drm_vblank.c revision 1.14 1 /* $NetBSD: drm_vblank.c,v 1.14 2021/12/19 12:32:01 riastradh Exp $ */
2
3 /*
4 * drm_irq.c IRQ and vblank support
5 *
6 * \author Rickard E. (Rik) Faith <faith (at) valinux.com>
7 * \author Gareth Hughes <gareth (at) valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
26 * OTHER DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: drm_vblank.c,v 1.14 2021/12/19 12:32:01 riastradh Exp $");
31
32 #include <linux/export.h>
33 #include <linux/moduleparam.h>
34 #include <linux/math64.h>
35
36 #include <drm/drm_crtc.h>
37 #include <drm/drm_drv.h>
38 #include <drm/drm_framebuffer.h>
39 #include <drm/drm_print.h>
40 #include <drm/drm_vblank.h>
41
42 #include "drm_internal.h"
43 #include "drm_trace.h"
44
45 /**
46 * DOC: vblank handling
47 *
48 * Vertical blanking plays a major role in graphics rendering. To achieve
49 * tear-free display, users must synchronize page flips and/or rendering to
50 * vertical blanking. The DRM API offers ioctls to perform page flips
51 * synchronized to vertical blanking and wait for vertical blanking.
52 *
53 * The DRM core handles most of the vertical blanking management logic, which
54 * involves filtering out spurious interrupts, keeping race-free blanking
55 * counters, coping with counter wrap-around and resets and keeping use counts.
56 * It relies on the driver to generate vertical blanking interrupts and
57 * optionally provide a hardware vertical blanking counter.
58 *
59 * Drivers must initialize the vertical blanking handling core with a call to
60 * drm_vblank_init(). Minimally, a driver needs to implement
61 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
62 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
63 * support.
64 *
65 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
66 * themselves (for instance to handle page flipping operations). The DRM core
67 * maintains a vertical blanking use count to ensure that the interrupts are not
68 * disabled while a user still needs them. To increment the use count, drivers
69 * call drm_crtc_vblank_get() and release the vblank reference again with
70 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
71 * guaranteed to be enabled.
72 *
73 * On many hardware disabling the vblank interrupt cannot be done in a race-free
74 * manner, see &drm_driver.vblank_disable_immediate and
75 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
76 * vblanks after a timer has expired, which can be configured through the
77 * ``vblankoffdelay`` module parameter.
78 *
79 * Lock order: event_lock -> vblank_time_lock
80 */
81
82 /* Retry timestamp calculation up to 3 times to satisfy
83 * drm_timestamp_precision before giving up.
84 */
85 #define DRM_TIMESTAMP_MAXRETRIES 3
86
87 /* Threshold in nanoseconds for detection of redundant
88 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
89 */
90 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
91
92 static bool
93 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
94 ktime_t *tvblank, bool in_vblank_irq);
95
96 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
97
98 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
99
100 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
101 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
102 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
103 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
104
105 static void store_vblank(struct drm_device *dev, unsigned int pipe,
106 u32 vblank_count_inc,
107 ktime_t t_vblank, u32 last)
108 {
109 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
110
111 assert_spin_locked(&dev->vblank_time_lock);
112
113 vblank->last = last;
114
115 write_seqlock(&vblank->seqlock);
116 vblank->time = t_vblank;
117 atomic64_add(vblank_count_inc, &vblank->count);
118 write_sequnlock(&vblank->seqlock);
119 }
120
121 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
122 {
123 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
124
125 return vblank->max_vblank_count ?: dev->max_vblank_count;
126 }
127
128 /*
129 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
130 * if there is no useable hardware frame counter available.
131 */
132 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
133 {
134 WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
135 return 0;
136 }
137
138 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
139 {
140 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
141 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
142
143 if (WARN_ON(!crtc))
144 return 0;
145
146 if (crtc->funcs->get_vblank_counter)
147 return crtc->funcs->get_vblank_counter(crtc);
148 }
149
150 if (dev->driver->get_vblank_counter)
151 return dev->driver->get_vblank_counter(dev, pipe);
152
153 return drm_vblank_no_hw_counter(dev, pipe);
154 }
155
156 /*
157 * Reset the stored timestamp for the current vblank count to correspond
158 * to the last vblank occurred.
159 *
160 * Only to be called from drm_crtc_vblank_on().
161 *
162 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
163 * device vblank fields.
164 */
165 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
166 {
167 u32 cur_vblank;
168 bool rc;
169 ktime_t t_vblank;
170 int count = DRM_TIMESTAMP_MAXRETRIES;
171
172 assert_spin_locked(&dev->event_lock);
173
174 spin_lock(&dev->vblank_time_lock);
175
176 /*
177 * sample the current counter to avoid random jumps
178 * when drm_vblank_enable() applies the diff
179 */
180 do {
181 cur_vblank = __get_vblank_counter(dev, pipe);
182 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
183 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
184
185 /*
186 * Only reinitialize corresponding vblank timestamp if high-precision query
187 * available and didn't fail. Otherwise reinitialize delayed at next vblank
188 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
189 */
190 if (!rc)
191 t_vblank = 0;
192
193 /*
194 * +1 to make sure user will never see the same
195 * vblank counter value before and after a modeset
196 */
197 store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
198
199 spin_unlock(&dev->vblank_time_lock);
200 }
201
202 /*
203 * Call back into the driver to update the appropriate vblank counter
204 * (specified by @pipe). Deal with wraparound, if it occurred, and
205 * update the last read value so we can deal with wraparound on the next
206 * call if necessary.
207 *
208 * Only necessary when going from off->on, to account for frames we
209 * didn't get an interrupt for.
210 *
211 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
212 * device vblank fields.
213 */
214 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
215 bool in_vblank_irq)
216 {
217 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
218 u32 cur_vblank, diff;
219 bool rc;
220 ktime_t t_vblank;
221 int count = DRM_TIMESTAMP_MAXRETRIES;
222 int framedur_ns = vblank->framedur_ns;
223 u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
224
225 assert_spin_locked(&dev->event_lock);
226
227 /*
228 * Interrupts were disabled prior to this call, so deal with counter
229 * wrap if needed.
230 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events
231 * here if the register is small or we had vblank interrupts off for
232 * a long time.
233 *
234 * We repeat the hardware vblank counter & timestamp query until
235 * we get consistent results. This to prevent races between gpu
236 * updating its hardware counter while we are retrieving the
237 * corresponding vblank timestamp.
238 */
239 do {
240 cur_vblank = __get_vblank_counter(dev, pipe);
241 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
242 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
243
244 if (max_vblank_count) {
245 /* trust the hw counter when it's around */
246 diff = (cur_vblank - vblank->last) & max_vblank_count;
247 } else if (rc && framedur_ns) {
248 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
249
250 /*
251 * Figure out how many vblanks we've missed based
252 * on the difference in the timestamps and the
253 * frame/field duration.
254 */
255
256 DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
257 " diff_ns = %lld, framedur_ns = %d)\n",
258 pipe, (long long) diff_ns, framedur_ns);
259
260 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
261
262 if (diff == 0 && in_vblank_irq)
263 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
264 pipe);
265 } else {
266 /* some kind of default for drivers w/o accurate vbl timestamping */
267 diff = in_vblank_irq ? 1 : 0;
268 }
269
270 /*
271 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
272 * interval? If so then vblank irqs keep running and it will likely
273 * happen that the hardware vblank counter is not trustworthy as it
274 * might reset at some point in that interval and vblank timestamps
275 * are not trustworthy either in that interval. Iow. this can result
276 * in a bogus diff >> 1 which must be avoided as it would cause
277 * random large forward jumps of the software vblank counter.
