drm_vblank.c revision 1.10 1 /* $NetBSD: drm_vblank.c,v 1.10 2021/12/19 11:52:25 riastradh Exp $ */
2
3 /*
4 * drm_irq.c IRQ and vblank support
5 *
6 * \author Rickard E. (Rik) Faith <faith (at) valinux.com>
7 * \author Gareth Hughes <gareth (at) valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
26 * OTHER DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: drm_vblank.c,v 1.10 2021/12/19 11:52:25 riastradh Exp $");
31
32 #include <linux/export.h>
33 #include <linux/moduleparam.h>
34 #include <linux/math64.h>
35
36 #include <drm/drm_crtc.h>
37 #include <drm/drm_drv.h>
38 #include <drm/drm_framebuffer.h>
39 #include <drm/drm_print.h>
40 #include <drm/drm_vblank.h>
41
42 #include "drm_internal.h"
43 #include "drm_trace.h"
44
45 /**
46 * DOC: vblank handling
47 *
48 * Vertical blanking plays a major role in graphics rendering. To achieve
49 * tear-free display, users must synchronize page flips and/or rendering to
50 * vertical blanking. The DRM API offers ioctls to perform page flips
51 * synchronized to vertical blanking and wait for vertical blanking.
52 *
53 * The DRM core handles most of the vertical blanking management logic, which
54 * involves filtering out spurious interrupts, keeping race-free blanking
55 * counters, coping with counter wrap-around and resets and keeping use counts.
56 * It relies on the driver to generate vertical blanking interrupts and
57 * optionally provide a hardware vertical blanking counter.
58 *
59 * Drivers must initialize the vertical blanking handling core with a call to
60 * drm_vblank_init(). Minimally, a driver needs to implement
61 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
62 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
63 * support.
64 *
65 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
66 * themselves (for instance to handle page flipping operations). The DRM core
67 * maintains a vertical blanking use count to ensure that the interrupts are not
68 * disabled while a user still needs them. To increment the use count, drivers
69 * call drm_crtc_vblank_get() and release the vblank reference again with
70 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
71 * guaranteed to be enabled.
72 *
73 * On many hardware disabling the vblank interrupt cannot be done in a race-free
74 * manner, see &drm_driver.vblank_disable_immediate and
75 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
76 * vblanks after a timer has expired, which can be configured through the
77 * ``vblankoffdelay`` module parameter.
78 *
79 * Lock order: event_lock -> vbl_lock -> vblank_time_lock
80 */
81
82 /* Retry timestamp calculation up to 3 times to satisfy
83 * drm_timestamp_precision before giving up.
84 */
85 #define DRM_TIMESTAMP_MAXRETRIES 3
86
87 /* Threshold in nanoseconds for detection of redundant
88 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
89 */
90 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
91
92 static bool
93 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
94 ktime_t *tvblank, bool in_vblank_irq);
95
96 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
97
98 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
99
100 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
101 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
102 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
103 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
104
105 static void store_vblank(struct drm_device *dev, unsigned int pipe,
106 u32 vblank_count_inc,
107 ktime_t t_vblank, u32 last)
108 {
109 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
110
111 assert_spin_locked(&dev->vblank_time_lock);
112
113 vblank->last = last;
114
115 write_seqlock(&vblank->seqlock);
116 vblank->time = t_vblank;
117 atomic64_add(vblank_count_inc, &vblank->count);
118 write_sequnlock(&vblank->seqlock);
119 }
120
121 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
122 {
123 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
124
125 return vblank->max_vblank_count ?: dev->max_vblank_count;
126 }
127
128 /*
129 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
130 * if there is no useable hardware frame counter available.
131 */
132 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
133 {
134 WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
135 return 0;
136 }
137
138 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
139 {
140 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
141 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
142
143 if (WARN_ON(!crtc))
144 return 0;
145
146 if (crtc->funcs->get_vblank_counter)
147 return crtc->funcs->get_vblank_counter(crtc);
148 }
149
150 if (dev->driver->get_vblank_counter)
151 return dev->driver->get_vblank_counter(dev, pipe);
152
153 return drm_vblank_no_hw_counter(dev, pipe);
154 }
155
156 /*
157 * Reset the stored timestamp for the current vblank count to correspond
158 * to the last vblank occurred.
159 *
160 * Only to be called from drm_crtc_vblank_on().
161 *
162 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
163 * device vblank fields.
164 */
165 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
166 {
167 u32 cur_vblank;
168 bool rc;
169 ktime_t t_vblank;
170 int count = DRM_TIMESTAMP_MAXRETRIES;
171
172 assert_spin_locked(&dev->vbl_lock);
173
174 spin_lock(&dev->vblank_time_lock);
175
176 /*
177 * sample the current counter to avoid random jumps
178 * when drm_vblank_enable() applies the diff
179 */
180 do {
181 cur_vblank = __get_vblank_counter(dev, pipe);
182 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
183 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
184
185 /*
186 * Only reinitialize corresponding vblank timestamp if high-precision query
187 * available and didn't fail. Otherwise reinitialize delayed at next vblank
188 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
189 */
190 if (!rc)
191 t_vblank = 0;
192
193 /*
194 * +1 to make sure user will never see the same
195 * vblank counter value before and after a modeset
196 */
197 store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
198
199 spin_unlock(&dev->vblank_time_lock);
200 }
201
202 /*
203 * Call back into the driver to update the appropriate vblank counter
204 * (specified by @pipe). Deal with wraparound, if it occurred, and
205 * update the last read value so we can deal with wraparound on the next
206 * call if necessary.
207 *
208 * Only necessary when going from off->on, to account for frames we
209 * didn't get an interrupt for.
210 *
211 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
212 * device vblank fields.
213 */
214 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
215 bool in_vblank_irq)
216 {
217 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
218 u32 cur_vblank, diff;
219 bool rc;
220 ktime_t t_vblank;
221 int count = DRM_TIMESTAMP_MAXRETRIES;
222 int framedur_ns = vblank->framedur_ns;
223 u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
224
225 assert_spin_locked(&dev->vbl_lock);
226
227 /*
228 * Interrupts were disabled prior to this call, so deal with counter
229 * wrap if needed.
230 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events
231 * here if the register is small or we had vblank interrupts off for
232 * a long time.
233 *
234 * We repeat the hardware vblank counter & timestamp query until
235 * we get consistent results. This to prevent races between gpu
236 * updating its hardware counter while we are retrieving the
237 * corresponding vblank timestamp.
238 */
239 do {
240 cur_vblank = __get_vblank_counter(dev, pipe);
241 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
242 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
243
244 if (max_vblank_count) {
245 /* trust the hw counter when it's around */
246 diff = (cur_vblank - vblank->last) & max_vblank_count;
247 } else if (rc && framedur_ns) {
248 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
249
250 /*
251 * Figure out how many vblanks we've missed based
252 * on the difference in the timestamps and the
253 * frame/field duration.
254 */
255
256 DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
257 " diff_ns = %lld, framedur_ns = %d)\n",
258 pipe, (long long) diff_ns, framedur_ns);
259
260 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
261
262 if (diff == 0 && in_vblank_irq)
263 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
264 pipe);
265 } else {
266 /* some kind of default for drivers w/o accurate vbl timestamping */
267 diff = in_vblank_irq ? 1 : 0;
268 }
269
270 /*
271 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
272 * interval? If so then vblank irqs keep running and it will likely
273 * happen that the hardware vblank counter is not trustworthy as it
274 * might reset at some point in that interval and vblank timestamps
275 * are not trustworthy either in that interval. Iow. this can result
276 * in a bogus diff >> 1 which must be avoided as it would cause
277 * random large forward jumps of the software vblank counter.
