Home | History | Annotate | Line # | Download | only in drm
drm_vblank.c revision 1.5
      1 /*	$NetBSD: drm_vblank.c,v 1.5 2021/12/19 09:52:34 riastradh Exp $	*/
      2 
      3 /*
      4  * drm_irq.c IRQ and vblank support
      5  *
      6  * \author Rickard E. (Rik) Faith <faith (at) valinux.com>
      7  * \author Gareth Hughes <gareth (at) valinux.com>
      8  *
      9  * Permission is hereby granted, free of charge, to any person obtaining a
     10  * copy of this software and associated documentation files (the "Software"),
     11  * to deal in the Software without restriction, including without limitation
     12  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     13  * and/or sell copies of the Software, and to permit persons to whom the
     14  * Software is furnished to do so, subject to the following conditions:
     15  *
     16  * The above copyright notice and this permission notice (including the next
     17  * paragraph) shall be included in all copies or substantial portions of the
     18  * Software.
     19  *
     20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     23  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     24  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     25  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     26  * OTHER DEALINGS IN THE SOFTWARE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: drm_vblank.c,v 1.5 2021/12/19 09:52:34 riastradh Exp $");
     31 
     32 #include <linux/export.h>
     33 #include <linux/moduleparam.h>
     34 #include <linux/math64.h>
     35 
     36 #include <drm/drm_crtc.h>
     37 #include <drm/drm_drv.h>
     38 #include <drm/drm_framebuffer.h>
     39 #include <drm/drm_print.h>
     40 #include <drm/drm_vblank.h>
     41 
     42 #include "drm_internal.h"
     43 #include "drm_trace.h"
     44 
     45 /**
     46  * DOC: vblank handling
     47  *
     48  * Vertical blanking plays a major role in graphics rendering. To achieve
     49  * tear-free display, users must synchronize page flips and/or rendering to
     50  * vertical blanking. The DRM API offers ioctls to perform page flips
     51  * synchronized to vertical blanking and wait for vertical blanking.
     52  *
     53  * The DRM core handles most of the vertical blanking management logic, which
     54  * involves filtering out spurious interrupts, keeping race-free blanking
     55  * counters, coping with counter wrap-around and resets and keeping use counts.
     56  * It relies on the driver to generate vertical blanking interrupts and
     57  * optionally provide a hardware vertical blanking counter.
     58  *
     59  * Drivers must initialize the vertical blanking handling core with a call to
     60  * drm_vblank_init(). Minimally, a driver needs to implement
     61  * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
     62  * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
     63  * support.
     64  *
     65  * Vertical blanking interrupts can be enabled by the DRM core or by drivers
     66  * themselves (for instance to handle page flipping operations).  The DRM core
     67  * maintains a vertical blanking use count to ensure that the interrupts are not
     68  * disabled while a user still needs them. To increment the use count, drivers
     69  * call drm_crtc_vblank_get() and release the vblank reference again with
     70  * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
     71  * guaranteed to be enabled.
     72  *
     73  * On many hardware disabling the vblank interrupt cannot be done in a race-free
     74  * manner, see &drm_driver.vblank_disable_immediate and
     75  * &drm_driver.max_vblank_count. In that case the vblank core only disables the
     76  * vblanks after a timer has expired, which can be configured through the
     77  * ``vblankoffdelay`` module parameter.
     78  */
     79 
     80 /* Retry timestamp calculation up to 3 times to satisfy
     81  * drm_timestamp_precision before giving up.
     82  */
     83 #define DRM_TIMESTAMP_MAXRETRIES 3
     84 
     85 /* Threshold in nanoseconds for detection of redundant
     86  * vblank irq in drm_handle_vblank(). 1 msec should be ok.
     87  */
     88 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
     89 
     90 static bool
     91 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
     92 			  ktime_t *tvblank, bool in_vblank_irq);
     93 
     94 static unsigned int drm_timestamp_precision = 20;  /* Default to 20 usecs. */
     95 
     96 static int drm_vblank_offdelay = 5000;    /* Default to 5000 msecs. */
     97 
     98 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
     99 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
    100 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
    101 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
    102 
    103 static void store_vblank(struct drm_device *dev, unsigned int pipe,
    104 			 u32 vblank_count_inc,
    105 			 ktime_t t_vblank, u32 last)
    106 {
    107 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    108 
    109 	assert_spin_locked(&dev->vblank_time_lock);
    110 
    111 	vblank->last = last;
    112 
    113 	write_seqlock(&vblank->seqlock);
    114 	vblank->time = t_vblank;
    115 	atomic64_add(vblank_count_inc, &vblank->count);
    116 	write_sequnlock(&vblank->seqlock);
    117 }
    118 
    119 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
    120 {
    121 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    122 
    123 	return vblank->max_vblank_count ?: dev->max_vblank_count;
    124 }
    125 
    126 /*
    127  * "No hw counter" fallback implementation of .get_vblank_counter() hook,
    128  * if there is no useable hardware frame counter available.
    129  */
    130 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
    131 {
    132 	WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
    133 	return 0;
    134 }
    135 
    136 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
    137 {
    138 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
    139 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
    140 
    141 		if (WARN_ON(!crtc))
    142 			return 0;
    143 
    144 		if (crtc->funcs->get_vblank_counter)
    145 			return crtc->funcs->get_vblank_counter(crtc);
    146 	}
    147 
    148 	if (dev->driver->get_vblank_counter)
    149 		return dev->driver->get_vblank_counter(dev, pipe);
    150 
    151 	return drm_vblank_no_hw_counter(dev, pipe);
    152 }
    153 
    154 /*
    155  * Reset the stored timestamp for the current vblank count to correspond
    156  * to the last vblank occurred.
    157  *
    158  * Only to be called from drm_crtc_vblank_on().
    159  *
    160  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
    161  * device vblank fields.
    162  */
    163 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
    164 {
    165 	u32 cur_vblank;
    166 	bool rc;
    167 	ktime_t t_vblank;
    168 	int count = DRM_TIMESTAMP_MAXRETRIES;
    169 
    170 	spin_lock(&dev->vblank_time_lock);
    171 
    172 	/*
    173 	 * sample the current counter to avoid random jumps
    174 	 * when drm_vblank_enable() applies the diff
    175 	 */
    176 	do {
    177 		cur_vblank = __get_vblank_counter(dev, pipe);
    178 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
    179 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
    180 
    181 	/*
    182 	 * Only reinitialize corresponding vblank timestamp if high-precision query
    183 	 * available and didn't fail. Otherwise reinitialize delayed at next vblank
    184 	 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
    185 	 */
    186 	if (!rc)
    187 		t_vblank = 0;
    188 
    189 	/*
    190 	 * +1 to make sure user will never see the same
    191 	 * vblank counter value before and after a modeset
    192 	 */
    193 	store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
    194 
    195 	spin_unlock(&dev->vblank_time_lock);
    196 }
    197 
    198 /*
    199  * Call back into the driver to update the appropriate vblank counter
    200  * (specified by @pipe).  Deal with wraparound, if it occurred, and
    201  * update the last read value so we can deal with wraparound on the next
    202  * call if necessary.
    203  *
    204  * Only necessary when going from off->on, to account for frames we
    205  * didn't get an interrupt for.
    206  *
    207  * Note: caller must hold &drm_device.vbl_lock since this reads & writes
    208  * device vblank fields.
    209  */
    210 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
    211 				    bool in_vblank_irq)
    212 {
    213 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    214 	u32 cur_vblank, diff;
    215 	bool rc;
    216 	ktime_t t_vblank;
    217 	int count = DRM_TIMESTAMP_MAXRETRIES;
    218 	int framedur_ns = vblank->framedur_ns;
    219 	u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
    220 
    221 	/*
    222 	 * Interrupts were disabled prior to this call, so deal with counter
    223 	 * wrap if needed.
    224 	 * NOTE!  It's possible we lost a full dev->max_vblank_count + 1 events
    225 	 * here if the register is small or we had vblank interrupts off for
    226 	 * a long time.
    227 	 *
    228 	 * We repeat the hardware vblank counter & timestamp query until
    229 	 * we get consistent results. This to prevent races between gpu
    230 	 * updating its hardware counter while we are retrieving the
    231 	 * corresponding vblank timestamp.
    232 	 */
    233 	do {
    234 		cur_vblank = __get_vblank_counter(dev, pipe);
    235 		rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
    236 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
    237 
    238 	if (max_vblank_count) {
    239 		/* trust the hw counter when it's around */
    240 		diff = (cur_vblank - vblank->last) & max_vblank_count;
    241 	} else if (rc && framedur_ns) {
    242 		u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
    243 
    244 		/*
    245 		 * Figure out how many vblanks we've missed based
    246 		 * on the difference in the timestamps and the
    247 		 * frame/field duration.