278 */
279 if (diff > 1 && (vblank->inmodeset & 0x2)) {
280 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
281 " due to pre-modeset.\n", pipe, diff);
282 diff = 1;
283 }
284
285 DRM_DEBUG_VBL("updating vblank count on crtc %u:"
286 " current=%"PRIu64", diff=%u, hw=%u hw_last=%u\n",
287 pipe, atomic64_read(&vblank->count), diff,
288 cur_vblank, vblank->last);
289
290 if (diff == 0) {
291 WARN_ON_ONCE(cur_vblank != vblank->last);
292 return;
293 }
294
295 /*
296 * Only reinitialize corresponding vblank timestamp if high-precision query
297 * available and didn't fail, or we were called from the vblank interrupt.
298 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
299 * for now, to mark the vblanktimestamp as invalid.
300 */
301 if (!rc && !in_vblank_irq)
302 t_vblank = 0;
303
304 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
305 }
306
307 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
308 {
309 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
310 u64 count;
311
312 if (WARN_ON(pipe >= dev->num_crtcs))
313 return 0;
314
315 count = atomic64_read(&vblank->count);
316
317 /*
318 * This read barrier corresponds to the implicit write barrier of the
319 * write seqlock in store_vblank(). Note that this is the only place
320 * where we need an explicit barrier, since all other access goes
321 * through drm_vblank_count_and_time(), which already has the required
322 * read barrier curtesy of the read seqlock.
323 */
324 smp_rmb();
325
326 return count;
327 }
328
329 /**
330 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
331 * @crtc: which counter to retrieve
332 *
333 * This function is similar to drm_crtc_vblank_count() but this function
334 * interpolates to handle a race with vblank interrupts using the high precision
335 * timestamping support.
336 *
337 * This is mostly useful for hardware that can obtain the scanout position, but
338 * doesn't have a hardware frame counter.
339 */
340 static u64 drm_crtc_accurate_vblank_count_locked(struct drm_crtc *crtc)
341 {
342 struct drm_device *dev = crtc->dev;
343 unsigned int pipe = drm_crtc_index(crtc);
344 u64 vblank;
345 unsigned long flags;
346
347 assert_spin_locked(&dev->event_lock);
348
349 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
350 "This function requires support for accurate vblank timestamps.");
351
352 spin_lock_irqsave(&dev->vblank_time_lock, flags);
353
354 drm_update_vblank_count(dev, pipe, false);
355 vblank = drm_vblank_count(dev, pipe);
356
357 spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
358
359 return vblank;
360 }
361
362 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
363 {
364 u64 vblank;
365
366 spin_lock(&crtc->dev->event_lock);
367 vblank = drm_crtc_accurate_vblank_count_locked(crtc);
368 spin_unlock(&crtc->dev->event_lock);
369
370 return vblank;
371 }
372 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
373
374 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
375 {
376 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
377 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
378
379 if (WARN_ON(!crtc))
380 return;
381
382 if (crtc->funcs->disable_vblank) {
383 crtc->funcs->disable_vblank(crtc);
384 return;
385 }
386 }
387
388 dev->driver->disable_vblank(dev, pipe);
389 }
390
391 /*
392 * Disable vblank irq's on crtc, make sure that last vblank count
393 * of hardware and corresponding consistent software vblank counter
394 * are preserved, even if there are any spurious vblank irq's after
395 * disable.
396 */
397 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
398 {
399 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
400 unsigned long irqflags;
401
402 assert_spin_locked(&dev->event_lock);
403
404 /* Prevent vblank irq processing while disabling vblank irqs,
405 * so no updates of timestamps or count can happen after we've
406 * disabled. Needed to prevent races in case of delayed irq's.
407 */
408 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
409
410 /*
411 * Update vblank count and disable vblank interrupts only if the
412 * interrupts were enabled. This avoids calling the ->disable_vblank()
413 * operation in atomic context with the hardware potentially runtime
414 * suspended.
415 */
416 if (!vblank->enabled)
417 goto out;
418
419 /*
420 * Update the count and timestamp to maintain the
421 * appearance that the counter has been ticking all along until
422 * this time. This makes the count account for the entire time
423 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
424 */
425 drm_update_vblank_count(dev, pipe, false);
426 __disable_vblank(dev, pipe);
427 vblank->enabled = false;
428
429 out:
430 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
431 }
432
433 static void
434 vblank_disable_locked(struct drm_vblank_crtc *vblank, struct drm_device *dev,
435 unsigned int pipe)
436 {
437
438 BUG_ON(vblank != &dev->vblank[pipe]);
439 assert_spin_locked(&dev->event_lock);
440
441 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
442 DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
443 drm_vblank_disable_and_save(dev, pipe);
444 }
445 }
446
447 static void vblank_disable_fn(struct timer_list *t)
448 {
449 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
450 struct drm_device *dev = vblank->dev;
451 unsigned int pipe = vblank->pipe;
452 unsigned long irqflags;
453
454 spin_lock_irqsave(&dev->event_lock, irqflags);
455 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
456 DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
457 drm_vblank_disable_and_save(dev, pipe);
458 }
459 spin_unlock_irqrestore(&dev->event_lock, irqflags);
460 }
461
462 void drm_vblank_cleanup(struct drm_device *dev)
463 {
464 unsigned int pipe;
465
466 /* Bail if the driver didn't call drm_vblank_init() */
467 if (dev->num_crtcs == 0)
468 return;
469
470 for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
471 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
472
473 WARN_ON(READ_ONCE(vblank->enabled) &&
474 drm_core_check_feature(dev, DRIVER_MODESET));
475
476 del_timer_sync(&vblank->disable_timer);
477 seqlock_destroy(&vblank->seqlock);
478 }
479
480 kfree(dev->vblank);
481
482 dev->num_crtcs = 0;
483
484 spin_lock_destroy(&dev->vblank_time_lock);
485 }
486
487 /**
488 * drm_vblank_init - initialize vblank support
489 * @dev: DRM device
490 * @num_crtcs: number of CRTCs supported by @dev
491 *
492 * This function initializes vblank support for @num_crtcs display pipelines.
493 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
494 * drivers with a &drm_driver.release callback.
495 *
496 * Returns:
497 * Zero on success or a negative error code on failure.
498 */
499 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
500 {
501 int ret = -ENOMEM;
502 unsigned int i;
503
504 spin_lock_init(&dev->vblank_time_lock);
505
506 dev->num_crtcs = num_crtcs;
507
508 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
509 if (!dev->vblank)
510 goto err;
511
512 for (i = 0; i < num_crtcs; i++) {
513 struct drm_vblank_crtc *vblank = &dev->vblank[i];
514
515 vblank->dev = dev;
516 vblank->pipe = i;
517 DRM_INIT_WAITQUEUE(&vblank->queue, "drmvblnq");
518 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
519 seqlock_init(&vblank->seqlock);
520 }
521
522 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
523
524 /* Driver specific high-precision vblank timestamping supported? */
525 if (dev->driver->get_vblank_timestamp)
526 DRM_INFO("Driver supports precise vblank timestamp query.\n");
527 else
528 DRM_INFO("No driver support for vblank timestamp query.\n");
529
530 /* Must have precise timestamping for reliable vblank instant disable */
531 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
532 dev->vblank_disable_immediate = false;
533 DRM_INFO("Setting vblank_disable_immediate to false because "
534 "get_vblank_timestamp == NULL\n");
535 }
536
537 return 0;
538
539 err:
540 dev->num_crtcs = 0;
541 return ret;
542 }
543 EXPORT_SYMBOL(drm_vblank_init);
544
545 /**
546 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
547 * @crtc: which CRTC's vblank waitqueue to retrieve
548 *
549 * This function returns a pointer to the vblank waitqueue for the CRTC.
550 * Drivers can use this to implement vblank waits using wait_event() and related
551 * functions.
552 */
553 drm_waitqueue_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
554 {
555 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
556 }
557 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
558
559
560 /**
561 * drm_calc_timestamping_constants - calculate vblank timestamp constants
562 * @crtc: drm_crtc whose timestamp constants should be updated.