278 */
279 if (diff > 1 && (vblank->inmodeset & 0x2)) {
280 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
281 " due to pre-modeset.\n", pipe, diff);
282 diff = 1;
283 }
284
285 DRM_DEBUG_VBL("updating vblank count on crtc %u:"
286 " current=%"PRIu64", diff=%u, hw=%u hw_last=%u\n",
287 pipe, atomic64_read(&vblank->count), diff,
288 cur_vblank, vblank->last);
289
290 if (diff == 0) {
291 WARN_ON_ONCE(cur_vblank != vblank->last);
292 return;
293 }
294
295 /*
296 * Only reinitialize corresponding vblank timestamp if high-precision query
297 * available and didn't fail, or we were called from the vblank interrupt.
298 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
299 * for now, to mark the vblanktimestamp as invalid.
300 */
301 if (!rc && !in_vblank_irq)
302 t_vblank = 0;
303
304 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
305 }
306
307 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
308 {
309 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
310 u64 count;
311
312 if (WARN_ON(pipe >= dev->num_crtcs))
313 return 0;
314
315 count = atomic64_read(&vblank->count);
316
317 /*
318 * This read barrier corresponds to the implicit write barrier of the
319 * write seqlock in store_vblank(). Note that this is the only place
320 * where we need an explicit barrier, since all other access goes
321 * through drm_vblank_count_and_time(), which already has the required
322 * read barrier curtesy of the read seqlock.
323 */
324 smp_rmb();
325
326 return count;
327 }
328
329 /**
330 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
331 * @crtc: which counter to retrieve
332 *
333 * This function is similar to drm_crtc_vblank_count() but this function
334 * interpolates to handle a race with vblank interrupts using the high precision
335 * timestamping support.
336 *
337 * This is mostly useful for hardware that can obtain the scanout position, but
338 * doesn't have a hardware frame counter.
339 */
340 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
341 {
342 struct drm_device *dev = crtc->dev;
343 unsigned int pipe = drm_crtc_index(crtc);
344 u64 vblank;
345 unsigned long flags;
346
347 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
348 "This function requires support for accurate vblank timestamps.");
349
350 spin_lock(&dev->vbl_lock);
351 spin_lock_irqsave(&dev->vblank_time_lock, flags);
352
353 drm_update_vblank_count(dev, pipe, false);
354 vblank = drm_vblank_count(dev, pipe);
355
356 spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
357 spin_unlock(&dev->vbl_lock);
358
359 return vblank;
360 }
361 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
362
363 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
364 {
365 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
366 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
367
368 if (WARN_ON(!crtc))
369 return;
370
371 if (crtc->funcs->disable_vblank) {
372 crtc->funcs->disable_vblank(crtc);
373 return;
374 }
375 }
376
377 dev->driver->disable_vblank(dev, pipe);
378 }
379
380 /*
381 * Disable vblank irq's on crtc, make sure that last vblank count
382 * of hardware and corresponding consistent software vblank counter
383 * are preserved, even if there are any spurious vblank irq's after
384 * disable.
385 */
386 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
387 {
388 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
389 unsigned long irqflags;
390
391 assert_spin_locked(&dev->vbl_lock);
392
393 /* Prevent vblank irq processing while disabling vblank irqs,
394 * so no updates of timestamps or count can happen after we've
395 * disabled. Needed to prevent races in case of delayed irq's.
396 */
397 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
398
399 /*
400 * Update vblank count and disable vblank interrupts only if the
401 * interrupts were enabled. This avoids calling the ->disable_vblank()
402 * operation in atomic context with the hardware potentially runtime
403 * suspended.
404 */
405 if (!vblank->enabled)
406 goto out;
407
408 /*
409 * Update the count and timestamp to maintain the
410 * appearance that the counter has been ticking all along until
411 * this time. This makes the count account for the entire time
412 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
413 */
414 drm_update_vblank_count(dev, pipe, false);
415 __disable_vblank(dev, pipe);
416 vblank->enabled = false;
417
418 out:
419 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
420 }
421
422 static void
423 vblank_disable_locked(struct drm_vblank_crtc *vblank, struct drm_device *dev,
424 unsigned int pipe)
425 {
426
427 BUG_ON(vblank != &dev->vblank[pipe]);
428 assert_spin_locked(&dev->vbl_lock);
429
430 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
431 DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
432 drm_vblank_disable_and_save(dev, pipe);
433 }
434 }
435
436 static void vblank_disable_fn(struct timer_list *t)
437 {
438 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
439 struct drm_device *dev = vblank->dev;
440 unsigned int pipe = vblank->pipe;
441 unsigned long irqflags;
442
443 spin_lock_irqsave(&dev->vbl_lock, irqflags);
444 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
445 DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
446 drm_vblank_disable_and_save(dev, pipe);
447 }
448 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
449 }
450
451 void drm_vblank_cleanup(struct drm_device *dev)
452 {
453 unsigned int pipe;
454
455 /* Bail if the driver didn't call drm_vblank_init() */
456 if (dev->num_crtcs == 0)
457 return;
458
459 for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
460 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
461
462 WARN_ON(READ_ONCE(vblank->enabled) &&
463 drm_core_check_feature(dev, DRIVER_MODESET));
464
465 del_timer_sync(&vblank->disable_timer);
466 teardown_timer(&vblank->disable_timer);
467 seqlock_destroy(&vblank->seqlock);
468 }
469
470 kfree(dev->vblank);
471
472 dev->num_crtcs = 0;
473 }
474
475 /**
476 * drm_vblank_init - initialize vblank support
477 * @dev: DRM device
478 * @num_crtcs: number of CRTCs supported by @dev
479 *
480 * This function initializes vblank support for @num_crtcs display pipelines.
481 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
482 * drivers with a &drm_driver.release callback.
483 *
484 * Returns:
485 * Zero on success or a negative error code on failure.
486 */
487 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
488 {
489 int ret = -ENOMEM;
490 unsigned int i;
491
492 spin_lock_init(&dev->vbl_lock);
493 spin_lock_init(&dev->vblank_time_lock);
494
495 dev->num_crtcs = num_crtcs;
496
497 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
498 if (!dev->vblank)
499 goto err;
500
501 for (i = 0; i < num_crtcs; i++) {
502 struct drm_vblank_crtc *vblank = &dev->vblank[i];
503
504 vblank->dev = dev;
505 vblank->pipe = i;
506 DRM_INIT_WAITQUEUE(&vblank->queue, "drmvblnq");
507 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
508 seqlock_init(&vblank->seqlock);
509 }
510
511 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
512
513 /* Driver specific high-precision vblank timestamping supported? */
514 if (dev->driver->get_vblank_timestamp)
515 DRM_INFO("Driver supports precise vblank timestamp query.\n");
516 else
517 DRM_INFO("No driver support for vblank timestamp query.\n");
518
519 /* Must have precise timestamping for reliable vblank instant disable */
520 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
521 dev->vblank_disable_immediate = false;
522 DRM_INFO("Setting vblank_disable_immediate to false because "
523 "get_vblank_timestamp == NULL\n");
524 }
525
526 return 0;
527
528 err:
529 dev->num_crtcs = 0;
530 return ret;
531 }
532 EXPORT_SYMBOL(drm_vblank_init);
533
534 /**
535 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
536 * @crtc: which CRTC's vblank waitqueue to retrieve
537 *
538 * This function returns a pointer to the vblank waitqueue for the CRTC.
539 * Drivers can use this to implement vblank waits using wait_event() and related
540 * functions.
541 */
542 drm_waitqueue_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
543 {
544 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
545 }
546 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
547
548
549 /**
550 * drm_calc_timestamping_constants - calculate vblank timestamp constants
551 * @crtc: drm_crtc whose timestamp constants should be updated.
552 * @mode: display mode containing the scanout timings
553 *
554 * Calculate and store various constants which are later needed by vblank and
555 * swap-completion timestamping, e.g, by
556 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
557 * scanout timing, so they take things like panel scaling or other adjustments
558 * into account.
