the system was booted, including lost events due to
    805  * modesetting activity. Note that this timer isn't correct against a racing
    806  * vblank interrupt (since it only reports the software vblank counter), see
    807  * drm_crtc_accurate_vblank_count() for such use-cases.
    808  *
    809  * Note that for a given vblank counter value drm_crtc_handle_vblank()
    810  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
    811  * provide a barrier: Any writes done before calling
    812  * drm_crtc_handle_vblank() will be visible to callers of the later
    813  * functions, iff the vblank count is the same or a later one.
    814  *
    815  * See also &drm_vblank_crtc.count.
    816  *
    817  * Returns:
    818  * The software vblank counter.
    819  */
    820 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
    821 {
    822 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
    823 }
    824 EXPORT_SYMBOL(drm_crtc_vblank_count);
    825 
    826 /**
    827  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
    828  *     system timestamp corresponding to that vblank counter value.
    829  * @dev: DRM device
    830  * @pipe: index of CRTC whose counter to retrieve
    831  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
    832  *
    833  * Fetches the "cooked" vblank count value that represents the number of
    834  * vblank events since the system was booted, including lost events due to
    835  * modesetting activity. Returns corresponding system timestamp of the time
    836  * of the vblank interval that corresponds to the current vblank counter value.
    837  *
    838  * This is the legacy version of drm_crtc_vblank_count_and_time().
    839  */
    840 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
    841 				     ktime_t *vblanktime)
    842 {
    843 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    844 	u64 vblank_count;
    845 	unsigned int seq;
    846 
    847 	if (WARN_ON(pipe >= dev->num_crtcs)) {
    848 		*vblanktime = 0;
    849 		return 0;
    850 	}
    851 
    852 	do {
    853 		seq = read_seqbegin(&vblank->seqlock);
    854 		vblank_count = atomic64_read(&vblank->count);
    855 		*vblanktime = vblank->time;
    856 	} while (read_seqretry(&vblank->seqlock, seq));
    857 
    858 	return vblank_count;
    859 }
    860 
    861 /**
    862  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
    863  *     and the system timestamp corresponding to that vblank counter value
    864  * @crtc: which counter to retrieve
    865  * @vblanktime: Pointer to time to receive the vblank timestamp.
    866  *
    867  * Fetches the "cooked" vblank count value that represents the number of
    868  * vblank events since the system was booted, including lost events due to
    869  * modesetting activity. Returns corresponding system timestamp of the time
    870  * of the vblank interval that corresponds to the current vblank counter value.
    871  *
    872  * Note that for a given vblank counter value drm_crtc_handle_vblank()
    873  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
    874  * provide a barrier: Any writes done before calling
    875  * drm_crtc_handle_vblank() will be visible to callers of the later
    876  * functions, iff the vblank count is the same or a later one.
    877  *
    878  * See also &drm_vblank_crtc.count.
    879  */
    880 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
    881 				   ktime_t *vblanktime)
    882 {
    883 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
    884 					 vblanktime);
    885 }
    886 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
    887 
    888 static void send_vblank_event(struct drm_device *dev,
    889 		struct drm_pending_vblank_event *e,
    890 		u64 seq, ktime_t now)
    891 {
    892 	struct timespec64 tv;
    893 
    894 	switch (e->event.base.type) {
    895 	case DRM_EVENT_VBLANK:
    896 	case DRM_EVENT_FLIP_COMPLETE:
    897 		tv = ktime_to_timespec64(now);
    898 		e->event.vbl.sequence = seq;
    899 		/*
    900 		 * e->event is a user space structure, with hardcoded unsigned
    901 		 * 32-bit seconds/microseconds. This is safe as we always use
    902 		 * monotonic timestamps since linux-4.15
    903 		 */
    904 		e->event.vbl.tv_sec = tv.tv_sec;
    905 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
    906 		break;
    907 	case DRM_EVENT_CRTC_SEQUENCE:
    908 		if (seq)
    909 			e->event.seq.sequence = seq;
    910 		e->event.seq.time_ns = ktime_to_ns(now);
    911 		break;
    912 	}
    913 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
    914 	drm_send_event_locked(dev, &e->base);
    915 }
    916 
    917 /**
    918  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
    919  * @crtc: the source CRTC of the vblank event
    920  * @e: the event to send
    921  *
    922  * A lot of drivers need to generate vblank events for the very next vblank
    923  * interrupt. For example when the page flip interrupt happens when the page
    924  * flip gets armed, but not when it actually executes within the next vblank
    925  * period. This helper function implements exactly the required vblank arming
    926  * behaviour.
    927  *
    928  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
    929  * atomic commit must ensure that the next vblank happens at exactly the same
    930  * time as the atomic commit is committed to the hardware. This function itself
    931  * does **not** protect against the next vblank interrupt racing with either this
    932  * function call or the atomic commit operation. A possible sequence could be:
    933  *
    934  * 1. Driver commits new hardware state into vblank-synchronized registers.
    935  * 2. A vblank happens, committing the hardware state. Also the corresponding
    936  *    vblank interrupt is fired off and fully processed by the interrupt
    937  *    handler.
    938  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
    939  * 4. The event is only send out for the next vblank, which is wrong.
    940  *
    941  * An equivalent race can happen when the driver calls
    942  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
    943  *
    944  * The only way to make this work safely is to prevent the vblank from firing
    945  * (and the hardware from committing anything else) until the entire atomic
    946  * commit sequence has run to completion. If the hardware does not have such a
    947  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
    948  * Instead drivers need to manually send out the event from their interrupt
    949  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
    950  * possible race with the hardware committing the atomic update.