    248 		 */
    249 
    250 		DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
    251 			      " diff_ns = %lld, framedur_ns = %d)\n",
    252 			      pipe, (long long) diff_ns, framedur_ns);
    253 
    254 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
    255 
    256 		if (diff == 0 && in_vblank_irq)
    257 			DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
    258 				      pipe);
    259 	} else {
    260 		/* some kind of default for drivers w/o accurate vbl timestamping */
    261 		diff = in_vblank_irq ? 1 : 0;
    262 	}
    263 
    264 	/*
    265 	 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
    266 	 * interval? If so then vblank irqs keep running and it will likely
    267 	 * happen that the hardware vblank counter is not trustworthy as it
    268 	 * might reset at some point in that interval and vblank timestamps
    269 	 * are not trustworthy either in that interval. Iow. this can result
    270 	 * in a bogus diff >> 1 which must be avoided as it would cause
    271 	 * random large forward jumps of the software vblank counter.
    272 	 */
    273 	if (diff > 1 && (vblank->inmodeset & 0x2)) {
    274 		DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
    275 			      " due to pre-modeset.\n", pipe, diff);
    276 		diff = 1;
    277 	}
    278 
    279 	DRM_DEBUG_VBL("updating vblank count on crtc %u:"
    280 		      " current=%"PRIu64", diff=%u, hw=%u hw_last=%u\n",
    281 		      pipe, atomic64_read(&vblank->count), diff,
    282 		      cur_vblank, vblank->last);
    283 
    284 	if (diff == 0) {
    285 		WARN_ON_ONCE(cur_vblank != vblank->last);
    286 		return;
    287 	}
    288 
    289 	/*
    290 	 * Only reinitialize corresponding vblank timestamp if high-precision query
    291 	 * available and didn't fail, or we were called from the vblank interrupt.
    292 	 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
    293 	 * for now, to mark the vblanktimestamp as invalid.
    294 	 */
    295 	if (!rc && !in_vblank_irq)
    296 		t_vblank = 0;
    297 
    298 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
    299 }
    300 
    301 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
    302 {
    303 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    304 	u64 count;
    305 
    306 	if (WARN_ON(pipe >= dev->num_crtcs))
    307 		return 0;
    308 
    309 	count = atomic64_read(&vblank->count);
    310 
    311 	/*
    312 	 * This read barrier corresponds to the implicit write barrier of the
    313 	 * write seqlock in store_vblank(). Note that this is the only place
    314 	 * where we need an explicit barrier, since all other access goes
    315 	 * through drm_vblank_count_and_time(), which already has the required
    316 	 * read barrier curtesy of the read seqlock.
    317 	 */
    318 	smp_rmb();
    319 
    320 	return count;
    321 }
    322 
    323 /**
    324  * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
    325  * @crtc: which counter to retrieve
    326  *
    327  * This function is similar to drm_crtc_vblank_count() but this function
    328  * interpolates to handle a race with vblank interrupts using the high precision
    329  * timestamping support.
    330  *
    331  * This is mostly useful for hardware that can obtain the scanout position, but
    332  * doesn't have a hardware frame counter.
    333  */
    334 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
    335 {
    336 	struct drm_device *dev = crtc->dev;
    337 	unsigned int pipe = drm_crtc_index(crtc);
    338 	u64 vblank;
    339 	unsigned long flags;
    340 
    341 	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
    342 		  "This function requires support for accurate vblank timestamps.");
    343 
    344 	spin_lock_irqsave(&dev->vblank_time_lock, flags);
    345 
    346 	drm_update_vblank_count(dev, pipe, false);
    347 	vblank = drm_vblank_count(dev, pipe);
    348 
    349 	spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
    350 
    351 	return vblank;
    352 }
    353 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
    354 
    355 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
    356 {
    357 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
    358 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
    359 
    360 		if (WARN_ON(!crtc))
    361 			return;
    362 
    363 		if (crtc->funcs->disable_vblank) {
    364 			crtc->funcs->disable_vblank(crtc);
    365 			return;
    366 		}
    367 	}
    368 
    369 	dev->driver->disable_vblank(dev, pipe);
    370 }
    371 
    372 /*
    373  * Disable vblank irq's on crtc, make sure that last vblank count
    374  * of hardware and corresponding consistent software vblank counter
    375  * are preserved, even if there are any spurious vblank irq's after
    376  * disable.
    377  */
    378 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
    379 {
    380 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    381 	unsigned long irqflags;
    382 
    383 	assert_spin_locked(&dev->vbl_lock);
    384 
    385 	/* Prevent vblank irq processing while disabling vblank irqs,
    386 	 * so no updates of timestamps or count can happen after we've
    387 	 * disabled. Needed to prevent races in case of delayed irq's.
    388 	 */
    389 	spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
    390 
    391 	/*
    392 	 * Update vblank count and disable vblank interrupts only if the
    393 	 * interrupts were enabled. This avoids calling the ->disable_vblank()
    394 	 * operation in atomic context with the hardware potentially runtime
    395 	 * suspended.
    396 	 */
    397 	if (!vblank->enabled)
    398 		goto out;
    399 
    400 	/*
    401 	 * Update the count and timestamp to maintain the
    402 	 * appearance that the counter has been ticking all along until
    403 	 * this time. This makes the count account for the entire time
    404 	 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
    405 	 */
    406 	drm_update_vblank_count(dev, pipe, false);
    407 	__disable_vblank(dev, pipe);
    408 	vblank->enabled = false;
    409 
    410 out:
    411 	spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
    412 }
    413 
    414 static void vblank_disable_fn(struct timer_list *t)
    415 {
    416 	struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
    417 	struct drm_device *dev = vblank->dev;
    418 	unsigned int pipe = vblank->pipe;
    419 	unsigned long irqflags;
    420 
    421 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
    422 	if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
    423 		DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
    424 		drm_vblank_disable_and_save(dev, pipe);
    425 	}
    426 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
    427 }
    428 
    429 void drm_vblank_cleanup(struct drm_device *dev)
    430 {
    431 	unsigned int pipe;
    432 
    433 	/* Bail if the driver didn't call drm_vblank_init() */
    434 	if (dev->num_crtcs == 0)
    435 		return;
    436 
    437 	for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
    438 		struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    439 
    440 		WARN_ON(READ_ONCE(vblank->enabled) &&
    441 			drm_core_check_feature(dev, DRIVER_MODESET));
    442 
    443 		del_timer_sync(&vblank->disable_timer);
    444 #ifdef __NetBSD__
    445 		teardown_timer(&vblank->disable_timer);
    446 		seqlock_destroy(&vblank->seqlock);
    447 #endif
    448 	}
    449 
    450 	kfree(dev->vblank);
    451 
    452 	dev->num_crtcs = 0;
    453 }
    454 
    455 /**
    456  * drm_vblank_init - initialize vblank support
    457  * @dev: DRM device
    458  * @num_crtcs: number of CRTCs supported by @dev
    459  *
    460  * This function initializes vblank support for @num_crtcs display pipelines.
    461  * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
    462  * drivers with a &drm_driver.release callback.
    463  *
    464  * Returns:
    465  * Zero on success or a negative error code on failure.
    466  */
    467 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
    468 {
    469 	int ret = -ENOMEM;
    470 	unsigned int i;
    471 
    472 	spin_lock_init(&dev->vbl_lock);
    473 	spin_lock_init(&dev->vblank_time_lock);
    474 
    475 	dev->num_crtcs = num_crtcs;
    476 
    477 	dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
    478 	if (!dev->vblank)
    479 		goto err;
    480 
    481 	for (i = 0; i < num_crtcs; i++) {
    482 		struct drm_vblank_crtc *vblank = &dev->vblank[i];
    483 
    484 		vblank->dev = dev;
    485 		vblank->pipe = i;
    486 #ifdef __NetBSD__
    487 		DRM_INIT_WAITQUEUE(&vblank->queue, "drmvblnq");
    488 #else
    489 		init_waitqueue_head(&vblank->queue);
    490 #endif
    491 		timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
    492 		seqlock_init(&vblank->seqlock);
    493 	}
    494 
    495 	DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
    496 
    497 	/* Driver specific high-precision vblank timestamping supported? */
    498 	if (dev->driver->get_vblank_timestamp)
    499 		DRM_INFO("Driver supports precise vblank timestamp query.\n");
    500 	else
    501 		DRM_INFO("No driver support for vblank timestamp query.\n");
    502 
    503 	/* Must have precise timestamping for reliable vblank instant disable */
    504 	if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
    505 		dev->vblank_disable_immediate = false;
    506 		DRM_INFO("Setting vblank_disable_immediate to false because "
    507 			 "get_vblank_timestamp == NULL\n");
    508 	}
    509 
    510 	return 0;
    511 
    512 err:
    513 	dev->num_crtcs = 0;
    514 	return ret;
    515 }
    516 EXPORT_SYMBOL(drm_vblank_init);
    517 
    518 /**
    519  * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
    520  * @crtc: which CRTC's vblank waitqueue to retrieve
    521  *
    522  * This function returns a pointer to the vblank waitqueue for the CRTC.
    523  * Drivers can use this to implement vblank waits using wait_event() and related
    524  * functions.
    525  */
    526 #ifdef __NetBSD__
    527 drm_waitqueue_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
    528 #else
    529 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
    530 #endif
    531 {
    532 	return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
    533 }
    534 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
    535 
    536 
    537 /**
    538  * drm_calc_timestamping_constants - calculate vblank timestamp constants
    539  * @crtc: drm_crtc whose timestamp constants should be updated.