559 */
560 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
561 const struct drm_display_mode *mode)
562 {
563 struct drm_device *dev = crtc->dev;
564 unsigned int pipe = drm_crtc_index(crtc);
565 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
566 int linedur_ns = 0, framedur_ns = 0;
567 int dotclock = mode->crtc_clock;
568
569 if (!dev->num_crtcs)
570 return;
571
572 if (WARN_ON(pipe >= dev->num_crtcs))
573 return;
574
575 /* Valid dotclock? */
576 if (dotclock > 0) {
577 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
578
579 /*
580 * Convert scanline length in pixels and video
581 * dot clock to line duration and frame duration
582 * in nanoseconds:
583 */
584 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
585 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
586
587 /*
588 * Fields of interlaced scanout modes are only half a frame duration.
589 */
590 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
591 framedur_ns /= 2;
592 } else
593 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
594 crtc->base.id);
595
596 vblank->linedur_ns = linedur_ns;
597 vblank->framedur_ns = framedur_ns;
598 vblank->hwmode = *mode;
599
600 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
601 crtc->base.id, mode->crtc_htotal,
602 mode->crtc_vtotal, mode->crtc_vdisplay);
603 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
604 crtc->base.id, dotclock, framedur_ns, linedur_ns);
605 }
606 EXPORT_SYMBOL(drm_calc_timestamping_constants);
607
608 /**
609 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
610 * @dev: DRM device
611 * @pipe: index of CRTC whose vblank timestamp to retrieve
612 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
613 * On return contains true maximum error of timestamp
614 * @vblank_time: Pointer to time which should receive the timestamp
615 * @in_vblank_irq:
616 * True when called from drm_crtc_handle_vblank(). Some drivers
617 * need to apply some workarounds for gpu-specific vblank irq quirks
618 * if flag is set.
619 *
620 * Implements calculation of exact vblank timestamps from given drm_display_mode
621 * timings and current video scanout position of a CRTC. This can be directly
622 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
623 * if &drm_driver.get_scanout_position is implemented.
624 *
625 * The current implementation only handles standard video modes. For double scan
626 * and interlaced modes the driver is supposed to adjust the hardware mode
627 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
628 * match the scanout position reported.
629 *
630 * Note that atomic drivers must call drm_calc_timestamping_constants() before
631 * enabling a CRTC. The atomic helpers already take care of that in
632 * drm_atomic_helper_update_legacy_modeset_state().
633 *
634 * Returns:
635 *
636 * Returns true on success, and false on failure, i.e. when no accurate
637 * timestamp could be acquired.
638 */
639 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
640 unsigned int pipe,
641 int *max_error,
642 ktime_t *vblank_time,
643 bool in_vblank_irq)
644 {
645 struct timespec64 ts_etime, ts_vblank_time;
646 ktime_t stime, etime;
647 bool vbl_status;
648 struct drm_crtc *crtc;
649 const struct drm_display_mode *mode;
650 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
651 int vpos, hpos, i;
652 int delta_ns, duration_ns;
653
654 if (!drm_core_check_feature(dev, DRIVER_MODESET))
655 return false;
656
657 crtc = drm_crtc_from_index(dev, pipe);
658
659 if (pipe >= dev->num_crtcs || !crtc) {
660 DRM_ERROR("Invalid crtc %u\n", pipe);
661 return false;
662 }
663
664 /* Scanout position query not supported? Should not happen. */
665 if (!dev->driver->get_scanout_position) {
666 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
667 return false;
668 }
669
670 if (drm_drv_uses_atomic_modeset(dev))
671 mode = &vblank->hwmode;
672 else
673 mode = &crtc->hwmode;
674
675 /* If mode timing undefined, just return as no-op:
676 * Happens during initial modesetting of a crtc.
677 */
678 if (mode->crtc_clock == 0) {
679 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
680 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
681
682 return false;
683 }
684
685 /* Get current scanout position with system timestamp.
686 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
687 * if single query takes longer than max_error nanoseconds.
688 *
689 * This guarantees a tight bound on maximum error if
690 * code gets preempted or delayed for some reason.
691 */
692 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
693 /*
694 * Get vertical and horizontal scanout position vpos, hpos,
695 * and bounding timestamps stime, etime, pre/post query.
696 */
697 vbl_status = dev->driver->get_scanout_position(dev, pipe,
698 in_vblank_irq,
699 &vpos, &hpos,
700 &stime, &etime,
701 mode);
702
703 /* Return as no-op if scanout query unsupported or failed. */
704 if (!vbl_status) {
705 DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
706 pipe);
707 return false;
708 }
709
710 /* Compute uncertainty in timestamp of scanout position query. */
711 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
712
713 /* Accept result with < max_error nsecs timing uncertainty. */
714 if (duration_ns <= *max_error)
715 break;
716 }
717
718 /* Noisy system timing? */
719 if (i == DRM_TIMESTAMP_MAXRETRIES) {
720 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
721 pipe, duration_ns/1000, *max_error/1000, i);
722 }
723
724 /* Return upper bound of timestamp precision error. */
725 *max_error = duration_ns;
726
727 /* Convert scanout position into elapsed time at raw_time query
728 * since start of scanout at first display scanline. delta_ns
729 * can be negative if start of scanout hasn't happened yet.
730 */
731 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
732 mode->crtc_clock);
733
734 /* Subtract time delta from raw timestamp to get final
735 * vblank_time timestamp for end of vblank.
736 */
737 *vblank_time = ktime_sub_ns(etime, delta_ns);
738
739 if (!drm_debug_enabled(DRM_UT_VBL))
740 return true;
741
742 ts_etime = ktime_to_timespec64(etime);
743 ts_vblank_time = ktime_to_timespec64(*vblank_time);
744
745 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %"PRId64".%06ld -> %"PRId64".%06ld [e %d us, %d rep]\n",
746 pipe, hpos, vpos,
747 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
748 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
749 duration_ns / 1000, i);
750
751 return true;
752 }
753 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
754
755 /**
756 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
757 * vblank interval
758 * @dev: DRM device
759 * @pipe: index of CRTC whose vblank timestamp to retrieve
760 * @tvblank: Pointer to target time which should receive the timestamp
761 * @in_vblank_irq:
762 * True when called from drm_crtc_handle_vblank(). Some drivers
763 * need to apply some workarounds for gpu-specific vblank irq quirks
764 * if flag is set.
765 *
766 * Fetches the system timestamp corresponding to the time of the most recent
767 * vblank interval on specified CRTC. May call into kms-driver to
768 * compute the timestamp with a high-precision GPU specific method.
769 *
770 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
771 * call, i.e., it isn't very precisely locked to the true vblank.
772 *
773 * Returns:
774 * True if timestamp is considered to be very precise, false otherwise.
775 */
776 static bool
777 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
778 ktime_t *tvblank, bool in_vblank_irq)
779 {
780 bool ret = false;
781
782 /* Define requested maximum error on timestamps (nanoseconds). */
783 int max_error = (int) drm_timestamp_precision * 1000;
784
785 /* Query driver if possible and precision timestamping enabled. */
786 if (dev->driver->get_vblank_timestamp && (max_error > 0))
787 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
788 tvblank, in_vblank_irq);
789
790 /* GPU high precision timestamp query unsupported or failed.
791 * Return current monotonic/gettimeofday timestamp as best estimate.
792 */
793 if (!ret)
794 *tvblank = ktime_get();
795
796 return ret;
797 }
798
799 /**
800 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
801 * @crtc: which counter to retrieve
802 *
803 * Fetches the "cooked" vblank count value that represents the number of
804 * vblank events since the system was booted, including lost events due to
805 * modesetting activity. Note that this timer isn't correct against a racing
806 * vblank interrupt (since it only reports the software vblank counter), see
807 * drm_crtc_accurate_vblank_count() for such use-cases.
