drm_vblank.c revision 1.6 1 /* $NetBSD: drm_vblank.c,v 1.6 2021/12/19 11:08:02 riastradh Exp $ */
2
3 /*
4 * drm_irq.c IRQ and vblank support
5 *
6 * \author Rickard E. (Rik) Faith <faith (at) valinux.com>
7 * \author Gareth Hughes <gareth (at) valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
26 * OTHER DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: drm_vblank.c,v 1.6 2021/12/19 11:08:02 riastradh Exp $");
31
32 #include <linux/export.h>
33 #include <linux/moduleparam.h>
34 #include <linux/math64.h>
35
36 #include <drm/drm_crtc.h>
37 #include <drm/drm_drv.h>
38 #include <drm/drm_framebuffer.h>
39 #include <drm/drm_print.h>
40 #include <drm/drm_vblank.h>
41
42 #include "drm_internal.h"
43 #include "drm_trace.h"
44
45 /**
46 * DOC: vblank handling
47 *
48 * Vertical blanking plays a major role in graphics rendering. To achieve
49 * tear-free display, users must synchronize page flips and/or rendering to
50 * vertical blanking. The DRM API offers ioctls to perform page flips
51 * synchronized to vertical blanking and wait for vertical blanking.
52 *
53 * The DRM core handles most of the vertical blanking management logic, which
54 * involves filtering out spurious interrupts, keeping race-free blanking
55 * counters, coping with counter wrap-around and resets and keeping use counts.
56 * It relies on the driver to generate vertical blanking interrupts and
57 * optionally provide a hardware vertical blanking counter.
58 *
59 * Drivers must initialize the vertical blanking handling core with a call to
60 * drm_vblank_init(). Minimally, a driver needs to implement
61 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
62 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
63 * support.
64 *
65 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
66 * themselves (for instance to handle page flipping operations). The DRM core
67 * maintains a vertical blanking use count to ensure that the interrupts are not
68 * disabled while a user still needs them. To increment the use count, drivers
69 * call drm_crtc_vblank_get() and release the vblank reference again with
70 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
71 * guaranteed to be enabled.
72 *
73 * On many hardware disabling the vblank interrupt cannot be done in a race-free
74 * manner, see &drm_driver.vblank_disable_immediate and
75 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
76 * vblanks after a timer has expired, which can be configured through the
77 * ``vblankoffdelay`` module parameter.
78 */
79
80 /* Retry timestamp calculation up to 3 times to satisfy
81 * drm_timestamp_precision before giving up.
82 */
83 #define DRM_TIMESTAMP_MAXRETRIES 3
84
85 /* Threshold in nanoseconds for detection of redundant
86 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
87 */
88 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
89
90 static bool
91 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
92 ktime_t *tvblank, bool in_vblank_irq);
93
94 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
95
96 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
97
98 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
99 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
100 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
101 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
102
103 static void store_vblank(struct drm_device *dev, unsigned int pipe,
104 u32 vblank_count_inc,
105 ktime_t t_vblank, u32 last)
106 {
107 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
108
109 assert_spin_locked(&dev->vblank_time_lock);
110
111 vblank->last = last;
112
113 write_seqlock(&vblank->seqlock);
114 vblank->time = t_vblank;
115 atomic64_add(vblank_count_inc, &vblank->count);
116 write_sequnlock(&vblank->seqlock);
117 }
118
119 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
120 {
121 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
122
123 return vblank->max_vblank_count ?: dev->max_vblank_count;
124 }
125
126 /*
127 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
128 * if there is no useable hardware frame counter available.
129 */
130 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
131 {
132 WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
133 return 0;
134 }
135
136 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
137 {
138 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
139 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
140
141 if (WARN_ON(!crtc))
142 return 0;
143
144 if (crtc->funcs->get_vblank_counter)
145 return crtc->funcs->get_vblank_counter(crtc);
146 }
147
148 if (dev->driver->get_vblank_counter)
149 return dev->driver->get_vblank_counter(dev, pipe);
150
151 return drm_vblank_no_hw_counter(dev, pipe);
152 }
153
154 /*
155 * Reset the stored timestamp for the current vblank count to correspond
156 * to the last vblank occurred.
157 *
158 * Only to be called from drm_crtc_vblank_on().
159 *
160 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
161 * device vblank fields.
162 */
163 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
164 {
165 u32 cur_vblank;
166 bool rc;
167 ktime_t t_vblank;
168 int count = DRM_TIMESTAMP_MAXRETRIES;
169
170 assert_spin_locked(&dev->vbl_lock);
171
172 spin_lock(&dev->vblank_time_lock);
173
174 /*
175 * sample the current counter to avoid random jumps
176 * when drm_vblank_enable() applies the diff
177 */
178 do {
179 cur_vblank = __get_vblank_counter(dev, pipe);
180 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
181 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
182
183 /*
184 * Only reinitialize corresponding vblank timestamp if high-precision query
185 * available and didn't fail. Otherwise reinitialize delayed at next vblank
186 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
187 */
188 if (!rc)
189 t_vblank = 0;
190
191 /*
192 * +1 to make sure user will never see the same
193 * vblank counter value before and after a modeset
194 */
195 store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
196
197 spin_unlock(&dev->vblank_time_lock);
198 }
199
200 /*
201 * Call back into the driver to update the appropriate vblank counter
202 * (specified by @pipe). Deal with wraparound, if it occurred, and
203 * update the last read value so we can deal with wraparound on the next
204 * call if necessary.
205 *
206 * Only necessary when going from off->on, to account for frames we
207 * didn't get an interrupt for.
208 *
209 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
210 * device vblank fields.
211 */
212 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
213 bool in_vblank_irq)
214 {
215 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
216 u32 cur_vblank, diff;
217 bool rc;
218 ktime_t t_vblank;
219 int count = DRM_TIMESTAMP_MAXRETRIES;
220 int framedur_ns = vblank->framedur_ns;
221 u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
222
223 assert_spin_locked(&dev->vbl_lock);
224
225 /*
226 * Interrupts were disabled prior to this call, so deal with counter
227 * wrap if needed.
228 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events
229 * here if the register is small or we had vblank interrupts off for
230 * a long time.
231 *
232 * We repeat the hardware vblank counter & timestamp query until
233 * we get consistent results. This to prevent races between gpu
234 * updating its hardware counter while we are retrieving the
235 * corresponding vblank timestamp.
236 */
237 do {
238 cur_vblank = __get_vblank_counter(dev, pipe);
239 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
240 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
241
242 if (max_vblank_count) {
243 /* trust the hw counter when it's around */
244 diff = (cur_vblank - vblank->last) & max_vblank_count;
245 } else if (rc && framedur_ns) {
246 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
247
248 /*
249 * Figure out how many vblanks we've missed based
250 * on the difference in the timestamps and the
251 * frame/field duration.
252 */
253
254 DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
255 " diff_ns = %lld, framedur_ns = %d)\n",
256 pipe, (long long) diff_ns, framedur_ns);
257
258 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
259
260 if (diff == 0 && in_vblank_irq)
261 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
262 pipe);
263 } else {
264 /* some kind of default for drivers w/o accurate vbl timestamping */
265 diff = in_vblank_irq ? 1 : 0;
266 }
267
268 /*
269 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
270 * interval? If so then vblank irqs keep running and it will likely
271 * happen that the hardware vblank counter is not trustworthy as it
272 * might reset at some point in that interval and vblank timestamps
273 * are not trustworthy either in that interval. Iow. this can result
274 * in a bogus diff >> 1 which must be avoided as it would cause
275 * random large forward jumps of the software vblank counter.