    951  *
    952  * Caller must hold a vblank reference for the event @e acquired by a
    953  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
    954  */
    955 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
    956 			       struct drm_pending_vblank_event *e)
    957 {
    958 	struct drm_device *dev = crtc->dev;
    959 	unsigned int pipe = drm_crtc_index(crtc);
    960 
    961 	assert_spin_locked(&dev->event_lock);
    962 
    963 	e->pipe = pipe;
    964 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
    965 	list_add_tail(&e->base.link, &dev->vblank_event_list);
    966 }
    967 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
    968 
    969 /**
    970  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
    971  * @crtc: the source CRTC of the vblank event
    972  * @e: the event to send
    973  *
    974  * Updates sequence # and timestamp on event for the most recently processed
    975  * vblank, and sends it to userspace.  Caller must hold event lock.
    976  *
    977  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
    978  * situation, especially to send out events for atomic commit operations.
    979  */
    980 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
    981 				struct drm_pending_vblank_event *e)
    982 {
    983 	struct drm_device *dev = crtc->dev;
    984 	u64 seq;
    985 	unsigned int pipe = drm_crtc_index(crtc);
    986 	ktime_t now;
    987 
    988 	if (dev->num_crtcs > 0) {
    989 		seq = drm_vblank_count_and_time(dev, pipe, &now);
    990 	} else {
    991 		seq = 0;
    992 
    993 		now = ktime_get();
    994 	}
    995 	e->pipe = pipe;
    996 	send_vblank_event(dev, e, seq, now);
    997 }
    998 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
    999 
   1000 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
   1001 {
   1002 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
   1003 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
   1004 
   1005 		if (WARN_ON(!crtc))
   1006 			return 0;
   1007 
   1008 		if (crtc->funcs->enable_vblank)
   1009 			return crtc->funcs->enable_vblank(crtc);
   1010 	}
   1011 
   1012 	return dev->driver->enable_vblank(dev, pipe);
   1013 }
   1014 
   1015 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
   1016 {
   1017 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1018 	int ret = 0;
   1019 
   1020 	assert_spin_locked(&dev->vbl_lock);
   1021 
   1022 	spin_lock(&dev->vblank_time_lock);
   1023 
   1024 	if (!vblank->enabled) {
   1025 		/*
   1026 		 * Enable vblank irqs under vblank_time_lock protection.
   1027 		 * All vblank count & timestamp updates are held off
   1028 		 * until we are done reinitializing master counter and
   1029 		 * timestamps. Filtercode in drm_handle_vblank() will
   1030 		 * prevent double-accounting of same vblank interval.
   1031 		 */
   1032 		ret = __enable_vblank(dev, pipe);
   1033 		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
   1034 		if (ret) {
   1035 			atomic_dec(&vblank->refcount);
   1036 		} else {
   1037 			drm_update_vblank_count(dev, pipe, 0);
   1038 			/* drm_update_vblank_count() includes a wmb so we just
   1039 			 * need to ensure that the compiler emits the write
   1040 			 * to mark the vblank as enabled after the call
   1041 			 * to drm_update_vblank_count().
   1042 			 */
   1043 			WRITE_ONCE(vblank->enabled, true);
   1044 		}
   1045 	}
   1046 
   1047 	spin_unlock(&dev->vblank_time_lock);
   1048 
   1049 	return ret;
   1050 }
   1051 
   1052 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
   1053 {
   1054 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1055 	unsigned long irqflags;
   1056 	int ret = 0;
   1057 
   1058 	if (!dev->num_crtcs)
   1059 		return -EINVAL;
   1060 
   1061 	if (WARN_ON(pipe >= dev->num_crtcs))
   1062 		return -EINVAL;
   1063 
   1064 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
   1065 	/* Going from 0->1 means we have to enable interrupts again */
   1066 	if (atomic_add_return(1, &vblank->refcount) == 1) {
   1067 		ret = drm_vblank_enable(dev, pipe);
   1068 	} else {
   1069 		if (!vblank->enabled) {
   1070 			atomic_dec(&vblank->refcount);
   1071 			ret = -EINVAL;
   1072 		}
   1073 	}
   1074 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   1075 
   1076 	return ret;
   1077 }
   1078 
   1079 /**
   1080  * drm_crtc_vblank_get - get a reference count on vblank events
   1081  * @crtc: which CRTC to own
   1082  *
   1083  * Acquire a reference count on vblank events to avoid having them disabled
   1084  * while in use.
   1085  *
   1086  * Returns:
   1087  * Zero on success or a negative error code on failure.