563 * @mode: display mode containing the scanout timings
564 *
565 * Calculate and store various constants which are later needed by vblank and
566 * swap-completion timestamping, e.g, by
567 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
568 * scanout timing, so they take things like panel scaling or other adjustments
569 * into account.
570 */
571 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
572 const struct drm_display_mode *mode)
573 {
574 struct drm_device *dev = crtc->dev;
575 unsigned int pipe = drm_crtc_index(crtc);
576 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
577 int linedur_ns = 0, framedur_ns = 0;
578 int dotclock = mode->crtc_clock;
579
580 if (!dev->num_crtcs)
581 return;
582
583 if (WARN_ON(pipe >= dev->num_crtcs))
584 return;
585
586 /* Valid dotclock? */
587 if (dotclock > 0) {
588 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
589
590 /*
591 * Convert scanline length in pixels and video
592 * dot clock to line duration and frame duration
593 * in nanoseconds:
594 */
595 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
596 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
597
598 /*
599 * Fields of interlaced scanout modes are only half a frame duration.
600 */
601 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
602 framedur_ns /= 2;
603 } else
604 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
605 crtc->base.id);
606
607 vblank->linedur_ns = linedur_ns;
608 vblank->framedur_ns = framedur_ns;
609 vblank->hwmode = *mode;
610
611 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
612 crtc->base.id, mode->crtc_htotal,
613 mode->crtc_vtotal, mode->crtc_vdisplay);
614 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
615 crtc->base.id, dotclock, framedur_ns, linedur_ns);
616 }
617 EXPORT_SYMBOL(drm_calc_timestamping_constants);
618
619 /**
620 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
621 * @dev: DRM device
622 * @pipe: index of CRTC whose vblank timestamp to retrieve
623 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
624 * On return contains true maximum error of timestamp
625 * @vblank_time: Pointer to time which should receive the timestamp
626 * @in_vblank_irq:
627 * True when called from drm_crtc_handle_vblank(). Some drivers
628 * need to apply some workarounds for gpu-specific vblank irq quirks
629 * if flag is set.
630 *
631 * Implements calculation of exact vblank timestamps from given drm_display_mode
632 * timings and current video scanout position of a CRTC. This can be directly
633 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
634 * if &drm_driver.get_scanout_position is implemented.
635 *
636 * The current implementation only handles standard video modes. For double scan
637 * and interlaced modes the driver is supposed to adjust the hardware mode
638 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
639 * match the scanout position reported.
640 *
641 * Note that atomic drivers must call drm_calc_timestamping_constants() before
642 * enabling a CRTC. The atomic helpers already take care of that in
643 * drm_atomic_helper_update_legacy_modeset_state().
644 *
645 * Returns:
646 *
647 * Returns true on success, and false on failure, i.e. when no accurate
648 * timestamp could be acquired.
649 */
650 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
651 unsigned int pipe,
652 int *max_error,
653 ktime_t *vblank_time,
654 bool in_vblank_irq)
655 {
656 struct timespec64 ts_etime, ts_vblank_time;
657 ktime_t stime, etime;
658 bool vbl_status;
659 struct drm_crtc *crtc;
660 const struct drm_display_mode *mode;
661 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
662 int vpos, hpos, i;
663 int delta_ns, duration_ns;
664
665 if (!drm_core_check_feature(dev, DRIVER_MODESET))
666 return false;
667
668 crtc = drm_crtc_from_index(dev, pipe);
669
670 if (pipe >= dev->num_crtcs || !crtc) {
671 DRM_ERROR("Invalid crtc %u\n", pipe);
672 return false;
673 }
674
675 /* Scanout position query not supported? Should not happen. */
676 if (!dev->driver->get_scanout_position) {
677 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
678 return false;
679 }
680
681 if (drm_drv_uses_atomic_modeset(dev))
682 mode = &vblank->hwmode;
683 else
684 mode = &crtc->hwmode;
685
686 /* If mode timing undefined, just return as no-op:
687 * Happens during initial modesetting of a crtc.
688 */
689 if (mode->crtc_clock == 0) {
690 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
691 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
692
693 return false;
694 }
695
696 /* Get current scanout position with system timestamp.
697 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
698 * if single query takes longer than max_error nanoseconds.
699 *
700 * This guarantees a tight bound on maximum error if
701 * code gets preempted or delayed for some reason.
702 */
703 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
704 /*
705 * Get vertical and horizontal scanout position vpos, hpos,
706 * and bounding timestamps stime, etime, pre/post query.
707 */
708 vbl_status = dev->driver->get_scanout_position(dev, pipe,
709 in_vblank_irq,
710 &vpos, &hpos,
711 &stime, &etime,
712 mode);
713
714 /* Return as no-op if scanout query unsupported or failed. */
715 if (!vbl_status) {
716 DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
717 pipe);
718 return false;
719 }
720
721 /* Compute uncertainty in timestamp of scanout position query. */
722 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
723
724 /* Accept result with < max_error nsecs timing uncertainty. */
725 if (duration_ns <= *max_error)
726 break;
727 }
728
729 /* Noisy system timing? */
730 if (i == DRM_TIMESTAMP_MAXRETRIES) {
731 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
732 pipe, duration_ns/1000, *max_error/1000, i);
733 }
734
735 /* Return upper bound of timestamp precision error. */
736 *max_error = duration_ns;
737
738 /* Convert scanout position into elapsed time at raw_time query
739 * since start of scanout at first display scanline. delta_ns
740 * can be negative if start of scanout hasn't happened yet.
741 */
742 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
743 mode->crtc_clock);
744
745 /* Subtract time delta from raw timestamp to get final
746 * vblank_time timestamp for end of vblank.
747 */
748 *vblank_time = ktime_sub_ns(etime, delta_ns);
749
750 if (!drm_debug_enabled(DRM_UT_VBL))
751 return true;
752
753 ts_etime = ktime_to_timespec64(etime);
754 ts_vblank_time = ktime_to_timespec64(*vblank_time);
755
756 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %"PRId64".%06ld -> %"PRId64".%06ld [e %d us, %d rep]\n",
757 pipe, hpos, vpos,
758 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
759 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
760 duration_ns / 1000, i);
761
762 return true;
763 }
764 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
765
766 /**
767 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
768 * vblank interval
769 * @dev: DRM device
770 * @pipe: index of CRTC whose vblank timestamp to retrieve
771 * @tvblank: Pointer to target time which should receive the timestamp
772 * @in_vblank_irq:
773 * True when called from drm_crtc_handle_vblank(). Some drivers
774 * need to apply some workarounds for gpu-specific vblank irq quirks
775 * if flag is set.
776 *
777 * Fetches the system timestamp corresponding to the time of the most recent
778 * vblank interval on specified CRTC. May call into kms-driver to
779 * compute the timestamp with a high-precision GPU specific method.
780 *
781 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
782 * call, i.e., it isn't very precisely locked to the true vblank.
783 *
784 * Returns:
785 * True if timestamp is considered to be very precise, false otherwise.
786 */
787 static bool
788 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
789 ktime_t *tvblank, bool in_vblank_irq)
790 {
791 bool ret = false;
792
793 /* Define requested maximum error on timestamps (nanoseconds). */
794 int max_error = (int) drm_timestamp_precision * 1000;
795
796 /* Query driver if possible and precision timestamping enabled. */
797 if (dev->driver->get_vblank_timestamp && (max_error > 0))
798 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
799 tvblank, in_vblank_irq);
800
801 /* GPU high precision timestamp query unsupported or failed.
802 * Return current monotonic/gettimeofday timestamp as best estimate.
803 */
804 if (!ret)
805 *tvblank = ktime_get();
806
807 return ret;
808 }
809
810 /**
811 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
812 * @crtc: which counter to retrieve
813 *
814 * Fetches the "cooked" vblank count value that represents the number of
815 * vblank events since the system was booted, including lost events due to
816 * modesetting activity. Note that this timer isn't correct against a racing
817 * vblank interrupt (since it only reports the software vblank counter), see
818 * drm_crtc_accurate_vblank_count() for such use-cases.