808 *
809 * Note that for a given vblank counter value drm_crtc_handle_vblank()
810 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
811 * provide a barrier: Any writes done before calling
812 * drm_crtc_handle_vblank() will be visible to callers of the later
813 * functions, iff the vblank count is the same or a later one.
814 *
815 * See also &drm_vblank_crtc.count.
816 *
817 * Returns:
818 * The software vblank counter.
819 */
820 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
821 {
822 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
823 }
824 EXPORT_SYMBOL(drm_crtc_vblank_count);
825
826 /**
827 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
828 * system timestamp corresponding to that vblank counter value.
829 * @dev: DRM device
830 * @pipe: index of CRTC whose counter to retrieve
831 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
832 *
833 * Fetches the "cooked" vblank count value that represents the number of
834 * vblank events since the system was booted, including lost events due to
835 * modesetting activity. Returns corresponding system timestamp of the time
836 * of the vblank interval that corresponds to the current vblank counter value.
837 *
838 * This is the legacy version of drm_crtc_vblank_count_and_time().
839 */
840 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
841 ktime_t *vblanktime)
842 {
843 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
844 u64 vblank_count;
845 unsigned int seq;
846
847 if (WARN_ON(pipe >= dev->num_crtcs)) {
848 *vblanktime = 0;
849 return 0;
850 }
851
852 do {
853 seq = read_seqbegin(&vblank->seqlock);
854 vblank_count = atomic64_read(&vblank->count);
855 *vblanktime = vblank->time;
856 } while (read_seqretry(&vblank->seqlock, seq));
857
858 return vblank_count;
859 }
860
861 /**
862 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
863 * and the system timestamp corresponding to that vblank counter value
864 * @crtc: which counter to retrieve
865 * @vblanktime: Pointer to time to receive the vblank timestamp.
866 *
867 * Fetches the "cooked" vblank count value that represents the number of
868 * vblank events since the system was booted, including lost events due to
869 * modesetting activity. Returns corresponding system timestamp of the time
870 * of the vblank interval that corresponds to the current vblank counter value.
871 *
872 * Note that for a given vblank counter value drm_crtc_handle_vblank()
873 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
874 * provide a barrier: Any writes done before calling
875 * drm_crtc_handle_vblank() will be visible to callers of the later
876 * functions, iff the vblank count is the same or a later one.
877 *
878 * See also &drm_vblank_crtc.count.
879 */
880 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
881 ktime_t *vblanktime)
882 {
883 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
884 vblanktime);
885 }
886 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
887
888 static void send_vblank_event(struct drm_device *dev,
889 struct drm_pending_vblank_event *e,
890 u64 seq, ktime_t now)
891 {
892 struct timespec64 tv;
893
894 switch (e->event.base.type) {
895 case DRM_EVENT_VBLANK:
896 case DRM_EVENT_FLIP_COMPLETE:
897 tv = ktime_to_timespec64(now);
898 e->event.vbl.sequence = seq;
899 /*
900 * e->event is a user space structure, with hardcoded unsigned
901 * 32-bit seconds/microseconds. This is safe as we always use
902 * monotonic timestamps since linux-4.15
903 */
904 e->event.vbl.tv_sec = tv.tv_sec;
905 e->event.vbl.tv_usec = tv.tv_nsec / 1000;
906 break;
907 case DRM_EVENT_CRTC_SEQUENCE:
908 if (seq)
909 e->event.seq.sequence = seq;
910 e->event.seq.time_ns = ktime_to_ns(now);
911 break;
912 }
913 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
914 drm_send_event_locked(dev, &e->base);
915 }
916
917 /**
918 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
919 * @crtc: the source CRTC of the vblank event
920 * @e: the event to send
921 *
922 * A lot of drivers need to generate vblank events for the very next vblank
923 * interrupt. For example when the page flip interrupt happens when the page
924 * flip gets armed, but not when it actually executes within the next vblank
925 * period. This helper function implements exactly the required vblank arming
926 * behaviour.
927 *
928 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
929 * atomic commit must ensure that the next vblank happens at exactly the same
930 * time as the atomic commit is committed to the hardware. This function itself
931 * does **not** protect against the next vblank interrupt racing with either this
932 * function call or the atomic commit operation. A possible sequence could be:
933 *
934 * 1. Driver commits new hardware state into vblank-synchronized registers.
935 * 2. A vblank happens, committing the hardware state. Also the corresponding
936 * vblank interrupt is fired off and fully processed by the interrupt
937 * handler.
938 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
939 * 4. The event is only send out for the next vblank, which is wrong.
940 *
941 * An equivalent race can happen when the driver calls
942 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
943 *
944 * The only way to make this work safely is to prevent the vblank from firing
945 * (and the hardware from committing anything else) until the entire atomic
946 * commit sequence has run to completion. If the hardware does not have such a
947 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
948 * Instead drivers need to manually send out the event from their interrupt
949 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
950 * possible race with the hardware committing the atomic update.
951 *
952 * Caller must hold a vblank reference for the event @e acquired by a
953 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
954 */
955 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
956 struct drm_pending_vblank_event *e)
957 {
958 struct drm_device *dev = crtc->dev;
959 unsigned int pipe = drm_crtc_index(crtc);
960
961 assert_spin_locked(&dev->event_lock);
962
963 e->pipe = pipe;
964 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
965 list_add_tail(&e->base.link, &dev->vblank_event_list);
966 }
967 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
968
969 /**
970 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
971 * @crtc: the source CRTC of the vblank event
972 * @e: the event to send
973 *
974 * Updates sequence # and timestamp on event for the most recently processed
975 * vblank, and sends it to userspace. Caller must hold event lock.
976 *
977 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
978 * situation, especially to send out events for atomic commit operations.
979 */
980 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
981 struct drm_pending_vblank_event *e)
982 {
983 struct drm_device *dev = crtc->dev;
984 u64 seq;
985 unsigned int pipe = drm_crtc_index(crtc);
986 ktime_t now;
987
988 if (dev->num_crtcs > 0) {
989 seq = drm_vblank_count_and_time(dev, pipe, &now);
990 } else {
991 seq = 0;
992
993 now = ktime_get();
994 }
995 e->pipe = pipe;
996 send_vblank_event(dev, e, seq, now);
997 }
998 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
999
1000 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1001 {
1002 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1003 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1004
1005 if (WARN_ON(!crtc))
1006 return 0;
1007
1008 if (crtc->funcs->enable_vblank)
1009 return crtc->funcs->enable_vblank(crtc);
1010 }
1011
1012 return dev->driver->enable_vblank(dev, pipe);
1013 }
1014
1015 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1016 {
1017 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1018 int ret = 0;
1019
1020 assert_spin_locked(&dev->vbl_lock);
1021
1022 spin_lock(&dev->vblank_time_lock);
1023
1024 if (!vblank->enabled) {
1025 /*
1026 * Enable vblank irqs under vblank_time_lock protection.
1027 * All vblank count & timestamp updates are held off
1028 * until we are done reinitializing master counter and
1029 * timestamps. Filtercode in drm_handle_vblank() will
1030 * prevent double-accounting of same vblank interval.
1031 */
1032 ret = __enable_vblank(dev, pipe);
1033 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
1034 if (ret) {
1035 atomic_dec(&vblank->refcount);
1036 } else {
1037 drm_update_vblank_count(dev, pipe, 0);
1038 /* drm_update_vblank_count() includes a wmb so we just
1039 * need to ensure that the compiler emits the write
1040 * to mark the vblank as enabled after the call
1041 * to drm_update_vblank_count().