276 */
277 if (diff > 1 && (vblank->inmodeset & 0x2)) {
278 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
279 " due to pre-modeset.\n", pipe, diff);
280 diff = 1;
281 }
282
283 DRM_DEBUG_VBL("updating vblank count on crtc %u:"
284 " current=%"PRIu64", diff=%u, hw=%u hw_last=%u\n",
285 pipe, atomic64_read(&vblank->count), diff,
286 cur_vblank, vblank->last);
287
288 if (diff == 0) {
289 WARN_ON_ONCE(cur_vblank != vblank->last);
290 return;
291 }
292
293 /*
294 * Only reinitialize corresponding vblank timestamp if high-precision query
295 * available and didn't fail, or we were called from the vblank interrupt.
296 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
297 * for now, to mark the vblanktimestamp as invalid.
298 */
299 if (!rc && !in_vblank_irq)
300 t_vblank = 0;
301
302 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
303 }
304
305 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
306 {
307 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
308 u64 count;
309
310 if (WARN_ON(pipe >= dev->num_crtcs))
311 return 0;
312
313 count = atomic64_read(&vblank->count);
314
315 /*
316 * This read barrier corresponds to the implicit write barrier of the
317 * write seqlock in store_vblank(). Note that this is the only place
318 * where we need an explicit barrier, since all other access goes
319 * through drm_vblank_count_and_time(), which already has the required
320 * read barrier curtesy of the read seqlock.
321 */
322 smp_rmb();
323
324 return count;
325 }
326
327 /**
328 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
329 * @crtc: which counter to retrieve
330 *
331 * This function is similar to drm_crtc_vblank_count() but this function
332 * interpolates to handle a race with vblank interrupts using the high precision
333 * timestamping support.
334 *
335 * This is mostly useful for hardware that can obtain the scanout position, but
336 * doesn't have a hardware frame counter.
337 */
338 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
339 {
340 struct drm_device *dev = crtc->dev;
341 unsigned int pipe = drm_crtc_index(crtc);
342 u64 vblank;
343 unsigned long flags;
344
345 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
346 "This function requires support for accurate vblank timestamps.");
347
348 spin_lock_irqsave(&dev->vblank_time_lock, flags);
349
350 drm_update_vblank_count(dev, pipe, false);
351 vblank = drm_vblank_count(dev, pipe);
352
353 spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
354
355 return vblank;
356 }
357 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
358
359 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
360 {
361 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
362 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
363
364 if (WARN_ON(!crtc))
365 return;
366
367 if (crtc->funcs->disable_vblank) {
368 crtc->funcs->disable_vblank(crtc);
369 return;
370 }
371 }
372
373 dev->driver->disable_vblank(dev, pipe);
374 }
375
376 /*
377 * Disable vblank irq's on crtc, make sure that last vblank count
378 * of hardware and corresponding consistent software vblank counter
379 * are preserved, even if there are any spurious vblank irq's after
380 * disable.
381 */
382 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
383 {
384 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
385 unsigned long irqflags;
386
387 assert_spin_locked(&dev->vbl_lock);
388
389 /* Prevent vblank irq processing while disabling vblank irqs,
390 * so no updates of timestamps or count can happen after we've
391 * disabled. Needed to prevent races in case of delayed irq's.
392 */
393 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
394
395 /*
396 * Update vblank count and disable vblank interrupts only if the
397 * interrupts were enabled. This avoids calling the ->disable_vblank()
398 * operation in atomic context with the hardware potentially runtime
399 * suspended.
400 */
401 if (!vblank->enabled)
402 goto out;
403
404 /*
405 * Update the count and timestamp to maintain the
406 * appearance that the counter has been ticking all along until
407 * this time. This makes the count account for the entire time
408 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
409 */
410 drm_update_vblank_count(dev, pipe, false);
411 __disable_vblank(dev, pipe);
412 vblank->enabled = false;
413
414 out:
415 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
416 }
417
418 static void vblank_disable_fn(struct timer_list *t)
419 {
420 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
421 struct drm_device *dev = vblank->dev;
422 unsigned int pipe = vblank->pipe;
423 unsigned long irqflags;
424
425 spin_lock_irqsave(&dev->vbl_lock, irqflags);
426 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
427 DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
428 drm_vblank_disable_and_save(dev, pipe);
429 }
430 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
431 }
432
433 void drm_vblank_cleanup(struct drm_device *dev)
434 {
435 unsigned int pipe;
436
437 /* Bail if the driver didn't call drm_vblank_init() */
438 if (dev->num_crtcs == 0)
439 return;
440
441 for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
442 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
443
444 WARN_ON(READ_ONCE(vblank->enabled) &&
445 drm_core_check_feature(dev, DRIVER_MODESET));
446
447 del_timer_sync(&vblank->disable_timer);
448 #ifdef __NetBSD__
449 teardown_timer(&vblank->disable_timer);
450 seqlock_destroy(&vblank->seqlock);
451 #endif
452 }
453
454 kfree(dev->vblank);
455
456 dev->num_crtcs = 0;
457 }
458
459 /**
460 * drm_vblank_init - initialize vblank support
461 * @dev: DRM device
462 * @num_crtcs: number of CRTCs supported by @dev
463 *
464 * This function initializes vblank support for @num_crtcs display pipelines.
465 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
466 * drivers with a &drm_driver.release callback.
467 *
468 * Returns:
469 * Zero on success or a negative error code on failure.
470 */
471 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
472 {
473 int ret = -ENOMEM;
474 unsigned int i;
475
476 spin_lock_init(&dev->vbl_lock);
477 spin_lock_init(&dev->vblank_time_lock);
478
479 dev->num_crtcs = num_crtcs;
480
481 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
482 if (!dev->vblank)
483 goto err;
484
485 for (i = 0; i < num_crtcs; i++) {
486 struct drm_vblank_crtc *vblank = &dev->vblank[i];
487
488 vblank->dev = dev;
489 vblank->pipe = i;
490 #ifdef __NetBSD__
491 DRM_INIT_WAITQUEUE(&vblank->queue, "drmvblnq");
492 #else
493 init_waitqueue_head(&vblank->queue);
494 #endif
495 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
496 seqlock_init(&vblank->seqlock);
497 }
498
499 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
500
501 /* Driver specific high-precision vblank timestamping supported? */
502 if (dev->driver->get_vblank_timestamp)
503 DRM_INFO("Driver supports precise vblank timestamp query.\n");
504 else
505 DRM_INFO("No driver support for vblank timestamp query.\n");
506
507 /* Must have precise timestamping for reliable vblank instant disable */
508 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
509 dev->vblank_disable_immediate = false;
510 DRM_INFO("Setting vblank_disable_immediate to false because "
511 "get_vblank_timestamp == NULL\n");
512 }
513
514 return 0;
515
516 err:
517 dev->num_crtcs = 0;
518 return ret;
519 }
520 EXPORT_SYMBOL(drm_vblank_init);
521
522 /**
523 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
524 * @crtc: which CRTC's vblank waitqueue to retrieve
525 *
526 * This function returns a pointer to the vblank waitqueue for the CRTC.
527 * Drivers can use this to implement vblank waits using wait_event() and related
528 * functions.
529 */
530 #ifdef __NetBSD__
531 drm_waitqueue_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
532 #else
533 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
534 #endif
535 {
536 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
537 }
538 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
539
540
541 /**
542 * drm_calc_timestamping_constants - calculate vblank timestamp constants
543 * @crtc: drm_crtc whose timestamp constants should be updated.
544 * @mode: display mode containing the scanout timings
545 *
546 * Calculate and store various constants which are later needed by vblank and
547 * swap-completion timestamping, e.g, by
548 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
549 * scanout timing, so they take things like panel scaling or other adjustments
550 * into account.