   1088  */
   1089 int drm_crtc_vblank_get(struct drm_crtc *crtc)
   1090 {
   1091 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
   1092 }
   1093 EXPORT_SYMBOL(drm_crtc_vblank_get);
   1094 
   1095 static void drm_vblank_put_locked(struct drm_device *dev, unsigned int pipe)
   1096 {
   1097 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1098 
   1099 	assert_spin_locked(&dev->vbl_lock);
   1100 
   1101 	if (WARN_ON(pipe >= dev->num_crtcs))
   1102 		return;
   1103 
   1104 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
   1105 		return;
   1106 
   1107 	/* Last user schedules interrupt disable */
   1108 	if (atomic_dec_and_test(&vblank->refcount)) {
   1109 		if (drm_vblank_offdelay == 0)
   1110 			return;
   1111 		else if (drm_vblank_offdelay < 0)
   1112 			vblank_disable_locked(vblank, dev, pipe);
   1113 		else if (!dev->vblank_disable_immediate)
   1114 			mod_timer(&vblank->disable_timer,
   1115 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
   1116 	}
   1117 }
   1118 
   1119 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
   1120 {
   1121 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1122 
   1123 	if (WARN_ON(pipe >= dev->num_crtcs))
   1124 		return;
   1125 
   1126 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
   1127 		return;
   1128 
   1129 	/* Last user schedules interrupt disable */
   1130 	if (atomic_dec_and_test(&vblank->refcount)) {
   1131 		if (drm_vblank_offdelay == 0)
   1132 			return;
   1133 		else if (drm_vblank_offdelay < 0)
   1134 			vblank_disable_fn(&vblank->disable_timer);
   1135 		else if (!dev->vblank_disable_immediate)
   1136 			mod_timer(&vblank->disable_timer,
   1137 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
   1138 	}
   1139 }
   1140 
   1141 /**
   1142  * drm_crtc_vblank_put - give up ownership of vblank events
   1143  * @crtc: which counter to give up
   1144  *
   1145  * Release ownership of a given vblank counter, turning off interrupts
   1146  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
   1147  */
   1148 void drm_crtc_vblank_put(struct drm_crtc *crtc)
   1149 {
   1150 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
   1151 }
   1152 EXPORT_SYMBOL(drm_crtc_vblank_put);
   1153 
   1154 void drm_crtc_vblank_put_locked(struct drm_crtc *crtc)
   1155 {
   1156 	drm_vblank_put_locked(crtc->dev, drm_crtc_index(crtc));
   1157 }
   1158 
   1159 /**
   1160  * drm_wait_one_vblank - wait for one vblank
   1161  * @dev: DRM device
   1162  * @pipe: CRTC index
   1163  *
   1164  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
   1165  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
   1166  * due to lack of driver support or because the crtc is off.
   1167  *
   1168  * This is the legacy version of drm_crtc_wait_one_vblank().
   1169  */
   1170 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
   1171 {
   1172 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1173 	int ret;
   1174 	u64 last;
   1175 
   1176 	if (WARN_ON(pipe >= dev->num_crtcs))
   1177 		return;
   1178 
   1179 	ret = drm_vblank_get(dev, pipe);
   1180 	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
   1181 		return;
   1182 
   1183 	spin_lock(&dev->vbl_lock);
   1184 	last = drm_vblank_count(dev, pipe);
   1185 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &vblank->queue, &dev->vbl_lock,
   1186 	    msecs_to_jiffies(100),
   1187 	    last != drm_vblank_count(dev, pipe));
   1188 	spin_unlock(&dev->vbl_lock);
   1189 
   1190 	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
   1191 
   1192 	drm_vblank_put(dev, pipe);
   1193 }
   1194 EXPORT_SYMBOL(drm_wait_one_vblank);
   1195 
   1196 /**
   1197  * drm_crtc_wait_one_vblank - wait for one vblank
   1198  * @crtc: DRM crtc
   1199  *
   1200  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
   1201  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
   1202  * due to lack of driver support or because the crtc is off.
   1203  */
   1204 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
   1205 {
   1206 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
   1207 }
   1208 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
   1209 
   1210 /**
   1211  * drm_crtc_vblank_off - disable vblank events on a CRTC
   1212  * @crtc: CRTC in question
   1213  *
   1214  * Drivers can use this function to shut down the vblank interrupt handling when
   1215  * disabling a crtc. This function ensures that the latest vblank frame count is
   1216  * stored so that drm_vblank_on can restore it again.
   1217  *
   1218  * Drivers must use this function when the hardware vblank counter can get
   1219  * reset, e.g. when suspending or disabling the @crtc in general.
   1220  */
   1221 void drm_crtc_vblank_off(struct drm_crtc *crtc)
   1222 {
   1223 	struct drm_device *dev = crtc->dev;
   1224 	unsigned int pipe = drm_crtc_index(crtc);
   1225 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1226 	struct drm_pending_vblank_event *e, *t;
   1227 
   1228 	ktime_t now;
   1229 	unsigned long irqflags;
   1230 	u64 seq;
   1231 
   1232 	if (WARN_ON(pipe >= dev->num_crtcs))
   1233 		return;
   1234 
   1235 	spin_lock_irqsave(&dev->event_lock, irqflags);
   1236 
   1237 	spin_lock(&dev->vbl_lock);
   1238 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
   1239 		      pipe, vblank->enabled, vblank->inmodeset);
   1240 
   1241 	/* Avoid redundant vblank disables without previous
   1242 	 * drm_crtc_vblank_on(). */
   1243 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
   1244 		drm_vblank_disable_and_save(dev, pipe);
   1245 
   1246 	DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
   1247 
   1248 	/*
   1249 	 * Prevent subsequent drm_vblank_get() from re-enabling
   1250 	 * the vblank interrupt by bumping the refcount.
   1251 	 */
   1252 	if (!vblank->inmodeset) {
   1253 		atomic_inc(&vblank->refcount);
   1254 		vblank->inmodeset = 1;
   1255 	}
   1256 	spin_unlock(&dev->vbl_lock);
   1257 
   1258 	/* Send any queued vblank events, lest the natives grow disquiet */
   1259 	seq = drm_vblank_count_and_time(dev, pipe, &now);
   1260 
   1261 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
   1262 		if (e->pipe != pipe)
   1263 			continue;
   1264 		DRM_DEBUG("Sending premature vblank event on disable: "
   1265 			  "wanted %"PRIu64", current %"PRIu64"\n",
   1266 			  e->sequence, seq);
   1267 		list_del(&e->base.link);
   1268 		drm_vblank_put(dev, pipe);
   1269 		send_vblank_event(dev, e, seq, now);
   1270 	}
   1271 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
   1272 
   1273 	/* Will be reset by the modeset helpers when re-enabling the crtc by
   1274 	 * calling drm_calc_timestamping_constants(). */
   1275 	vblank->hwmode.crtc_clock = 0;
   1276 }
   1277 EXPORT_SYMBOL(drm_crtc_vblank_off);
   1278 
   1279 /**
   1280  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
   1281  * @crtc: CRTC in question
   1282  *
   1283  * Drivers can use this function to reset the vblank state to off at load time.