    540  * @mode: display mode containing the scanout timings
    541  *
    542  * Calculate and store various constants which are later needed by vblank and
    543  * swap-completion timestamping, e.g, by
    544  * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
    545  * scanout timing, so they take things like panel scaling or other adjustments
    546  * into account.
    547  */
    548 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
    549 				     const struct drm_display_mode *mode)
    550 {
    551 	struct drm_device *dev = crtc->dev;
    552 	unsigned int pipe = drm_crtc_index(crtc);
    553 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    554 	int linedur_ns = 0, framedur_ns = 0;
    555 	int dotclock = mode->crtc_clock;
    556 
    557 	if (!dev->num_crtcs)
    558 		return;
    559 
    560 	if (WARN_ON(pipe >= dev->num_crtcs))
    561 		return;
    562 
    563 	/* Valid dotclock? */
    564 	if (dotclock > 0) {
    565 		int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
    566 
    567 		/*
    568 		 * Convert scanline length in pixels and video
    569 		 * dot clock to line duration and frame duration
    570 		 * in nanoseconds:
    571 		 */
    572 		linedur_ns  = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
    573 		framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
    574 
    575 		/*
    576 		 * Fields of interlaced scanout modes are only half a frame duration.
    577 		 */
    578 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
    579 			framedur_ns /= 2;
    580 	} else
    581 		DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
    582 			  crtc->base.id);
    583 
    584 	vblank->linedur_ns  = linedur_ns;
    585 	vblank->framedur_ns = framedur_ns;
    586 	vblank->hwmode = *mode;
    587 
    588 	DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
    589 		  crtc->base.id, mode->crtc_htotal,
    590 		  mode->crtc_vtotal, mode->crtc_vdisplay);
    591 	DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
    592 		  crtc->base.id, dotclock, framedur_ns, linedur_ns);
    593 }
    594 EXPORT_SYMBOL(drm_calc_timestamping_constants);
    595 
    596 /**
    597  * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
    598  * @dev: DRM device
    599  * @pipe: index of CRTC whose vblank timestamp to retrieve
    600  * @max_error: Desired maximum allowable error in timestamps (nanosecs)
    601  *             On return contains true maximum error of timestamp
    602  * @vblank_time: Pointer to time which should receive the timestamp
    603  * @in_vblank_irq:
    604  *     True when called from drm_crtc_handle_vblank().  Some drivers
    605  *     need to apply some workarounds for gpu-specific vblank irq quirks
    606  *     if flag is set.
    607  *
    608  * Implements calculation of exact vblank timestamps from given drm_display_mode
    609  * timings and current video scanout position of a CRTC. This can be directly
    610  * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
    611  * if &drm_driver.get_scanout_position is implemented.
    612  *
    613  * The current implementation only handles standard video modes. For double scan
    614  * and interlaced modes the driver is supposed to adjust the hardware mode
    615  * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
    616  * match the scanout position reported.
    617  *
    618  * Note that atomic drivers must call drm_calc_timestamping_constants() before
    619  * enabling a CRTC. The atomic helpers already take care of that in
    620  * drm_atomic_helper_update_legacy_modeset_state().
    621  *
    622  * Returns:
    623  *
    624  * Returns true on success, and false on failure, i.e. when no accurate
    625  * timestamp could be acquired.
    626  */
    627 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
    628 					   unsigned int pipe,
    629 					   int *max_error,
    630 					   ktime_t *vblank_time,
    631 					   bool in_vblank_irq)
    632 {
    633 	struct timespec64 ts_etime, ts_vblank_time;
    634 	ktime_t stime, etime;
    635 	bool vbl_status;
    636 	struct drm_crtc *crtc;
    637 	const struct drm_display_mode *mode;
    638 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    639 	int vpos, hpos, i;
    640 	int delta_ns, duration_ns;
    641 
    642 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
    643 		return false;
    644 
    645 	crtc = drm_crtc_from_index(dev, pipe);
    646 
    647 	if (pipe >= dev->num_crtcs || !crtc) {
    648 		DRM_ERROR("Invalid crtc %u\n", pipe);
    649 		return false;
    650 	}
    651 
    652 	/* Scanout position query not supported? Should not happen. */
    653 	if (!dev->driver->get_scanout_position) {
    654 		DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
    655 		return false;
    656 	}
    657 
    658 	if (drm_drv_uses_atomic_modeset(dev))
    659 		mode = &vblank->hwmode;
    660 	else
    661 		mode = &crtc->hwmode;
    662 
    663 	/* If mode timing undefined, just return as no-op:
    664 	 * Happens during initial modesetting of a crtc.
    665 	 */
    666 	if (mode->crtc_clock == 0) {
    667 		DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
    668 		WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
    669 
    670 		return false;
    671 	}
    672 
    673 	/* Get current scanout position with system timestamp.
    674 	 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
    675 	 * if single query takes longer than max_error nanoseconds.
    676 	 *
    677 	 * This guarantees a tight bound on maximum error if
    678 	 * code gets preempted or delayed for some reason.
    679 	 */
    680 	for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
    681 		/*
    682 		 * Get vertical and horizontal scanout position vpos, hpos,
    683 		 * and bounding timestamps stime, etime, pre/post query.
    684 		 */
    685 		vbl_status = dev->driver->get_scanout_position(dev, pipe,
    686 							       in_vblank_irq,
    687 							       &vpos, &hpos,
    688 							       &stime, &etime,
    689 							       mode);
    690 
    691 		/* Return as no-op if scanout query unsupported or failed. */
    692 		if (!vbl_status) {
    693 			DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
    694 				  pipe);
    695 			return false;
    696 		}
    697 
    698 		/* Compute uncertainty in timestamp of scanout position query. */
    699 		duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
    700 
    701 		/* Accept result with <  max_error nsecs timing uncertainty. */
    702 		if (duration_ns <= *max_error)
    703 			break;
    704 	}
    705 
    706 	/* Noisy system timing? */
    707 	if (i == DRM_TIMESTAMP_MAXRETRIES) {
    708 		DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
    709 			  pipe, duration_ns/1000, *max_error/1000, i);
    710 	}
    711 
    712 	/* Return upper bound of timestamp precision error. */
    713 	*max_error = duration_ns;
    714 
    715 	/* Convert scanout position into elapsed time at raw_time query
    716 	 * since start of scanout at first display scanline. delta_ns
    717 	 * can be negative if start of scanout hasn't happened yet.
    718 	 */
    719 	delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
    720 			   mode->crtc_clock);
    721 
    722 	/* Subtract time delta from raw timestamp to get final
    723 	 * vblank_time timestamp for end of vblank.
    724 	 */
    725 	*vblank_time = ktime_sub_ns(etime, delta_ns);
    726 
    727 	if (!drm_debug_enabled(DRM_UT_VBL))
    728 		return true;
    729 
    730 	ts_etime = ktime_to_timespec64(etime);
    731 	ts_vblank_time = ktime_to_timespec64(*vblank_time);
    732 
    733 	DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %"PRId64".%06ld -> %"PRId64".%06ld [e %d us, %d rep]\n",
    734 		      pipe, hpos, vpos,
    735 		      (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
    736 		      (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
    737 		      duration_ns / 1000, i);
    738 
    739 	return true;
    740 }
    741 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
    742 
    743 /**
    744  * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
    745  *                             vblank interval
    746  * @dev: DRM device
    747  * @pipe: index of CRTC whose vblank timestamp to retrieve
    748  * @tvblank: Pointer to target time which should receive the timestamp
    749  * @in_vblank_irq:
    750  *     True when called from drm_crtc_handle_vblank().  Some drivers
    751  *     need to apply some workarounds for gpu-specific vblank irq quirks
    752  *     if flag is set.
    753  *
    754  * Fetches the system timestamp corresponding to the time of the most recent
    755  * vblank interval on specified CRTC. May call into kms-driver to
    756  * compute the timestamp with a high-precision GPU specific method.
    757  *
    758  * Returns zero if timestamp originates from uncorrected do_gettimeofday()
    759  * call, i.e., it isn't very precisely locked to the true vblank.
    760  *
    761  * Returns:
    762  * True if timestamp is considered to be very precise, false otherwise.
    763  */
    764 static bool
    765 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
    766 			  ktime_t *tvblank, bool in_vblank_irq)
    767 {
    768 	bool ret = false;
    769 
    770 	/* Define requested maximum error on timestamps (nanoseconds). */
    771 	int max_error = (int) drm_timestamp_precision * 1000;
    772 
    773 	/* Query driver if possible and precision timestamping enabled. */
    774 	if (dev->driver->get_vblank_timestamp && (max_error > 0))
    775 		ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
    776 							tvblank, in_vblank_irq);
    777 
    778 	/* GPU high precision timestamp query unsupported or failed.
    779 	 * Return current monotonic/gettimeofday timestamp as best estimate.
    780 	 */
    781 	if (!ret)
    782 		*tvblank = ktime_get();
    783 
    784 	return ret;
    785 }
    786 
    787 /**
    788  * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
    789  * @crtc: which counter to retrieve
    790  *
    791  * Fetches the "cooked" vblank count value that represents the number of
    792  * vblank events since the system was booted, including lost events due to
    793  * modesetting activity. Note that this timer isn't correct against a racing
    794  * vblank interrupt (since it only reports the software vblank counter), see
    795  * drm_crtc_accurate_vblank_count() for such use-cases.
