drm_vblank.c revision 1.9 1 /* $NetBSD: drm_vblank.c,v 1.9 2021/12/19 11:52:16 riastradh Exp $ */
2
3 /*
4 * drm_irq.c IRQ and vblank support
5 *
6 * \author Rickard E. (Rik) Faith <faith (at) valinux.com>
7 * \author Gareth Hughes <gareth (at) valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
26 * OTHER DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: drm_vblank.c,v 1.9 2021/12/19 11:52:16 riastradh Exp $");
31
32 #include <linux/export.h>
33 #include <linux/moduleparam.h>
34 #include <linux/math64.h>
35
36 #include <drm/drm_crtc.h>
37 #include <drm/drm_drv.h>
38 #include <drm/drm_framebuffer.h>
39 #include <drm/drm_print.h>
40 #include <drm/drm_vblank.h>
41
42 #include "drm_internal.h"
43 #include "drm_trace.h"
44
45 /**
46 * DOC: vblank handling
47 *
48 * Vertical blanking plays a major role in graphics rendering. To achieve
49 * tear-free display, users must synchronize page flips and/or rendering to
50 * vertical blanking. The DRM API offers ioctls to perform page flips
51 * synchronized to vertical blanking and wait for vertical blanking.
52 *
53 * The DRM core handles most of the vertical blanking management logic, which
54 * involves filtering out spurious interrupts, keeping race-free blanking
55 * counters, coping with counter wrap-around and resets and keeping use counts.
56 * It relies on the driver to generate vertical blanking interrupts and
57 * optionally provide a hardware vertical blanking counter.
58 *
59 * Drivers must initialize the vertical blanking handling core with a call to
60 * drm_vblank_init(). Minimally, a driver needs to implement
61 * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call
62 * drm_crtc_handle_vblank() in its vblank interrupt handler for working vblank
63 * support.
64 *
65 * Vertical blanking interrupts can be enabled by the DRM core or by drivers
66 * themselves (for instance to handle page flipping operations). The DRM core
67 * maintains a vertical blanking use count to ensure that the interrupts are not
68 * disabled while a user still needs them. To increment the use count, drivers
69 * call drm_crtc_vblank_get() and release the vblank reference again with
70 * drm_crtc_vblank_put(). In between these two calls vblank interrupts are
71 * guaranteed to be enabled.
72 *
73 * On many hardware disabling the vblank interrupt cannot be done in a race-free
74 * manner, see &drm_driver.vblank_disable_immediate and
75 * &drm_driver.max_vblank_count. In that case the vblank core only disables the
76 * vblanks after a timer has expired, which can be configured through the
77 * ``vblankoffdelay`` module parameter.
78 *
79 * Lock order: event_lock -> vbl_lock -> vblank_time_lock
80 */
81
82 /* Retry timestamp calculation up to 3 times to satisfy
83 * drm_timestamp_precision before giving up.
84 */
85 #define DRM_TIMESTAMP_MAXRETRIES 3
86
87 /* Threshold in nanoseconds for detection of redundant
88 * vblank irq in drm_handle_vblank(). 1 msec should be ok.
89 */
90 #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000
91
92 static bool
93 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
94 ktime_t *tvblank, bool in_vblank_irq);
95
96 static unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */
97
98 static int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */
99
100 module_param_named(vblankoffdelay, drm_vblank_offdelay, int, 0600);
101 module_param_named(timestamp_precision_usec, drm_timestamp_precision, int, 0600);
102 MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)");
103 MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]");
104
105 static void store_vblank(struct drm_device *dev, unsigned int pipe,
106 u32 vblank_count_inc,
107 ktime_t t_vblank, u32 last)
108 {
109 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
110
111 assert_spin_locked(&dev->vblank_time_lock);
112
113 vblank->last = last;
114
115 write_seqlock(&vblank->seqlock);
116 vblank->time = t_vblank;
117 atomic64_add(vblank_count_inc, &vblank->count);
118 write_sequnlock(&vblank->seqlock);
119 }
120
121 static u32 drm_max_vblank_count(struct drm_device *dev, unsigned int pipe)
122 {
123 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
124
125 return vblank->max_vblank_count ?: dev->max_vblank_count;
126 }
127
128 /*
129 * "No hw counter" fallback implementation of .get_vblank_counter() hook,
130 * if there is no useable hardware frame counter available.
131 */
132 static u32 drm_vblank_no_hw_counter(struct drm_device *dev, unsigned int pipe)
133 {
134 WARN_ON_ONCE(drm_max_vblank_count(dev, pipe) != 0);
135 return 0;
136 }
137
138 static u32 __get_vblank_counter(struct drm_device *dev, unsigned int pipe)
139 {
140 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
141 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
142
143 if (WARN_ON(!crtc))
144 return 0;
145
146 if (crtc->funcs->get_vblank_counter)
147 return crtc->funcs->get_vblank_counter(crtc);
148 }
149
150 if (dev->driver->get_vblank_counter)
151 return dev->driver->get_vblank_counter(dev, pipe);
152
153 return drm_vblank_no_hw_counter(dev, pipe);
154 }
155
156 /*
157 * Reset the stored timestamp for the current vblank count to correspond
158 * to the last vblank occurred.
159 *
160 * Only to be called from drm_crtc_vblank_on().
161 *
162 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
163 * device vblank fields.
164 */
165 static void drm_reset_vblank_timestamp(struct drm_device *dev, unsigned int pipe)
166 {
167 u32 cur_vblank;
168 bool rc;
169 ktime_t t_vblank;
170 int count = DRM_TIMESTAMP_MAXRETRIES;
171
172 assert_spin_locked(&dev->vbl_lock);
173
174 spin_lock(&dev->vblank_time_lock);
175
176 /*
177 * sample the current counter to avoid random jumps
178 * when drm_vblank_enable() applies the diff
179 */
180 do {
181 cur_vblank = __get_vblank_counter(dev, pipe);
182 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
183 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
184
185 /*
186 * Only reinitialize corresponding vblank timestamp if high-precision query
187 * available and didn't fail. Otherwise reinitialize delayed at next vblank
188 * interrupt and assign 0 for now, to mark the vblanktimestamp as invalid.
189 */
190 if (!rc)
191 t_vblank = 0;
192
193 /*
194 * +1 to make sure user will never see the same
195 * vblank counter value before and after a modeset
196 */
197 store_vblank(dev, pipe, 1, t_vblank, cur_vblank);
198
199 spin_unlock(&dev->vblank_time_lock);
200 }
201
202 /*
203 * Call back into the driver to update the appropriate vblank counter
204 * (specified by @pipe). Deal with wraparound, if it occurred, and
205 * update the last read value so we can deal with wraparound on the next
206 * call if necessary.
207 *
208 * Only necessary when going from off->on, to account for frames we
209 * didn't get an interrupt for.
210 *
211 * Note: caller must hold &drm_device.vbl_lock since this reads & writes
212 * device vblank fields.
213 */
214 static void drm_update_vblank_count(struct drm_device *dev, unsigned int pipe,
215 bool in_vblank_irq)
216 {
217 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
218 u32 cur_vblank, diff;
219 bool rc;
220 ktime_t t_vblank;
221 int count = DRM_TIMESTAMP_MAXRETRIES;
222 int framedur_ns = vblank->framedur_ns;
223 u32 max_vblank_count = drm_max_vblank_count(dev, pipe);
224
225 assert_spin_locked(&dev->vbl_lock);
226
227 /*
228 * Interrupts were disabled prior to this call, so deal with counter
229 * wrap if needed.
230 * NOTE! It's possible we lost a full dev->max_vblank_count + 1 events
231 * here if the register is small or we had vblank interrupts off for
232 * a long time.
233 *
234 * We repeat the hardware vblank counter & timestamp query until
235 * we get consistent results. This to prevent races between gpu
236 * updating its hardware counter while we are retrieving the
237 * corresponding vblank timestamp.
238 */
239 do {
240 cur_vblank = __get_vblank_counter(dev, pipe);
241 rc = drm_get_last_vbltimestamp(dev, pipe, &t_vblank, in_vblank_irq);
242 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
243
244 if (max_vblank_count) {
245 /* trust the hw counter when it's around */
246 diff = (cur_vblank - vblank->last) & max_vblank_count;
247 } else if (rc && framedur_ns) {
248 u64 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
249
250 /*
251 * Figure out how many vblanks we've missed based
252 * on the difference in the timestamps and the
253 * frame/field duration.
254 */
255
256 DRM_DEBUG_VBL("crtc %u: Calculating number of vblanks."
257 " diff_ns = %lld, framedur_ns = %d)\n",
258 pipe, (long long) diff_ns, framedur_ns);
259
260 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
261
262 if (diff == 0 && in_vblank_irq)
263 DRM_DEBUG_VBL("crtc %u: Redundant vblirq ignored\n",
264 pipe);
265 } else {
266 /* some kind of default for drivers w/o accurate vbl timestamping */
267 diff = in_vblank_irq ? 1 : 0;
268 }
269
270 /*
271 * Within a drm_vblank_pre_modeset - drm_vblank_post_modeset
272 * interval? If so then vblank irqs keep running and it will likely
273 * happen that the hardware vblank counter is not trustworthy as it
274 * might reset at some point in that interval and vblank timestamps
275 * are not trustworthy either in that interval. Iow. this can result
276 * in a bogus diff >> 1 which must be avoided as it would cause
277 * random large forward jumps of the software vblank counter.