819 *
820 * Note that for a given vblank counter value drm_crtc_handle_vblank()
821 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
822 * provide a barrier: Any writes done before calling
823 * drm_crtc_handle_vblank() will be visible to callers of the later
824 * functions, iff the vblank count is the same or a later one.
825 *
826 * See also &drm_vblank_crtc.count.
827 *
828 * Returns:
829 * The software vblank counter.
830 */
831 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
832 {
833 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
834 }
835 EXPORT_SYMBOL(drm_crtc_vblank_count);
836
837 /**
838 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
839 * system timestamp corresponding to that vblank counter value.
840 * @dev: DRM device
841 * @pipe: index of CRTC whose counter to retrieve
842 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
843 *
844 * Fetches the "cooked" vblank count value that represents the number of
845 * vblank events since the system was booted, including lost events due to
846 * modesetting activity. Returns corresponding system timestamp of the time
847 * of the vblank interval that corresponds to the current vblank counter value.
848 *
849 * This is the legacy version of drm_crtc_vblank_count_and_time().
850 */
851 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
852 ktime_t *vblanktime)
853 {
854 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
855 u64 vblank_count;
856 unsigned int seq;
857
858 if (WARN_ON(pipe >= dev->num_crtcs)) {
859 *vblanktime = 0;
860 return 0;
861 }
862
863 do {
864 seq = read_seqbegin(&vblank->seqlock);
865 vblank_count = atomic64_read(&vblank->count);
866 *vblanktime = vblank->time;
867 } while (read_seqretry(&vblank->seqlock, seq));
868
869 return vblank_count;
870 }
871
872 /**
873 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
874 * and the system timestamp corresponding to that vblank counter value
875 * @crtc: which counter to retrieve
876 * @vblanktime: Pointer to time to receive the vblank timestamp.
877 *
878 * Fetches the "cooked" vblank count value that represents the number of
879 * vblank events since the system was booted, including lost events due to
880 * modesetting activity. Returns corresponding system timestamp of the time
881 * of the vblank interval that corresponds to the current vblank counter value.
882 *
883 * Note that for a given vblank counter value drm_crtc_handle_vblank()
884 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
885 * provide a barrier: Any writes done before calling
886 * drm_crtc_handle_vblank() will be visible to callers of the later
887 * functions, iff the vblank count is the same or a later one.
888 *
889 * See also &drm_vblank_crtc.count.
890 */
891 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
892 ktime_t *vblanktime)
893 {
894 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
895 vblanktime);
896 }
897 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
898
899 static void send_vblank_event(struct drm_device *dev,
900 struct drm_pending_vblank_event *e,
901 u64 seq, ktime_t now)
902 {
903 struct timespec64 tv;
904
905 switch (e->event.base.type) {
906 case DRM_EVENT_VBLANK:
907 case DRM_EVENT_FLIP_COMPLETE:
908 tv = ktime_to_timespec64(now);
909 e->event.vbl.sequence = seq;
910 /*
911 * e->event is a user space structure, with hardcoded unsigned
912 * 32-bit seconds/microseconds. This is safe as we always use
913 * monotonic timestamps since linux-4.15
914 */
915 e->event.vbl.tv_sec = tv.tv_sec;
916 e->event.vbl.tv_usec = tv.tv_nsec / 1000;
917 break;
918 case DRM_EVENT_CRTC_SEQUENCE:
919 if (seq)
920 e->event.seq.sequence = seq;
921 e->event.seq.time_ns = ktime_to_ns(now);
922 break;
923 }
924 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
925 drm_send_event_locked(dev, &e->base);
926 }
927
928 /**
929 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
930 * @crtc: the source CRTC of the vblank event
931 * @e: the event to send
932 *
933 * A lot of drivers need to generate vblank events for the very next vblank
934 * interrupt. For example when the page flip interrupt happens when the page
935 * flip gets armed, but not when it actually executes within the next vblank
936 * period. This helper function implements exactly the required vblank arming
937 * behaviour.
938 *
939 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
940 * atomic commit must ensure that the next vblank happens at exactly the same
941 * time as the atomic commit is committed to the hardware. This function itself
942 * does **not** protect against the next vblank interrupt racing with either this
943 * function call or the atomic commit operation. A possible sequence could be:
944 *
945 * 1. Driver commits new hardware state into vblank-synchronized registers.
946 * 2. A vblank happens, committing the hardware state. Also the corresponding
947 * vblank interrupt is fired off and fully processed by the interrupt
948 * handler.
949 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
950 * 4. The event is only send out for the next vblank, which is wrong.
951 *
952 * An equivalent race can happen when the driver calls
953 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
954 *
955 * The only way to make this work safely is to prevent the vblank from firing
956 * (and the hardware from committing anything else) until the entire atomic
957 * commit sequence has run to completion. If the hardware does not have such a
958 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
959 * Instead drivers need to manually send out the event from their interrupt
960 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
961 * possible race with the hardware committing the atomic update.
962 *
963 * Caller must hold a vblank reference for the event @e acquired by a
964 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
965 */
966 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
967 struct drm_pending_vblank_event *e)
968 {
969 struct drm_device *dev = crtc->dev;
970 unsigned int pipe = drm_crtc_index(crtc);
971
972 assert_spin_locked(&dev->event_lock);
973
974 e->pipe = pipe;
975 e->sequence = drm_crtc_accurate_vblank_count_locked(crtc) + 1;
976 list_add_tail(&e->base.link, &dev->vblank_event_list);
977 }
978 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
979
980 /**
981 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
982 * @crtc: the source CRTC of the vblank event
983 * @e: the event to send
984 *
985 * Updates sequence # and timestamp on event for the most recently processed
986 * vblank, and sends it to userspace. Caller must hold event lock.
987 *
988 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
989 * situation, especially to send out events for atomic commit operations.
990 */
991 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
992 struct drm_pending_vblank_event *e)
993 {
994 struct drm_device *dev = crtc->dev;
995 u64 seq;
996 unsigned int pipe = drm_crtc_index(crtc);
997 ktime_t now;
998
999 if (dev->num_crtcs > 0) {
1000 seq = drm_vblank_count_and_time(dev, pipe, &now);
1001 } else {
1002 seq = 0;
1003
1004 now = ktime_get();
1005 }
1006 e->pipe = pipe;
1007 send_vblank_event(dev, e, seq, now);
1008 }
1009 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1010
1011 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1012 {
1013 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1014 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1015
1016 if (WARN_ON(!crtc))
1017 return 0;
1018
1019 if (crtc->funcs->enable_vblank)
1020 return crtc->funcs->enable_vblank(crtc);
1021 }
1022
1023 return dev->driver->enable_vblank(dev, pipe);
1024 }
1025
1026 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1027 {
1028 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1029 int ret = 0;
1030
1031 assert_spin_locked(&dev->event_lock);
1032
1033 spin_lock(&dev->vblank_time_lock);
1034
1035 if (!vblank->enabled) {
1036 /*
1037 * Enable vblank irqs under vblank_time_lock protection.
1038 * All vblank count & timestamp updates are held off
1039 * until we are done reinitializing master counter and
1040 * timestamps. Filtercode in drm_handle_vblank() will
1041 * prevent double-accounting of same vblank interval.
1042 */
1043 ret = __enable_vblank(dev, pipe);
1044 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
1045 if (ret) {
1046 atomic_dec(&vblank->refcount);
1047 } else {
1048 drm_update_vblank_count(dev, pipe, 0);
1049 /* drm_update_vblank_count() includes a wmb so we just
1050 * need to ensure that the compiler emits the write
1051 * to mark the vblank as enabled after the call
1052 * to drm_update_vblank_count().