1042 */
1043 WRITE_ONCE(vblank->enabled, true);
1044 }
1045 }
1046
1047 spin_unlock(&dev->vblank_time_lock);
1048
1049 return ret;
1050 }
1051
1052 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1053 {
1054 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1055 unsigned long irqflags;
1056 int ret = 0;
1057
1058 if (!dev->num_crtcs)
1059 return -EINVAL;
1060
1061 if (WARN_ON(pipe >= dev->num_crtcs))
1062 return -EINVAL;
1063
1064 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1065 /* Going from 0->1 means we have to enable interrupts again */
1066 if (atomic_add_return(1, &vblank->refcount) == 1) {
1067 ret = drm_vblank_enable(dev, pipe);
1068 } else {
1069 if (!vblank->enabled) {
1070 atomic_dec(&vblank->refcount);
1071 ret = -EINVAL;
1072 }
1073 }
1074 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1075
1076 return ret;
1077 }
1078
1079 /**
1080 * drm_crtc_vblank_get - get a reference count on vblank events
1081 * @crtc: which CRTC to own
1082 *
1083 * Acquire a reference count on vblank events to avoid having them disabled
1084 * while in use.
1085 *
1086 * Returns:
1087 * Zero on success or a negative error code on failure.
1088 */
1089 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1090 {
1091 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1092 }
1093 EXPORT_SYMBOL(drm_crtc_vblank_get);
1094
1095 static void drm_vblank_put_locked(struct drm_device *dev, unsigned int pipe)
1096 {
1097 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1098
1099 assert_spin_locked(&dev->vbl_lock);
1100
1101 if (WARN_ON(pipe >= dev->num_crtcs))
1102 return;
1103
1104 if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1105 return;
1106
1107 /* Last user schedules interrupt disable */
1108 if (atomic_dec_and_test(&vblank->refcount)) {
1109 if (drm_vblank_offdelay == 0)
1110 return;
1111 else if (drm_vblank_offdelay < 0)
1112 vblank_disable_locked(vblank, dev, pipe);
1113 else if (!dev->vblank_disable_immediate)
1114 mod_timer(&vblank->disable_timer,
1115 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1116 }
1117 }
1118
1119 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1120 {
1121 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1122
1123 if (WARN_ON(pipe >= dev->num_crtcs))
1124 return;
1125
1126 if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1127 return;
1128
1129 /* Last user schedules interrupt disable */
1130 if (atomic_dec_and_test(&vblank->refcount)) {
1131 if (drm_vblank_offdelay == 0)
1132 return;
1133 else if (drm_vblank_offdelay < 0)
1134 vblank_disable_fn(&vblank->disable_timer);
1135 else if (!dev->vblank_disable_immediate)
1136 mod_timer(&vblank->disable_timer,
1137 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1138 }
1139 }
1140
1141 /**
1142 * drm_crtc_vblank_put - give up ownership of vblank events
1143 * @crtc: which counter to give up
1144 *
1145 * Release ownership of a given vblank counter, turning off interrupts
1146 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1147 */
1148 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1149 {
1150 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1151 }
1152 EXPORT_SYMBOL(drm_crtc_vblank_put);
1153
1154 void drm_crtc_vblank_put_locked(struct drm_crtc *crtc)
1155 {
1156 drm_vblank_put_locked(crtc->dev, drm_crtc_index(crtc));
1157 }
1158
1159 /**
1160 * drm_wait_one_vblank - wait for one vblank
1161 * @dev: DRM device
1162 * @pipe: CRTC index
1163 *
1164 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1165 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1166 * due to lack of driver support or because the crtc is off.
1167 *
1168 * This is the legacy version of drm_crtc_wait_one_vblank().
1169 */
1170 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1171 {
1172 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1173 int ret;
1174 u64 last;
1175
1176 if (WARN_ON(pipe >= dev->num_crtcs))
1177 return;
1178
1179 ret = drm_vblank_get(dev, pipe);
1180 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1181 return;
1182
1183 spin_lock(&dev->vbl_lock);
1184 last = drm_vblank_count(dev, pipe);
1185 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &vblank->queue, &dev->vbl_lock,
1186 msecs_to_jiffies(100),
1187 last != drm_vblank_count(dev, pipe));
1188 spin_unlock(&dev->vbl_lock);
1189
1190 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1191
1192 drm_vblank_put(dev, pipe);
1193 }
1194 EXPORT_SYMBOL(drm_wait_one_vblank);
1195
1196 /**
1197 * drm_crtc_wait_one_vblank - wait for one vblank
1198 * @crtc: DRM crtc
1199 *
1200 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1201 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1202 * due to lack of driver support or because the crtc is off.
1203 */
1204 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1205 {
1206 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1207 }
1208 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1209
1210 /**
1211 * drm_crtc_vblank_off - disable vblank events on a CRTC
1212 * @crtc: CRTC in question
1213 *
1214 * Drivers can use this function to shut down the vblank interrupt handling when
1215 * disabling a crtc. This function ensures that the latest vblank frame count is
1216 * stored so that drm_vblank_on can restore it again.
1217 *
1218 * Drivers must use this function when the hardware vblank counter can get
1219 * reset, e.g. when suspending or disabling the @crtc in general.
1220 */
1221 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1222 {
1223 struct drm_device *dev = crtc->dev;
1224 unsigned int pipe = drm_crtc_index(crtc);
1225 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1226 struct drm_pending_vblank_event *e, *t;
1227
1228 ktime_t now;
1229 unsigned long irqflags;
1230 u64 seq;
1231
1232 if (WARN_ON(pipe >= dev->num_crtcs))
1233 return;
1234
1235 spin_lock_irqsave(&dev->event_lock, irqflags);
1236
1237 spin_lock(&dev->vbl_lock);
1238 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1239 pipe, vblank->enabled, vblank->inmodeset);
1240
1241 /* Avoid redundant vblank disables without previous
1242 * drm_crtc_vblank_on(). */
1243 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1244 drm_vblank_disable_and_save(dev, pipe);
1245
1246 DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
1247
1248 /*
1249 * Prevent subsequent drm_vblank_get() from re-enabling
1250 * the vblank interrupt by bumping the refcount.
1251 */
1252 if (!vblank->inmodeset) {
1253 atomic_inc(&vblank->refcount);
1254 vblank->inmodeset = 1;
1255 }
1256 spin_unlock(&dev->vbl_lock);
1257
1258 /* Send any queued vblank events, lest the natives grow disquiet */
1259 seq = drm_vblank_count_and_time(dev, pipe, &now);
1260
1261 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1262 if (e->pipe != pipe)
1263 continue;
1264 DRM_DEBUG("Sending premature vblank event on disable: "
1265 "wanted %"PRIu64", current %"PRIu64"\n",
1266 e->sequence, seq);
1267 list_del(&e->base.link);
1268 drm_vblank_put(dev, pipe);
1269 send_vblank_event(dev, e, seq, now);
1270 }
1271 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1272
1273 /* Will be reset by the modeset helpers when re-enabling the crtc by
1274 * calling drm_calc_timestamping_constants(). */
1275 vblank->hwmode.crtc_clock = 0;
1276 }
1277 EXPORT_SYMBOL(drm_crtc_vblank_off);
1278
1279 /**
1280 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1281 * @crtc: CRTC in question
1282 *
1283 * Drivers can use this function to reset the vblank state to off at load time.
1284 * Drivers should use this together with the drm_crtc_vblank_off() and
1285 * drm_crtc_vblank_on() functions. The difference compared to
1286 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1287 * and hence doesn't need to call any driver hooks.
1288 *
1289 * This is useful for recovering driver state e.g. on driver load, or on resume.
1290 */
1291 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1292 {
1293 struct drm_device *dev = crtc->dev;
1294 unsigned long irqflags;
1295 unsigned int pipe = drm_crtc_index(crtc);
1296 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1297
1298 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1299 /*
1300 * Prevent subsequent drm_vblank_get() from enabling the vblank
1301 * interrupt by bumping the refcount.