278 */
279 if (diff > 1 && (vblank->inmodeset & 0x2)) {
280 DRM_DEBUG_VBL("clamping vblank bump to 1 on crtc %u: diffr=%u"
281 " due to pre-modeset.\n", pipe, diff);
282 diff = 1;
283 }
284
285 DRM_DEBUG_VBL("updating vblank count on crtc %u:"
286 " current=%"PRIu64", diff=%u, hw=%u hw_last=%u\n",
287 pipe, atomic64_read(&vblank->count), diff,
288 cur_vblank, vblank->last);
289
290 if (diff == 0) {
291 WARN_ON_ONCE(cur_vblank != vblank->last);
292 return;
293 }
294
295 /*
296 * Only reinitialize corresponding vblank timestamp if high-precision query
297 * available and didn't fail, or we were called from the vblank interrupt.
298 * Otherwise reinitialize delayed at next vblank interrupt and assign 0
299 * for now, to mark the vblanktimestamp as invalid.
300 */
301 if (!rc && !in_vblank_irq)
302 t_vblank = 0;
303
304 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
305 }
306
307 static u64 drm_vblank_count(struct drm_device *dev, unsigned int pipe)
308 {
309 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
310 u64 count;
311
312 if (WARN_ON(pipe >= dev->num_crtcs))
313 return 0;
314
315 count = atomic64_read(&vblank->count);
316
317 /*
318 * This read barrier corresponds to the implicit write barrier of the
319 * write seqlock in store_vblank(). Note that this is the only place
320 * where we need an explicit barrier, since all other access goes
321 * through drm_vblank_count_and_time(), which already has the required
322 * read barrier curtesy of the read seqlock.
323 */
324 smp_rmb();
325
326 return count;
327 }
328
329 /**
330 * drm_crtc_accurate_vblank_count - retrieve the master vblank counter
331 * @crtc: which counter to retrieve
332 *
333 * This function is similar to drm_crtc_vblank_count() but this function
334 * interpolates to handle a race with vblank interrupts using the high precision
335 * timestamping support.
336 *
337 * This is mostly useful for hardware that can obtain the scanout position, but
338 * doesn't have a hardware frame counter.
339 */
340 u64 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc)
341 {
342 struct drm_device *dev = crtc->dev;
343 unsigned int pipe = drm_crtc_index(crtc);
344 u64 vblank;
345 unsigned long flags;
346
347 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !dev->driver->get_vblank_timestamp,
348 "This function requires support for accurate vblank timestamps.");
349
350 spin_lock(&dev->vbl_lock);
351 spin_lock_irqsave(&dev->vblank_time_lock, flags);
352
353 drm_update_vblank_count(dev, pipe, false);
354 vblank = drm_vblank_count(dev, pipe);
355
356 spin_unlock_irqrestore(&dev->vblank_time_lock, flags);
357 spin_unlock(&dev->vbl_lock);
358
359 return vblank;
360 }
361 EXPORT_SYMBOL(drm_crtc_accurate_vblank_count);
362
363 static void __disable_vblank(struct drm_device *dev, unsigned int pipe)
364 {
365 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
366 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
367
368 if (WARN_ON(!crtc))
369 return;
370
371 if (crtc->funcs->disable_vblank) {
372 crtc->funcs->disable_vblank(crtc);
373 return;
374 }
375 }
376
377 dev->driver->disable_vblank(dev, pipe);
378 }
379
380 /*
381 * Disable vblank irq's on crtc, make sure that last vblank count
382 * of hardware and corresponding consistent software vblank counter
383 * are preserved, even if there are any spurious vblank irq's after
384 * disable.
385 */
386 void drm_vblank_disable_and_save(struct drm_device *dev, unsigned int pipe)
387 {
388 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
389 unsigned long irqflags;
390
391 assert_spin_locked(&dev->vbl_lock);
392
393 /* Prevent vblank irq processing while disabling vblank irqs,
394 * so no updates of timestamps or count can happen after we've
395 * disabled. Needed to prevent races in case of delayed irq's.
396 */
397 spin_lock_irqsave(&dev->vblank_time_lock, irqflags);
398
399 /*
400 * Update vblank count and disable vblank interrupts only if the
401 * interrupts were enabled. This avoids calling the ->disable_vblank()
402 * operation in atomic context with the hardware potentially runtime
403 * suspended.
404 */
405 if (!vblank->enabled)
406 goto out;
407
408 /*
409 * Update the count and timestamp to maintain the
410 * appearance that the counter has been ticking all along until
411 * this time. This makes the count account for the entire time
412 * between drm_crtc_vblank_on() and drm_crtc_vblank_off().
413 */
414 drm_update_vblank_count(dev, pipe, false);
415 __disable_vblank(dev, pipe);
416 vblank->enabled = false;
417
418 out:
419 spin_unlock_irqrestore(&dev->vblank_time_lock, irqflags);
420 }
421
422 static void
423 vblank_disable_locked(struct drm_vblank_crtc *vblank, struct drm_device *dev,
424 unsigned int pipe)
425 {
426
427 BUG_ON(vblank != &dev->vblank[pipe]);
428 assert_spin_locked(&dev->vbl_lock);
429
430 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
431 DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
432 drm_vblank_disable_and_save(dev, pipe);
433 }
434 }
435
436 static void vblank_disable_fn(struct timer_list *t)
437 {
438 struct drm_vblank_crtc *vblank = from_timer(vblank, t, disable_timer);
439 struct drm_device *dev = vblank->dev;
440 unsigned int pipe = vblank->pipe;
441 unsigned long irqflags;
442
443 spin_lock_irqsave(&dev->vbl_lock, irqflags);
444 if (atomic_read(&vblank->refcount) == 0 && vblank->enabled) {
445 DRM_DEBUG("disabling vblank on crtc %u\n", pipe);
446 drm_vblank_disable_and_save(dev, pipe);
447 }
448 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
449 }
450
451 void drm_vblank_cleanup(struct drm_device *dev)
452 {
453 unsigned int pipe;
454
455 /* Bail if the driver didn't call drm_vblank_init() */
456 if (dev->num_crtcs == 0)
457 return;
458
459 for (pipe = 0; pipe < dev->num_crtcs; pipe++) {
460 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
461
462 WARN_ON(READ_ONCE(vblank->enabled) &&
463 drm_core_check_feature(dev, DRIVER_MODESET));
464
465 del_timer_sync(&vblank->disable_timer);
466 #ifdef __NetBSD__
467 teardown_timer(&vblank->disable_timer);
468 seqlock_destroy(&vblank->seqlock);
469 #endif
470 }
471
472 kfree(dev->vblank);
473
474 dev->num_crtcs = 0;
475 }
476
477 /**
478 * drm_vblank_init - initialize vblank support
479 * @dev: DRM device
480 * @num_crtcs: number of CRTCs supported by @dev
481 *
482 * This function initializes vblank support for @num_crtcs display pipelines.
483 * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for
484 * drivers with a &drm_driver.release callback.
485 *
486 * Returns:
487 * Zero on success or a negative error code on failure.
488 */
489 int drm_vblank_init(struct drm_device *dev, unsigned int num_crtcs)
490 {
491 int ret = -ENOMEM;
492 unsigned int i;
493
494 spin_lock_init(&dev->vbl_lock);
495 spin_lock_init(&dev->vblank_time_lock);
496
497 dev->num_crtcs = num_crtcs;
498
499 dev->vblank = kcalloc(num_crtcs, sizeof(*dev->vblank), GFP_KERNEL);
500 if (!dev->vblank)
501 goto err;
502
503 for (i = 0; i < num_crtcs; i++) {
504 struct drm_vblank_crtc *vblank = &dev->vblank[i];
505
506 vblank->dev = dev;
507 vblank->pipe = i;
508 #ifdef __NetBSD__
509 DRM_INIT_WAITQUEUE(&vblank->queue, "drmvblnq");
510 #else
511 init_waitqueue_head(&vblank->queue);
512 #endif
513 timer_setup(&vblank->disable_timer, vblank_disable_fn, 0);
514 seqlock_init(&vblank->seqlock);
515 }
516
517 DRM_INFO("Supports vblank timestamp caching Rev 2 (21.10.2013).\n");
518
519 /* Driver specific high-precision vblank timestamping supported? */
520 if (dev->driver->get_vblank_timestamp)
521 DRM_INFO("Driver supports precise vblank timestamp query.\n");
522 else
523 DRM_INFO("No driver support for vblank timestamp query.\n");
524
525 /* Must have precise timestamping for reliable vblank instant disable */
526 if (dev->vblank_disable_immediate && !dev->driver->get_vblank_timestamp) {
527 dev->vblank_disable_immediate = false;
528 DRM_INFO("Setting vblank_disable_immediate to false because "
529 "get_vblank_timestamp == NULL\n");
530 }
531
532 return 0;
533
534 err:
535 dev->num_crtcs = 0;
536 return ret;
537 }
538 EXPORT_SYMBOL(drm_vblank_init);
539
540 /**
541 * drm_crtc_vblank_waitqueue - get vblank waitqueue for the CRTC
542 * @crtc: which CRTC's vblank waitqueue to retrieve
543 *
544 * This function returns a pointer to the vblank waitqueue for the CRTC.