551 */
552 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
553 const struct drm_display_mode *mode)
554 {
555 struct drm_device *dev = crtc->dev;
556 unsigned int pipe = drm_crtc_index(crtc);
557 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
558 int linedur_ns = 0, framedur_ns = 0;
559 int dotclock = mode->crtc_clock;
560
561 if (!dev->num_crtcs)
562 return;
563
564 if (WARN_ON(pipe >= dev->num_crtcs))
565 return;
566
567 /* Valid dotclock? */
568 if (dotclock > 0) {
569 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
570
571 /*
572 * Convert scanline length in pixels and video
573 * dot clock to line duration and frame duration
574 * in nanoseconds:
575 */
576 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
577 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
578
579 /*
580 * Fields of interlaced scanout modes are only half a frame duration.
581 */
582 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
583 framedur_ns /= 2;
584 } else
585 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
586 crtc->base.id);
587
588 vblank->linedur_ns = linedur_ns;
589 vblank->framedur_ns = framedur_ns;
590 vblank->hwmode = *mode;
591
592 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
593 crtc->base.id, mode->crtc_htotal,
594 mode->crtc_vtotal, mode->crtc_vdisplay);
595 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
596 crtc->base.id, dotclock, framedur_ns, linedur_ns);
597 }
598 EXPORT_SYMBOL(drm_calc_timestamping_constants);
599
600 /**
601 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
602 * @dev: DRM device
603 * @pipe: index of CRTC whose vblank timestamp to retrieve
604 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
605 * On return contains true maximum error of timestamp
606 * @vblank_time: Pointer to time which should receive the timestamp
607 * @in_vblank_irq:
608 * True when called from drm_crtc_handle_vblank(). Some drivers
609 * need to apply some workarounds for gpu-specific vblank irq quirks
610 * if flag is set.
611 *
612 * Implements calculation of exact vblank timestamps from given drm_display_mode
613 * timings and current video scanout position of a CRTC. This can be directly
614 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
615 * if &drm_driver.get_scanout_position is implemented.
616 *
617 * The current implementation only handles standard video modes. For double scan
618 * and interlaced modes the driver is supposed to adjust the hardware mode
619 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
620 * match the scanout position reported.
621 *
622 * Note that atomic drivers must call drm_calc_timestamping_constants() before
623 * enabling a CRTC. The atomic helpers already take care of that in
624 * drm_atomic_helper_update_legacy_modeset_state().
625 *
626 * Returns:
627 *
628 * Returns true on success, and false on failure, i.e. when no accurate
629 * timestamp could be acquired.
630 */
631 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
632 unsigned int pipe,
633 int *max_error,
634 ktime_t *vblank_time,
635 bool in_vblank_irq)
636 {
637 struct timespec64 ts_etime, ts_vblank_time;
638 ktime_t stime, etime;
639 bool vbl_status;
640 struct drm_crtc *crtc;
641 const struct drm_display_mode *mode;
642 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
643 int vpos, hpos, i;
644 int delta_ns, duration_ns;
645
646 if (!drm_core_check_feature(dev, DRIVER_MODESET))
647 return false;
648
649 crtc = drm_crtc_from_index(dev, pipe);
650
651 if (pipe >= dev->num_crtcs || !crtc) {
652 DRM_ERROR("Invalid crtc %u\n", pipe);
653 return false;
654 }
655
656 /* Scanout position query not supported? Should not happen. */
657 if (!dev->driver->get_scanout_position) {
658 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
659 return false;
660 }
661
662 if (drm_drv_uses_atomic_modeset(dev))
663 mode = &vblank->hwmode;
664 else
665 mode = &crtc->hwmode;
666
667 /* If mode timing undefined, just return as no-op:
668 * Happens during initial modesetting of a crtc.
669 */
670 if (mode->crtc_clock == 0) {
671 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
672 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
673
674 return false;
675 }
676
677 /* Get current scanout position with system timestamp.
678 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
679 * if single query takes longer than max_error nanoseconds.
680 *
681 * This guarantees a tight bound on maximum error if
682 * code gets preempted or delayed for some reason.
683 */
684 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
685 /*
686 * Get vertical and horizontal scanout position vpos, hpos,
687 * and bounding timestamps stime, etime, pre/post query.
688 */
689 vbl_status = dev->driver->get_scanout_position(dev, pipe,
690 in_vblank_irq,
691 &vpos, &hpos,
692 &stime, &etime,
693 mode);
694
695 /* Return as no-op if scanout query unsupported or failed. */
696 if (!vbl_status) {
697 DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
698 pipe);
699 return false;
700 }
701
702 /* Compute uncertainty in timestamp of scanout position query. */
703 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
704
705 /* Accept result with < max_error nsecs timing uncertainty. */
706 if (duration_ns <= *max_error)
707 break;
708 }
709
710 /* Noisy system timing? */
711 if (i == DRM_TIMESTAMP_MAXRETRIES) {
712 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
713 pipe, duration_ns/1000, *max_error/1000, i);
714 }
715
716 /* Return upper bound of timestamp precision error. */
717 *max_error = duration_ns;
718
719 /* Convert scanout position into elapsed time at raw_time query
720 * since start of scanout at first display scanline. delta_ns
721 * can be negative if start of scanout hasn't happened yet.
722 */
723 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
724 mode->crtc_clock);
725
726 /* Subtract time delta from raw timestamp to get final
727 * vblank_time timestamp for end of vblank.
728 */
729 *vblank_time = ktime_sub_ns(etime, delta_ns);
730
731 if (!drm_debug_enabled(DRM_UT_VBL))
732 return true;
733
734 ts_etime = ktime_to_timespec64(etime);
735 ts_vblank_time = ktime_to_timespec64(*vblank_time);
736
737 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %"PRId64".%06ld -> %"PRId64".%06ld [e %d us, %d rep]\n",
738 pipe, hpos, vpos,
739 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
740 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
741 duration_ns / 1000, i);
742
743 return true;
744 }
745 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
746
747 /**
748 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
749 * vblank interval
750 * @dev: DRM device
751 * @pipe: index of CRTC whose vblank timestamp to retrieve
752 * @tvblank: Pointer to target time which should receive the timestamp
753 * @in_vblank_irq:
754 * True when called from drm_crtc_handle_vblank(). Some drivers
755 * need to apply some workarounds for gpu-specific vblank irq quirks
756 * if flag is set.
757 *
758 * Fetches the system timestamp corresponding to the time of the most recent
759 * vblank interval on specified CRTC. May call into kms-driver to
760 * compute the timestamp with a high-precision GPU specific method.
761 *
762 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
763 * call, i.e., it isn't very precisely locked to the true vblank.
764 *
765 * Returns:
766 * True if timestamp is considered to be very precise, false otherwise.
767 */
768 static bool
769 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
770 ktime_t *tvblank, bool in_vblank_irq)
771 {
772 bool ret = false;
773
774 /* Define requested maximum error on timestamps (nanoseconds). */
775 int max_error = (int) drm_timestamp_precision * 1000;
776
777 /* Query driver if possible and precision timestamping enabled. */
778 if (dev->driver->get_vblank_timestamp && (max_error > 0))
779 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
780 tvblank, in_vblank_irq);
781
782 /* GPU high precision timestamp query unsupported or failed.
783 * Return current monotonic/gettimeofday timestamp as best estimate.
784 */
785 if (!ret)
786 *tvblank = ktime_get();
787
788 return ret;
789 }
790
791 /**
792 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
793 * @crtc: which counter to retrieve
794 *
795 * Fetches the "cooked" vblank count value that represents the number of
796 * vblank events since the system was booted, including lost events due to
797 * modesetting activity. Note that this timer isn't correct against a racing
798 * vblank interrupt (since it only reports the software vblank counter), see
799 * drm_crtc_accurate_vblank_count() for such use-cases.