1053 */
1054 WRITE_ONCE(vblank->enabled, true);
1055 }
1056 }
1057
1058 spin_unlock(&dev->vblank_time_lock);
1059
1060 return ret;
1061 }
1062
1063 static int drm_vblank_get_locked(struct drm_device *dev, unsigned int pipe)
1064 {
1065 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1066 int ret = 0;
1067
1068 assert_spin_locked(&dev->event_lock);
1069
1070 if (!dev->num_crtcs)
1071 return -EINVAL;
1072
1073 if (WARN_ON(pipe >= dev->num_crtcs))
1074 return -EINVAL;
1075
1076 /* Going from 0->1 means we have to enable interrupts again */
1077 if (atomic_add_return(1, &vblank->refcount) == 1) {
1078 ret = drm_vblank_enable(dev, pipe);
1079 } else {
1080 if (!vblank->enabled) {
1081 atomic_dec(&vblank->refcount);
1082 ret = -EINVAL;
1083 }
1084 }
1085
1086 return ret;
1087 }
1088
1089 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1090 {
1091 int ret;
1092
1093 spin_lock(&dev->event_lock);
1094 ret = drm_vblank_get_locked(dev, pipe);
1095 spin_unlock(&dev->event_lock);
1096
1097 return ret;
1098 }
1099
1100 /**
1101 * drm_crtc_vblank_get - get a reference count on vblank events
1102 * @crtc: which CRTC to own
1103 *
1104 * Acquire a reference count on vblank events to avoid having them disabled
1105 * while in use.
1106 *
1107 * Returns:
1108 * Zero on success or a negative error code on failure.
1109 */
1110 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1111 {
1112 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1113 }
1114 EXPORT_SYMBOL(drm_crtc_vblank_get);
1115
1116 int drm_crtc_vblank_get_locked(struct drm_crtc *crtc)
1117 {
1118 return drm_vblank_get_locked(crtc->dev, drm_crtc_index(crtc));
1119 }
1120 EXPORT_SYMBOL(drm_crtc_vblank_get_locked);
1121
1122 static void drm_vblank_put_locked(struct drm_device *dev, unsigned int pipe)
1123 {
1124 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1125
1126 assert_spin_locked(&dev->event_lock);
1127
1128 if (WARN_ON(pipe >= dev->num_crtcs))
1129 return;
1130
1131 if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1132 return;
1133
1134 /* Last user schedules interrupt disable */
1135 if (atomic_dec_and_test(&vblank->refcount)) {
1136 if (drm_vblank_offdelay == 0)
1137 return;
1138 else if (drm_vblank_offdelay < 0)
1139 vblank_disable_locked(vblank, dev, pipe);
1140 else if (!dev->vblank_disable_immediate)
1141 mod_timer(&vblank->disable_timer,
1142 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1143 }
1144 }
1145
1146 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1147 {
1148 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1149
1150 if (WARN_ON(pipe >= dev->num_crtcs))
1151 return;
1152
1153 if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1154 return;
1155
1156 /* Last user schedules interrupt disable */
1157 if (atomic_dec_and_test(&vblank->refcount)) {
1158 if (drm_vblank_offdelay == 0)
1159 return;
1160 else if (drm_vblank_offdelay < 0)
1161 vblank_disable_fn(&vblank->disable_timer);
1162 else if (!dev->vblank_disable_immediate)
1163 mod_timer(&vblank->disable_timer,
1164 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1165 }
1166 }
1167
1168 /**
1169 * drm_crtc_vblank_put - give up ownership of vblank events
1170 * @crtc: which counter to give up
1171 *
1172 * Release ownership of a given vblank counter, turning off interrupts
1173 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1174 */
1175 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1176 {
1177 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1178 }
1179 EXPORT_SYMBOL(drm_crtc_vblank_put);
1180
1181 void drm_crtc_vblank_put_locked(struct drm_crtc *crtc)
1182 {
1183 drm_vblank_put_locked(crtc->dev, drm_crtc_index(crtc));
1184 }
1185
1186 /**
1187 * drm_wait_one_vblank - wait for one vblank
1188 * @dev: DRM device
1189 * @pipe: CRTC index
1190 *
1191 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1192 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1193 * due to lack of driver support or because the crtc is off.
1194 *
1195 * This is the legacy version of drm_crtc_wait_one_vblank().
1196 */
1197 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1198 {
1199 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1200 int ret;
1201 u64 last;
1202
1203 if (WARN_ON(pipe >= dev->num_crtcs))
1204 return;
1205
1206 spin_lock(&dev->event_lock);
1207
1208 ret = drm_vblank_get_locked(dev, pipe);
1209 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1210 goto out;
1211
1212 last = drm_vblank_count(dev, pipe);
1213 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &vblank->queue, &dev->event_lock,
1214 msecs_to_jiffies(100),
1215 last != drm_vblank_count(dev, pipe));
1216
1217 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1218
1219 drm_vblank_put_locked(dev, pipe);
1220 out: spin_unlock(&dev->event_lock);
1221 }
1222 EXPORT_SYMBOL(drm_wait_one_vblank);
1223
1224 /**
1225 * drm_crtc_wait_one_vblank - wait for one vblank
1226 * @crtc: DRM crtc
1227 *
1228 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1229 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1230 * due to lack of driver support or because the crtc is off.
1231 */
1232 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1233 {
1234 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1235 }
1236 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1237
1238 /**
1239 * drm_crtc_vblank_off - disable vblank events on a CRTC
1240 * @crtc: CRTC in question
1241 *
1242 * Drivers can use this function to shut down the vblank interrupt handling when
1243 * disabling a crtc. This function ensures that the latest vblank frame count is
1244 * stored so that drm_vblank_on can restore it again.
1245 *
1246 * Drivers must use this function when the hardware vblank counter can get
1247 * reset, e.g. when suspending or disabling the @crtc in general.
1248 */
1249 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1250 {
1251 struct drm_device *dev = crtc->dev;
1252 unsigned int pipe = drm_crtc_index(crtc);
1253 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1254 struct drm_pending_vblank_event *e, *t;
1255
1256 ktime_t now;
1257 unsigned long irqflags;
1258 u64 seq;
1259
1260 if (WARN_ON(pipe >= dev->num_crtcs))
1261 return;
1262
1263 spin_lock_irqsave(&dev->event_lock, irqflags);
1264
1265 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1266 pipe, vblank->enabled, vblank->inmodeset);
1267
1268 /* Avoid redundant vblank disables without previous
1269 * drm_crtc_vblank_on(). */
1270 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1271 drm_vblank_disable_and_save(dev, pipe);
1272
1273 DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->event_lock);
1274
1275 /*
1276 * Prevent subsequent drm_vblank_get() from re-enabling
1277 * the vblank interrupt by bumping the refcount.
1278 */
1279 if (!vblank->inmodeset) {
1280 atomic_inc(&vblank->refcount);
1281 vblank->inmodeset = 1;
1282 }
1283
1284 /* Send any queued vblank events, lest the natives grow disquiet */
1285 seq = drm_vblank_count_and_time(dev, pipe, &now);
1286
1287 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1288 if (e->pipe != pipe)
1289 continue;
1290 DRM_DEBUG("Sending premature vblank event on disable: "
1291 "wanted %"PRIu64", current %"PRIu64"\n",
1292 e->sequence, seq);
1293 list_del(&e->base.link);
1294 drm_vblank_put(dev, pipe);
1295 send_vblank_event(dev, e, seq, now);
1296 }
1297 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1298
1299 /* Will be reset by the modeset helpers when re-enabling the crtc by
1300 * calling drm_calc_timestamping_constants(). */
1301 vblank->hwmode.crtc_clock = 0;
1302 }
1303 EXPORT_SYMBOL(drm_crtc_vblank_off);
1304
1305 /**
1306 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1307 * @crtc: CRTC in question
1308 *
1309 * Drivers can use this function to reset the vblank state to off at load time.
1310 * Drivers should use this together with the drm_crtc_vblank_off() and
1311 * drm_crtc_vblank_on() functions. The difference compared to
1312 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1313 * and hence doesn't need to call any driver hooks.