1302 */
1303 if (!vblank->inmodeset) {
1304 atomic_inc(&vblank->refcount);
1305 vblank->inmodeset = 1;
1306 }
1307 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1308
1309 WARN_ON(!list_empty(&dev->vblank_event_list));
1310 }
1311 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1312
1313 /**
1314 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1315 * @crtc: CRTC in question
1316 * @max_vblank_count: max hardware vblank counter value
1317 *
1318 * Update the maximum hardware vblank counter value for @crtc
1319 * at runtime. Useful for hardware where the operation of the
1320 * hardware vblank counter depends on the currently active
1321 * display configuration.
1322 *
1323 * For example, if the hardware vblank counter does not work
1324 * when a specific connector is active the maximum can be set
1325 * to zero. And when that specific connector isn't active the
1326 * maximum can again be set to the appropriate non-zero value.
1327 *
1328 * If used, must be called before drm_vblank_on().
1329 */
1330 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1331 u32 max_vblank_count)
1332 {
1333 struct drm_device *dev = crtc->dev;
1334 unsigned int pipe = drm_crtc_index(crtc);
1335 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1336
1337 WARN_ON(dev->max_vblank_count);
1338 WARN_ON(!READ_ONCE(vblank->inmodeset));
1339
1340 vblank->max_vblank_count = max_vblank_count;
1341 }
1342 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1343
1344 /**
1345 * drm_crtc_vblank_on - enable vblank events on a CRTC
1346 * @crtc: CRTC in question
1347 *
1348 * This functions restores the vblank interrupt state captured with
1349 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1350 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1351 * unbalanced and so can also be unconditionally called in driver load code to
1352 * reflect the current hardware state of the crtc.
1353 */
1354 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1355 {
1356 struct drm_device *dev = crtc->dev;
1357 unsigned int pipe = drm_crtc_index(crtc);
1358 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1359 unsigned long irqflags;
1360
1361 if (WARN_ON(pipe >= dev->num_crtcs))
1362 return;
1363
1364 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1365 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1366 pipe, vblank->enabled, vblank->inmodeset);
1367
1368 /* Drop our private "prevent drm_vblank_get" refcount */
1369 if (vblank->inmodeset) {
1370 atomic_dec(&vblank->refcount);
1371 vblank->inmodeset = 0;
1372 }
1373
1374 drm_reset_vblank_timestamp(dev, pipe);
1375
1376 /*
1377 * re-enable interrupts if there are users left, or the
1378 * user wishes vblank interrupts to be enabled all the time.
1379 */
1380 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1381 WARN_ON(drm_vblank_enable(dev, pipe));
1382 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1383 }
1384 EXPORT_SYMBOL(drm_crtc_vblank_on);
1385
1386 /**
1387 * drm_vblank_restore - estimate missed vblanks and update vblank count.
1388 * @dev: DRM device
1389 * @pipe: CRTC index
1390 *
1391 * Power manamement features can cause frame counter resets between vblank
1392 * disable and enable. Drivers can use this function in their
1393 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1394 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1395 * vblank counter.
1396 *
1397 * This function is the legacy version of drm_crtc_vblank_restore().
1398 */
1399 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1400 {
1401 ktime_t t_vblank;
1402 struct drm_vblank_crtc *vblank;
1403 int framedur_ns;
1404 u64 diff_ns;
1405 u32 cur_vblank, diff = 1;
1406 int count = DRM_TIMESTAMP_MAXRETRIES;
1407
1408 if (WARN_ON(pipe >= dev->num_crtcs))
1409 return;
1410
1411 assert_spin_locked(&dev->vbl_lock);
1412 assert_spin_locked(&dev->vblank_time_lock);
1413
1414 vblank = &dev->vblank[pipe];
1415 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1416 "Cannot compute missed vblanks without frame duration\n");
1417 framedur_ns = vblank->framedur_ns;
1418
1419 do {
1420 cur_vblank = __get_vblank_counter(dev, pipe);
1421 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1422 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1423
1424 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1425 if (framedur_ns)
1426 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1427
1428
1429 DRM_DEBUG_VBL("missed %d vblanks in %"PRId64" ns, frame duration=%d ns, hw_diff=%d\n",
1430 diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1431 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1432 }
1433 EXPORT_SYMBOL(drm_vblank_restore);
1434
1435 /**
1436 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1437 * @crtc: CRTC in question
1438 *
1439 * Power manamement features can cause frame counter resets between vblank
1440 * disable and enable. Drivers can use this function in their
1441 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1442 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1443 * vblank counter.
1444 */
1445 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1446 {
1447 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1448 }
1449 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1450
1451 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1452 unsigned int pipe)
1453 {
1454 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1455
1456 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1457 if (!dev->num_crtcs)
1458 return;
1459
1460 if (WARN_ON(pipe >= dev->num_crtcs))
1461 return;
1462
1463 /*
1464 * To avoid all the problems that might happen if interrupts
1465 * were enabled/disabled around or between these calls, we just
1466 * have the kernel take a reference on the CRTC (just once though
1467 * to avoid corrupting the count if multiple, mismatch calls occur),
1468 * so that interrupts remain enabled in the interim.
1469 */
1470 if (!vblank->inmodeset) {
1471 vblank->inmodeset = 0x1;
1472 if (drm_vblank_get(dev, pipe) == 0)
1473 vblank->inmodeset |= 0x2;
1474 }
1475 }
1476
1477 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1478 unsigned int pipe)
1479 {
1480 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1481 unsigned long irqflags;
1482
1483 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1484 if (!dev->num_crtcs)
1485 return;
1486
1487 if (WARN_ON(pipe >= dev->num_crtcs))
1488 return;
1489
1490 if (vblank->inmodeset) {
1491 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1492 drm_reset_vblank_timestamp(dev, pipe);
1493 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1494
1495 if (vblank->inmodeset & 0x2)
1496 drm_vblank_put(dev, pipe);
1497
1498 vblank->inmodeset = 0;
1499 }
1500 }
1501
1502 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1503 struct drm_file *file_priv)
1504 {
1505 struct drm_modeset_ctl *modeset = data;
1506 unsigned int pipe;
1507
1508 /* If drm_vblank_init() hasn't been called yet, just no-op */
1509 if (!dev->num_crtcs)
1510 return 0;
1511
1512 /* KMS drivers handle this internally */
1513 if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1514 return 0;
1515
1516 pipe = modeset->crtc;
1517 if (pipe >= dev->num_crtcs)
1518 return -EINVAL;
1519
1520 switch (modeset->cmd) {
1521 case _DRM_PRE_MODESET:
1522 drm_legacy_vblank_pre_modeset(dev, pipe);
1523 break;
1524 case _DRM_POST_MODESET:
1525 drm_legacy_vblank_post_modeset(dev, pipe);
1526 break;
1527 default:
1528 return -EINVAL;
1529 }
1530
1531 return 0;
1532 }
1533
1534 static inline bool vblank_passed(u64 seq, u64 ref)
1535 {
1536 return (seq - ref) <= (1 << 23);
1537 }
1538
1539 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1540 u64 req_seq,
1541 union drm_wait_vblank *vblwait,
1542 struct drm_file *file_priv)
1543 {
1544 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1545 struct drm_pending_vblank_event *e;
1546 ktime_t now;
1547 unsigned long flags;
1548 u64 seq;
1549 int ret;
1550
1551 e = kzalloc(sizeof(*e), GFP_KERNEL);
1552 if (e == NULL) {
1553 ret = -ENOMEM;
1554 goto err_put;
1555 }
1556
1557 e->pipe = pipe;
1558 e->event.base.type = DRM_EVENT_VBLANK;
1559 e->event.base.length = sizeof(e->event.vbl);
1560 e->event.vbl.user_data = vblwait->request.signal;
1561 e->event.vbl.crtc_id = 0;
1562 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1563 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1564 if (crtc)
1565 e->event.vbl.crtc_id = crtc->base.id;
1566 }
1567
1568 spin_lock_irqsave(&dev->event_lock, flags);
1569
1570 /*
1571 * drm_crtc_vblank_off() might have been called after we called
1572 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1573 * vblank disable, so no need for further locking. The reference from
1574 * drm_vblank_get() protects against vblank disable from another source.