545 * Drivers can use this to implement vblank waits using wait_event() and related
546 * functions.
547 */
548 #ifdef __NetBSD__
549 drm_waitqueue_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
550 #else
551 wait_queue_head_t *drm_crtc_vblank_waitqueue(struct drm_crtc *crtc)
552 #endif
553 {
554 return &crtc->dev->vblank[drm_crtc_index(crtc)].queue;
555 }
556 EXPORT_SYMBOL(drm_crtc_vblank_waitqueue);
557
558
559 /**
560 * drm_calc_timestamping_constants - calculate vblank timestamp constants
561 * @crtc: drm_crtc whose timestamp constants should be updated.
562 * @mode: display mode containing the scanout timings
563 *
564 * Calculate and store various constants which are later needed by vblank and
565 * swap-completion timestamping, e.g, by
566 * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true
567 * scanout timing, so they take things like panel scaling or other adjustments
568 * into account.
569 */
570 void drm_calc_timestamping_constants(struct drm_crtc *crtc,
571 const struct drm_display_mode *mode)
572 {
573 struct drm_device *dev = crtc->dev;
574 unsigned int pipe = drm_crtc_index(crtc);
575 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
576 int linedur_ns = 0, framedur_ns = 0;
577 int dotclock = mode->crtc_clock;
578
579 if (!dev->num_crtcs)
580 return;
581
582 if (WARN_ON(pipe >= dev->num_crtcs))
583 return;
584
585 /* Valid dotclock? */
586 if (dotclock > 0) {
587 int frame_size = mode->crtc_htotal * mode->crtc_vtotal;
588
589 /*
590 * Convert scanline length in pixels and video
591 * dot clock to line duration and frame duration
592 * in nanoseconds:
593 */
594 linedur_ns = div_u64((u64) mode->crtc_htotal * 1000000, dotclock);
595 framedur_ns = div_u64((u64) frame_size * 1000000, dotclock);
596
597 /*
598 * Fields of interlaced scanout modes are only half a frame duration.
599 */
600 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
601 framedur_ns /= 2;
602 } else
603 DRM_ERROR("crtc %u: Can't calculate constants, dotclock = 0!\n",
604 crtc->base.id);
605
606 vblank->linedur_ns = linedur_ns;
607 vblank->framedur_ns = framedur_ns;
608 vblank->hwmode = *mode;
609
610 DRM_DEBUG("crtc %u: hwmode: htotal %d, vtotal %d, vdisplay %d\n",
611 crtc->base.id, mode->crtc_htotal,
612 mode->crtc_vtotal, mode->crtc_vdisplay);
613 DRM_DEBUG("crtc %u: clock %d kHz framedur %d linedur %d\n",
614 crtc->base.id, dotclock, framedur_ns, linedur_ns);
615 }
616 EXPORT_SYMBOL(drm_calc_timestamping_constants);
617
618 /**
619 * drm_calc_vbltimestamp_from_scanoutpos - precise vblank timestamp helper
620 * @dev: DRM device
621 * @pipe: index of CRTC whose vblank timestamp to retrieve
622 * @max_error: Desired maximum allowable error in timestamps (nanosecs)
623 * On return contains true maximum error of timestamp
624 * @vblank_time: Pointer to time which should receive the timestamp
625 * @in_vblank_irq:
626 * True when called from drm_crtc_handle_vblank(). Some drivers
627 * need to apply some workarounds for gpu-specific vblank irq quirks
628 * if flag is set.
629 *
630 * Implements calculation of exact vblank timestamps from given drm_display_mode
631 * timings and current video scanout position of a CRTC. This can be directly
632 * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver
633 * if &drm_driver.get_scanout_position is implemented.
634 *
635 * The current implementation only handles standard video modes. For double scan
636 * and interlaced modes the driver is supposed to adjust the hardware mode
637 * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to
638 * match the scanout position reported.
639 *
640 * Note that atomic drivers must call drm_calc_timestamping_constants() before
641 * enabling a CRTC. The atomic helpers already take care of that in
642 * drm_atomic_helper_update_legacy_modeset_state().
643 *
644 * Returns:
645 *
646 * Returns true on success, and false on failure, i.e. when no accurate
647 * timestamp could be acquired.
648 */
649 bool drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev,
650 unsigned int pipe,
651 int *max_error,
652 ktime_t *vblank_time,
653 bool in_vblank_irq)
654 {
655 struct timespec64 ts_etime, ts_vblank_time;
656 ktime_t stime, etime;
657 bool vbl_status;
658 struct drm_crtc *crtc;
659 const struct drm_display_mode *mode;
660 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
661 int vpos, hpos, i;
662 int delta_ns, duration_ns;
663
664 if (!drm_core_check_feature(dev, DRIVER_MODESET))
665 return false;
666
667 crtc = drm_crtc_from_index(dev, pipe);
668
669 if (pipe >= dev->num_crtcs || !crtc) {
670 DRM_ERROR("Invalid crtc %u\n", pipe);
671 return false;
672 }
673
674 /* Scanout position query not supported? Should not happen. */
675 if (!dev->driver->get_scanout_position) {
676 DRM_ERROR("Called from driver w/o get_scanout_position()!?\n");
677 return false;
678 }
679
680 if (drm_drv_uses_atomic_modeset(dev))
681 mode = &vblank->hwmode;
682 else
683 mode = &crtc->hwmode;
684
685 /* If mode timing undefined, just return as no-op:
686 * Happens during initial modesetting of a crtc.
687 */
688 if (mode->crtc_clock == 0) {
689 DRM_DEBUG("crtc %u: Noop due to uninitialized mode.\n", pipe);
690 WARN_ON_ONCE(drm_drv_uses_atomic_modeset(dev));
691
692 return false;
693 }
694
695 /* Get current scanout position with system timestamp.
696 * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times
697 * if single query takes longer than max_error nanoseconds.
698 *
699 * This guarantees a tight bound on maximum error if
700 * code gets preempted or delayed for some reason.
701 */
702 for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) {
703 /*
704 * Get vertical and horizontal scanout position vpos, hpos,
705 * and bounding timestamps stime, etime, pre/post query.
706 */
707 vbl_status = dev->driver->get_scanout_position(dev, pipe,
708 in_vblank_irq,
709 &vpos, &hpos,
710 &stime, &etime,
711 mode);
712
713 /* Return as no-op if scanout query unsupported or failed. */
714 if (!vbl_status) {
715 DRM_DEBUG("crtc %u : scanoutpos query failed.\n",
716 pipe);
717 return false;
718 }
719
720 /* Compute uncertainty in timestamp of scanout position query. */
721 duration_ns = ktime_to_ns(etime) - ktime_to_ns(stime);
722
723 /* Accept result with < max_error nsecs timing uncertainty. */
724 if (duration_ns <= *max_error)
725 break;
726 }
727
728 /* Noisy system timing? */
729 if (i == DRM_TIMESTAMP_MAXRETRIES) {
730 DRM_DEBUG("crtc %u: Noisy timestamp %d us > %d us [%d reps].\n",
731 pipe, duration_ns/1000, *max_error/1000, i);
732 }
733
734 /* Return upper bound of timestamp precision error. */
735 *max_error = duration_ns;
736
737 /* Convert scanout position into elapsed time at raw_time query
738 * since start of scanout at first display scanline. delta_ns
739 * can be negative if start of scanout hasn't happened yet.
740 */
741 delta_ns = div_s64(1000000LL * (vpos * mode->crtc_htotal + hpos),
742 mode->crtc_clock);
743
744 /* Subtract time delta from raw timestamp to get final
745 * vblank_time timestamp for end of vblank.
746 */
747 *vblank_time = ktime_sub_ns(etime, delta_ns);
748
749 if (!drm_debug_enabled(DRM_UT_VBL))
750 return true;
751
752 ts_etime = ktime_to_timespec64(etime);
753 ts_vblank_time = ktime_to_timespec64(*vblank_time);
754
755 DRM_DEBUG_VBL("crtc %u : v p(%d,%d)@ %"PRId64".%06ld -> %"PRId64".%06ld [e %d us, %d rep]\n",
756 pipe, hpos, vpos,
757 (u64)ts_etime.tv_sec, ts_etime.tv_nsec / 1000,
758 (u64)ts_vblank_time.tv_sec, ts_vblank_time.tv_nsec / 1000,
759 duration_ns / 1000, i);
760
761 return true;
762 }
763 EXPORT_SYMBOL(drm_calc_vbltimestamp_from_scanoutpos);
764
765 /**
766 * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent
767 * vblank interval
768 * @dev: DRM device
769 * @pipe: index of CRTC whose vblank timestamp to retrieve
770 * @tvblank: Pointer to target time which should receive the timestamp
771 * @in_vblank_irq:
772 * True when called from drm_crtc_handle_vblank(). Some drivers
773 * need to apply some workarounds for gpu-specific vblank irq quirks
774 * if flag is set.