    796  *
    797  * Note that for a given vblank counter value drm_crtc_handle_vblank()
    798  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
    799  * provide a barrier: Any writes done before calling
    800  * drm_crtc_handle_vblank() will be visible to callers of the later
    801  * functions, iff the vblank count is the same or a later one.
    802  *
    803  * See also &drm_vblank_crtc.count.
    804  *
    805  * Returns:
    806  * The software vblank counter.
    807  */
    808 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
    809 {
    810 	return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
    811 }
    812 EXPORT_SYMBOL(drm_crtc_vblank_count);
    813 
    814 /**
    815  * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
    816  *     system timestamp corresponding to that vblank counter value.
    817  * @dev: DRM device
    818  * @pipe: index of CRTC whose counter to retrieve
    819  * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
    820  *
    821  * Fetches the "cooked" vblank count value that represents the number of
    822  * vblank events since the system was booted, including lost events due to
    823  * modesetting activity. Returns corresponding system timestamp of the time
    824  * of the vblank interval that corresponds to the current vblank counter value.
    825  *
    826  * This is the legacy version of drm_crtc_vblank_count_and_time().
    827  */
    828 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
    829 				     ktime_t *vblanktime)
    830 {
    831 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
    832 	u64 vblank_count;
    833 	unsigned int seq;
    834 
    835 	if (WARN_ON(pipe >= dev->num_crtcs)) {
    836 		*vblanktime = 0;
    837 		return 0;
    838 	}
    839 
    840 	do {
    841 		seq = read_seqbegin(&vblank->seqlock);
    842 		vblank_count = atomic64_read(&vblank->count);
    843 		*vblanktime = vblank->time;
    844 	} while (read_seqretry(&vblank->seqlock, seq));
    845 
    846 	return vblank_count;
    847 }
    848 
    849 /**
    850  * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
    851  *     and the system timestamp corresponding to that vblank counter value
    852  * @crtc: which counter to retrieve
    853  * @vblanktime: Pointer to time to receive the vblank timestamp.
    854  *
    855  * Fetches the "cooked" vblank count value that represents the number of
    856  * vblank events since the system was booted, including lost events due to
    857  * modesetting activity. Returns corresponding system timestamp of the time
    858  * of the vblank interval that corresponds to the current vblank counter value.
    859  *
    860  * Note that for a given vblank counter value drm_crtc_handle_vblank()
    861  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
    862  * provide a barrier: Any writes done before calling
    863  * drm_crtc_handle_vblank() will be visible to callers of the later
    864  * functions, iff the vblank count is the same or a later one.
    865  *
    866  * See also &drm_vblank_crtc.count.
    867  */
    868 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
    869 				   ktime_t *vblanktime)
    870 {
    871 	return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
    872 					 vblanktime);
    873 }
    874 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
    875 
    876 static void send_vblank_event(struct drm_device *dev,
    877 		struct drm_pending_vblank_event *e,
    878 		u64 seq, ktime_t now)
    879 {
    880 	struct timespec64 tv;
    881 
    882 	switch (e->event.base.type) {
    883 	case DRM_EVENT_VBLANK:
    884 	case DRM_EVENT_FLIP_COMPLETE:
    885 		tv = ktime_to_timespec64(now);
    886 		e->event.vbl.sequence = seq;
    887 		/*
    888 		 * e->event is a user space structure, with hardcoded unsigned
    889 		 * 32-bit seconds/microseconds. This is safe as we always use
    890 		 * monotonic timestamps since linux-4.15
    891 		 */
    892 		e->event.vbl.tv_sec = tv.tv_sec;
    893 		e->event.vbl.tv_usec = tv.tv_nsec / 1000;
    894 		break;
    895 	case DRM_EVENT_CRTC_SEQUENCE:
    896 		if (seq)
    897 			e->event.seq.sequence = seq;
    898 		e->event.seq.time_ns = ktime_to_ns(now);
    899 		break;
    900 	}
    901 	trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
    902 	drm_send_event_locked(dev, &e->base);
    903 }
    904 
    905 /**
    906  * drm_crtc_arm_vblank_event - arm vblank event after pageflip
    907  * @crtc: the source CRTC of the vblank event
    908  * @e: the event to send
    909  *
    910  * A lot of drivers need to generate vblank events for the very next vblank
    911  * interrupt. For example when the page flip interrupt happens when the page
    912  * flip gets armed, but not when it actually executes within the next vblank
    913  * period. This helper function implements exactly the required vblank arming
    914  * behaviour.
    915  *
    916  * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
    917  * atomic commit must ensure that the next vblank happens at exactly the same
    918  * time as the atomic commit is committed to the hardware. This function itself
    919  * does **not** protect against the next vblank interrupt racing with either this
    920  * function call or the atomic commit operation. A possible sequence could be:
    921  *
    922  * 1. Driver commits new hardware state into vblank-synchronized registers.
    923  * 2. A vblank happens, committing the hardware state. Also the corresponding
    924  *    vblank interrupt is fired off and fully processed by the interrupt
    925  *    handler.
    926  * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
    927  * 4. The event is only send out for the next vblank, which is wrong.
    928  *
    929  * An equivalent race can happen when the driver calls
    930  * drm_crtc_arm_vblank_event() before writing out the new hardware state.
    931  *
    932  * The only way to make this work safely is to prevent the vblank from firing
    933  * (and the hardware from committing anything else) until the entire atomic
    934  * commit sequence has run to completion. If the hardware does not have such a
    935  * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
    936  * Instead drivers need to manually send out the event from their interrupt
    937  * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
    938  * possible race with the hardware committing the atomic update.
    939  *
    940  * Caller must hold a vblank reference for the event @e acquired by a
    941  * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
    942  */
    943 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
    944 			       struct drm_pending_vblank_event *e)
    945 {
    946 	struct drm_device *dev = crtc->dev;
    947 	unsigned int pipe = drm_crtc_index(crtc);
    948 
    949 	assert_spin_locked(&dev->event_lock);
    950 
    951 	e->pipe = pipe;
    952 	e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
    953 	list_add_tail(&e->base.link, &dev->vblank_event_list);
    954 }
    955 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
    956 
    957 /**
    958  * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
    959  * @crtc: the source CRTC of the vblank event
    960  * @e: the event to send
    961  *
    962  * Updates sequence # and timestamp on event for the most recently processed
    963  * vblank, and sends it to userspace.  Caller must hold event lock.
    964  *
    965  * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
    966  * situation, especially to send out events for atomic commit operations.
    967  */
    968 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
    969 				struct drm_pending_vblank_event *e)
    970 {
    971 	struct drm_device *dev = crtc->dev;
    972 	u64 seq;
    973 	unsigned int pipe = drm_crtc_index(crtc);
    974 	ktime_t now;
    975 
    976 	if (dev->num_crtcs > 0) {
    977 		seq = drm_vblank_count_and_time(dev, pipe, &now);
    978 	} else {
    979 		seq = 0;
    980 
    981 		now = ktime_get();
    982 	}
    983 	e->pipe = pipe;
    984 	send_vblank_event(dev, e, seq, now);
    985 }
    986 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
    987 
    988 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
    989 {
    990 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
    991 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
    992 
    993 		if (WARN_ON(!crtc))
    994 			return 0;
    995 
    996 		if (crtc->funcs->enable_vblank)
    997 			return crtc->funcs->enable_vblank(crtc);
    998 	}
    999 
   1000 	return dev->driver->enable_vblank(dev, pipe);
   1001 }
   1002 
   1003 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
   1004 {
   1005 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1006 	int ret = 0;
   1007 
   1008 	assert_spin_locked(&dev->vbl_lock);
   1009 
   1010 	spin_lock(&dev->vblank_time_lock);
   1011 
   1012 	if (!vblank->enabled) {
   1013 		/*
   1014 		 * Enable vblank irqs under vblank_time_lock protection.
   1015 		 * All vblank count & timestamp updates are held off
   1016 		 * until we are done reinitializing master counter and
   1017 		 * timestamps. Filtercode in drm_handle_vblank() will
   1018 		 * prevent double-accounting of same vblank interval.
   1019 		 */
   1020 		ret = __enable_vblank(dev, pipe);
   1021 		DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
   1022 		if (ret) {
   1023 			atomic_dec(&vblank->refcount);
   1024 		} else {
   1025 			drm_update_vblank_count(dev, pipe, 0);
   1026 			/* drm_update_vblank_count() includes a wmb so we just
   1027 			 * need to ensure that the compiler emits the write
   1028 			 * to mark the vblank as enabled after the call
   1029 			 * to drm_update_vblank_count().