1314 *
1315 * This is useful for recovering driver state e.g. on driver load, or on resume.
1316 */
1317 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1318 {
1319 struct drm_device *dev = crtc->dev;
1320 unsigned long irqflags;
1321 unsigned int pipe = drm_crtc_index(crtc);
1322 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1323
1324 spin_lock_irqsave(&dev->event_lock, irqflags);
1325 /*
1326 * Prevent subsequent drm_vblank_get() from enabling the vblank
1327 * interrupt by bumping the refcount.
1328 */
1329 if (!vblank->inmodeset) {
1330 atomic_inc(&vblank->refcount);
1331 vblank->inmodeset = 1;
1332 }
1333 WARN_ON(!list_empty(&dev->vblank_event_list));
1334 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1335 }
1336 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1337
1338 /**
1339 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1340 * @crtc: CRTC in question
1341 * @max_vblank_count: max hardware vblank counter value
1342 *
1343 * Update the maximum hardware vblank counter value for @crtc
1344 * at runtime. Useful for hardware where the operation of the
1345 * hardware vblank counter depends on the currently active
1346 * display configuration.
1347 *
1348 * For example, if the hardware vblank counter does not work
1349 * when a specific connector is active the maximum can be set
1350 * to zero. And when that specific connector isn't active the
1351 * maximum can again be set to the appropriate non-zero value.
1352 *
1353 * If used, must be called before drm_vblank_on().
1354 */
1355 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1356 u32 max_vblank_count)
1357 {
1358 struct drm_device *dev = crtc->dev;
1359 unsigned int pipe = drm_crtc_index(crtc);
1360 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1361
1362 WARN_ON(dev->max_vblank_count);
1363 WARN_ON(!READ_ONCE(vblank->inmodeset));
1364
1365 vblank->max_vblank_count = max_vblank_count;
1366 }
1367 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1368
1369 /**
1370 * drm_crtc_vblank_on - enable vblank events on a CRTC
1371 * @crtc: CRTC in question
1372 *
1373 * This functions restores the vblank interrupt state captured with
1374 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1375 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1376 * unbalanced and so can also be unconditionally called in driver load code to
1377 * reflect the current hardware state of the crtc.
1378 */
1379 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1380 {
1381 struct drm_device *dev = crtc->dev;
1382 unsigned int pipe = drm_crtc_index(crtc);
1383 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1384 unsigned long irqflags;
1385
1386 if (WARN_ON(pipe >= dev->num_crtcs))
1387 return;
1388
1389 spin_lock_irqsave(&dev->event_lock, irqflags);
1390 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1391 pipe, vblank->enabled, vblank->inmodeset);
1392
1393 /* Drop our private "prevent drm_vblank_get" refcount */
1394 if (vblank->inmodeset) {
1395 atomic_dec(&vblank->refcount);
1396 vblank->inmodeset = 0;
1397 }
1398
1399 drm_reset_vblank_timestamp(dev, pipe);
1400
1401 /*
1402 * re-enable interrupts if there are users left, or the
1403 * user wishes vblank interrupts to be enabled all the time.
1404 */
1405 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1406 WARN_ON(drm_vblank_enable(dev, pipe));
1407 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1408 }
1409 EXPORT_SYMBOL(drm_crtc_vblank_on);
1410
1411 /**
1412 * drm_vblank_restore - estimate missed vblanks and update vblank count.
1413 * @dev: DRM device
1414 * @pipe: CRTC index
1415 *
1416 * Power manamement features can cause frame counter resets between vblank
1417 * disable and enable. Drivers can use this function in their
1418 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1419 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1420 * vblank counter.
1421 *
1422 * This function is the legacy version of drm_crtc_vblank_restore().
1423 */
1424 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1425 {
1426 ktime_t t_vblank;
1427 struct drm_vblank_crtc *vblank;
1428 int framedur_ns;
1429 u64 diff_ns;
1430 u32 cur_vblank, diff = 1;
1431 int count = DRM_TIMESTAMP_MAXRETRIES;
1432
1433 if (WARN_ON(pipe >= dev->num_crtcs))
1434 return;
1435
1436 assert_spin_locked(&dev->event_lock);
1437 assert_spin_locked(&dev->vblank_time_lock);
1438
1439 vblank = &dev->vblank[pipe];
1440 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1441 "Cannot compute missed vblanks without frame duration\n");
1442 framedur_ns = vblank->framedur_ns;
1443
1444 do {
1445 cur_vblank = __get_vblank_counter(dev, pipe);
1446 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1447 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1448
1449 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1450 if (framedur_ns)
1451 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1452
1453
1454 DRM_DEBUG_VBL("missed %d vblanks in %"PRId64" ns, frame duration=%d ns, hw_diff=%d\n",
1455 diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1456 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1457 }
1458 EXPORT_SYMBOL(drm_vblank_restore);
1459
1460 /**
1461 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1462 * @crtc: CRTC in question
1463 *
1464 * Power manamement features can cause frame counter resets between vblank
1465 * disable and enable. Drivers can use this function in their
1466 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1467 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1468 * vblank counter.
1469 */
1470 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1471 {
1472 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1473 }
1474 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1475
1476 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1477 unsigned int pipe)
1478 {
1479 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1480
1481 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1482 if (!dev->num_crtcs)
1483 return;
1484
1485 if (WARN_ON(pipe >= dev->num_crtcs))
1486 return;
1487
1488 /*
1489 * To avoid all the problems that might happen if interrupts
1490 * were enabled/disabled around or between these calls, we just
1491 * have the kernel take a reference on the CRTC (just once though
1492 * to avoid corrupting the count if multiple, mismatch calls occur),
1493 * so that interrupts remain enabled in the interim.
1494 */
1495 if (!vblank->inmodeset) {
1496 vblank->inmodeset = 0x1;
1497 if (drm_vblank_get(dev, pipe) == 0)
1498 vblank->inmodeset |= 0x2;
1499 }
1500 }
1501
1502 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1503 unsigned int pipe)
1504 {
1505 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1506 unsigned long irqflags;
1507
1508 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1509 if (!dev->num_crtcs)
1510 return;
1511
1512 if (WARN_ON(pipe >= dev->num_crtcs))
1513 return;
1514
1515 if (vblank->inmodeset) {
1516 spin_lock_irqsave(&dev->event_lock, irqflags);
1517 drm_reset_vblank_timestamp(dev, pipe);
1518 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1519
1520 if (vblank->inmodeset & 0x2)
1521 drm_vblank_put(dev, pipe);
1522
1523 vblank->inmodeset = 0;
1524 }
1525 }
1526
1527 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1528 struct drm_file *file_priv)
1529 {
1530 struct drm_modeset_ctl *modeset = data;
1531 unsigned int pipe;
1532
1533 /* If drm_vblank_init() hasn't been called yet, just no-op */
1534 if (!dev->num_crtcs)
1535 return 0;
1536
1537 /* KMS drivers handle this internally */
1538 if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1539 return 0;
1540
1541 pipe = modeset->crtc;
1542 if (pipe >= dev->num_crtcs)
1543 return -EINVAL;
1544
1545 switch (modeset->cmd) {
1546 case _DRM_PRE_MODESET:
1547 drm_legacy_vblank_pre_modeset(dev, pipe);
1548 break;
1549 case _DRM_POST_MODESET:
1550 drm_legacy_vblank_post_modeset(dev, pipe);
1551 break;
1552 default:
1553 return -EINVAL;
1554 }
1555
1556 return 0;
1557 }
1558
1559 static inline bool vblank_passed(u64 seq, u64 ref)
1560 {
1561 return (seq - ref) <= (1 << 23);
1562 }
1563
1564 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1565 u64 req_seq,
1566 union drm_wait_vblank *vblwait,
1567 struct drm_file *file_priv)
1568 {
1569 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1570 struct drm_pending_vblank_event *e;
1571 ktime_t now;
1572 unsigned long flags;
1573 u64 seq;
1574 int ret;
1575
1576 e = kzalloc(sizeof(*e), GFP_KERNEL);
1577 if (e == NULL) {
1578 ret = -ENOMEM;
1579 goto err_put;
1580 }
1581
1582 e->pipe = pipe;
1583 e->event.base.type = DRM_EVENT_VBLANK;
1584 e->event.base.length = sizeof(e->event.vbl);
1585 e->event.vbl.user_data = vblwait->request.signal;
1586 e->event.vbl.crtc_id = 0;
1587 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1588 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1589 if (crtc)
1590 e->event.vbl.crtc_id = crtc->base.id;
1591 }
1592
1593 spin_lock_irqsave(&dev->event_lock, flags);
1594
1595 /*
1596 * drm_crtc_vblank_off() might have been called after we called
1597 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1598 * vblank disable, so no need for further locking. The reference from
1599 * drm_vblank_get() protects against vblank disable from another source.