775 *
776 * Fetches the system timestamp corresponding to the time of the most recent
777 * vblank interval on specified CRTC. May call into kms-driver to
778 * compute the timestamp with a high-precision GPU specific method.
779 *
780 * Returns zero if timestamp originates from uncorrected do_gettimeofday()
781 * call, i.e., it isn't very precisely locked to the true vblank.
782 *
783 * Returns:
784 * True if timestamp is considered to be very precise, false otherwise.
785 */
786 static bool
787 drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe,
788 ktime_t *tvblank, bool in_vblank_irq)
789 {
790 bool ret = false;
791
792 /* Define requested maximum error on timestamps (nanoseconds). */
793 int max_error = (int) drm_timestamp_precision * 1000;
794
795 /* Query driver if possible and precision timestamping enabled. */
796 if (dev->driver->get_vblank_timestamp && (max_error > 0))
797 ret = dev->driver->get_vblank_timestamp(dev, pipe, &max_error,
798 tvblank, in_vblank_irq);
799
800 /* GPU high precision timestamp query unsupported or failed.
801 * Return current monotonic/gettimeofday timestamp as best estimate.
802 */
803 if (!ret)
804 *tvblank = ktime_get();
805
806 return ret;
807 }
808
809 /**
810 * drm_crtc_vblank_count - retrieve "cooked" vblank counter value
811 * @crtc: which counter to retrieve
812 *
813 * Fetches the "cooked" vblank count value that represents the number of
814 * vblank events since the system was booted, including lost events due to
815 * modesetting activity. Note that this timer isn't correct against a racing
816 * vblank interrupt (since it only reports the software vblank counter), see
817 * drm_crtc_accurate_vblank_count() for such use-cases.
818 *
819 * Note that for a given vblank counter value drm_crtc_handle_vblank()
820 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
821 * provide a barrier: Any writes done before calling
822 * drm_crtc_handle_vblank() will be visible to callers of the later
823 * functions, iff the vblank count is the same or a later one.
824 *
825 * See also &drm_vblank_crtc.count.
826 *
827 * Returns:
828 * The software vblank counter.
829 */
830 u64 drm_crtc_vblank_count(struct drm_crtc *crtc)
831 {
832 return drm_vblank_count(crtc->dev, drm_crtc_index(crtc));
833 }
834 EXPORT_SYMBOL(drm_crtc_vblank_count);
835
836 /**
837 * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the
838 * system timestamp corresponding to that vblank counter value.
839 * @dev: DRM device
840 * @pipe: index of CRTC whose counter to retrieve
841 * @vblanktime: Pointer to ktime_t to receive the vblank timestamp.
842 *
843 * Fetches the "cooked" vblank count value that represents the number of
844 * vblank events since the system was booted, including lost events due to
845 * modesetting activity. Returns corresponding system timestamp of the time
846 * of the vblank interval that corresponds to the current vblank counter value.
847 *
848 * This is the legacy version of drm_crtc_vblank_count_and_time().
849 */
850 static u64 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe,
851 ktime_t *vblanktime)
852 {
853 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
854 u64 vblank_count;
855 unsigned int seq;
856
857 if (WARN_ON(pipe >= dev->num_crtcs)) {
858 *vblanktime = 0;
859 return 0;
860 }
861
862 do {
863 seq = read_seqbegin(&vblank->seqlock);
864 vblank_count = atomic64_read(&vblank->count);
865 *vblanktime = vblank->time;
866 } while (read_seqretry(&vblank->seqlock, seq));
867
868 return vblank_count;
869 }
870
871 /**
872 * drm_crtc_vblank_count_and_time - retrieve "cooked" vblank counter value
873 * and the system timestamp corresponding to that vblank counter value
874 * @crtc: which counter to retrieve
875 * @vblanktime: Pointer to time to receive the vblank timestamp.
876 *
877 * Fetches the "cooked" vblank count value that represents the number of
878 * vblank events since the system was booted, including lost events due to
879 * modesetting activity. Returns corresponding system timestamp of the time
880 * of the vblank interval that corresponds to the current vblank counter value.
881 *
882 * Note that for a given vblank counter value drm_crtc_handle_vblank()
883 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
884 * provide a barrier: Any writes done before calling
885 * drm_crtc_handle_vblank() will be visible to callers of the later
886 * functions, iff the vblank count is the same or a later one.
887 *
888 * See also &drm_vblank_crtc.count.
889 */
890 u64 drm_crtc_vblank_count_and_time(struct drm_crtc *crtc,
891 ktime_t *vblanktime)
892 {
893 return drm_vblank_count_and_time(crtc->dev, drm_crtc_index(crtc),
894 vblanktime);
895 }
896 EXPORT_SYMBOL(drm_crtc_vblank_count_and_time);
897
898 static void send_vblank_event(struct drm_device *dev,
899 struct drm_pending_vblank_event *e,
900 u64 seq, ktime_t now)
901 {
902 struct timespec64 tv;
903
904 switch (e->event.base.type) {
905 case DRM_EVENT_VBLANK:
906 case DRM_EVENT_FLIP_COMPLETE:
907 tv = ktime_to_timespec64(now);
908 e->event.vbl.sequence = seq;
909 /*
910 * e->event is a user space structure, with hardcoded unsigned
911 * 32-bit seconds/microseconds. This is safe as we always use
912 * monotonic timestamps since linux-4.15
913 */
914 e->event.vbl.tv_sec = tv.tv_sec;
915 e->event.vbl.tv_usec = tv.tv_nsec / 1000;
916 break;
917 case DRM_EVENT_CRTC_SEQUENCE:
918 if (seq)
919 e->event.seq.sequence = seq;
920 e->event.seq.time_ns = ktime_to_ns(now);
921 break;
922 }
923 trace_drm_vblank_event_delivered(e->base.file_priv, e->pipe, seq);
924 drm_send_event_locked(dev, &e->base);
925 }
926
927 /**
928 * drm_crtc_arm_vblank_event - arm vblank event after pageflip
929 * @crtc: the source CRTC of the vblank event
930 * @e: the event to send
931 *
932 * A lot of drivers need to generate vblank events for the very next vblank
933 * interrupt. For example when the page flip interrupt happens when the page
934 * flip gets armed, but not when it actually executes within the next vblank
935 * period. This helper function implements exactly the required vblank arming
936 * behaviour.
937 *
938 * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an
939 * atomic commit must ensure that the next vblank happens at exactly the same
940 * time as the atomic commit is committed to the hardware. This function itself
941 * does **not** protect against the next vblank interrupt racing with either this
942 * function call or the atomic commit operation. A possible sequence could be:
943 *
944 * 1. Driver commits new hardware state into vblank-synchronized registers.
945 * 2. A vblank happens, committing the hardware state. Also the corresponding
946 * vblank interrupt is fired off and fully processed by the interrupt
947 * handler.
948 * 3. The atomic commit operation proceeds to call drm_crtc_arm_vblank_event().
949 * 4. The event is only send out for the next vblank, which is wrong.
950 *
951 * An equivalent race can happen when the driver calls
952 * drm_crtc_arm_vblank_event() before writing out the new hardware state.
953 *
954 * The only way to make this work safely is to prevent the vblank from firing
955 * (and the hardware from committing anything else) until the entire atomic
956 * commit sequence has run to completion. If the hardware does not have such a
957 * feature (e.g. using a "go" bit), then it is unsafe to use this functions.
958 * Instead drivers need to manually send out the event from their interrupt
959 * handler by calling drm_crtc_send_vblank_event() and make sure that there's no
960 * possible race with the hardware committing the atomic update.
961 *
962 * Caller must hold a vblank reference for the event @e acquired by a
963 * drm_crtc_vblank_get(), which will be dropped when the next vblank arrives.
964 */
965 void drm_crtc_arm_vblank_event(struct drm_crtc *crtc,
966 struct drm_pending_vblank_event *e)
967 {
968 struct drm_device *dev = crtc->dev;
969 unsigned int pipe = drm_crtc_index(crtc);
970
971 assert_spin_locked(&dev->event_lock);
972
973 e->pipe = pipe;
974 e->sequence = drm_crtc_accurate_vblank_count(crtc) + 1;
975 list_add_tail(&e->base.link, &dev->vblank_event_list);
976 }
977 EXPORT_SYMBOL(drm_crtc_arm_vblank_event);
978
979 /**
980 * drm_crtc_send_vblank_event - helper to send vblank event after pageflip
981 * @crtc: the source CRTC of the vblank event
982 * @e: the event to send
983 *
984 * Updates sequence # and timestamp on event for the most recently processed
985 * vblank, and sends it to userspace. Caller must hold event lock.