   1030 			 */
   1031 			WRITE_ONCE(vblank->enabled, true);
   1032 		}
   1033 	}
   1034 
   1035 	spin_unlock(&dev->vblank_time_lock);
   1036 
   1037 	return ret;
   1038 }
   1039 
   1040 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
   1041 {
   1042 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1043 	unsigned long irqflags;
   1044 	int ret = 0;
   1045 
   1046 	if (!dev->num_crtcs)
   1047 		return -EINVAL;
   1048 
   1049 	if (WARN_ON(pipe >= dev->num_crtcs))
   1050 		return -EINVAL;
   1051 
   1052 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
   1053 	/* Going from 0->1 means we have to enable interrupts again */
   1054 	if (atomic_add_return(1, &vblank->refcount) == 1) {
   1055 		ret = drm_vblank_enable(dev, pipe);
   1056 	} else {
   1057 		if (!vblank->enabled) {
   1058 			atomic_dec(&vblank->refcount);
   1059 			ret = -EINVAL;
   1060 		}
   1061 	}
   1062 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   1063 
   1064 	return ret;
   1065 }
   1066 
   1067 /**
   1068  * drm_crtc_vblank_get - get a reference count on vblank events
   1069  * @crtc: which CRTC to own
   1070  *
   1071  * Acquire a reference count on vblank events to avoid having them disabled
   1072  * while in use.
   1073  *
   1074  * Returns:
   1075  * Zero on success or a negative error code on failure.
   1076  */
   1077 int drm_crtc_vblank_get(struct drm_crtc *crtc)
   1078 {
   1079 	return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
   1080 }
   1081 EXPORT_SYMBOL(drm_crtc_vblank_get);
   1082 
   1083 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
   1084 {
   1085 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1086 
   1087 	if (WARN_ON(pipe >= dev->num_crtcs))
   1088 		return;
   1089 
   1090 	if (WARN_ON(atomic_read(&vblank->refcount) == 0))
   1091 		return;
   1092 
   1093 	/* Last user schedules interrupt disable */
   1094 	if (atomic_dec_and_test(&vblank->refcount)) {
   1095 		if (drm_vblank_offdelay == 0)
   1096 			return;
   1097 		else if (drm_vblank_offdelay < 0)
   1098 			vblank_disable_fn(&vblank->disable_timer);
   1099 		else if (!dev->vblank_disable_immediate)
   1100 			mod_timer(&vblank->disable_timer,
   1101 				  jiffies + ((drm_vblank_offdelay * HZ)/1000));
   1102 	}
   1103 }
   1104 
   1105 /**
   1106  * drm_crtc_vblank_put - give up ownership of vblank events
   1107  * @crtc: which counter to give up
   1108  *
   1109  * Release ownership of a given vblank counter, turning off interrupts
   1110  * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
   1111  */
   1112 void drm_crtc_vblank_put(struct drm_crtc *crtc)
   1113 {
   1114 	drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
   1115 }
   1116 EXPORT_SYMBOL(drm_crtc_vblank_put);
   1117 
   1118 /**
   1119  * drm_wait_one_vblank - wait for one vblank
   1120  * @dev: DRM device
   1121  * @pipe: CRTC index
   1122  *
   1123  * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
   1124  * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
   1125  * due to lack of driver support or because the crtc is off.
   1126  *
   1127  * This is the legacy version of drm_crtc_wait_one_vblank().
   1128  */
   1129 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
   1130 {
   1131 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1132 	int ret;
   1133 	u64 last;
   1134 
   1135 	if (WARN_ON(pipe >= dev->num_crtcs))
   1136 		return;
   1137 
   1138 	ret = drm_vblank_get(dev, pipe);
   1139 	if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
   1140 		return;
   1141 
   1142 #ifdef __NetBSD__
   1143 	spin_lock(&dev->vbl_lock);
   1144 	last = drm_vblank_count(dev, pipe);
   1145 	DRM_SPIN_TIMED_WAIT_UNTIL(ret, &vblank->queue, &dev->vbl_lock,
   1146 	    msecs_to_jiffies(100),
   1147 	    last != drm_vblank_count(dev, pipe));
   1148 	spin_unlock(&dev->vbl_lock);
   1149 #else
   1150 	last = drm_vblank_count(dev, pipe);
   1151 
   1152 	ret = wait_event_timeout(vblank->queue,
   1153 				 last != drm_vblank_count(dev, pipe),
   1154 				 msecs_to_jiffies(100));
   1155 #endif
   1156 
   1157 	WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
   1158 
   1159 	drm_vblank_put(dev, pipe);
   1160 }
   1161 EXPORT_SYMBOL(drm_wait_one_vblank);
   1162 
   1163 /**
   1164  * drm_crtc_wait_one_vblank - wait for one vblank
   1165  * @crtc: DRM crtc
   1166  *
   1167  * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
   1168  * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
   1169  * due to lack of driver support or because the crtc is off.
   1170  */
   1171 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
   1172 {
   1173 	drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
   1174 }
   1175 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
   1176 
   1177 /**
   1178  * drm_crtc_vblank_off - disable vblank events on a CRTC
   1179  * @crtc: CRTC in question
   1180  *
   1181  * Drivers can use this function to shut down the vblank interrupt handling when
   1182  * disabling a crtc. This function ensures that the latest vblank frame count is
   1183  * stored so that drm_vblank_on can restore it again.
   1184  *
   1185  * Drivers must use this function when the hardware vblank counter can get
   1186  * reset, e.g. when suspending or disabling the @crtc in general.
   1187  */
   1188 void drm_crtc_vblank_off(struct drm_crtc *crtc)
   1189 {
   1190 	struct drm_device *dev = crtc->dev;
   1191 	unsigned int pipe = drm_crtc_index(crtc);
   1192 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1193 	struct drm_pending_vblank_event *e, *t;
   1194 
   1195 	ktime_t now;
   1196 	unsigned long irqflags;
   1197 	u64 seq;
   1198 
   1199 	if (WARN_ON(pipe >= dev->num_crtcs))
   1200 		return;
   1201 
   1202 	spin_lock_irqsave(&dev->event_lock, irqflags);
   1203 
   1204 	spin_lock(&dev->vbl_lock);
   1205 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
   1206 		      pipe, vblank->enabled, vblank->inmodeset);
   1207 
   1208 	/* Avoid redundant vblank disables without previous
   1209 	 * drm_crtc_vblank_on(). */
   1210 	if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
   1211 		drm_vblank_disable_and_save(dev, pipe);
   1212 
   1213 #ifdef __NetBSD__
   1214 	DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
   1215 #else
   1216 	wake_up(&vblank->queue);
   1217 #endif
   1218 
   1219 	/*
   1220 	 * Prevent subsequent drm_vblank_get() from re-enabling
   1221 	 * the vblank interrupt by bumping the refcount.
   1222 	 */
   1223 	if (!vblank->inmodeset) {
   1224 		atomic_inc(&vblank->refcount);
   1225 		vblank->inmodeset = 1;
   1226 	}
   1227 	spin_unlock(&dev->vbl_lock);
   1228 
   1229 	/* Send any queued vblank events, lest the natives grow disquiet */
   1230 	seq = drm_vblank_count_and_time(dev, pipe, &now);
   1231 
   1232 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
   1233 		if (e->pipe != pipe)
   1234 			continue;
   1235 		DRM_DEBUG("Sending premature vblank event on disable: "
   1236 			  "wanted %"PRIu64", current %"PRIu64"\n",
   1237 			  e->sequence, seq);
   1238 		list_del(&e->base.link);
   1239 		drm_vblank_put(dev, pipe);
   1240 		send_vblank_event(dev, e, seq, now);
   1241 	}
   1242 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
   1243 
   1244 	/* Will be reset by the modeset helpers when re-enabling the crtc by
   1245 	 * calling drm_calc_timestamping_constants(). */
   1246 	vblank->hwmode.crtc_clock = 0;
   1247 }
   1248 EXPORT_SYMBOL(drm_crtc_vblank_off);
   1249 
   1250 /**
   1251  * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
   1252  * @crtc: CRTC in question
   1253  *
   1254  * Drivers can use this function to reset the vblank state to off at load time.
   1255  * Drivers should use this together with the drm_crtc_vblank_off() and
   1256  * drm_crtc_vblank_on() functions. The difference compared to
   1257  * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
   1258  * and hence doesn't need to call any driver hooks.
   1259  *
   1260  * This is useful for recovering driver state e.g. on driver load, or on resume.
   1261  */
   1262 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
   1263 {
   1264 	struct drm_device *dev = crtc->dev;
   1265 	unsigned long irqflags;
   1266 	unsigned int pipe = drm_crtc_index(crtc);
   1267 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1268 
   1269 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
   1270 	/*
   1271 	 * Prevent subsequent drm_vblank_get() from enabling the vblank
   1272 	 * interrupt by bumping the refcount.
   1273 	 */
   1274 	if (!vblank->inmodeset) {
   1275 		atomic_inc(&vblank->refcount);
   1276 		vblank->inmodeset = 1;
   1277 	}
   1278 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   1279 
   1280 	WARN_ON(!list_empty(&dev->vblank_event_list));
   1281 }
   1282 EXPORT_SYMBOL(drm_crtc_vblank_reset);
   1283 
   1284 /**
   1285  * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
   1286  * @crtc: CRTC in question
   1287  * @max_vblank_count: max hardware vblank counter value
   1288  *
   1289  * Update the maximum hardware vblank counter value for @crtc
   1290  * at runtime. Useful for hardware where the operation of the
   1291  * hardware vblank counter depends on the currently active
   1292  * display configuration.