800 *
801 * Note that for a given vblank counter value drm_crtc_handle_vblank()
802 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
803 * provide a barrier: Any writes done before calling
804 * drm_crtc_handle_vblank() will be visible to callers of the later
805 * functions, iff the vblank count is the same or a later one.
806 *
807 * See also &drm_vblank_crtc.count.
808 *
809 * Returns:
810 * The software vblank counter.
811 */
812 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
813 {
814 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
815 }
816 EXPORT_SYMBOL(drm_crtc_vblank_count);
817
818 /**
819 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
820 * system timestamp corresponding to that vblank counter value.
821 * @dev: DRM device
822 * @pipe: index of CRTC whose counter to retrieve
823 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
824 *
825 * Fetches the "cooked" vblank count value that represents the number of
826 * vblank events since the system was booted, including lost events due to
827 * modesetting activity. Returns corresponding system timestamp of the time
828 * of the vblank interval that corresponds to the current vblank counter value.
829 *
830 * This is the legacy version of drm_crtc_vblank_count_and_time().
831 */
832 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
833 ktime_t *vblanktime)
834 {
835 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
836 u64 vblank_count;
837 unsigned int seq;
838
839 if (WARN_ON(pipe >= dev->num_crtcs)) {
840 *vblanktime = 0;
841 return 0;
842 }
843
844 do {
845 seq = read_seqbegin(&vblank->seqlock);
846 vblank_count = atomic64_read(&vblank->count);
847 *vblanktime = vblank->time;
848 } while (read_seqretry(&vblank->seqlock, seq));
849
850 return vblank_count;
851 }
852
853 /**
854 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
855 * and the system timestamp corresponding to that vblank counter value
856 * @crtc: which counter to retrieve
857 * @vblanktime: Pointer to time to receive the vblank timestamp.
858 *
859 * Fetches the "cooked" vblank count value that represents the number of
860 * vblank events since the system was booted, including lost events due to
861 * modesetting activity. Returns corresponding system timestamp of the time
862 * of the vblank interval that corresponds to the current vblank counter value.
863 *
864 * Note that for a given vblank counter value drm_crtc_handle_vblank()
865 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
866 * provide a barrier: Any writes done before calling
867 * drm_crtc_handle_vblank() will be visible to callers of the later
868 * functions, iff the vblank count is the same or a later one.
869 *
870 * See also &drm_vblank_crtc.count.
871 */
872 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
873 ktime_t *vblanktime)
874 {
875 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
876 vblanktime);
877 }
878 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
879
880 static void send_vblank_event(struct drm_device *dev,
881 struct drm_pending_vblank_event *e,
882 u64 seq, ktime_t now)
883 {
884 struct timespec64 tv;
885
886 switch (e->event.base.type) {
887 case DRM_EVENT_VBLANK:
888 case DRM_EVENT_FLIP_COMPLETE:
889 tv = ktime_to_timespec64(now);
890 e->event.vbl.sequence = seq;
891 /*
892 * e->event is a user space structure, with hardcoded unsigned
893 * 32-bit seconds/microseconds. This is safe as we always use
894 * monotonic timestamps since linux-4.15
895 */
896 e->event.vbl.tv_sec = tv.tv_sec;
897 e->event.vbl.tv_usec = tv.tv_nsec / 1000;
898 break;
899 case DRM_EVENT_CRTC_SEQUENCE:
900 if (seq)
901 e->event.seq.sequence = seq;
902 e->event.seq.time_ns = ktime_to_ns(now);
903 break;
904 }
905 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
906 drm_send_event_locked(dev, &e->base);
907 }
908
909 /**
910 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
911 * @crtc: the source CRTC of the vblank event
912 * @e: the event to send
913 *
914 * A lot of drivers need to generate vblank events for the very next vblank
915 * interrupt. For example when the page flip interrupt happens when the page
916 * flip gets armed, but not when it actually executes within the next vblank
917 * period. This helper function implements exactly the required vblank arming
918 * behaviour.
919 *
920 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
921 * atomic commit must ensure that the next vblank happens at exactly the same
922 * time as the atomic commit is committed to the hardware. This function itself
923 * does **not** protect against the next vblank interrupt racing with either this
924 * function call or the atomic commit operation. A possible sequence could be:
925 *
926 * 1. Driver commits new hardware state into vblank-synchronized registers.
927 * 2. A vblank happens, committing the hardware state. Also the corresponding
928 * vblank interrupt is fired off and fully processed by the interrupt
929 * handler.
930 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
931 * 4. The event is only send out for the next vblank, which is wrong.
932 *
933 * An equivalent race can happen when the driver calls
934 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
935 *
936 * The only way to make this work safely is to prevent the vblank from firing
937 * (and the hardware from committing anything else) until the entire atomic
938 * commit sequence has run to completion. If the hardware does not have such a
939 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
940 * Instead drivers need to manually send out the event from their interrupt
941 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
942 * possible race with the hardware committing the atomic update.
943 *
944 * Caller must hold a vblank reference for the event @e acquired by a
945 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
946 */
947 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
948 struct drm_pending_vblank_event *e)
949 {
950 struct drm_device *dev = crtc->dev;
951 unsigned int pipe = drm_crtc_index(crtc);
952
953 assert_spin_locked(&dev->event_lock);
954
955 e->pipe = pipe;
956 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
957 list_add_tail(&e->base.link, &dev->vblank_event_list);
958 }
959 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
960
961 /**
962 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
963 * @crtc: the source CRTC of the vblank event
964 * @e: the event to send
965 *
966 * Updates sequence # and timestamp on event for the most recently processed
967 * vblank, and sends it to userspace. Caller must hold event lock.
968 *
969 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
970 * situation, especially to send out events for atomic commit operations.
971 */
972 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
973 struct drm_pending_vblank_event *e)
974 {
975 struct drm_device *dev = crtc->dev;
976 u64 seq;
977 unsigned int pipe = drm_crtc_index(crtc);
978 ktime_t now;
979
980 if (dev->num_crtcs > 0) {
981 seq = drm_vblank_count_and_time(dev, pipe, &now);
982 } else {
983 seq = 0;
984
985 now = ktime_get();
986 }
987 e->pipe = pipe;
988 send_vblank_event(dev, e, seq, now);
989 }
990 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
991
992 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
993 {
994 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
995 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
996
997 if (WARN_ON(!crtc))
998 return 0;
999
1000 if (crtc->funcs->enable_vblank)
1001 return crtc->funcs->enable_vblank(crtc);
1002 }
1003
1004 return dev->driver->enable_vblank(dev, pipe);
1005 }
1006
1007 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1008 {
1009 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1010 int ret = 0;
1011
1012 assert_spin_locked(&dev->vbl_lock);
1013
1014 spin_lock(&dev->vblank_time_lock);
1015
1016 if (!vblank->enabled) {
1017 /*
1018 * Enable vblank irqs under vblank_time_lock protection.
1019 * All vblank count & timestamp updates are held off
1020 * until we are done reinitializing master counter and
1021 * timestamps. Filtercode in drm_handle_vblank() will
1022 * prevent double-accounting of same vblank interval.
1023 */
1024 ret = __enable_vblank(dev, pipe);
1025 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
1026 if (ret) {
1027 atomic_dec(&vblank->refcount);
1028 } else {
1029 drm_update_vblank_count(dev, pipe, 0);
1030 /* drm_update_vblank_count() includes a wmb so we just
1031 * need to ensure that the compiler emits the write
1032 * to mark the vblank as enabled after the call
1033 * to drm_update_vblank_count().