986 *
987 * See drm_crtc_arm_vblank_event() for a helper which can be used in certain
988 * situation, especially to send out events for atomic commit operations.
989 */
990 void drm_crtc_send_vblank_event(struct drm_crtc *crtc,
991 struct drm_pending_vblank_event *e)
992 {
993 struct drm_device *dev = crtc->dev;
994 u64 seq;
995 unsigned int pipe = drm_crtc_index(crtc);
996 ktime_t now;
997
998 if (dev->num_crtcs > 0) {
999 seq = drm_vblank_count_and_time(dev, pipe, &now);
1000 } else {
1001 seq = 0;
1002
1003 now = ktime_get();
1004 }
1005 e->pipe = pipe;
1006 send_vblank_event(dev, e, seq, now);
1007 }
1008 EXPORT_SYMBOL(drm_crtc_send_vblank_event);
1009
1010 static int __enable_vblank(struct drm_device *dev, unsigned int pipe)
1011 {
1012 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1013 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1014
1015 if (WARN_ON(!crtc))
1016 return 0;
1017
1018 if (crtc->funcs->enable_vblank)
1019 return crtc->funcs->enable_vblank(crtc);
1020 }
1021
1022 return dev->driver->enable_vblank(dev, pipe);
1023 }
1024
1025 static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe)
1026 {
1027 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1028 int ret = 0;
1029
1030 assert_spin_locked(&dev->vbl_lock);
1031
1032 spin_lock(&dev->vblank_time_lock);
1033
1034 if (!vblank->enabled) {
1035 /*
1036 * Enable vblank irqs under vblank_time_lock protection.
1037 * All vblank count & timestamp updates are held off
1038 * until we are done reinitializing master counter and
1039 * timestamps. Filtercode in drm_handle_vblank() will
1040 * prevent double-accounting of same vblank interval.
1041 */
1042 ret = __enable_vblank(dev, pipe);
1043 DRM_DEBUG("enabling vblank on crtc %u, ret: %d\n", pipe, ret);
1044 if (ret) {
1045 atomic_dec(&vblank->refcount);
1046 } else {
1047 drm_update_vblank_count(dev, pipe, 0);
1048 /* drm_update_vblank_count() includes a wmb so we just
1049 * need to ensure that the compiler emits the write
1050 * to mark the vblank as enabled after the call
1051 * to drm_update_vblank_count().
1052 */
1053 WRITE_ONCE(vblank->enabled, true);
1054 }
1055 }
1056
1057 spin_unlock(&dev->vblank_time_lock);
1058
1059 return ret;
1060 }
1061
1062 static int drm_vblank_get(struct drm_device *dev, unsigned int pipe)
1063 {
1064 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1065 unsigned long irqflags;
1066 int ret = 0;
1067
1068 if (!dev->num_crtcs)
1069 return -EINVAL;
1070
1071 if (WARN_ON(pipe >= dev->num_crtcs))
1072 return -EINVAL;
1073
1074 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1075 /* Going from 0->1 means we have to enable interrupts again */
1076 if (atomic_add_return(1, &vblank->refcount) == 1) {
1077 ret = drm_vblank_enable(dev, pipe);
1078 } else {
1079 if (!vblank->enabled) {
1080 atomic_dec(&vblank->refcount);
1081 ret = -EINVAL;
1082 }
1083 }
1084 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1085
1086 return ret;
1087 }
1088
1089 /**
1090 * drm_crtc_vblank_get - get a reference count on vblank events
1091 * @crtc: which CRTC to own
1092 *
1093 * Acquire a reference count on vblank events to avoid having them disabled
1094 * while in use.
1095 *
1096 * Returns:
1097 * Zero on success or a negative error code on failure.
1098 */
1099 int drm_crtc_vblank_get(struct drm_crtc *crtc)
1100 {
1101 return drm_vblank_get(crtc->dev, drm_crtc_index(crtc));
1102 }
1103 EXPORT_SYMBOL(drm_crtc_vblank_get);
1104
1105 static void drm_vblank_put_locked(struct drm_device *dev, unsigned int pipe)
1106 {
1107 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1108
1109 assert_spin_locked(&dev->vbl_lock);
1110
1111 if (WARN_ON(pipe >= dev->num_crtcs))
1112 return;
1113
1114 if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1115 return;
1116
1117 /* Last user schedules interrupt disable */
1118 if (atomic_dec_and_test(&vblank->refcount)) {
1119 if (drm_vblank_offdelay == 0)
1120 return;
1121 else if (drm_vblank_offdelay < 0)
1122 vblank_disable_locked(vblank, dev, pipe);
1123 else if (!dev->vblank_disable_immediate)
1124 mod_timer(&vblank->disable_timer,
1125 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1126 }
1127 }
1128
1129 static void drm_vblank_put(struct drm_device *dev, unsigned int pipe)
1130 {
1131 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1132
1133 if (WARN_ON(pipe >= dev->num_crtcs))
1134 return;
1135
1136 if (WARN_ON(atomic_read(&vblank->refcount) == 0))
1137 return;
1138
1139 /* Last user schedules interrupt disable */
1140 if (atomic_dec_and_test(&vblank->refcount)) {
1141 if (drm_vblank_offdelay == 0)
1142 return;
1143 else if (drm_vblank_offdelay < 0)
1144 vblank_disable_fn(&vblank->disable_timer);
1145 else if (!dev->vblank_disable_immediate)
1146 mod_timer(&vblank->disable_timer,
1147 jiffies + ((drm_vblank_offdelay * HZ)/1000));
1148 }
1149 }
1150
1151 /**
1152 * drm_crtc_vblank_put - give up ownership of vblank events
1153 * @crtc: which counter to give up
1154 *
1155 * Release ownership of a given vblank counter, turning off interrupts
1156 * if possible. Disable interrupts after drm_vblank_offdelay milliseconds.
1157 */
1158 void drm_crtc_vblank_put(struct drm_crtc *crtc)
1159 {
1160 drm_vblank_put(crtc->dev, drm_crtc_index(crtc));
1161 }
1162 EXPORT_SYMBOL(drm_crtc_vblank_put);
1163
1164 void drm_crtc_vblank_put_locked(struct drm_crtc *crtc)
1165 {
1166 drm_vblank_put_locked(crtc->dev, drm_crtc_index(crtc));
1167 }
1168
1169 /**
1170 * drm_wait_one_vblank - wait for one vblank
1171 * @dev: DRM device
1172 * @pipe: CRTC index
1173 *
1174 * This waits for one vblank to pass on @pipe, using the irq driver interfaces.
1175 * It is a failure to call this when the vblank irq for @pipe is disabled, e.g.
1176 * due to lack of driver support or because the crtc is off.
1177 *
1178 * This is the legacy version of drm_crtc_wait_one_vblank().
1179 */
1180 void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe)
1181 {
1182 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1183 int ret;
1184 u64 last;
1185
1186 if (WARN_ON(pipe >= dev->num_crtcs))
1187 return;
1188
1189 ret = drm_vblank_get(dev, pipe);
1190 if (WARN(ret, "vblank not available on crtc %i, ret=%i\n", pipe, ret))
1191 return;
1192
1193 #ifdef __NetBSD__
1194 spin_lock(&dev->vbl_lock);
1195 last = drm_vblank_count(dev, pipe);
1196 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &vblank->queue, &dev->vbl_lock,
1197 msecs_to_jiffies(100),
1198 last != drm_vblank_count(dev, pipe));
1199 spin_unlock(&dev->vbl_lock);
1200 #else
1201 last = drm_vblank_count(dev, pipe);
1202
1203 ret = wait_event_timeout(vblank->queue,
1204 last != drm_vblank_count(dev, pipe),
1205 msecs_to_jiffies(100));
1206 #endif
1207
1208 WARN(ret == 0, "vblank wait timed out on crtc %i\n", pipe);
1209
1210 drm_vblank_put(dev, pipe);
1211 }
1212 EXPORT_SYMBOL(drm_wait_one_vblank);
1213
1214 /**
1215 * drm_crtc_wait_one_vblank - wait for one vblank
1216 * @crtc: DRM crtc
1217 *
1218 * This waits for one vblank to pass on @crtc, using the irq driver interfaces.
1219 * It is a failure to call this when the vblank irq for @crtc is disabled, e.g.
1220 * due to lack of driver support or because the crtc is off.
1221 */
1222 void drm_crtc_wait_one_vblank(struct drm_crtc *crtc)
1223 {
1224 drm_wait_one_vblank(crtc->dev, drm_crtc_index(crtc));
1225 }
1226 EXPORT_SYMBOL(drm_crtc_wait_one_vblank);
1227
1228 /**
1229 * drm_crtc_vblank_off - disable vblank events on a CRTC
1230 * @crtc: CRTC in question
1231 *
1232 * Drivers can use this function to shut down the vblank interrupt handling when
1233 * disabling a crtc. This function ensures that the latest vblank frame count is
1234 * stored so that drm_vblank_on can restore it again.