   1293  *
   1294  * For example, if the hardware vblank counter does not work
   1295  * when a specific connector is active the maximum can be set
   1296  * to zero. And when that specific connector isn't active the
   1297  * maximum can again be set to the appropriate non-zero value.
   1298  *
   1299  * If used, must be called before drm_vblank_on().
   1300  */
   1301 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
   1302 				   u32 max_vblank_count)
   1303 {
   1304 	struct drm_device *dev = crtc->dev;
   1305 	unsigned int pipe = drm_crtc_index(crtc);
   1306 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1307 
   1308 	WARN_ON(dev->max_vblank_count);
   1309 	WARN_ON(!READ_ONCE(vblank->inmodeset));
   1310 
   1311 	vblank->max_vblank_count = max_vblank_count;
   1312 }
   1313 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
   1314 
   1315 /**
   1316  * drm_crtc_vblank_on - enable vblank events on a CRTC
   1317  * @crtc: CRTC in question
   1318  *
   1319  * This functions restores the vblank interrupt state captured with
   1320  * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
   1321  * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
   1322  * unbalanced and so can also be unconditionally called in driver load code to
   1323  * reflect the current hardware state of the crtc.
   1324  */
   1325 void drm_crtc_vblank_on(struct drm_crtc *crtc)
   1326 {
   1327 	struct drm_device *dev = crtc->dev;
   1328 	unsigned int pipe = drm_crtc_index(crtc);
   1329 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1330 	unsigned long irqflags;
   1331 
   1332 	if (WARN_ON(pipe >= dev->num_crtcs))
   1333 		return;
   1334 
   1335 	spin_lock_irqsave(&dev->vbl_lock, irqflags);
   1336 	DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
   1337 		      pipe, vblank->enabled, vblank->inmodeset);
   1338 
   1339 	/* Drop our private "prevent drm_vblank_get" refcount */
   1340 	if (vblank->inmodeset) {
   1341 		atomic_dec(&vblank->refcount);
   1342 		vblank->inmodeset = 0;
   1343 	}
   1344 
   1345 	drm_reset_vblank_timestamp(dev, pipe);
   1346 
   1347 	/*
   1348 	 * re-enable interrupts if there are users left, or the
   1349 	 * user wishes vblank interrupts to be enabled all the time.
   1350 	 */
   1351 	if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
   1352 		WARN_ON(drm_vblank_enable(dev, pipe));
   1353 	spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   1354 }
   1355 EXPORT_SYMBOL(drm_crtc_vblank_on);
   1356 
   1357 /**
   1358  * drm_vblank_restore - estimate missed vblanks and update vblank count.
   1359  * @dev: DRM device
   1360  * @pipe: CRTC index
   1361  *
   1362  * Power manamement features can cause frame counter resets between vblank
   1363  * disable and enable. Drivers can use this function in their
   1364  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
   1365  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
   1366  * vblank counter.
   1367  *
   1368  * This function is the legacy version of drm_crtc_vblank_restore().
   1369  */
   1370 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
   1371 {
   1372 	ktime_t t_vblank;
   1373 	struct drm_vblank_crtc *vblank;
   1374 	int framedur_ns;
   1375 	u64 diff_ns;
   1376 	u32 cur_vblank, diff = 1;
   1377 	int count = DRM_TIMESTAMP_MAXRETRIES;
   1378 
   1379 	if (WARN_ON(pipe >= dev->num_crtcs))
   1380 		return;
   1381 
   1382 	assert_spin_locked(&dev->vbl_lock);
   1383 	assert_spin_locked(&dev->vblank_time_lock);
   1384 
   1385 	vblank = &dev->vblank[pipe];
   1386 	WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
   1387 		  "Cannot compute missed vblanks without frame duration\n");
   1388 	framedur_ns = vblank->framedur_ns;
   1389 
   1390 	do {
   1391 		cur_vblank = __get_vblank_counter(dev, pipe);
   1392 		drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
   1393 	} while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
   1394 
   1395 	diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
   1396 	if (framedur_ns)
   1397 		diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
   1398 
   1399 
   1400 	DRM_DEBUG_VBL("missed %d vblanks in %"PRId64" ns, frame duration=%d ns, hw_diff=%d\n",
   1401 		      diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
   1402 	store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
   1403 }
   1404 EXPORT_SYMBOL(drm_vblank_restore);
   1405 
   1406 /**
   1407  * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
   1408  * @crtc: CRTC in question
   1409  *
   1410  * Power manamement features can cause frame counter resets between vblank
   1411  * disable and enable. Drivers can use this function in their
   1412  * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
   1413  * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
   1414  * vblank counter.
   1415  */
   1416 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
   1417 {
   1418 	drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
   1419 }
   1420 EXPORT_SYMBOL(drm_crtc_vblank_restore);
   1421 
   1422 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
   1423 					  unsigned int pipe)
   1424 {
   1425 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1426 
   1427 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
   1428 	if (!dev->num_crtcs)
   1429 		return;
   1430 
   1431 	if (WARN_ON(pipe >= dev->num_crtcs))
   1432 		return;
   1433 
   1434 	/*
   1435 	 * To avoid all the problems that might happen if interrupts
   1436 	 * were enabled/disabled around or between these calls, we just
   1437 	 * have the kernel take a reference on the CRTC (just once though
   1438 	 * to avoid corrupting the count if multiple, mismatch calls occur),
   1439 	 * so that interrupts remain enabled in the interim.
   1440 	 */
   1441 	if (!vblank->inmodeset) {
   1442 		vblank->inmodeset = 0x1;
   1443 		if (drm_vblank_get(dev, pipe) == 0)
   1444 			vblank->inmodeset |= 0x2;
   1445 	}
   1446 }
   1447 
   1448 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
   1449 					   unsigned int pipe)
   1450 {
   1451 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1452 	unsigned long irqflags;
   1453 
   1454 	/* vblank is not initialized (IRQ not installed ?), or has been freed */
   1455 	if (!dev->num_crtcs)
   1456 		return;
   1457 
   1458 	if (WARN_ON(pipe >= dev->num_crtcs))
   1459 		return;
   1460 
   1461 	if (vblank->inmodeset) {
   1462 		spin_lock_irqsave(&dev->vbl_lock, irqflags);
   1463 		drm_reset_vblank_timestamp(dev, pipe);
   1464 		spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
   1465 
   1466 		if (vblank->inmodeset & 0x2)
   1467 			drm_vblank_put(dev, pipe);
   1468 
   1469 		vblank->inmodeset = 0;
   1470 	}
   1471 }
   1472 
   1473 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
   1474 				 struct drm_file *file_priv)
   1475 {
   1476 	struct drm_modeset_ctl *modeset = data;
   1477 	unsigned int pipe;
   1478 
   1479 	/* If drm_vblank_init() hasn't been called yet, just no-op */
   1480 	if (!dev->num_crtcs)
   1481 		return 0;
   1482 
   1483 	/* KMS drivers handle this internally */
   1484 	if (!drm_core_check_feature(dev, DRIVER_LEGACY))
   1485 		return 0;
   1486 
   1487 	pipe = modeset->crtc;
   1488 	if (pipe >= dev->num_crtcs)
   1489 		return -EINVAL;
   1490 
   1491 	switch (modeset->cmd) {
   1492 	case _DRM_PRE_MODESET:
   1493 		drm_legacy_vblank_pre_modeset(dev, pipe);
   1494 		break;
   1495 	case _DRM_POST_MODESET:
   1496 		drm_legacy_vblank_post_modeset(dev, pipe);
   1497 		break;
   1498 	default:
   1499 		return -EINVAL;
   1500 	}
   1501 
   1502 	return 0;
   1503 }
   1504 
   1505 static inline bool vblank_passed(u64 seq, u64 ref)
   1506 {
   1507 	return (seq - ref) <= (1 << 23);
   1508 }
   1509 
   1510 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
   1511 				  u64 req_seq,
   1512 				  union drm_wait_vblank *vblwait,
   1513 				  struct drm_file *file_priv)
   1514 {
   1515 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1516 	struct drm_pending_vblank_event *e;
   1517 	ktime_t now;
   1518 	unsigned long flags;
   1519 	u64 seq;
   1520 	int ret;
   1521 
   1522 	e = kzalloc(sizeof(*e), GFP_KERNEL);
   1523 	if (e == NULL) {
   1524 		ret = -ENOMEM;
   1525 		goto err_put;
   1526 	}
   1527 
   1528 	e->pipe = pipe;
   1529 	e->event.base.type = DRM_EVENT_VBLANK;
   1530 	e->event.base.length = sizeof(e->event.vbl);
   1531 	e->event.vbl.user_data = vblwait->request.signal;
   1532 	e->event.vbl.crtc_id = 0;
   1533 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
   1534 		struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
   1535 		if (crtc)
   1536 			e->event.vbl.crtc_id = crtc->base.id;
   1537 	}
   1538 
   1539 	spin_lock_irqsave(&dev->event_lock, flags);
   1540 
   1541 	/*
   1542 	 * drm_crtc_vblank_off() might have been called after we called
   1543 	 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
   1544 	 * vblank disable, so no need for further locking.  The reference from
   1545 	 * drm_vblank_get() protects against vblank disable from another source.