   1284  * Drivers should use this together with the drm_crtc_vblank_off() and
   1285  * drm_crtc_vblank_on() functions. The difference compared to
   1286  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
   1287  * and hence doesn't need to call any driver hooks.
   1288  *
   1289  * This is useful for recovering driver state e.g. on driver load, or on resume.
   1290  */
   1291 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
   1292 {
   1293 	struct drm_device *dev = crtc->dev;
   1294 	unsigned long irqflags;
   1295 	unsigned int pipe = drm_crtc_index(crtc);
   1296 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1297 
   1298 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
   1299 	/*
   1300 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
   1301 	 * interrupt by bumping the refcount.
   1302 	 */
   1303 	if (!vblank->inmodeset) {
   1304 		atomic_inc(&vblank->refcount);
   1305 		vblank->inmodeset = 1;
   1306 	}
   1307 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   1308 
   1309 	WARN_ON(!list_empty(&dev->vblank_event_list));
   1310 }
   1311 EXPORT_SYMBOL(drm_crtc_vblank_reset);
   1312 
   1313 /**
   1314  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
   1315  * @crtc: CRTC in question
   1316  * @max_vblank_count: max hardware vblank counter value
   1317  *
   1318  * Update the maximum hardware vblank counter value for @crtc
   1319  * at runtime. Useful for hardware where the operation of the
   1320  * hardware vblank counter depends on the currently active
   1321  * display configuration.
   1322  *
   1323  * For example, if the hardware vblank counter does not work
   1324  * when a specific connector is active the maximum can be set
   1325  * to zero. And when that specific connector isn't active the
   1326  * maximum can again be set to the appropriate non-zero value.
   1327  *
   1328  * If used, must be called before drm_vblank_on().
   1329  */
   1330 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
   1331 				   u32 max_vblank_count)
   1332 {
   1333 	struct drm_device *dev = crtc->dev;
   1334 	unsigned int pipe = drm_crtc_index(crtc);
   1335 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1336 
   1337 	WARN_ON(dev->max_vblank_count);
   1338 	WARN_ON(!READ_ONCE(vblank->inmodeset));
   1339 
   1340 	vblank->max_vblank_count = max_vblank_count;
   1341 }
   1342 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
   1343 
   1344 /**
   1345  * drm_crtc_vblank_on - enable vblank events on a CRTC
   1346  * @crtc: CRTC in question
   1347  *
   1348  * This functions restores the vblank interrupt state captured with
   1349  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
   1350  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
   1351  * unbalanced and so can also be unconditionally called in driver load code to
   1352  * reflect the current hardware state of the crtc.
   1353  */
   1354 void drm_crtc_vblank_on(struct drm_crtc *crtc)
   1355 {
   1356 	struct drm_device *dev = crtc->dev;
   1357 	unsigned int pipe = drm_crtc_index(crtc);
   1358 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1359 	unsigned long irqflags;
   1360 
   1361 	if (WARN_ON(pipe >= dev->num_crtcs))
   1362 		return;
   1363 
   1364 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
   1365 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
   1366 		      pipe, vblank->enabled, vblank->inmodeset);
   1367 
   1368 	/* Drop our private "prevent drm_vblank_get" refcount */
   1369 	if (vblank->inmodeset) {
   1370 		atomic_dec(&vblank->refcount);
   1371 		vblank->inmodeset = 0;
   1372 	}
   1373 
   1374 	drm_reset_vblank_timestamp(dev, pipe);
   1375 
   1376 	/*
   1377 	 * re-enable interrupts if there are users left, or the
   1378 	 * user wishes vblank interrupts to be enabled all the time.
   1379 	 */
   1380 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
   1381 		WARN_ON(drm_vblank_enable(dev, pipe));
   1382 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   1383 }
   1384 EXPORT_SYMBOL(drm_crtc_vblank_on);
   1385 
   1386 /**
   1387  * drm_vblank_restore - estimate missed vblanks and update vblank count.
   1388  * @dev: DRM device
   1389  * @pipe: CRTC index
   1390  *
   1391  * Power manamement features can cause frame counter resets between vblank
   1392  * disable and enable. Drivers can use this function in their
   1393  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
   1394  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
   1395  * vblank counter.
   1396  *
   1397  * This function is the legacy version of drm_crtc_vblank_restore().
   1398  */
   1399 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
   1400 {
   1401 	ktime_t t_vblank;
   1402 	struct drm_vblank_crtc *vblank;
   1403 	int framedur_ns;
   1404 	u64 diff_ns;
   1405 	u32 cur_vblank, diff = 1;
   1406 	int count = DRM_TIMESTAMP_MAXRETRIES;
   1407 
   1408 	if (WARN_ON(pipe >= dev->num_crtcs))
   1409 		return;
   1410 
   1411 	assert_spin_locked(&dev->vbl_lock);
   1412 	assert_spin_locked(&dev->vblank_time_lock);
   1413 
   1414 	vblank = &dev->vblank[pipe];
   1415 	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
   1416 		  "Cannot compute missed vblanks without frame duration\n");
   1417 	framedur_ns = vblank->framedur_ns;
   1418 
   1419 	do {
   1420 		cur_vblank = __get_vblank_counter(dev, pipe);
   1421 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
   1422 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
   1423 
   1424 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
   1425 	if (framedur_ns)
   1426 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
   1427 
   1428 
   1429 	DRM_DEBUG_VBL("missed %d vblanks in %"PRId64" ns, frame duration=%d ns, hw_diff=%d\n",
   1430 		      diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
   1431 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
   1432 }
   1433 EXPORT_SYMBOL(drm_vblank_restore);
   1434 
   1435 /**
   1436  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
   1437  * @crtc: CRTC in question
   1438  *
   1439  * Power manamement features can cause frame counter resets between vblank
   1440  * disable and enable. Drivers can use this function in their
   1441  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
   1442  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
   1443  * vblank counter.