1235 *
1236 * Drivers must use this function when the hardware vblank counter can get
1237 * reset, e.g. when suspending or disabling the @crtc in general.
1238 */
1239 void drm_crtc_vblank_off(struct drm_crtc *crtc)
1240 {
1241 struct drm_device *dev = crtc->dev;
1242 unsigned int pipe = drm_crtc_index(crtc);
1243 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1244 struct drm_pending_vblank_event *e, *t;
1245
1246 ktime_t now;
1247 unsigned long irqflags;
1248 u64 seq;
1249
1250 if (WARN_ON(pipe >= dev->num_crtcs))
1251 return;
1252
1253 spin_lock_irqsave(&dev->event_lock, irqflags);
1254
1255 spin_lock(&dev->vbl_lock);
1256 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1257 pipe, vblank->enabled, vblank->inmodeset);
1258
1259 /* Avoid redundant vblank disables without previous
1260 * drm_crtc_vblank_on(). */
1261 if (drm_core_check_feature(dev, DRIVER_ATOMIC) || !vblank->inmodeset)
1262 drm_vblank_disable_and_save(dev, pipe);
1263
1264 #ifdef __NetBSD__
1265 DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
1266 #else
1267 wake_up(&vblank->queue);
1268 #endif
1269
1270 /*
1271 * Prevent subsequent drm_vblank_get() from re-enabling
1272 * the vblank interrupt by bumping the refcount.
1273 */
1274 if (!vblank->inmodeset) {
1275 atomic_inc(&vblank->refcount);
1276 vblank->inmodeset = 1;
1277 }
1278 spin_unlock(&dev->vbl_lock);
1279
1280 /* Send any queued vblank events, lest the natives grow disquiet */
1281 seq = drm_vblank_count_and_time(dev, pipe, &now);
1282
1283 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1284 if (e->pipe != pipe)
1285 continue;
1286 DRM_DEBUG("Sending premature vblank event on disable: "
1287 "wanted %"PRIu64", current %"PRIu64"\n",
1288 e->sequence, seq);
1289 list_del(&e->base.link);
1290 drm_vblank_put(dev, pipe);
1291 send_vblank_event(dev, e, seq, now);
1292 }
1293 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1294
1295 /* Will be reset by the modeset helpers when re-enabling the crtc by
1296 * calling drm_calc_timestamping_constants(). */
1297 vblank->hwmode.crtc_clock = 0;
1298 }
1299 EXPORT_SYMBOL(drm_crtc_vblank_off);
1300
1301 /**
1302 * drm_crtc_vblank_reset - reset vblank state to off on a CRTC
1303 * @crtc: CRTC in question
1304 *
1305 * Drivers can use this function to reset the vblank state to off at load time.
1306 * Drivers should use this together with the drm_crtc_vblank_off() and
1307 * drm_crtc_vblank_on() functions. The difference compared to
1308 * drm_crtc_vblank_off() is that this function doesn't save the vblank counter
1309 * and hence doesn't need to call any driver hooks.
1310 *
1311 * This is useful for recovering driver state e.g. on driver load, or on resume.
1312 */
1313 void drm_crtc_vblank_reset(struct drm_crtc *crtc)
1314 {
1315 struct drm_device *dev = crtc->dev;
1316 unsigned long irqflags;
1317 unsigned int pipe = drm_crtc_index(crtc);
1318 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1319
1320 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1321 /*
1322 * Prevent subsequent drm_vblank_get() from enabling the vblank
1323 * interrupt by bumping the refcount.
1324 */
1325 if (!vblank->inmodeset) {
1326 atomic_inc(&vblank->refcount);
1327 vblank->inmodeset = 1;
1328 }
1329 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1330
1331 WARN_ON(!list_empty(&dev->vblank_event_list));
1332 }
1333 EXPORT_SYMBOL(drm_crtc_vblank_reset);
1334
1335 /**
1336 * drm_crtc_set_max_vblank_count - configure the hw max vblank counter value
1337 * @crtc: CRTC in question
1338 * @max_vblank_count: max hardware vblank counter value
1339 *
1340 * Update the maximum hardware vblank counter value for @crtc
1341 * at runtime. Useful for hardware where the operation of the
1342 * hardware vblank counter depends on the currently active
1343 * display configuration.
1344 *
1345 * For example, if the hardware vblank counter does not work
1346 * when a specific connector is active the maximum can be set
1347 * to zero. And when that specific connector isn't active the
1348 * maximum can again be set to the appropriate non-zero value.
1349 *
1350 * If used, must be called before drm_vblank_on().
1351 */
1352 void drm_crtc_set_max_vblank_count(struct drm_crtc *crtc,
1353 u32 max_vblank_count)
1354 {
1355 struct drm_device *dev = crtc->dev;
1356 unsigned int pipe = drm_crtc_index(crtc);
1357 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1358
1359 WARN_ON(dev->max_vblank_count);
1360 WARN_ON(!READ_ONCE(vblank->inmodeset));
1361
1362 vblank->max_vblank_count = max_vblank_count;
1363 }
1364 EXPORT_SYMBOL(drm_crtc_set_max_vblank_count);
1365
1366 /**
1367 * drm_crtc_vblank_on - enable vblank events on a CRTC
1368 * @crtc: CRTC in question
1369 *
1370 * This functions restores the vblank interrupt state captured with
1371 * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note
1372 * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be
1373 * unbalanced and so can also be unconditionally called in driver load code to
1374 * reflect the current hardware state of the crtc.
1375 */
1376 void drm_crtc_vblank_on(struct drm_crtc *crtc)
1377 {
1378 struct drm_device *dev = crtc->dev;
1379 unsigned int pipe = drm_crtc_index(crtc);
1380 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1381 unsigned long irqflags;
1382
1383 if (WARN_ON(pipe >= dev->num_crtcs))
1384 return;
1385
1386 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1387 DRM_DEBUG_VBL("crtc %d, vblank enabled %d, inmodeset %d\n",
1388 pipe, vblank->enabled, vblank->inmodeset);
1389
1390 /* Drop our private "prevent drm_vblank_get" refcount */
1391 if (vblank->inmodeset) {
1392 atomic_dec(&vblank->refcount);
1393 vblank->inmodeset = 0;
1394 }
1395
1396 drm_reset_vblank_timestamp(dev, pipe);
1397
1398 /*
1399 * re-enable interrupts if there are users left, or the
1400 * user wishes vblank interrupts to be enabled all the time.
1401 */
1402 if (atomic_read(&vblank->refcount) != 0 || drm_vblank_offdelay == 0)
1403 WARN_ON(drm_vblank_enable(dev, pipe));
1404 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1405 }
1406 EXPORT_SYMBOL(drm_crtc_vblank_on);
1407
1408 /**
1409 * drm_vblank_restore - estimate missed vblanks and update vblank count.
1410 * @dev: DRM device
1411 * @pipe: CRTC index
1412 *
1413 * Power manamement features can cause frame counter resets between vblank
1414 * disable and enable. Drivers can use this function in their
1415 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1416 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1417 * vblank counter.
1418 *
1419 * This function is the legacy version of drm_crtc_vblank_restore().
1420 */
1421 void drm_vblank_restore(struct drm_device *dev, unsigned int pipe)
1422 {
1423 ktime_t t_vblank;
1424 struct drm_vblank_crtc *vblank;
1425 int framedur_ns;
1426 u64 diff_ns;
1427 u32 cur_vblank, diff = 1;
1428 int count = DRM_TIMESTAMP_MAXRETRIES;
1429
1430 if (WARN_ON(pipe >= dev->num_crtcs))
1431 return;
1432
1433 assert_spin_locked(&dev->vbl_lock);
1434 assert_spin_locked(&dev->vblank_time_lock);
1435
1436 vblank = &dev->vblank[pipe];
1437 WARN_ONCE(drm_debug_enabled(DRM_UT_VBL) && !vblank->framedur_ns,
1438 "Cannot compute missed vblanks without frame duration\n");
1439 framedur_ns = vblank->framedur_ns;
1440
1441 do {
1442 cur_vblank = __get_vblank_counter(dev, pipe);
1443 drm_get_last_vbltimestamp(dev, pipe, &t_vblank, false);
1444 } while (cur_vblank != __get_vblank_counter(dev, pipe) && --count > 0);
1445
1446 diff_ns = ktime_to_ns(ktime_sub(t_vblank, vblank->time));
1447 if (framedur_ns)
1448 diff = DIV_ROUND_CLOSEST_ULL(diff_ns, framedur_ns);
1449
1450
1451 DRM_DEBUG_VBL("missed %d vblanks in %"PRId64" ns, frame duration=%d ns, hw_diff=%d\n",
1452 diff, diff_ns, framedur_ns, cur_vblank - vblank->last);
1453 store_vblank(dev, pipe, diff, t_vblank, cur_vblank);
1454 }
1455 EXPORT_SYMBOL(drm_vblank_restore);
1456
1457 /**
1458 * drm_crtc_vblank_restore - estimate missed vblanks and update vblank count.