   1546 	 */
   1547 	if (!READ_ONCE(vblank->enabled)) {
   1548 		ret = -EINVAL;
   1549 		goto err_unlock;
   1550 	}
   1551 
   1552 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
   1553 					    &e->event.base);
   1554 
   1555 	if (ret)
   1556 		goto err_unlock;
   1557 
   1558 	seq = drm_vblank_count_and_time(dev, pipe, &now);
   1559 
   1560 	DRM_DEBUG("event on vblank count %"PRIu64", current %"PRIu64", crtc %u\n",
   1561 		  req_seq, seq, pipe);
   1562 
   1563 	trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
   1564 
   1565 	e->sequence = req_seq;
   1566 	if (vblank_passed(seq, req_seq)) {
   1567 		drm_vblank_put(dev, pipe);
   1568 		send_vblank_event(dev, e, seq, now);
   1569 		vblwait->reply.sequence = seq;
   1570 	} else {
   1571 		/* drm_handle_vblank_events will call drm_vblank_put */
   1572 		list_add_tail(&e->base.link, &dev->vblank_event_list);
   1573 		vblwait->reply.sequence = req_seq;
   1574 	}
   1575 
   1576 	spin_unlock_irqrestore(&dev->event_lock, flags);
   1577 
   1578 	return 0;
   1579 
   1580 err_unlock:
   1581 	spin_unlock_irqrestore(&dev->event_lock, flags);
   1582 	kfree(e);
   1583 err_put:
   1584 	drm_vblank_put(dev, pipe);
   1585 	return ret;
   1586 }
   1587 
   1588 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
   1589 {
   1590 	if (vblwait->request.sequence)
   1591 		return false;
   1592 
   1593 	return _DRM_VBLANK_RELATIVE ==
   1594 		(vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
   1595 					  _DRM_VBLANK_EVENT |
   1596 					  _DRM_VBLANK_NEXTONMISS));
   1597 }
   1598 
   1599 /*
   1600  * Widen a 32-bit param to 64-bits.
   1601  *
   1602  * \param narrow 32-bit value (missing upper 32 bits)
   1603  * \param near 64-bit value that should be 'close' to near
   1604  *
   1605  * This function returns a 64-bit value using the lower 32-bits from
   1606  * 'narrow' and constructing the upper 32-bits so that the result is
   1607  * as close as possible to 'near'.
   1608  */
   1609 
   1610 static u64 widen_32_to_64(u32 narrow, u64 near)
   1611 {
   1612 	return near + (s32) (narrow - near);
   1613 }
   1614 
   1615 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
   1616 				  struct drm_wait_vblank_reply *reply)
   1617 {
   1618 	ktime_t now;
   1619 	struct timespec64 ts;
   1620 
   1621 	/*
   1622 	 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
   1623 	 * to store the seconds. This is safe as we always use monotonic
   1624 	 * timestamps since linux-4.15.
   1625 	 */
   1626 	reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
   1627 	ts = ktime_to_timespec64(now);
   1628 	reply->tval_sec = (u32)ts.tv_sec;
   1629 	reply->tval_usec = ts.tv_nsec / 1000;
   1630 }
   1631 
   1632 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
   1633 			  struct drm_file *file_priv)
   1634 {
   1635 	struct drm_crtc *crtc;
   1636 	struct drm_vblank_crtc *vblank;
   1637 	union drm_wait_vblank *vblwait = data;
   1638 	int ret;
   1639 	u64 req_seq, seq;
   1640 	unsigned int pipe_index;
   1641 	unsigned int flags, pipe, high_pipe;
   1642 
   1643 	if (!dev->irq_enabled)
   1644 		return -EOPNOTSUPP;
   1645 
   1646 	if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
   1647 		return -EINVAL;
   1648 
   1649 	if (vblwait->request.type &
   1650 	    ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
   1651 	      _DRM_VBLANK_HIGH_CRTC_MASK)) {
   1652 		DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
   1653 			  vblwait->request.type,
   1654 			  (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
   1655 			   _DRM_VBLANK_HIGH_CRTC_MASK));
   1656 		return -EINVAL;
   1657 	}
   1658 
   1659 	flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
   1660 	high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
   1661 	if (high_pipe)
   1662 		pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
   1663 	else
   1664 		pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
   1665 
   1666 	/* Convert lease-relative crtc index into global crtc index */
   1667 	if (drm_core_check_feature(dev, DRIVER_MODESET)) {
   1668 		pipe = 0;
   1669 		drm_for_each_crtc(crtc, dev) {
   1670 			if (drm_lease_held(file_priv, crtc->base.id)) {
   1671 				if (pipe_index == 0)
   1672 					break;
   1673 				pipe_index--;
   1674 			}
   1675 			pipe++;
   1676 		}
   1677 	} else {
   1678 		pipe = pipe_index;
   1679 	}
   1680 
   1681 	if (pipe >= dev->num_crtcs)
   1682 		return -EINVAL;
   1683 
   1684 	vblank = &dev->vblank[pipe];
   1685 
   1686 	/* If the counter is currently enabled and accurate, short-circuit
   1687 	 * queries to return the cached timestamp of the last vblank.
   1688 	 */
   1689 	if (dev->vblank_disable_immediate &&
   1690 	    drm_wait_vblank_is_query(vblwait) &&
   1691 	    READ_ONCE(vblank->enabled)) {
   1692 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
   1693 		return 0;
   1694 	}
   1695 
   1696 	ret = drm_vblank_get(dev, pipe);
   1697 	if (ret) {
   1698 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
   1699 		return ret;
   1700 	}
   1701 	seq = drm_vblank_count(dev, pipe);
   1702 
   1703 	switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
   1704 	case _DRM_VBLANK_RELATIVE:
   1705 		req_seq = seq + vblwait->request.sequence;
   1706 		vblwait->request.sequence = req_seq;
   1707 		vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
   1708 		break;
   1709 	case _DRM_VBLANK_ABSOLUTE:
   1710 		req_seq = widen_32_to_64(vblwait->request.sequence, seq);
   1711 		break;
   1712 	default:
   1713 		ret = -EINVAL;
   1714 		goto done;
   1715 	}
   1716 
   1717 	if ((flags & _DRM_VBLANK_NEXTONMISS) &&
   1718 	    vblank_passed(seq, req_seq)) {
   1719 		req_seq = seq + 1;
   1720 		vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
   1721 		vblwait->request.sequence = req_seq;
   1722 	}
   1723 
   1724 	if (flags & _DRM_VBLANK_EVENT) {
   1725 		/* must hold on to the vblank ref until the event fires
   1726 		 * drm_vblank_put will be called asynchronously
   1727 		 */
   1728 		return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
   1729 	}
   1730 
   1731 	if (req_seq != seq) {
   1732 		int wait;
   1733 
   1734 		DRM_DEBUG("waiting on vblank count %"PRIu64", crtc %u\n",
   1735 			  req_seq, pipe);
   1736 #ifdef __NetBSD__
   1737 		DRM_SPIN_TIMED_WAIT_UNTIL(wait, &vblank->queue,
   1738 		    &dev->vbl_lock, msecs_to_jiffies(3000),
   1739 		    vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
   1740 				  !READ_ONCE(vblank->enabled));
   1741 #else
   1742 		wait = wait_event_interruptible_timeout(vblank->queue,
   1743 			vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
   1744 				      !READ_ONCE(vblank->enabled),
   1745 			msecs_to_jiffies(3000));
   1746 #endif
   1747 
   1748 		switch (wait) {
   1749 		case 0:
   1750 			/* timeout */
   1751 			ret = -EBUSY;
   1752 			break;
   1753 		case -ERESTARTSYS:
   1754 			/* interrupted by signal */
   1755 			ret = -EINTR;
   1756 			break;
   1757 		default:
   1758 			ret = 0;
   1759 			break;
   1760 		}
   1761 	}
   1762 
   1763 	if (ret != -EINTR) {
   1764 		drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
   1765 
   1766 		DRM_DEBUG("crtc %d returning %u to client\n",
   1767 			  pipe, vblwait->reply.sequence);
   1768 	} else {
   1769 		DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
   1770 	}
   1771 
   1772 done:
   1773 	drm_vblank_put(dev, pipe);
   1774 	return ret;
   1775 }
   1776 
   1777 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
   1778 {
   1779 	struct drm_pending_vblank_event *e, *t;
   1780 	ktime_t now;
   1781 	u64 seq;
   1782 
   1783 	assert_spin_locked(&dev->event_lock);
   1784 
   1785 	seq = drm_vblank_count_and_time(dev, pipe, &now);
   1786 
   1787 	list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
   1788 		if (e->pipe != pipe)
   1789 			continue;
   1790 		if (!vblank_passed(seq, e->sequence))
   1791 			continue;
   1792 
   1793 		DRM_DEBUG("vblank event on %"PRIu64", current %"PRIu64"\n",
   1794 			  e->sequence, seq);
   1795 
   1796 		list_del(&e->base.link);
   1797 		drm_vblank_put(dev, pipe);
   1798 		send_vblank_event(dev, e, seq, now);
   1799 	}
   1800 
   1801 	trace_drm_vblank_event(pipe, seq, now,
   1802 			dev->driver->get_vblank_timestamp != NULL);
   1803 }
   1804 
   1805 /**
   1806  * drm_handle_vblank - handle a vblank event
   1807  * @dev: DRM device
   1808  * @pipe: index of CRTC where this event occurred
   1809  *
   1810  * Drivers should call this routine in their vblank interrupt handlers to
   1811  * update the vblank counter and send any signals that may be pending.