   1444  */
   1445 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
   1446 {
   1447 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
   1448 }
   1449 EXPORT_SYMBOL(drm_crtc_vblank_restore);
   1450 
   1451 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
   1452 					  unsigned int pipe)
   1453 {
   1454 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1455 
   1456 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
   1457 	if (!dev->num_crtcs)
   1458 		return;
   1459 
   1460 	if (WARN_ON(pipe >= dev->num_crtcs))
   1461 		return;
   1462 
   1463 	/*
   1464 	 * To avoid all the problems that might happen if interrupts
   1465 	 * were enabled/disabled around or between these calls, we just
   1466 	 * have the kernel take a reference on the CRTC (just once though
   1467 	 * to avoid corrupting the count if multiple, mismatch calls occur),
   1468 	 * so that interrupts remain enabled in the interim.
   1469 	 */
   1470 	if (!vblank->inmodeset) {
   1471 		vblank->inmodeset = 0x1;
   1472 		if (drm_vblank_get(dev, pipe) == 0)
   1473 			vblank->inmodeset |= 0x2;
   1474 	}
   1475 }
   1476 
   1477 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
   1478 					   unsigned int pipe)
   1479 {
   1480 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1481 	unsigned long irqflags;
   1482 
   1483 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
   1484 	if (!dev->num_crtcs)
   1485 		return;
   1486 
   1487 	if (WARN_ON(pipe >= dev->num_crtcs))
   1488 		return;
   1489 
   1490 	if (vblank->inmodeset) {
   1491 		spin_lock_irqsave(&dev->vbl_lock, irqflags);
   1492 		drm_reset_vblank_timestamp(dev, pipe);
   1493 		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   1494 
   1495 		if (vblank->inmodeset & 0x2)
   1496 			drm_vblank_put(dev, pipe);
   1497 
   1498 		vblank->inmodeset = 0;
   1499 	}
   1500 }
   1501 
   1502 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
   1503 				 struct drm_file *file_priv)
   1504 {
   1505 	struct drm_modeset_ctl *modeset = data;
   1506 	unsigned int pipe;
   1507 
   1508 	/* If drm_vblank_init() hasn't been called yet, just no-op */
   1509 	if (!dev->num_crtcs)
   1510 		return 0;
   1511 
   1512 	/* KMS drivers handle this internally */
   1513 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
   1514 		return 0;
   1515 
   1516 	pipe = modeset->crtc;
   1517 	if (pipe >= dev->num_crtcs)
   1518 		return -EINVAL;
   1519 
   1520 	switch (modeset->cmd) {
   1521 	case _DRM_PRE_MODESET:
   1522 		drm_legacy_vblank_pre_modeset(dev, pipe);
   1523 		break;
   1524 	case _DRM_POST_MODESET:
   1525 		drm_legacy_vblank_post_modeset(dev, pipe);
   1526 		break;
   1527 	default:
   1528 		return -EINVAL;
   1529 	}
   1530 
   1531 	return 0;
   1532 }
   1533 
   1534 static inline bool vblank_passed(u64 seq, u64 ref)
   1535 {
   1536 	return (seq - ref) <= (1 << 23);
   1537 }
   1538 
   1539 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
   1540 				  u64 req_seq,
   1541 				  union drm_wait_vblank *vblwait,
   1542 				  struct drm_file *file_priv)
   1543 {
   1544 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1545 	struct drm_pending_vblank_event *e;
   1546 	ktime_t now;
   1547 	unsigned long flags;
   1548 	u64 seq;
   1549 	int ret;
   1550 
   1551 	e = kzalloc(sizeof(*e), GFP_KERNEL);
   1552 	if (e == NULL) {
   1553 		ret = -ENOMEM;
   1554 		goto err_put;
   1555 	}
   1556 
   1557 	e->pipe = pipe;
   1558 	e->event.base.type = DRM_EVENT_VBLANK;
   1559 	e->event.base.length = sizeof(e->event.vbl);
   1560 	e->event.vbl.user_data = vblwait->request.signal;
   1561 	e->event.vbl.crtc_id = 0;
   1562 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
   1563 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
   1564 		if (crtc)
   1565 			e->event.vbl.crtc_id = crtc->base.id;
   1566 	}
   1567 
   1568 	spin_lock_irqsave(&dev->event_lock, flags);
   1569 
   1570 	/*
   1571 	 * drm_crtc_vblank_off() might have been called after we called
   1572 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
   1573 	 * vblank disable, so no need for further locking.  The reference from
   1574 	 * drm_vblank_get() protects against vblank disable from another source.