1034 */
1035 WRITE_ONCE(vblank->enabled, true);
1036 }
1037 }
1038
1039 spin_unlock(&dev->vblank_time_lock);
1040
1041 return ret;
1042 }
1043
1044 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1045 {
1046 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1047 unsigned long irqflags;
1048 int ret = 0;
1049
1050 if (!dev->num_crtcs)
1051 return -EINVAL;
1052
1053 if (WARN_ON(pipe >= dev->num_crtcs))
1054 return -EINVAL;
1055
1056 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1057 /* Going from 0->1 means we have to enable interrupts again */
1058 if (atomic_add_return(1, &vblank->refcount) == 1) {
1059 ret = drm_vblank_enable(dev, pipe);
1060 } else {
1061 if (!vblank->enabled) {
1062 atomic_dec(&vblank->refcount);
1063 ret = -EINVAL;
1064 }
1065 }
1066 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1067
1068 return ret;
1069 }
1070
1071 /**
1072 * drm_crtc_vblank_get - get a reference count on vblank events
1073 * @crtc: which CRTC to own
1074 *
1075 * Acquire a reference count on vblank events to avoid having them disabled
1076 * while in use.
1077 *
1078 * Returns:
1079 * Zero on success or a negative error code on failure.
1080 */
1081 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1082 {
1083 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1084 }
1085 EXPORT_SYMBOL(drm_crtc_vblank_get);
1086
1087 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1088 {
1089 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1090
1091 if (WARN_ON(pipe >= dev->num_crtcs))
1092 return;
1093
1094 if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1095 return;
1096
1097 /* Last user schedules interrupt disable */
1098 if (atomic_dec_and_test(&vblank->refcount)) {
1099 if (drm_vblank_offdelay == 0)
1100 return;
1101 else if (drm_vblank_offdelay < 0)
1102 vblank_disable_fn(&vblank->disable_timer);
1103 else if (!dev->vblank_disable_immediate)
1104 mod_timer(&vblank->disable_timer,
1105 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1106 }
1107 }
1108
1109 /**
1110 * drm_crtc_vblank_put - give up ownership of vblank events
1111 * @crtc: which counter to give up
1112 *
1113 * Release ownership of a given vblank counter, turning off interrupts
1114 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1115 */
1116 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1117 {
1118 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1119 }
1120 EXPORT_SYMBOL(drm_crtc_vblank_put);
1121
1122 /**
1123 * drm_wait_one_vblank - wait for one vblank
1124 * @dev: DRM device
1125 * @pipe: CRTC index
1126 *
1127 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1128 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1129 * due to lack of driver support or because the crtc is off.
1130 *
1131 * This is the legacy version of drm_crtc_wait_one_vblank().
1132 */
1133 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1134 {
1135 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1136 int ret;
1137 u64 last;
1138
1139 if (WARN_ON(pipe >= dev->num_crtcs))
1140 return;
1141
1142 ret = drm_vblank_get(dev, pipe);
1143 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1144 return;
1145
1146 #ifdef __NetBSD__
1147 spin_lock(&dev->vbl_lock);
1148 last = drm_vblank_count(dev, pipe);
1149 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &vblank->queue, &dev->vbl_lock,
1150 msecs_to_jiffies(100),
1151 last != drm_vblank_count(dev, pipe));
1152 spin_unlock(&dev->vbl_lock);
1153 #else
1154 last = drm_vblank_count(dev, pipe);
1155
1156 ret = wait_event_timeout(vblank->queue,
1157 last != drm_vblank_count(dev, pipe),
1158 msecs_to_jiffies(100));
1159 #endif
1160
1161 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1162
1163 drm_vblank_put(dev, pipe);
1164 }
1165 EXPORT_SYMBOL(drm_wait_one_vblank);
1166
1167 /**
1168 * drm_crtc_wait_one_vblank - wait for one vblank
1169 * @crtc: DRM crtc
1170 *
1171 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1172 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1173 * due to lack of driver support or because the crtc is off.
1174 */
1175 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1176 {
1177 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1178 }
1179 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1180
1181 /**
1182 * drm_crtc_vblank_off - disable vblank events on a CRTC
1183 * @crtc: CRTC in question
1184 *
1185 * Drivers can use this function to shut down the vblank interrupt handling when
1186 * disabling a crtc. This function ensures that the latest vblank frame count is
1187 * stored so that drm_vblank_on can restore it again.
1188 *
1189 * Drivers must use this function when the hardware vblank counter can get
1190 * reset, e.g. when suspending or disabling the @crtc in general.
1191 */
1192 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1193 {
1194 struct drm_device *dev = crtc->dev;
1195 unsigned int pipe = drm_crtc_index(crtc);
1196 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1197 struct drm_pending_vblank_event *e, *t;
1198
1199 ktime_t now;
1200 unsigned long irqflags;
1201 u64 seq;
1202
1203 if (WARN_ON(pipe >= dev->num_crtcs))
1204 return;
1205
1206 spin_lock_irqsave(&dev->event_lock, irqflags);
1207
1208 spin_lock(&dev->vbl_lock);
1209 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1210 pipe, vblank->enabled, vblank->inmodeset);
1211
1212 /* Avoid redundant vblank disables without previous
1213 * drm_crtc_vblank_on(). */
1214 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1215 drm_vblank_disable_and_save(dev, pipe);
1216
1217 #ifdef __NetBSD__
1218 DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
1219 #else
1220 wake_up(&vblank->queue);
1221 #endif
1222
1223 /*
1224 * Prevent subsequent drm_vblank_get() from re-enabling
1225 * the vblank interrupt by bumping the refcount.
1226 */
1227 if (!vblank->inmodeset) {
1228 atomic_inc(&vblank->refcount);
1229 vblank->inmodeset = 1;
1230 }
1231 spin_unlock(&dev->vbl_lock);
1232
1233 /* Send any queued vblank events, lest the natives grow disquiet */
1234 seq = drm_vblank_count_and_time(dev, pipe, &now);
1235
1236 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1237 if (e->pipe != pipe)
1238 continue;
1239 DRM_DEBUG("Sending premature vblank event on disable: "
1240 "wanted %"PRIu64", current %"PRIu64"\n",
1241 e->sequence, seq);
1242 list_del(&e->base.link);
1243 drm_vblank_put(dev, pipe);
1244 send_vblank_event(dev, e, seq, now);
1245 }
1246 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1247
1248 /* Will be reset by the modeset helpers when re-enabling the crtc by
1249 * calling drm_calc_timestamping_constants(). */
1250 vblank->hwmode.crtc_clock = 0;
1251 }
1252 EXPORT_SYMBOL(drm_crtc_vblank_off);
1253
1254 /**
1255 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1256 * @crtc: CRTC in question
1257 *
1258 * Drivers can use this function to reset the vblank state to off at load time.
1259 * Drivers should use this together with the drm_crtc_vblank_off() and
1260 * drm_crtc_vblank_on() functions. The difference compared to
1261 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1262 * and hence doesn't need to call any driver hooks.
1263 *
1264 * This is useful for recovering driver state e.g. on driver load, or on resume.
1265 */
1266 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1267 {
1268 struct drm_device *dev = crtc->dev;
1269 unsigned long irqflags;
1270 unsigned int pipe = drm_crtc_index(crtc);
1271 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1272
1273 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1274 /*
1275 * Prevent subsequent drm_vblank_get() from enabling the vblank
1276 * interrupt by bumping the refcount.
1277 */
1278 if (!vblank->inmodeset) {
1279 atomic_inc(&vblank->refcount);
1280 vblank->inmodeset = 1;
1281 }
1282 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1283
1284 WARN_ON(!list_empty(&dev->vblank_event_list));
1285 }
1286 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1287
1288 /**
1289 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1290 * @crtc: CRTC in question
1291 * @max_vblank_count: max hardware vblank counter value
1292 *
1293 * Update the maximum hardware vblank counter value for @crtc
1294 * at runtime. Useful for hardware where the operation of the
1295 * hardware vblank counter depends on the currently active
1296 * display configuration.