   1812  *
   1813  * This is the legacy version of drm_crtc_handle_vblank().
   1814  */
   1815 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
   1816 {
   1817 	struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
   1818 	unsigned long irqflags;
   1819 	bool disable_irq;
   1820 
   1821 	if (WARN_ON_ONCE(!dev->num_crtcs))
   1822 		return false;
   1823 
   1824 	if (WARN_ON(pipe >= dev->num_crtcs))
   1825 		return false;
   1826 
   1827 	spin_lock_irqsave(&dev->event_lock, irqflags);
   1828 
   1829 	/* Need timestamp lock to prevent concurrent execution with
   1830 	 * vblank enable/disable, as this would cause inconsistent
   1831 	 * or corrupted timestamps and vblank counts.
   1832 	 */
   1833 	spin_lock(&dev->vblank_time_lock);
   1834 
   1835 	/* Vblank irq handling disabled. Nothing to do. */
   1836 	if (!vblank->enabled) {
   1837 		spin_unlock(&dev->vblank_time_lock);
   1838 		spin_unlock_irqrestore(&dev->event_lock, irqflags);
   1839 		return false;
   1840 	}
   1841 
   1842 	drm_update_vblank_count(dev, pipe, true);
   1843 
   1844 	spin_unlock(&dev->vblank_time_lock);
   1845 
   1846 #ifdef __NetBSD__
   1847 	DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
   1848 #else
   1849 	wake_up(&vblank->queue);
   1850 #endif
   1851 
   1852 	/* With instant-off, we defer disabling the interrupt until after
   1853 	 * we finish processing the following vblank after all events have
   1854 	 * been signaled. The disable has to be last (after
   1855 	 * drm_handle_vblank_events) so that the timestamp is always accurate.
   1856 	 */
   1857 	disable_irq = (dev->vblank_disable_immediate &&
   1858 		       drm_vblank_offdelay > 0 &&
   1859 		       !atomic_read(&vblank->refcount));
   1860 
   1861 	drm_handle_vblank_events(dev, pipe);
   1862 
   1863 	spin_unlock_irqrestore(&dev->event_lock, irqflags);
   1864 
   1865 	if (disable_irq)
   1866 		vblank_disable_fn(&vblank->disable_timer);
   1867 
   1868 	return true;
   1869 }
   1870 EXPORT_SYMBOL(drm_handle_vblank);
   1871 
   1872 /**
   1873  * drm_crtc_handle_vblank - handle a vblank event
   1874  * @crtc: where this event occurred
   1875  *
   1876  * Drivers should call this routine in their vblank interrupt handlers to
   1877  * update the vblank counter and send any signals that may be pending.
   1878  *
   1879  * This is the native KMS version of drm_handle_vblank().
   1880  *
   1881  * Note that for a given vblank counter value drm_crtc_handle_vblank()
   1882  * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
   1883  * provide a barrier: Any writes done before calling
   1884  * drm_crtc_handle_vblank() will be visible to callers of the later
   1885  * functions, iff the vblank count is the same or a later one.
   1886  *
   1887  * See also &drm_vblank_crtc.count.
   1888  *
   1889  * Returns:
   1890  * True if the event was successfully handled, false on failure.
   1891  */
   1892 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
   1893 {
   1894 	return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
   1895 }
   1896 EXPORT_SYMBOL(drm_crtc_handle_vblank);
   1897 
   1898 /*
   1899  * Get crtc VBLANK count.
   1900  *
   1901  * \param dev DRM device
   1902  * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
   1903  * \param file_priv drm file private for the user's open file descriptor
   1904  */
   1905 
   1906 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
   1907 				struct drm_file *file_priv)
   1908 {
   1909 	struct drm_crtc *crtc;
   1910 	struct drm_vblank_crtc *vblank;
   1911 	int pipe;
   1912 	struct drm_crtc_get_sequence *get_seq = data;
   1913 	ktime_t now;
   1914 	bool vblank_enabled;
   1915 	int ret;
   1916 
   1917 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   1918 		return -EOPNOTSUPP;
   1919 
   1920 	if (!dev->irq_enabled)
   1921 		return -EOPNOTSUPP;
   1922 
   1923 	crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
   1924 	if (!crtc)
   1925 		return -ENOENT;
   1926 
   1927 	pipe = drm_crtc_index(crtc);
   1928 
   1929 	vblank = &dev->vblank[pipe];
   1930 	vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
   1931 
   1932 	if (!vblank_enabled) {
   1933 		ret = drm_crtc_vblank_get(crtc);
   1934 		if (ret) {
   1935 			DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
   1936 			return ret;
   1937 		}
   1938 	}
   1939 	drm_modeset_lock(&crtc->mutex, NULL);
   1940 	if (crtc->state)
   1941 		get_seq->active = crtc->state->enable;
   1942 	else
   1943 		get_seq->active = crtc->enabled;
   1944 	drm_modeset_unlock(&crtc->mutex);
   1945 	get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
   1946 	get_seq->sequence_ns = ktime_to_ns(now);
   1947 	if (!vblank_enabled)
   1948 		drm_crtc_vblank_put(crtc);
   1949 	return 0;
   1950 }
   1951 
   1952 /*
   1953  * Queue a event for VBLANK sequence
   1954  *
   1955  * \param dev DRM device
   1956  * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
   1957  * \param file_priv drm file private for the user's open file descriptor
   1958  */
   1959 
   1960 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
   1961 				  struct drm_file *file_priv)
   1962 {
   1963 	struct drm_crtc *crtc;
   1964 	struct drm_vblank_crtc *vblank;
   1965 	int pipe;
   1966 	struct drm_crtc_queue_sequence *queue_seq = data;
   1967 	ktime_t now;
   1968 	struct drm_pending_vblank_event *e;
   1969 	u32 flags;
   1970 	u64 seq;
   1971 	u64 req_seq;
   1972 	int ret;
   1973 	unsigned long spin_flags;
   1974 
   1975 	if (!drm_core_check_feature(dev, DRIVER_MODESET))
   1976 		return -EOPNOTSUPP;
   1977 
   1978 	if (!dev->irq_enabled)
   1979 		return -EOPNOTSUPP;
   1980 
   1981 	crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
   1982 	if (!crtc)
   1983 		return -ENOENT;
   1984 
   1985 	flags = queue_seq->flags;
   1986 	/* Check valid flag bits */
   1987 	if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
   1988 		      DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
   1989 		return -EINVAL;
   1990 
   1991 	pipe = drm_crtc_index(crtc);
   1992 
   1993 	vblank = &dev->vblank[pipe];
   1994 
   1995 	e = kzalloc(sizeof(*e), GFP_KERNEL);
   1996 	if (e == NULL)
   1997 		return -ENOMEM;
   1998 
   1999 	ret = drm_crtc_vblank_get(crtc);
   2000 	if (ret) {
   2001 		DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
   2002 		goto err_free;
   2003 	}
   2004 
   2005 	seq = drm_vblank_count_and_time(dev, pipe, &now);
   2006 	req_seq = queue_seq->sequence;
   2007 
   2008 	if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
   2009 		req_seq += seq;
   2010 
   2011 	if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
   2012 		req_seq = seq + 1;
   2013 
   2014 	e->pipe = pipe;
   2015 	e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
   2016 	e->event.base.length = sizeof(e->event.seq);
   2017 	e->event.seq.user_data = queue_seq->user_data;
   2018 
   2019 	spin_lock_irqsave(&dev->event_lock, spin_flags);
   2020 
   2021 	/*
   2022 	 * drm_crtc_vblank_off() might have been called after we called
   2023 	 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
   2024 	 * vblank disable, so no need for further locking.  The reference from
   2025 	 * drm_crtc_vblank_get() protects against vblank disable from another source.
   2026 	 */
   2027 	if (!READ_ONCE(vblank->enabled)) {
   2028 		ret = -EINVAL;
   2029 		goto err_unlock;
   2030 	}
   2031 
   2032 	ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
   2033 					    &e->event.base);
   2034 
   2035 	if (ret)
   2036 		goto err_unlock;
   2037 
   2038 	e->sequence = req_seq;
   2039 
   2040 	if (vblank_passed(seq, req_seq)) {
   2041 		drm_crtc_vblank_put(crtc);
   2042 		send_vblank_event(dev, e, seq, now);
   2043 		queue_seq->sequence = seq;
   2044 	} else {
   2045 		/* drm_handle_vblank_events will call drm_vblank_put */
   2046 		list_add_tail(&e->base.link, &dev->vblank_event_list);
   2047 		queue_seq->sequence = req_seq;
   2048 	}
   2049 
   2050 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
   2051 	return 0;
   2052 
   2053 err_unlock:
   2054 	spin_unlock_irqrestore(&dev->event_lock, spin_flags);
   2055 	drm_crtc_vblank_put(crtc);
   2056 err_free:
   2057 	kfree(e);
   2058 	return ret;
   2059 }
   2060