   1575 	 */
   1576 	if (!READ_ONCE(vblank->enabled)) {
   1577 		ret = -EINVAL;
   1578 		goto err_unlock;
   1579 	}
   1580 
   1581 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
   1582 					    &e->event.base);
   1583 
   1584 	if (ret)
   1585 		goto err_unlock;
   1586 
   1587 	seq = drm_vblank_count_and_time(dev, pipe, &now);
   1588 
   1589 	DRM_DEBUG("event on vblank count %"PRIu64", current %"PRIu64", crtc %u\n",
   1590 		  req_seq, seq, pipe);
   1591 
   1592 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
   1593 
   1594 	e->sequence = req_seq;
   1595 	if (vblank_passed(seq, req_seq)) {
   1596 		drm_vblank_put(dev, pipe);
   1597 		send_vblank_event(dev, e, seq, now);
   1598 		vblwait->reply.sequence = seq;
   1599 	} else {
   1600 		/* drm_handle_vblank_events will call drm_vblank_put */
   1601 		list_add_tail(&e->base.link, &dev->vblank_event_list);
   1602 		vblwait->reply.sequence = req_seq;
   1603 	}
   1604 
   1605 	spin_unlock_irqrestore(&dev->event_lock, flags);
   1606 
   1607 	return 0;
   1608 
   1609 err_unlock:
   1610 	spin_unlock_irqrestore(&dev->event_lock, flags);
   1611 	kfree(e);
   1612 err_put:
   1613 	drm_vblank_put(dev, pipe);
   1614 	return ret;
   1615 }
   1616 
   1617 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
   1618 {
   1619 	if (vblwait->request.sequence)
   1620 		return false;
   1621 
   1622 	return _DRM_VBLANK_RELATIVE ==
   1623 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
   1624 					  _DRM_VBLANK_EVENT |
   1625 					  _DRM_VBLANK_NEXTONMISS));
   1626 }
   1627 
   1628 /*
   1629  * Widen a 32-bit param to 64-bits.
   1630  *
   1631  * \param narrow 32-bit value (missing upper 32 bits)
   1632  * \param near 64-bit value that should be 'close' to near
   1633  *
   1634  * This function returns a 64-bit value using the lower 32-bits from
   1635  * 'narrow' and constructing the upper 32-bits so that the result is
   1636  * as close as possible to 'near'.
   1637  */
   1638 
   1639 static u64 widen_32_to_64(u32 narrow, u64 near)
   1640 {
   1641 	return near + (s32) (narrow - near);
   1642 }
   1643 
   1644 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
   1645 				  struct drm_wait_vblank_reply *reply)
   1646 {
   1647 	ktime_t now;
   1648 	struct timespec64 ts;
   1649 
   1650 	/*
   1651 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
   1652 	 * to store the seconds. This is safe as we always use monotonic
   1653 	 * timestamps since linux-4.15.
   1654 	 */
   1655 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
   1656 	ts = ktime_to_timespec64(now);
   1657 	reply->tval_sec = (u32)ts.tv_sec;
   1658 	reply->tval_usec = ts.tv_nsec / 1000;
   1659 }
   1660 
   1661 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
   1662 			  struct drm_file *file_priv)
   1663 {
   1664 	struct drm_crtc *crtc;
   1665 	struct drm_vblank_crtc *vblank;
   1666 	union drm_wait_vblank *vblwait = data;
   1667 	int ret;
   1668 	u64 req_seq, seq;
   1669 	unsigned int pipe_index;
   1670 	unsigned int flags, pipe, high_pipe;
   1671 
   1672 	if (!dev->irq_enabled)
   1673 		return -EOPNOTSUPP;
   1674 
   1675 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
   1676 		return -EINVAL;
   1677 
   1678 	if (vblwait->request.type &
   1679 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
   1680 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
   1681 		DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
   1682 			  vblwait->request.type,
   1683 			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
   1684 			   _DRM_VBLANK_HIGH_CRTC_MASK));
   1685 		return -EINVAL;
   1686 	}
   1687 
   1688 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
   1689 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
   1690 	if (high_pipe)
   1691 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
   1692 	else
   1693 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
   1694 
   1695 	/* Convert lease-relative crtc index into global crtc index */
   1696 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
   1697 		pipe = 0;
   1698 		drm_for_each_crtc(crtc, dev) {
   1699 			if (drm_lease_held(file_priv, crtc->base.id)) {
   1700 				if (pipe_index == 0)
   1701 					break;
   1702 				pipe_index--;
   1703 			}
   1704 			pipe++;
   1705 		}
   1706 	} else {
   1707 		pipe = pipe_index;
   1708 	}
   1709 
   1710 	if (pipe >= dev->num_crtcs)
   1711 		return -EINVAL;
   1712 
   1713 	vblank = &dev->vblank[pipe];
   1714 
   1715 	/* If the counter is currently enabled and accurate, short-circuit
   1716 	 * queries to return the cached timestamp of the last vblank.