1297 *
1298 * For example, if the hardware vblank counter does not work
1299 * when a specific connector is active the maximum can be set
1300 * to zero. And when that specific connector isn't active the
1301 * maximum can again be set to the appropriate non-zero value.
1302 *
1303 * If used, must be called before drm_vblank_on().
1304 */
1305 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1306 u32 max_vblank_count)
1307 {
1308 struct drm_device *dev = crtc->dev;
1309 unsigned int pipe = drm_crtc_index(crtc);
1310 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1311
1312 WARN_ON(dev->max_vblank_count);
1313 WARN_ON(!READ_ONCE(vblank->inmodeset));
1314
1315 vblank->max_vblank_count = max_vblank_count;
1316 }
1317 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1318
1319 /**
1320 * drm_crtc_vblank_on - enable vblank events on a CRTC
1321 * @crtc: CRTC in question
1322 *
1323 * This functions restores the vblank interrupt state captured with
1324 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1325 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1326 * unbalanced and so can also be unconditionally called in driver load code to
1327 * reflect the current hardware state of the crtc.
1328 */
1329 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1330 {
1331 struct drm_device *dev = crtc->dev;
1332 unsigned int pipe = drm_crtc_index(crtc);
1333 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1334 unsigned long irqflags;
1335
1336 if (WARN_ON(pipe >= dev->num_crtcs))
1337 return;
1338
1339 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1340 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1341 pipe, vblank->enabled, vblank->inmodeset);
1342
1343 /* Drop our private "prevent drm_vblank_get" refcount */
1344 if (vblank->inmodeset) {
1345 atomic_dec(&vblank->refcount);
1346 vblank->inmodeset = 0;
1347 }
1348
1349 drm_reset_vblank_timestamp(dev, pipe);
1350
1351 /*
1352 * re-enable interrupts if there are users left, or the
1353 * user wishes vblank interrupts to be enabled all the time.
1354 */
1355 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1356 WARN_ON(drm_vblank_enable(dev, pipe));
1357 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1358 }
1359 EXPORT_SYMBOL(drm_crtc_vblank_on);
1360
1361 /**
1362 * drm_vblank_restore - estimate missed vblanks and update vblank count.
1363 * @dev: DRM device
1364 * @pipe: CRTC index
1365 *
1366 * Power manamement features can cause frame counter resets between vblank
1367 * disable and enable. Drivers can use this function in their
1368 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1369 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1370 * vblank counter.
1371 *
1372 * This function is the legacy version of drm_crtc_vblank_restore().
1373 */
1374 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1375 {
1376 ktime_t t_vblank;
1377 struct drm_vblank_crtc *vblank;
1378 int framedur_ns;
1379 u64 diff_ns;
1380 u32 cur_vblank, diff = 1;
1381 int count = DRM_TIMESTAMP_MAXRETRIES;
1382
1383 if (WARN_ON(pipe >= dev->num_crtcs))
1384 return;
1385
1386 assert_spin_locked(&dev->vbl_lock);
1387 assert_spin_locked(&dev->vblank_time_lock);
1388
1389 vblank = &dev->vblank[pipe];
1390 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1391 "Cannot compute missed vblanks without frame duration\n");
1392 framedur_ns = vblank->framedur_ns;
1393
1394 do {
1395 cur_vblank = __get_vblank_counter(dev, pipe);
1396 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1397 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1398
1399 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1400 if (framedur_ns)
1401 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1402
1403
1404 DRM_DEBUG_VBL("missed %d vblanks in %"PRId64" ns, frame duration=%d ns, hw_diff=%d\n",
1405 diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1406 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1407 }
1408 EXPORT_SYMBOL(drm_vblank_restore);
1409
1410 /**
1411 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1412 * @crtc: CRTC in question
1413 *
1414 * Power manamement features can cause frame counter resets between vblank
1415 * disable and enable. Drivers can use this function in their
1416 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1417 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1418 * vblank counter.
1419 */
1420 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1421 {
1422 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1423 }
1424 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1425
1426 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1427 unsigned int pipe)
1428 {
1429 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1430
1431 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1432 if (!dev->num_crtcs)
1433 return;
1434
1435 if (WARN_ON(pipe >= dev->num_crtcs))
1436 return;
1437
1438 /*
1439 * To avoid all the problems that might happen if interrupts
1440 * were enabled/disabled around or between these calls, we just
1441 * have the kernel take a reference on the CRTC (just once though
1442 * to avoid corrupting the count if multiple, mismatch calls occur),
1443 * so that interrupts remain enabled in the interim.
1444 */
1445 if (!vblank->inmodeset) {
1446 vblank->inmodeset = 0x1;
1447 if (drm_vblank_get(dev, pipe) == 0)
1448 vblank->inmodeset |= 0x2;
1449 }
1450 }
1451
1452 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1453 unsigned int pipe)
1454 {
1455 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1456 unsigned long irqflags;
1457
1458 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1459 if (!dev->num_crtcs)
1460 return;
1461
1462 if (WARN_ON(pipe >= dev->num_crtcs))
1463 return;
1464
1465 if (vblank->inmodeset) {
1466 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1467 drm_reset_vblank_timestamp(dev, pipe);
1468 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1469
1470 if (vblank->inmodeset & 0x2)
1471 drm_vblank_put(dev, pipe);
1472
1473 vblank->inmodeset = 0;
1474 }
1475 }
1476
1477 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1478 struct drm_file *file_priv)
1479 {
1480 struct drm_modeset_ctl *modeset = data;
1481 unsigned int pipe;
1482
1483 /* If drm_vblank_init() hasn't been called yet, just no-op */
1484 if (!dev->num_crtcs)
1485 return 0;
1486
1487 /* KMS drivers handle this internally */
1488 if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1489 return 0;
1490
1491 pipe = modeset->crtc;
1492 if (pipe >= dev->num_crtcs)
1493 return -EINVAL;
1494
1495 switch (modeset->cmd) {
1496 case _DRM_PRE_MODESET:
1497 drm_legacy_vblank_pre_modeset(dev, pipe);
1498 break;
1499 case _DRM_POST_MODESET:
1500 drm_legacy_vblank_post_modeset(dev, pipe);
1501 break;
1502 default:
1503 return -EINVAL;
1504 }
1505
1506 return 0;
1507 }
1508
1509 static inline bool vblank_passed(u64 seq, u64 ref)
1510 {
1511 return (seq - ref) <= (1 << 23);
1512 }
1513
1514 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1515 u64 req_seq,
1516 union drm_wait_vblank *vblwait,
1517 struct drm_file *file_priv)
1518 {
1519 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1520 struct drm_pending_vblank_event *e;
1521 ktime_t now;
1522 unsigned long flags;
1523 u64 seq;
1524 int ret;
1525
1526 e = kzalloc(sizeof(*e), GFP_KERNEL);
1527 if (e == NULL) {
1528 ret = -ENOMEM;
1529 goto err_put;
1530 }
1531
1532 e->pipe = pipe;
1533 e->event.base.type = DRM_EVENT_VBLANK;
1534 e->event.base.length = sizeof(e->event.vbl);
1535 e->event.vbl.user_data = vblwait->request.signal;
1536 e->event.vbl.crtc_id = 0;
1537 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1538 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1539 if (crtc)
1540 e->event.vbl.crtc_id = crtc->base.id;
1541 }
1542
1543 spin_lock_irqsave(&dev->event_lock, flags);
1544
1545 /*
1546 * drm_crtc_vblank_off() might have been called after we called
1547 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1548 * vblank disable, so no need for further locking. The reference from
1549 * drm_vblank_get() protects against vblank disable from another source.