1600 */
1601 if (!READ_ONCE(vblank->enabled)) {
1602 ret = -EINVAL;
1603 goto err_unlock;
1604 }
1605
1606 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1607 &e->event.base);
1608
1609 if (ret)
1610 goto err_unlock;
1611
1612 seq = drm_vblank_count_and_time(dev, pipe, &now);
1613
1614 DRM_DEBUG("event on vblank count %"PRIu64", current %"PRIu64", crtc %u\n",
1615 req_seq, seq, pipe);
1616
1617 trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1618
1619 e->sequence = req_seq;
1620 if (vblank_passed(seq, req_seq)) {
1621 drm_vblank_put(dev, pipe);
1622 send_vblank_event(dev, e, seq, now);
1623 vblwait->reply.sequence = seq;
1624 } else {
1625 /* drm_handle_vblank_events will call drm_vblank_put */
1626 list_add_tail(&e->base.link, &dev->vblank_event_list);
1627 vblwait->reply.sequence = req_seq;
1628 }
1629
1630 spin_unlock_irqrestore(&dev->event_lock, flags);
1631
1632 return 0;
1633
1634 err_unlock:
1635 spin_unlock_irqrestore(&dev->event_lock, flags);
1636 kfree(e);
1637 err_put:
1638 drm_vblank_put(dev, pipe);
1639 return ret;
1640 }
1641
1642 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1643 {
1644 if (vblwait->request.sequence)
1645 return false;
1646
1647 return _DRM_VBLANK_RELATIVE ==
1648 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1649 _DRM_VBLANK_EVENT |
1650 _DRM_VBLANK_NEXTONMISS));
1651 }
1652
1653 /*
1654 * Widen a 32-bit param to 64-bits.
1655 *
1656 * \param narrow 32-bit value (missing upper 32 bits)
1657 * \param near 64-bit value that should be 'close' to near
1658 *
1659 * This function returns a 64-bit value using the lower 32-bits from
1660 * 'narrow' and constructing the upper 32-bits so that the result is
1661 * as close as possible to 'near'.
1662 */
1663
1664 static u64 widen_32_to_64(u32 narrow, u64 near)
1665 {
1666 return near + (s32) (narrow - near);
1667 }
1668
1669 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1670 struct drm_wait_vblank_reply *reply)
1671 {
1672 ktime_t now;
1673 struct timespec64 ts;
1674
1675 /*
1676 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1677 * to store the seconds. This is safe as we always use monotonic
1678 * timestamps since linux-4.15.
1679 */
1680 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1681 ts = ktime_to_timespec64(now);
1682 reply->tval_sec = (u32)ts.tv_sec;
1683 reply->tval_usec = ts.tv_nsec / 1000;
1684 }
1685
1686 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1687 struct drm_file *file_priv)
1688 {
1689 struct drm_crtc *crtc;
1690 struct drm_vblank_crtc *vblank;
1691 union drm_wait_vblank *vblwait = data;
1692 int ret;
1693 u64 req_seq, seq;
1694 unsigned int pipe_index;
1695 unsigned int flags, pipe, high_pipe;
1696
1697 if (!dev->irq_enabled)
1698 return -EOPNOTSUPP;
1699
1700 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1701 return -EINVAL;
1702
1703 if (vblwait->request.type &
1704 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1705 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1706 DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
1707 vblwait->request.type,
1708 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1709 _DRM_VBLANK_HIGH_CRTC_MASK));
1710 return -EINVAL;
1711 }
1712
1713 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1714 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1715 if (high_pipe)
1716 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1717 else
1718 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1719
1720 /* Convert lease-relative crtc index into global crtc index */
1721 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1722 pipe = 0;
1723 drm_for_each_crtc(crtc, dev) {
1724 if (drm_lease_held(file_priv, crtc->base.id)) {
1725 if (pipe_index == 0)
1726 break;
1727 pipe_index--;
1728 }
1729 pipe++;
1730 }
1731 } else {
1732 pipe = pipe_index;
1733 }
1734
1735 if (pipe >= dev->num_crtcs)
1736 return -EINVAL;
1737
1738 vblank = &dev->vblank[pipe];
1739
1740 /* If the counter is currently enabled and accurate, short-circuit
1741 * queries to return the cached timestamp of the last vblank.
1742 */
1743 if (dev->vblank_disable_immediate &&
1744 drm_wait_vblank_is_query(vblwait) &&
1745 READ_ONCE(vblank->enabled)) {
1746 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1747 return 0;
1748 }
1749
1750 ret = drm_vblank_get(dev, pipe);
1751 if (ret) {
1752 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1753 return ret;
1754 }
1755 seq = drm_vblank_count(dev, pipe);
1756
1757 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1758 case _DRM_VBLANK_RELATIVE:
1759 req_seq = seq + vblwait->request.sequence;
1760 vblwait->request.sequence = req_seq;
1761 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1762 break;
1763 case _DRM_VBLANK_ABSOLUTE:
1764 req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1765 break;
1766 default:
1767 ret = -EINVAL;
1768 goto done;
1769 }
1770
1771 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1772 vblank_passed(seq, req_seq)) {
1773 req_seq = seq + 1;
1774 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1775 vblwait->request.sequence = req_seq;
1776 }
1777
1778 if (flags & _DRM_VBLANK_EVENT) {
1779 /* must hold on to the vblank ref until the event fires
1780 * drm_vblank_put will be called asynchronously
1781 */
1782 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1783 }
1784
1785 if (req_seq != seq) {
1786 int wait;
1787
1788 DRM_DEBUG("waiting on vblank count %"PRIu64", crtc %u\n",
1789 req_seq, pipe);
1790 DRM_SPIN_TIMED_WAIT_UNTIL(wait, &vblank->queue,
1791 &dev->event_lock, msecs_to_jiffies(3000),
1792 (vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1793 !READ_ONCE(vblank->enabled)));
1794
1795 switch (wait) {
1796 case 0:
1797 /* timeout */
1798 ret = -EBUSY;
1799 break;
1800 case -ERESTARTSYS:
1801 /* interrupted by signal */
1802 ret = -EINTR;
1803 break;
1804 default:
1805 ret = 0;
1806 break;
1807 }
1808 }
1809
1810 if (ret != -EINTR) {
1811 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1812
1813 DRM_DEBUG("crtc %d returning %u to client\n",
1814 pipe, vblwait->reply.sequence);
1815 } else {
1816 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1817 }
1818
1819 done:
1820 drm_vblank_put(dev, pipe);
1821 return ret;
1822 }
1823
1824 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1825 {
1826 struct drm_pending_vblank_event *e, *t;
1827 ktime_t now;
1828 u64 seq;
1829
1830 assert_spin_locked(&dev->event_lock);
1831
1832 seq = drm_vblank_count_and_time(dev, pipe, &now);
1833
1834 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1835 if (e->pipe != pipe)
1836 continue;
1837 if (!vblank_passed(seq, e->sequence))
1838 continue;
1839
1840 DRM_DEBUG("vblank event on %"PRIu64", current %"PRIu64"\n",
1841 e->sequence, seq);
1842
1843 list_del(&e->base.link);
1844 drm_vblank_put(dev, pipe);
1845 send_vblank_event(dev, e, seq, now);
1846 }
1847
1848 trace_drm_vblank_event(pipe, seq, now,
1849 dev->driver->get_vblank_timestamp != NULL);
1850 }
1851
1852 /**
1853 * drm_handle_vblank - handle a vblank event
1854 * @dev: DRM device
1855 * @pipe: index of CRTC where this event occurred
1856 *
1857 * Drivers should call this routine in their vblank interrupt handlers to
1858 * update the vblank counter and send any signals that may be pending.