   1717 	 */
   1718 	if (dev->vblank_disable_immediate &&
   1719 	    drm_wait_vblank_is_query(vblwait) &&
   1720 	    READ_ONCE(vblank->enabled)) {
   1721 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
   1722 		return 0;
   1723 	}
   1724 
   1725 	ret = drm_vblank_get(dev, pipe);
   1726 	if (ret) {
   1727 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
   1728 		return ret;
   1729 	}
   1730 	seq = drm_vblank_count(dev, pipe);
   1731 
   1732 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
   1733 	case _DRM_VBLANK_RELATIVE:
   1734 		req_seq = seq + vblwait->request.sequence;
   1735 		vblwait->request.sequence = req_seq;
   1736 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
   1737 		break;
   1738 	case _DRM_VBLANK_ABSOLUTE:
   1739 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
   1740 		break;
   1741 	default:
   1742 		ret = -EINVAL;
   1743 		goto done;
   1744 	}
   1745 
   1746 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
   1747 	    vblank_passed(seq, req_seq)) {
   1748 		req_seq = seq + 1;
   1749 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
   1750 		vblwait->request.sequence = req_seq;
   1751 	}
   1752 
   1753 	if (flags & _DRM_VBLANK_EVENT) {
   1754 		/* must hold on to the vblank ref until the event fires
   1755 		 * drm_vblank_put will be called asynchronously
   1756 		 */
   1757 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
   1758 	}
   1759 
   1760 	if (req_seq != seq) {
   1761 		int wait;
   1762 
   1763 		DRM_DEBUG("waiting on vblank count %"PRIu64", crtc %u\n",
   1764 			  req_seq, pipe);
   1765 		DRM_SPIN_TIMED_WAIT_UNTIL(wait, &vblank->queue,
   1766 		    &dev->vbl_lock, msecs_to_jiffies(3000),
   1767 		    (vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
   1768 			!READ_ONCE(vblank->enabled)));
   1769 
   1770 		switch (wait) {
   1771 		case 0:
   1772 			/* timeout */
   1773 			ret = -EBUSY;
   1774 			break;
   1775 		case -ERESTARTSYS:
   1776 			/* interrupted by signal */
   1777 			ret = -EINTR;
   1778 			break;
   1779 		default:
   1780 			ret = 0;
   1781 			break;
   1782 		}
   1783 	}
   1784 
   1785 	if (ret != -EINTR) {
   1786 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
   1787 
   1788 		DRM_DEBUG("crtc %d returning %u to client\n",
   1789 			  pipe, vblwait->reply.sequence);
   1790 	} else {
   1791 		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
   1792 	}
   1793 
   1794 done:
   1795 	drm_vblank_put(dev, pipe);
   1796 	return ret;
   1797 }
   1798 
   1799 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
   1800 {
   1801 	struct drm_pending_vblank_event *e, *t;
   1802 	ktime_t now;
   1803 	u64 seq;
   1804 
   1805 	assert_spin_locked(&dev->event_lock);
   1806 
   1807 	seq = drm_vblank_count_and_time(dev, pipe, &now);
   1808 
   1809 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
   1810 		if (e->pipe != pipe)
   1811 			continue;
   1812 		if (!vblank_passed(seq, e->sequence))
   1813 			continue;
   1814 
   1815 		DRM_DEBUG("vblank event on %"PRIu64", current %"PRIu64"\n",
   1816 			  e->sequence, seq);
   1817 
   1818 		list_del(&e->base.link);
   1819 		drm_vblank_put(dev, pipe);
   1820 		send_vblank_event(dev, e, seq, now);
   1821 	}
   1822 
   1823 	trace_drm_vblank_event(pipe, seq, now,
   1824 			dev->driver->get_vblank_timestamp != NULL);
   1825 }
   1826 
   1827 /**
   1828  * drm_handle_vblank - handle a vblank event
   1829  * @dev: DRM device
   1830  * @pipe: index of CRTC where this event occurred
   1831  *
   1832  * Drivers should call this routine in their vblank interrupt handlers to
   1833  * update the vblank counter and send any signals that may be pending.
   1834  *
   1835  * This is the legacy version of drm_crtc_handle_vblank().
   1836  */
   1837 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
   1838 {
   1839 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1840 	unsigned long irqflags;
   1841 	bool disable_irq;
   1842 
   1843 	if (WARN_ON_ONCE(!dev->num_crtcs))
   1844 		return false;
   1845 
   1846 	if (WARN_ON(pipe >= dev->num_crtcs))
   1847 		return false;
   1848 
   1849 	spin_lock_irqsave(&dev->event_lock, irqflags);
   1850 
   1851 	spin_lock(&dev->vbl_lock);
   1852 
   1853 	/* Need timestamp lock to prevent concurrent execution with
   1854 	 * vblank enable/disable, as this would cause inconsistent
   1855 	 * or corrupted timestamps and vblank counts.
   1856 	 */
   1857 	spin_lock(&dev->vblank_time_lock);
   1858 
   1859 	/* Vblank irq handling disabled. Nothing to do. */
   1860 	if (!vblank->enabled) {
   1861 		spin_unlock(&dev->vbl_lock);
   1862 		spin_unlock(&dev->vblank_time_lock);
   1863 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
   1864 		return false;
   1865 	}
   1866 
   1867 	drm_update_vblank_count(dev, pipe, true);
   1868 
   1869 	spin_unlock(&dev->vblank_time_lock);
   1870 
   1871 	DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
   1872 
   1873 	/* With instant-off, we defer disabling the interrupt until after
   1874 	 * we finish processing the following vblank after all events have
   1875 	 * been signaled. The disable has to be last (after
   1876 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
   1877 	 */
   1878 	disable_irq = (dev->vblank_disable_immediate &&
   1879 		       drm_vblank_offdelay > 0 &&
   1880 		       !atomic_read(&vblank->refcount));
   1881 
   1882 	spin_unlock(&dev->vbl_lock);
   1883 
   1884 	drm_handle_vblank_events(dev, pipe);
   1885 
   1886 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
   1887 
   1888 	if (disable_irq)
   1889 		vblank_disable_fn(&vblank->disable_timer);
   1890 
   1891 	return true;
   1892 }
   1893 EXPORT_SYMBOL(drm_handle_vblank);
   1894 
   1895 /**
   1896  * drm_crtc_handle_vblank - handle a vblank event
   1897  * @crtc: where this event occurred
   1898  *
   1899  * Drivers should call this routine in their vblank interrupt handlers to
   1900  * update the vblank counter and send any signals that may be pending.
   1901  *
   1902  * This is the native KMS version of drm_handle_vblank().
   1903  *
   1904  * Note that for a given vblank counter value drm_crtc_handle_vblank()
   1905  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
   1906  * provide a barrier: Any writes done before calling
   1907  * drm_crtc_handle_vblank() will be visible to callers of the later
   1908  * functions, iff the vblank count is the same or a later one.