1550 */
1551 if (!READ_ONCE(vblank->enabled)) {
1552 ret = -EINVAL;
1553 goto err_unlock;
1554 }
1555
1556 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1557 &e->event.base);
1558
1559 if (ret)
1560 goto err_unlock;
1561
1562 seq = drm_vblank_count_and_time(dev, pipe, &now);
1563
1564 DRM_DEBUG("event on vblank count %"PRIu64", current %"PRIu64", crtc %u\n",
1565 req_seq, seq, pipe);
1566
1567 trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1568
1569 e->sequence = req_seq;
1570 if (vblank_passed(seq, req_seq)) {
1571 drm_vblank_put(dev, pipe);
1572 send_vblank_event(dev, e, seq, now);
1573 vblwait->reply.sequence = seq;
1574 } else {
1575 /* drm_handle_vblank_events will call drm_vblank_put */
1576 list_add_tail(&e->base.link, &dev->vblank_event_list);
1577 vblwait->reply.sequence = req_seq;
1578 }
1579
1580 spin_unlock_irqrestore(&dev->event_lock, flags);
1581
1582 return 0;
1583
1584 err_unlock:
1585 spin_unlock_irqrestore(&dev->event_lock, flags);
1586 kfree(e);
1587 err_put:
1588 drm_vblank_put(dev, pipe);
1589 return ret;
1590 }
1591
1592 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1593 {
1594 if (vblwait->request.sequence)
1595 return false;
1596
1597 return _DRM_VBLANK_RELATIVE ==
1598 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1599 _DRM_VBLANK_EVENT |
1600 _DRM_VBLANK_NEXTONMISS));
1601 }
1602
1603 /*
1604 * Widen a 32-bit param to 64-bits.
1605 *
1606 * \param narrow 32-bit value (missing upper 32 bits)
1607 * \param near 64-bit value that should be 'close' to near
1608 *
1609 * This function returns a 64-bit value using the lower 32-bits from
1610 * 'narrow' and constructing the upper 32-bits so that the result is
1611 * as close as possible to 'near'.
1612 */
1613
1614 static u64 widen_32_to_64(u32 narrow, u64 near)
1615 {
1616 return near + (s32) (narrow - near);
1617 }
1618
1619 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1620 struct drm_wait_vblank_reply *reply)
1621 {
1622 ktime_t now;
1623 struct timespec64 ts;
1624
1625 /*
1626 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1627 * to store the seconds. This is safe as we always use monotonic
1628 * timestamps since linux-4.15.
1629 */
1630 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1631 ts = ktime_to_timespec64(now);
1632 reply->tval_sec = (u32)ts.tv_sec;
1633 reply->tval_usec = ts.tv_nsec / 1000;
1634 }
1635
1636 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1637 struct drm_file *file_priv)
1638 {
1639 struct drm_crtc *crtc;
1640 struct drm_vblank_crtc *vblank;
1641 union drm_wait_vblank *vblwait = data;
1642 int ret;
1643 u64 req_seq, seq;
1644 unsigned int pipe_index;
1645 unsigned int flags, pipe, high_pipe;
1646
1647 if (!dev->irq_enabled)
1648 return -EOPNOTSUPP;
1649
1650 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1651 return -EINVAL;
1652
1653 if (vblwait->request.type &
1654 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1655 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1656 DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
1657 vblwait->request.type,
1658 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1659 _DRM_VBLANK_HIGH_CRTC_MASK));
1660 return -EINVAL;
1661 }
1662
1663 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1664 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1665 if (high_pipe)
1666 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1667 else
1668 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1669
1670 /* Convert lease-relative crtc index into global crtc index */
1671 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1672 pipe = 0;
1673 drm_for_each_crtc(crtc, dev) {
1674 if (drm_lease_held(file_priv, crtc->base.id)) {
1675 if (pipe_index == 0)
1676 break;
1677 pipe_index--;
1678 }
1679 pipe++;
1680 }
1681 } else {
1682 pipe = pipe_index;
1683 }
1684
1685 if (pipe >= dev->num_crtcs)
1686 return -EINVAL;
1687
1688 vblank = &dev->vblank[pipe];
1689
1690 /* If the counter is currently enabled and accurate, short-circuit
1691 * queries to return the cached timestamp of the last vblank.
1692 */
1693 if (dev->vblank_disable_immediate &&
1694 drm_wait_vblank_is_query(vblwait) &&
1695 READ_ONCE(vblank->enabled)) {
1696 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1697 return 0;
1698 }
1699
1700 ret = drm_vblank_get(dev, pipe);
1701 if (ret) {
1702 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1703 return ret;
1704 }
1705 seq = drm_vblank_count(dev, pipe);
1706
1707 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1708 case _DRM_VBLANK_RELATIVE:
1709 req_seq = seq + vblwait->request.sequence;
1710 vblwait->request.sequence = req_seq;
1711 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1712 break;
1713 case _DRM_VBLANK_ABSOLUTE:
1714 req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1715 break;
1716 default:
1717 ret = -EINVAL;
1718 goto done;
1719 }
1720
1721 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1722 vblank_passed(seq, req_seq)) {
1723 req_seq = seq + 1;
1724 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1725 vblwait->request.sequence = req_seq;
1726 }
1727
1728 if (flags & _DRM_VBLANK_EVENT) {
1729 /* must hold on to the vblank ref until the event fires
1730 * drm_vblank_put will be called asynchronously
1731 */
1732 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1733 }
1734
1735 if (req_seq != seq) {
1736 int wait;
1737
1738 DRM_DEBUG("waiting on vblank count %"PRIu64", crtc %u\n",
1739 req_seq, pipe);
1740 #ifdef __NetBSD__
1741 DRM_SPIN_TIMED_WAIT_UNTIL(wait, &vblank->queue,
1742 &dev->vbl_lock, msecs_to_jiffies(3000),
1743 vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1744 !READ_ONCE(vblank->enabled));
1745 #else
1746 wait = wait_event_interruptible_timeout(vblank->queue,
1747 vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1748 !READ_ONCE(vblank->enabled),
1749 msecs_to_jiffies(3000));
1750 #endif
1751
1752 switch (wait) {
1753 case 0:
1754 /* timeout */
1755 ret = -EBUSY;
1756 break;
1757 case -ERESTARTSYS:
1758 /* interrupted by signal */
1759 ret = -EINTR;
1760 break;
1761 default:
1762 ret = 0;
1763 break;
1764 }
1765 }
1766
1767 if (ret != -EINTR) {
1768 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1769
1770 DRM_DEBUG("crtc %d returning %u to client\n",
1771 pipe, vblwait->reply.sequence);
1772 } else {
1773 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1774 }
1775
1776 done:
1777 drm_vblank_put(dev, pipe);
1778 return ret;
1779 }
1780
1781 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1782 {
1783 struct drm_pending_vblank_event *e, *t;
1784 ktime_t now;
1785 u64 seq;
1786
1787 assert_spin_locked(&dev->event_lock);
1788
1789 seq = drm_vblank_count_and_time(dev, pipe, &now);
1790
1791 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1792 if (e->pipe != pipe)
1793 continue;
1794 if (!vblank_passed(seq, e->sequence))
1795 continue;
1796
1797 DRM_DEBUG("vblank event on %"PRIu64", current %"PRIu64"\n",
1798 e->sequence, seq);
1799
1800 list_del(&e->base.link);
1801 drm_vblank_put(dev, pipe);
1802 send_vblank_event(dev, e, seq, now);
1803 }
1804
1805 trace_drm_vblank_event(pipe, seq, now,
1806 dev->driver->get_vblank_timestamp != NULL);
1807 }
1808
1809 /**
1810 * drm_handle_vblank - handle a vblank event
1811 * @dev: DRM device
1812 * @pipe: index of CRTC where this event occurred
1813 *
1814 * Drivers should call this routine in their vblank interrupt handlers to
1815 * update the vblank counter and send any signals that may be pending.