1575 */
1576 if (!READ_ONCE(vblank->enabled)) {
1577 ret = -EINVAL;
1578 goto err_unlock;
1579 }
1580
1581 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1582 &e->event.base);
1583
1584 if (ret)
1585 goto err_unlock;
1586
1587 seq = drm_vblank_count_and_time(dev, pipe, &now);
1588
1589 DRM_DEBUG("event on vblank count %"PRIu64", current %"PRIu64", crtc %u\n",
1590 req_seq, seq, pipe);
1591
1592 trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1593
1594 e->sequence = req_seq;
1595 if (vblank_passed(seq, req_seq)) {
1596 drm_vblank_put(dev, pipe);
1597 send_vblank_event(dev, e, seq, now);
1598 vblwait->reply.sequence = seq;
1599 } else {
1600 /* drm_handle_vblank_events will call drm_vblank_put */
1601 list_add_tail(&e->base.link, &dev->vblank_event_list);
1602 vblwait->reply.sequence = req_seq;
1603 }
1604
1605 spin_unlock_irqrestore(&dev->event_lock, flags);
1606
1607 return 0;
1608
1609 err_unlock:
1610 spin_unlock_irqrestore(&dev->event_lock, flags);
1611 kfree(e);
1612 err_put:
1613 drm_vblank_put(dev, pipe);
1614 return ret;
1615 }
1616
1617 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1618 {
1619 if (vblwait->request.sequence)
1620 return false;
1621
1622 return _DRM_VBLANK_RELATIVE ==
1623 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1624 _DRM_VBLANK_EVENT |
1625 _DRM_VBLANK_NEXTONMISS));
1626 }
1627
1628 /*
1629 * Widen a 32-bit param to 64-bits.
1630 *
1631 * \param narrow 32-bit value (missing upper 32 bits)
1632 * \param near 64-bit value that should be 'close' to near
1633 *
1634 * This function returns a 64-bit value using the lower 32-bits from
1635 * 'narrow' and constructing the upper 32-bits so that the result is
1636 * as close as possible to 'near'.
1637 */
1638
1639 static u64 widen_32_to_64(u32 narrow, u64 near)
1640 {
1641 return near + (s32) (narrow - near);
1642 }
1643
1644 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1645 struct drm_wait_vblank_reply *reply)
1646 {
1647 ktime_t now;
1648 struct timespec64 ts;
1649
1650 /*
1651 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1652 * to store the seconds. This is safe as we always use monotonic
1653 * timestamps since linux-4.15.
1654 */
1655 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1656 ts = ktime_to_timespec64(now);
1657 reply->tval_sec = (u32)ts.tv_sec;
1658 reply->tval_usec = ts.tv_nsec / 1000;
1659 }
1660
1661 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1662 struct drm_file *file_priv)
1663 {
1664 struct drm_crtc *crtc;
1665 struct drm_vblank_crtc *vblank;
1666 union drm_wait_vblank *vblwait = data;
1667 int ret;
1668 u64 req_seq, seq;
1669 unsigned int pipe_index;
1670 unsigned int flags, pipe, high_pipe;
1671
1672 if (!dev->irq_enabled)
1673 return -EOPNOTSUPP;
1674
1675 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1676 return -EINVAL;
1677
1678 if (vblwait->request.type &
1679 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1680 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1681 DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
1682 vblwait->request.type,
1683 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1684 _DRM_VBLANK_HIGH_CRTC_MASK));
1685 return -EINVAL;
1686 }
1687
1688 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1689 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1690 if (high_pipe)
1691 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1692 else
1693 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1694
1695 /* Convert lease-relative crtc index into global crtc index */
1696 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1697 pipe = 0;
1698 drm_for_each_crtc(crtc, dev) {
1699 if (drm_lease_held(file_priv, crtc->base.id)) {
1700 if (pipe_index == 0)
1701 break;
1702 pipe_index--;
1703 }
1704 pipe++;
1705 }
1706 } else {
1707 pipe = pipe_index;
1708 }
1709
1710 if (pipe >= dev->num_crtcs)
1711 return -EINVAL;
1712
1713 vblank = &dev->vblank[pipe];
1714
1715 /* If the counter is currently enabled and accurate, short-circuit
1716 * queries to return the cached timestamp of the last vblank.
1717 */
1718 if (dev->vblank_disable_immediate &&
1719 drm_wait_vblank_is_query(vblwait) &&
1720 READ_ONCE(vblank->enabled)) {
1721 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1722 return 0;
1723 }
1724
1725 ret = drm_vblank_get(dev, pipe);
1726 if (ret) {
1727 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1728 return ret;
1729 }
1730 seq = drm_vblank_count(dev, pipe);
1731
1732 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1733 case _DRM_VBLANK_RELATIVE:
1734 req_seq = seq + vblwait->request.sequence;
1735 vblwait->request.sequence = req_seq;
1736 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1737 break;
1738 case _DRM_VBLANK_ABSOLUTE:
1739 req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1740 break;
1741 default:
1742 ret = -EINVAL;
1743 goto done;
1744 }
1745
1746 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1747 vblank_passed(seq, req_seq)) {
1748 req_seq = seq + 1;
1749 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1750 vblwait->request.sequence = req_seq;
1751 }
1752
1753 if (flags & _DRM_VBLANK_EVENT) {
1754 /* must hold on to the vblank ref until the event fires
1755 * drm_vblank_put will be called asynchronously
1756 */
1757 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1758 }
1759
1760 if (req_seq != seq) {
1761 int wait;
1762
1763 DRM_DEBUG("waiting on vblank count %"PRIu64", crtc %u\n",
1764 req_seq, pipe);
1765 DRM_SPIN_TIMED_WAIT_UNTIL(wait, &vblank->queue,
1766 &dev->vbl_lock, msecs_to_jiffies(3000),
1767 (vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1768 !READ_ONCE(vblank->enabled)));
1769
1770 switch (wait) {
1771 case 0:
1772 /* timeout */
1773 ret = -EBUSY;
1774 break;
1775 case -ERESTARTSYS:
1776 /* interrupted by signal */
1777 ret = -EINTR;
1778 break;
1779 default:
1780 ret = 0;
1781 break;
1782 }
1783 }
1784
1785 if (ret != -EINTR) {
1786 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1787
1788 DRM_DEBUG("crtc %d returning %u to client\n",
1789 pipe, vblwait->reply.sequence);
1790 } else {
1791 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1792 }
1793
1794 done:
1795 drm_vblank_put(dev, pipe);
1796 return ret;
1797 }
1798
1799 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1800 {
1801 struct drm_pending_vblank_event *e, *t;
1802 ktime_t now;
1803 u64 seq;
1804
1805 assert_spin_locked(&dev->event_lock);
1806
1807 seq = drm_vblank_count_and_time(dev, pipe, &now);
1808
1809 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1810 if (e->pipe != pipe)
1811 continue;
1812 if (!vblank_passed(seq, e->sequence))
1813 continue;
1814
1815 DRM_DEBUG("vblank event on %"PRIu64", current %"PRIu64"\n",
1816 e->sequence, seq);
1817
1818 list_del(&e->base.link);
1819 drm_vblank_put(dev, pipe);
1820 send_vblank_event(dev, e, seq, now);
1821 }
1822
1823 trace_drm_vblank_event(pipe, seq, now,
1824 dev->driver->get_vblank_timestamp != NULL);
1825 }
1826
1827 /**
1828 * drm_handle_vblank - handle a vblank event
1829 * @dev: DRM device
1830 * @pipe: index of CRTC where this event occurred
1831 *
1832 * Drivers should call this routine in their vblank interrupt handlers to
1833 * update the vblank counter and send any signals that may be pending.