1459 * @crtc: CRTC in question
1460 *
1461 * Power manamement features can cause frame counter resets between vblank
1462 * disable and enable. Drivers can use this function in their
1463 * &drm_crtc_funcs.enable_vblank implementation to estimate missed vblanks since
1464 * the last &drm_crtc_funcs.disable_vblank using timestamps and update the
1465 * vblank counter.
1466 */
1467 void drm_crtc_vblank_restore(struct drm_crtc *crtc)
1468 {
1469 drm_vblank_restore(crtc->dev, drm_crtc_index(crtc));
1470 }
1471 EXPORT_SYMBOL(drm_crtc_vblank_restore);
1472
1473 static void drm_legacy_vblank_pre_modeset(struct drm_device *dev,
1474 unsigned int pipe)
1475 {
1476 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1477
1478 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1479 if (!dev->num_crtcs)
1480 return;
1481
1482 if (WARN_ON(pipe >= dev->num_crtcs))
1483 return;
1484
1485 /*
1486 * To avoid all the problems that might happen if interrupts
1487 * were enabled/disabled around or between these calls, we just
1488 * have the kernel take a reference on the CRTC (just once though
1489 * to avoid corrupting the count if multiple, mismatch calls occur),
1490 * so that interrupts remain enabled in the interim.
1491 */
1492 if (!vblank->inmodeset) {
1493 vblank->inmodeset = 0x1;
1494 if (drm_vblank_get(dev, pipe) == 0)
1495 vblank->inmodeset |= 0x2;
1496 }
1497 }
1498
1499 static void drm_legacy_vblank_post_modeset(struct drm_device *dev,
1500 unsigned int pipe)
1501 {
1502 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1503 unsigned long irqflags;
1504
1505 /* vblank is not initialized (IRQ not installed ?), or has been freed */
1506 if (!dev->num_crtcs)
1507 return;
1508
1509 if (WARN_ON(pipe >= dev->num_crtcs))
1510 return;
1511
1512 if (vblank->inmodeset) {
1513 spin_lock_irqsave(&dev->vbl_lock, irqflags);
1514 drm_reset_vblank_timestamp(dev, pipe);
1515 spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
1516
1517 if (vblank->inmodeset & 0x2)
1518 drm_vblank_put(dev, pipe);
1519
1520 vblank->inmodeset = 0;
1521 }
1522 }
1523
1524 int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data,
1525 struct drm_file *file_priv)
1526 {
1527 struct drm_modeset_ctl *modeset = data;
1528 unsigned int pipe;
1529
1530 /* If drm_vblank_init() hasn't been called yet, just no-op */
1531 if (!dev->num_crtcs)
1532 return 0;
1533
1534 /* KMS drivers handle this internally */
1535 if (!drm_core_check_feature(dev, DRIVER_LEGACY))
1536 return 0;
1537
1538 pipe = modeset->crtc;
1539 if (pipe >= dev->num_crtcs)
1540 return -EINVAL;
1541
1542 switch (modeset->cmd) {
1543 case _DRM_PRE_MODESET:
1544 drm_legacy_vblank_pre_modeset(dev, pipe);
1545 break;
1546 case _DRM_POST_MODESET:
1547 drm_legacy_vblank_post_modeset(dev, pipe);
1548 break;
1549 default:
1550 return -EINVAL;
1551 }
1552
1553 return 0;
1554 }
1555
1556 static inline bool vblank_passed(u64 seq, u64 ref)
1557 {
1558 return (seq - ref) <= (1 << 23);
1559 }
1560
1561 static int drm_queue_vblank_event(struct drm_device *dev, unsigned int pipe,
1562 u64 req_seq,
1563 union drm_wait_vblank *vblwait,
1564 struct drm_file *file_priv)
1565 {
1566 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1567 struct drm_pending_vblank_event *e;
1568 ktime_t now;
1569 unsigned long flags;
1570 u64 seq;
1571 int ret;
1572
1573 e = kzalloc(sizeof(*e), GFP_KERNEL);
1574 if (e == NULL) {
1575 ret = -ENOMEM;
1576 goto err_put;
1577 }
1578
1579 e->pipe = pipe;
1580 e->event.base.type = DRM_EVENT_VBLANK;
1581 e->event.base.length = sizeof(e->event.vbl);
1582 e->event.vbl.user_data = vblwait->request.signal;
1583 e->event.vbl.crtc_id = 0;
1584 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1585 struct drm_crtc *crtc = drm_crtc_from_index(dev, pipe);
1586 if (crtc)
1587 e->event.vbl.crtc_id = crtc->base.id;
1588 }
1589
1590 spin_lock_irqsave(&dev->event_lock, flags);
1591
1592 /*
1593 * drm_crtc_vblank_off() might have been called after we called
1594 * drm_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
1595 * vblank disable, so no need for further locking. The reference from
1596 * drm_vblank_get() protects against vblank disable from another source.
1597 */
1598 if (!READ_ONCE(vblank->enabled)) {
1599 ret = -EINVAL;
1600 goto err_unlock;
1601 }
1602
1603 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
1604 &e->event.base);
1605
1606 if (ret)
1607 goto err_unlock;
1608
1609 seq = drm_vblank_count_and_time(dev, pipe, &now);
1610
1611 DRM_DEBUG("event on vblank count %"PRIu64", current %"PRIu64", crtc %u\n",
1612 req_seq, seq, pipe);
1613
1614 trace_drm_vblank_event_queued(file_priv, pipe, req_seq);
1615
1616 e->sequence = req_seq;
1617 if (vblank_passed(seq, req_seq)) {
1618 drm_vblank_put(dev, pipe);
1619 send_vblank_event(dev, e, seq, now);
1620 vblwait->reply.sequence = seq;
1621 } else {
1622 /* drm_handle_vblank_events will call drm_vblank_put */
1623 list_add_tail(&e->base.link, &dev->vblank_event_list);
1624 vblwait->reply.sequence = req_seq;
1625 }
1626
1627 spin_unlock_irqrestore(&dev->event_lock, flags);
1628
1629 return 0;
1630
1631 err_unlock:
1632 spin_unlock_irqrestore(&dev->event_lock, flags);
1633 kfree(e);
1634 err_put:
1635 drm_vblank_put(dev, pipe);
1636 return ret;
1637 }
1638
1639 static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait)
1640 {
1641 if (vblwait->request.sequence)
1642 return false;
1643
1644 return _DRM_VBLANK_RELATIVE ==
1645 (vblwait->request.type & (_DRM_VBLANK_TYPES_MASK |
1646 _DRM_VBLANK_EVENT |
1647 _DRM_VBLANK_NEXTONMISS));
1648 }
1649
1650 /*
1651 * Widen a 32-bit param to 64-bits.
1652 *
1653 * \param narrow 32-bit value (missing upper 32 bits)
1654 * \param near 64-bit value that should be 'close' to near
1655 *
1656 * This function returns a 64-bit value using the lower 32-bits from
1657 * 'narrow' and constructing the upper 32-bits so that the result is
1658 * as close as possible to 'near'.
1659 */
1660
1661 static u64 widen_32_to_64(u32 narrow, u64 near)
1662 {
1663 return near + (s32) (narrow - near);
1664 }
1665
1666 static void drm_wait_vblank_reply(struct drm_device *dev, unsigned int pipe,
1667 struct drm_wait_vblank_reply *reply)
1668 {
1669 ktime_t now;
1670 struct timespec64 ts;
1671
1672 /*
1673 * drm_wait_vblank_reply is a UAPI structure that uses 'long'
1674 * to store the seconds. This is safe as we always use monotonic
1675 * timestamps since linux-4.15.
1676 */
1677 reply->sequence = drm_vblank_count_and_time(dev, pipe, &now);
1678 ts = ktime_to_timespec64(now);
1679 reply->tval_sec = (u32)ts.tv_sec;
1680 reply->tval_usec = ts.tv_nsec / 1000;
1681 }
1682
1683 int drm_wait_vblank_ioctl(struct drm_device *dev, void *data,
1684 struct drm_file *file_priv)
1685 {
1686 struct drm_crtc *crtc;
1687 struct drm_vblank_crtc *vblank;
1688 union drm_wait_vblank *vblwait = data;
1689 int ret;
1690 u64 req_seq, seq;
1691 unsigned int pipe_index;
1692 unsigned int flags, pipe, high_pipe;
1693
1694 if (!dev->irq_enabled)
1695 return -EOPNOTSUPP;
1696
1697 if (vblwait->request.type & _DRM_VBLANK_SIGNAL)
1698 return -EINVAL;
1699
1700 if (vblwait->request.type &
1701 ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1702 _DRM_VBLANK_HIGH_CRTC_MASK)) {
1703 DRM_DEBUG("Unsupported type value 0x%x, supported mask 0x%x\n",
1704 vblwait->request.type,
1705 (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK |
1706 _DRM_VBLANK_HIGH_CRTC_MASK));
1707 return -EINVAL;
1708 }
1709
1710 flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK;
1711 high_pipe = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK);
1712 if (high_pipe)
1713 pipe_index = high_pipe >> _DRM_VBLANK_HIGH_CRTC_SHIFT;
1714 else
1715 pipe_index = flags & _DRM_VBLANK_SECONDARY ? 1 : 0;
1716
1717 /* Convert lease-relative crtc index into global crtc index */
1718 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
1719 pipe = 0;
1720 drm_for_each_crtc(crtc, dev) {
1721 if (drm_lease_held(file_priv, crtc->base.id)) {
1722 if (pipe_index == 0)
1723 break;
1724 pipe_index--;
1725 }
1726 pipe++;
1727 }
1728 } else {
1729 pipe = pipe_index;
1730 }
1731
1732 if (pipe >= dev->num_crtcs)
1733 return -EINVAL;
1734
1735 vblank = &dev->vblank[pipe];
1736
1737 /* If the counter is currently enabled and accurate, short-circuit
1738 * queries to return the cached timestamp of the last vblank.