1816 *
1817 * This is the legacy version of drm_crtc_handle_vblank().
1818 */
1819 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1820 {
1821 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1822 unsigned long irqflags;
1823 bool disable_irq;
1824
1825 if (WARN_ON_ONCE(!dev->num_crtcs))
1826 return false;
1827
1828 if (WARN_ON(pipe >= dev->num_crtcs))
1829 return false;
1830
1831 spin_lock_irqsave(&dev->event_lock, irqflags);
1832
1833 /* Need timestamp lock to prevent concurrent execution with
1834 * vblank enable/disable, as this would cause inconsistent
1835 * or corrupted timestamps and vblank counts.
1836 */
1837 spin_lock(&dev->vblank_time_lock);
1838
1839 spin_lock(&dev->vbl_lock);
1840
1841 /* Vblank irq handling disabled. Nothing to do. */
1842 if (!vblank->enabled) {
1843 spin_unlock(&dev->vbl_lock);
1844 spin_unlock(&dev->vblank_time_lock);
1845 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1846 return false;
1847 }
1848
1849 drm_update_vblank_count(dev, pipe, true);
1850
1851 spin_unlock(&dev->vblank_time_lock);
1852
1853 #ifdef __NetBSD__
1854 DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
1855 #else
1856 wake_up(&vblank->queue);
1857 #endif
1858
1859 /* With instant-off, we defer disabling the interrupt until after
1860 * we finish processing the following vblank after all events have
1861 * been signaled. The disable has to be last (after
1862 * drm_handle_vblank_events) so that the timestamp is always accurate.
1863 */
1864 disable_irq = (dev->vblank_disable_immediate &&
1865 drm_vblank_offdelay > 0 &&
1866 !atomic_read(&vblank->refcount));
1867
1868 spin_unlock(&dev->vbl_lock);
1869
1870 drm_handle_vblank_events(dev, pipe);
1871
1872 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1873
1874 if (disable_irq)
1875 vblank_disable_fn(&vblank->disable_timer);
1876
1877 return true;
1878 }
1879 EXPORT_SYMBOL(drm_handle_vblank);
1880
1881 /**
1882 * drm_crtc_handle_vblank - handle a vblank event
1883 * @crtc: where this event occurred
1884 *
1885 * Drivers should call this routine in their vblank interrupt handlers to
1886 * update the vblank counter and send any signals that may be pending.
1887 *
1888 * This is the native KMS version of drm_handle_vblank().
1889 *
1890 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1891 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1892 * provide a barrier: Any writes done before calling
1893 * drm_crtc_handle_vblank() will be visible to callers of the later
1894 * functions, iff the vblank count is the same or a later one.
1895 *
1896 * See also &drm_vblank_crtc.count.
1897 *
1898 * Returns:
1899 * True if the event was successfully handled, false on failure.
1900 */
1901 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1902 {
1903 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1904 }
1905 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1906
1907 /*
1908 * Get crtc VBLANK count.
1909 *
1910 * \param dev DRM device
1911 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1912 * \param file_priv drm file private for the user's open file descriptor
1913 */
1914
1915 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1916 struct drm_file *file_priv)
1917 {
1918 struct drm_crtc *crtc;
1919 struct drm_vblank_crtc *vblank;
1920 int pipe;
1921 struct drm_crtc_get_sequence *get_seq = data;
1922 ktime_t now;
1923 bool vblank_enabled;
1924 int ret;
1925
1926 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1927 return -EOPNOTSUPP;
1928
1929 if (!dev->irq_enabled)
1930 return -EOPNOTSUPP;
1931
1932 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1933 if (!crtc)
1934 return -ENOENT;
1935
1936 pipe = drm_crtc_index(crtc);
1937
1938 vblank = &dev->vblank[pipe];
1939 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1940
1941 if (!vblank_enabled) {
1942 ret = drm_crtc_vblank_get(crtc);
1943 if (ret) {
1944 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1945 return ret;
1946 }
1947 }
1948 drm_modeset_lock(&crtc->mutex, NULL);
1949 if (crtc->state)
1950 get_seq->active = crtc->state->enable;
1951 else
1952 get_seq->active = crtc->enabled;
1953 drm_modeset_unlock(&crtc->mutex);
1954 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1955 get_seq->sequence_ns = ktime_to_ns(now);
1956 if (!vblank_enabled)
1957 drm_crtc_vblank_put(crtc);
1958 return 0;
1959 }
1960
1961 /*
1962 * Queue a event for VBLANK sequence
1963 *
1964 * \param dev DRM device
1965 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
1966 * \param file_priv drm file private for the user's open file descriptor
1967 */
1968
1969 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
1970 struct drm_file *file_priv)
1971 {
1972 struct drm_crtc *crtc;
1973 struct drm_vblank_crtc *vblank;
1974 int pipe;
1975 struct drm_crtc_queue_sequence *queue_seq = data;
1976 ktime_t now;
1977 struct drm_pending_vblank_event *e;
1978 u32 flags;
1979 u64 seq;
1980 u64 req_seq;
1981 int ret;
1982 unsigned long spin_flags;
1983
1984 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1985 return -EOPNOTSUPP;
1986
1987 if (!dev->irq_enabled)
1988 return -EOPNOTSUPP;
1989
1990 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
1991 if (!crtc)
1992 return -ENOENT;
1993
1994 flags = queue_seq->flags;
1995 /* Check valid flag bits */
1996 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
1997 DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
1998 return -EINVAL;
1999
2000 pipe = drm_crtc_index(crtc);
2001
2002 vblank = &dev->vblank[pipe];
2003
2004 e = kzalloc(sizeof(*e), GFP_KERNEL);
2005 if (e == NULL)
2006 return -ENOMEM;
2007
2008 ret = drm_crtc_vblank_get(crtc);
2009 if (ret) {
2010 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
2011 goto err_free;
2012 }
2013
2014 seq = drm_vblank_count_and_time(dev, pipe, &now);
2015 req_seq = queue_seq->sequence;
2016
2017 if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2018 req_seq += seq;
2019
2020 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
2021 req_seq = seq + 1;
2022
2023 e->pipe = pipe;
2024 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2025 e->event.base.length = sizeof(e->event.seq);
2026 e->event.seq.user_data = queue_seq->user_data;
2027
2028 spin_lock_irqsave(&dev->event_lock, spin_flags);
2029
2030 /*
2031 * drm_crtc_vblank_off() might have been called after we called
2032 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2033 * vblank disable, so no need for further locking. The reference from
2034 * drm_crtc_vblank_get() protects against vblank disable from another source.
2035 */
2036 if (!READ_ONCE(vblank->enabled)) {
2037 ret = -EINVAL;
2038 goto err_unlock;
2039 }
2040
2041 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2042 &e->event.base);
2043
2044 if (ret)
2045 goto err_unlock;
2046
2047 e->sequence = req_seq;
2048
2049 if (vblank_passed(seq, req_seq)) {
2050 drm_crtc_vblank_put(crtc);
2051 send_vblank_event(dev, e, seq, now);
2052 queue_seq->sequence = seq;
2053 } else {
2054 /* drm_handle_vblank_events will call drm_vblank_put */
2055 list_add_tail(&e->base.link, &dev->vblank_event_list);
2056 queue_seq->sequence = req_seq;
2057 }
2058
2059 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2060 return 0;
2061
2062 err_unlock:
2063 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2064 drm_crtc_vblank_put(crtc);
2065 err_free:
2066 kfree(e);
2067 return ret;
2068 }
2069