1834 *
1835 * This is the legacy version of drm_crtc_handle_vblank().
1836 */
1837 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1838 {
1839 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1840 unsigned long irqflags;
1841 bool disable_irq;
1842
1843 if (WARN_ON_ONCE(!dev->num_crtcs))
1844 return false;
1845
1846 if (WARN_ON(pipe >= dev->num_crtcs))
1847 return false;
1848
1849 spin_lock_irqsave(&dev->event_lock, irqflags);
1850
1851 spin_lock(&dev->vbl_lock);
1852
1853 /* Need timestamp lock to prevent concurrent execution with
1854 * vblank enable/disable, as this would cause inconsistent
1855 * or corrupted timestamps and vblank counts.
1856 */
1857 spin_lock(&dev->vblank_time_lock);
1858
1859 /* Vblank irq handling disabled. Nothing to do. */
1860 if (!vblank->enabled) {
1861 spin_unlock(&dev->vbl_lock);
1862 spin_unlock(&dev->vblank_time_lock);
1863 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1864 return false;
1865 }
1866
1867 drm_update_vblank_count(dev, pipe, true);
1868
1869 spin_unlock(&dev->vblank_time_lock);
1870
1871 DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
1872
1873 /* With instant-off, we defer disabling the interrupt until after
1874 * we finish processing the following vblank after all events have
1875 * been signaled. The disable has to be last (after
1876 * drm_handle_vblank_events) so that the timestamp is always accurate.
1877 */
1878 disable_irq = (dev->vblank_disable_immediate &&
1879 drm_vblank_offdelay > 0 &&
1880 !atomic_read(&vblank->refcount));
1881
1882 spin_unlock(&dev->vbl_lock);
1883
1884 drm_handle_vblank_events(dev, pipe);
1885
1886 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1887
1888 if (disable_irq)
1889 vblank_disable_fn(&vblank->disable_timer);
1890
1891 return true;
1892 }
1893 EXPORT_SYMBOL(drm_handle_vblank);
1894
1895 /**
1896 * drm_crtc_handle_vblank - handle a vblank event
1897 * @crtc: where this event occurred
1898 *
1899 * Drivers should call this routine in their vblank interrupt handlers to
1900 * update the vblank counter and send any signals that may be pending.
1901 *
1902 * This is the native KMS version of drm_handle_vblank().
1903 *
1904 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1905 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1906 * provide a barrier: Any writes done before calling
1907 * drm_crtc_handle_vblank() will be visible to callers of the later
1908 * functions, iff the vblank count is the same or a later one.
1909 *
1910 * See also &drm_vblank_crtc.count.
1911 *
1912 * Returns:
1913 * True if the event was successfully handled, false on failure.
1914 */
1915 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1916 {
1917 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1918 }
1919 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1920
1921 /*
1922 * Get crtc VBLANK count.
1923 *
1924 * \param dev DRM device
1925 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1926 * \param file_priv drm file private for the user's open file descriptor
1927 */
1928
1929 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1930 struct drm_file *file_priv)
1931 {
1932 struct drm_crtc *crtc;
1933 struct drm_vblank_crtc *vblank;
1934 int pipe;
1935 struct drm_crtc_get_sequence *get_seq = data;
1936 ktime_t now;
1937 bool vblank_enabled;
1938 int ret;
1939
1940 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1941 return -EOPNOTSUPP;
1942
1943 if (!dev->irq_enabled)
1944 return -EOPNOTSUPP;
1945
1946 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1947 if (!crtc)
1948 return -ENOENT;
1949
1950 pipe = drm_crtc_index(crtc);
1951
1952 vblank = &dev->vblank[pipe];
1953 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1954
1955 if (!vblank_enabled) {
1956 ret = drm_crtc_vblank_get(crtc);
1957 if (ret) {
1958 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1959 return ret;
1960 }
1961 }
1962 drm_modeset_lock(&crtc->mutex, NULL);
1963 if (crtc->state)
1964 get_seq->active = crtc->state->enable;
1965 else
1966 get_seq->active = crtc->enabled;
1967 drm_modeset_unlock(&crtc->mutex);
1968 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1969 get_seq->sequence_ns = ktime_to_ns(now);
1970 if (!vblank_enabled)
1971 drm_crtc_vblank_put(crtc);
1972 return 0;
1973 }
1974
1975 /*
1976 * Queue a event for VBLANK sequence
1977 *
1978 * \param dev DRM device
1979 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1980 * \param file_priv drm file private for the user's open file descriptor
1981 */
1982
1983 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1984 struct drm_file *file_priv)
1985 {
1986 struct drm_crtc *crtc;
1987 struct drm_vblank_crtc *vblank;
1988 int pipe;
1989 struct drm_crtc_queue_sequence *queue_seq = data;
1990 ktime_t now;
1991 struct drm_pending_vblank_event *e;
1992 u32 flags;
1993 u64 seq;
1994 u64 req_seq;
1995 int ret;
1996 unsigned long spin_flags;
1997
1998 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1999 return -EOPNOTSUPP;
2000
2001 if (!dev->irq_enabled)
2002 return -EOPNOTSUPP;
2003
2004 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2005 if (!crtc)
2006 return -ENOENT;
2007
2008 flags = queue_seq->flags;
2009 /* Check valid flag bits */
2010 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2011 DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2012 return -EINVAL;
2013
2014 pipe = drm_crtc_index(crtc);
2015
2016 vblank = &dev->vblank[pipe];
2017
2018 e = kzalloc(sizeof(*e), GFP_KERNEL);
2019 if (e == NULL)
2020 return -ENOMEM;
2021
2022 ret = drm_crtc_vblank_get(crtc);
2023 if (ret) {
2024 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
2025 goto err_free;
2026 }
2027
2028 seq = drm_vblank_count_and_time(dev, pipe, &now);
2029 req_seq = queue_seq->sequence;
2030
2031 if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2032 req_seq += seq;
2033
2034 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
2035 req_seq = seq + 1;
2036
2037 e->pipe = pipe;
2038 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2039 e->event.base.length = sizeof(e->event.seq);
2040 e->event.seq.user_data = queue_seq->user_data;
2041
2042 spin_lock_irqsave(&dev->event_lock, spin_flags);
2043
2044 /*
2045 * drm_crtc_vblank_off() might have been called after we called
2046 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2047 * vblank disable, so no need for further locking. The reference from
2048 * drm_crtc_vblank_get() protects against vblank disable from another source.
2049 */
2050 if (!READ_ONCE(vblank->enabled)) {
2051 ret = -EINVAL;
2052 goto err_unlock;
2053 }
2054
2055 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2056 &e->event.base);
2057
2058 if (ret)
2059 goto err_unlock;
2060
2061 e->sequence = req_seq;
2062
2063 if (vblank_passed(seq, req_seq)) {
2064 drm_crtc_vblank_put(crtc);
2065 send_vblank_event(dev, e, seq, now);
2066 queue_seq->sequence = seq;
2067 } else {
2068 /* drm_handle_vblank_events will call drm_vblank_put */
2069 list_add_tail(&e->base.link, &dev->vblank_event_list);
2070 queue_seq->sequence = req_seq;
2071 }
2072
2073 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2074 return 0;
2075
2076 err_unlock:
2077 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2078 drm_crtc_vblank_put(crtc);
2079 err_free:
2080 kfree(e);
2081 return ret;
2082 }
2083