   1909  *
   1910  * See also &drm_vblank_crtc.count.
   1911  *
   1912  * Returns:
   1913  * True if the event was successfully handled, false on failure.
   1914  */
   1915 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
   1916 {
   1917 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
   1918 }
   1919 EXPORT_SYMBOL(drm_crtc_handle_vblank);
   1920 
   1921 /*
   1922  * Get crtc VBLANK count.
   1923  *
   1924  * \param dev DRM device
   1925  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
   1926  * \param file_priv drm file private for the user's open file descriptor
   1927  */
   1928 
   1929 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
   1930 				struct drm_file *file_priv)
   1931 {
   1932 	struct drm_crtc *crtc;
   1933 	struct drm_vblank_crtc *vblank;
   1934 	int pipe;
   1935 	struct drm_crtc_get_sequence *get_seq = data;
   1936 	ktime_t now;
   1937 	bool vblank_enabled;
   1938 	int ret;
   1939 
   1940 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   1941 		return -EOPNOTSUPP;
   1942 
   1943 	if (!dev->irq_enabled)
   1944 		return -EOPNOTSUPP;
   1945 
   1946 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
   1947 	if (!crtc)
   1948 		return -ENOENT;
   1949 
   1950 	pipe = drm_crtc_index(crtc);
   1951 
   1952 	vblank = &dev->vblank[pipe];
   1953 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
   1954 
   1955 	if (!vblank_enabled) {
   1956 		ret = drm_crtc_vblank_get(crtc);
   1957 		if (ret) {
   1958 			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
   1959 			return ret;
   1960 		}
   1961 	}
   1962 	drm_modeset_lock(&crtc->mutex, NULL);
   1963 	if (crtc->state)
   1964 		get_seq->active = crtc->state->enable;
   1965 	else
   1966 		get_seq->active = crtc->enabled;
   1967 	drm_modeset_unlock(&crtc->mutex);
   1968 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
   1969 	get_seq->sequence_ns = ktime_to_ns(now);
   1970 	if (!vblank_enabled)
   1971 		drm_crtc_vblank_put(crtc);
   1972 	return 0;
   1973 }
   1974 
   1975 /*
   1976  * Queue a event for VBLANK sequence
   1977  *
   1978  * \param dev DRM device
   1979  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
   1980  * \param file_priv drm file private for the user's open file descriptor
   1981  */
   1982 
   1983 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
   1984 				  struct drm_file *file_priv)
   1985 {
   1986 	struct drm_crtc *crtc;
   1987 	struct drm_vblank_crtc *vblank;
   1988 	int pipe;
   1989 	struct drm_crtc_queue_sequence *queue_seq = data;
   1990 	ktime_t now;
   1991 	struct drm_pending_vblank_event *e;
   1992 	u32 flags;
   1993 	u64 seq;
   1994 	u64 req_seq;
   1995 	int ret;
   1996 	unsigned long spin_flags;
   1997 
   1998 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   1999 		return -EOPNOTSUPP;
   2000 
   2001 	if (!dev->irq_enabled)
   2002 		return -EOPNOTSUPP;
   2003 
   2004 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
   2005 	if (!crtc)
   2006 		return -ENOENT;
   2007 
   2008 	flags = queue_seq->flags;
   2009 	/* Check valid flag bits */
   2010 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
   2011 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
   2012 		return -EINVAL;
   2013 
   2014 	pipe = drm_crtc_index(crtc);
   2015 
   2016 	vblank = &dev->vblank[pipe];
   2017 
   2018 	e = kzalloc(sizeof(*e), GFP_KERNEL);
   2019 	if (e == NULL)
   2020 		return -ENOMEM;
   2021 
   2022 	ret = drm_crtc_vblank_get(crtc);
   2023 	if (ret) {
   2024 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
   2025 		goto err_free;
   2026 	}
   2027 
   2028 	seq = drm_vblank_count_and_time(dev, pipe, &now);
   2029 	req_seq = queue_seq->sequence;
   2030 
   2031 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
   2032 		req_seq += seq;
   2033 
   2034 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
   2035 		req_seq = seq + 1;
   2036 
   2037 	e->pipe = pipe;
   2038 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
   2039 	e->event.base.length = sizeof(e->event.seq);
   2040 	e->event.seq.user_data = queue_seq->user_data;
   2041 
   2042 	spin_lock_irqsave(&dev->event_lock, spin_flags);
   2043 
   2044 	/*
   2045 	 * drm_crtc_vblank_off() might have been called after we called
   2046 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
   2047 	 * vblank disable, so no need for further locking.  The reference from
   2048 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
   2049 	 */
   2050 	if (!READ_ONCE(vblank->enabled)) {
   2051 		ret = -EINVAL;
   2052 		goto err_unlock;
   2053 	}
   2054 
   2055 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
   2056 					    &e->event.base);
   2057 
   2058 	if (ret)
   2059 		goto err_unlock;
   2060 
   2061 	e->sequence = req_seq;
   2062 
   2063 	if (vblank_passed(seq, req_seq)) {
   2064 		drm_crtc_vblank_put(crtc);
   2065 		send_vblank_event(dev, e, seq, now);
   2066 		queue_seq->sequence = seq;
   2067 	} else {
   2068 		/* drm_handle_vblank_events will call drm_vblank_put */
   2069 		list_add_tail(&e->base.link, &dev->vblank_event_list);
   2070 		queue_seq->sequence = req_seq;
   2071 	}
   2072 
   2073 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
   2074 	return 0;
   2075 
   2076 err_unlock:
   2077 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
   2078 	drm_crtc_vblank_put(crtc);
   2079 err_free:
   2080 	kfree(e);
   2081 	return ret;
   2082 }
   2083