1859 *
1860 * This is the legacy version of drm_crtc_handle_vblank().
1861 */
1862 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1863 {
1864 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1865 unsigned long irqflags;
1866 bool disable_irq;
1867
1868 if (WARN_ON_ONCE(!dev->num_crtcs))
1869 return false;
1870
1871 if (WARN_ON(pipe >= dev->num_crtcs))
1872 return false;
1873
1874 spin_lock_irqsave(&dev->event_lock, irqflags);
1875
1876 /* Need timestamp lock to prevent concurrent execution with
1877 * vblank enable/disable, as this would cause inconsistent
1878 * or corrupted timestamps and vblank counts.
1879 */
1880 spin_lock(&dev->vblank_time_lock);
1881
1882 /* Vblank irq handling disabled. Nothing to do. */
1883 if (!vblank->enabled) {
1884 spin_unlock(&dev->vblank_time_lock);
1885 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1886 return false;
1887 }
1888
1889 drm_update_vblank_count(dev, pipe, true);
1890
1891 spin_unlock(&dev->vblank_time_lock);
1892
1893 DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->event_lock);
1894
1895 /* With instant-off, we defer disabling the interrupt until after
1896 * we finish processing the following vblank after all events have
1897 * been signaled. The disable has to be last (after
1898 * drm_handle_vblank_events) so that the timestamp is always accurate.
1899 */
1900 disable_irq = (dev->vblank_disable_immediate &&
1901 drm_vblank_offdelay > 0 &&
1902 !atomic_read(&vblank->refcount));
1903
1904 drm_handle_vblank_events(dev, pipe);
1905
1906 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1907
1908 if (disable_irq)
1909 vblank_disable_fn(&vblank->disable_timer);
1910
1911 return true;
1912 }
1913 EXPORT_SYMBOL(drm_handle_vblank);
1914
1915 /**
1916 * drm_crtc_handle_vblank - handle a vblank event
1917 * @crtc: where this event occurred
1918 *
1919 * Drivers should call this routine in their vblank interrupt handlers to
1920 * update the vblank counter and send any signals that may be pending.
1921 *
1922 * This is the native KMS version of drm_handle_vblank().
1923 *
1924 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1925 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1926 * provide a barrier: Any writes done before calling
1927 * drm_crtc_handle_vblank() will be visible to callers of the later
1928 * functions, iff the vblank count is the same or a later one.
1929 *
1930 * See also &drm_vblank_crtc.count.
1931 *
1932 * Returns:
1933 * True if the event was successfully handled, false on failure.
1934 */
1935 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1936 {
1937 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1938 }
1939 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1940
1941 /*
1942 * Get crtc VBLANK count.
1943 *
1944 * \param dev DRM device
1945 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1946 * \param file_priv drm file private for the user's open file descriptor
1947 */
1948
1949 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1950 struct drm_file *file_priv)
1951 {
1952 struct drm_crtc *crtc;
1953 struct drm_vblank_crtc *vblank;
1954 int pipe;
1955 struct drm_crtc_get_sequence *get_seq = data;
1956 ktime_t now;
1957 bool vblank_enabled;
1958 int ret;
1959
1960 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1961 return -EOPNOTSUPP;
1962
1963 if (!dev->irq_enabled)
1964 return -EOPNOTSUPP;
1965
1966 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1967 if (!crtc)
1968 return -ENOENT;
1969
1970 pipe = drm_crtc_index(crtc);
1971
1972 vblank = &dev->vblank[pipe];
1973 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1974
1975 if (!vblank_enabled) {
1976 ret = drm_crtc_vblank_get(crtc);
1977 if (ret) {
1978 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1979 return ret;
1980 }
1981 }
1982 drm_modeset_lock(&crtc->mutex, NULL);
1983 if (crtc->state)
1984 get_seq->active = crtc->state->enable;
1985 else
1986 get_seq->active = crtc->enabled;
1987 drm_modeset_unlock(&crtc->mutex);
1988 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1989 get_seq->sequence_ns = ktime_to_ns(now);
1990 if (!vblank_enabled)
1991 drm_crtc_vblank_put(crtc);
1992 return 0;
1993 }
1994
1995 /*
1996 * Queue a event for VBLANK sequence
1997 *
1998 * \param dev DRM device
1999 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
2000 * \param file_priv drm file private for the user's open file descriptor
2001 */
2002
2003 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2004 struct drm_file *file_priv)
2005 {
2006 struct drm_crtc *crtc;
2007 struct drm_vblank_crtc *vblank;
2008 int pipe;
2009 struct drm_crtc_queue_sequence *queue_seq = data;
2010 ktime_t now;
2011 struct drm_pending_vblank_event *e;
2012 u32 flags;
2013 u64 seq;
2014 u64 req_seq;
2015 int ret;
2016 unsigned long spin_flags;
2017
2018 if (!drm_core_check_feature(dev, DRIVER_MODESET))
2019 return -EOPNOTSUPP;
2020
2021 if (!dev->irq_enabled)
2022 return -EOPNOTSUPP;
2023
2024 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2025 if (!crtc)
2026 return -ENOENT;
2027
2028 flags = queue_seq->flags;
2029 /* Check valid flag bits */
2030 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2031 DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2032 return -EINVAL;
2033
2034 pipe = drm_crtc_index(crtc);
2035
2036 vblank = &dev->vblank[pipe];
2037
2038 e = kzalloc(sizeof(*e), GFP_KERNEL);
2039 if (e == NULL)
2040 return -ENOMEM;
2041
2042 ret = drm_crtc_vblank_get(crtc);
2043 if (ret) {
2044 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
2045 goto err_free;
2046 }
2047
2048 seq = drm_vblank_count_and_time(dev, pipe, &now);
2049 req_seq = queue_seq->sequence;
2050
2051 if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2052 req_seq += seq;
2053
2054 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
2055 req_seq = seq + 1;
2056
2057 e->pipe = pipe;
2058 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2059 e->event.base.length = sizeof(e->event.seq);
2060 e->event.seq.user_data = queue_seq->user_data;
2061
2062 spin_lock_irqsave(&dev->event_lock, spin_flags);
2063
2064 /*
2065 * drm_crtc_vblank_off() might have been called after we called
2066 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2067 * vblank disable, so no need for further locking. The reference from
2068 * drm_crtc_vblank_get() protects against vblank disable from another source.
2069 */
2070 if (!READ_ONCE(vblank->enabled)) {
2071 ret = -EINVAL;
2072 goto err_unlock;
2073 }
2074
2075 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2076 &e->event.base);
2077
2078 if (ret)
2079 goto err_unlock;
2080
2081 e->sequence = req_seq;
2082
2083 if (vblank_passed(seq, req_seq)) {
2084 drm_crtc_vblank_put(crtc);
2085 send_vblank_event(dev, e, seq, now);
2086 queue_seq->sequence = seq;
2087 } else {
2088 /* drm_handle_vblank_events will call drm_vblank_put */
2089 list_add_tail(&e->base.link, &dev->vblank_event_list);
2090 queue_seq->sequence = req_seq;
2091 }
2092
2093 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2094 return 0;
2095
2096 err_unlock:
2097 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2098 drm_crtc_vblank_put(crtc);
2099 err_free:
2100 kfree(e);
2101 return ret;
2102 }
2103