1739 */
1740 if (dev->vblank_disable_immediate &&
1741 drm_wait_vblank_is_query(vblwait) &&
1742 READ_ONCE(vblank->enabled)) {
1743 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1744 return 0;
1745 }
1746
1747 ret = drm_vblank_get(dev, pipe);
1748 if (ret) {
1749 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1750 return ret;
1751 }
1752 seq = drm_vblank_count(dev, pipe);
1753
1754 switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) {
1755 case _DRM_VBLANK_RELATIVE:
1756 req_seq = seq + vblwait->request.sequence;
1757 vblwait->request.sequence = req_seq;
1758 vblwait->request.type &= ~_DRM_VBLANK_RELATIVE;
1759 break;
1760 case _DRM_VBLANK_ABSOLUTE:
1761 req_seq = widen_32_to_64(vblwait->request.sequence, seq);
1762 break;
1763 default:
1764 ret = -EINVAL;
1765 goto done;
1766 }
1767
1768 if ((flags & _DRM_VBLANK_NEXTONMISS) &&
1769 vblank_passed(seq, req_seq)) {
1770 req_seq = seq + 1;
1771 vblwait->request.type &= ~_DRM_VBLANK_NEXTONMISS;
1772 vblwait->request.sequence = req_seq;
1773 }
1774
1775 if (flags & _DRM_VBLANK_EVENT) {
1776 /* must hold on to the vblank ref until the event fires
1777 * drm_vblank_put will be called asynchronously
1778 */
1779 return drm_queue_vblank_event(dev, pipe, req_seq, vblwait, file_priv);
1780 }
1781
1782 if (req_seq != seq) {
1783 int wait;
1784
1785 DRM_DEBUG("waiting on vblank count %"PRIu64", crtc %u\n",
1786 req_seq, pipe);
1787 #ifdef __NetBSD__
1788 DRM_SPIN_TIMED_WAIT_UNTIL(wait, &vblank->queue,
1789 &dev->vbl_lock, msecs_to_jiffies(3000),
1790 vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1791 !READ_ONCE(vblank->enabled));
1792 #else
1793 wait = wait_event_interruptible_timeout(vblank->queue,
1794 vblank_passed(drm_vblank_count(dev, pipe), req_seq) ||
1795 !READ_ONCE(vblank->enabled),
1796 msecs_to_jiffies(3000));
1797 #endif
1798
1799 switch (wait) {
1800 case 0:
1801 /* timeout */
1802 ret = -EBUSY;
1803 break;
1804 case -ERESTARTSYS:
1805 /* interrupted by signal */
1806 ret = -EINTR;
1807 break;
1808 default:
1809 ret = 0;
1810 break;
1811 }
1812 }
1813
1814 if (ret != -EINTR) {
1815 drm_wait_vblank_reply(dev, pipe, &vblwait->reply);
1816
1817 DRM_DEBUG("crtc %d returning %u to client\n",
1818 pipe, vblwait->reply.sequence);
1819 } else {
1820 DRM_DEBUG("crtc %d vblank wait interrupted by signal\n", pipe);
1821 }
1822
1823 done:
1824 drm_vblank_put(dev, pipe);
1825 return ret;
1826 }
1827
1828 static void drm_handle_vblank_events(struct drm_device *dev, unsigned int pipe)
1829 {
1830 struct drm_pending_vblank_event *e, *t;
1831 ktime_t now;
1832 u64 seq;
1833
1834 assert_spin_locked(&dev->event_lock);
1835
1836 seq = drm_vblank_count_and_time(dev, pipe, &now);
1837
1838 list_for_each_entry_safe(e, t, &dev->vblank_event_list, base.link) {
1839 if (e->pipe != pipe)
1840 continue;
1841 if (!vblank_passed(seq, e->sequence))
1842 continue;
1843
1844 DRM_DEBUG("vblank event on %"PRIu64", current %"PRIu64"\n",
1845 e->sequence, seq);
1846
1847 list_del(&e->base.link);
1848 drm_vblank_put(dev, pipe);
1849 send_vblank_event(dev, e, seq, now);
1850 }
1851
1852 trace_drm_vblank_event(pipe, seq, now,
1853 dev->driver->get_vblank_timestamp != NULL);
1854 }
1855
1856 /**
1857 * drm_handle_vblank - handle a vblank event
1858 * @dev: DRM device
1859 * @pipe: index of CRTC where this event occurred
1860 *
1861 * Drivers should call this routine in their vblank interrupt handlers to
1862 * update the vblank counter and send any signals that may be pending.
1863 *
1864 * This is the legacy version of drm_crtc_handle_vblank().
1865 */
1866 bool drm_handle_vblank(struct drm_device *dev, unsigned int pipe)
1867 {
1868 struct drm_vblank_crtc *vblank = &dev->vblank[pipe];
1869 unsigned long irqflags;
1870 bool disable_irq;
1871
1872 if (WARN_ON_ONCE(!dev->num_crtcs))
1873 return false;
1874
1875 if (WARN_ON(pipe >= dev->num_crtcs))
1876 return false;
1877
1878 spin_lock_irqsave(&dev->event_lock, irqflags);
1879
1880 spin_lock(&dev->vbl_lock);
1881
1882 /* Need timestamp lock to prevent concurrent execution with
1883 * vblank enable/disable, as this would cause inconsistent
1884 * or corrupted timestamps and vblank counts.
1885 */
1886 spin_lock(&dev->vblank_time_lock);
1887
1888 /* Vblank irq handling disabled. Nothing to do. */
1889 if (!vblank->enabled) {
1890 spin_unlock(&dev->vbl_lock);
1891 spin_unlock(&dev->vblank_time_lock);
1892 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1893 return false;
1894 }
1895
1896 drm_update_vblank_count(dev, pipe, true);
1897
1898 spin_unlock(&dev->vblank_time_lock);
1899
1900 #ifdef __NetBSD__
1901 DRM_SPIN_WAKEUP_ONE(&vblank->queue, &dev->vbl_lock);
1902 #else
1903 wake_up(&vblank->queue);
1904 #endif
1905
1906 /* With instant-off, we defer disabling the interrupt until after
1907 * we finish processing the following vblank after all events have
1908 * been signaled. The disable has to be last (after
1909 * drm_handle_vblank_events) so that the timestamp is always accurate.
1910 */
1911 disable_irq = (dev->vblank_disable_immediate &&
1912 drm_vblank_offdelay > 0 &&
1913 !atomic_read(&vblank->refcount));
1914
1915 spin_unlock(&dev->vbl_lock);
1916
1917 drm_handle_vblank_events(dev, pipe);
1918
1919 spin_unlock_irqrestore(&dev->event_lock, irqflags);
1920
1921 if (disable_irq)
1922 vblank_disable_fn(&vblank->disable_timer);
1923
1924 return true;
1925 }
1926 EXPORT_SYMBOL(drm_handle_vblank);
1927
1928 /**
1929 * drm_crtc_handle_vblank - handle a vblank event
1930 * @crtc: where this event occurred
1931 *
1932 * Drivers should call this routine in their vblank interrupt handlers to
1933 * update the vblank counter and send any signals that may be pending.
1934 *
1935 * This is the native KMS version of drm_handle_vblank().
1936 *
1937 * Note that for a given vblank counter value drm_crtc_handle_vblank()
1938 * and drm_crtc_vblank_count() or drm_crtc_vblank_count_and_time()
1939 * provide a barrier: Any writes done before calling
1940 * drm_crtc_handle_vblank() will be visible to callers of the later
1941 * functions, iff the vblank count is the same or a later one.
1942 *
1943 * See also &drm_vblank_crtc.count.
1944 *
1945 * Returns:
1946 * True if the event was successfully handled, false on failure.
1947 */
1948 bool drm_crtc_handle_vblank(struct drm_crtc *crtc)
1949 {
1950 return drm_handle_vblank(crtc->dev, drm_crtc_index(crtc));
1951 }
1952 EXPORT_SYMBOL(drm_crtc_handle_vblank);
1953
1954 /*
1955 * Get crtc VBLANK count.
1956 *
1957 * \param dev DRM device
1958 * \param data user arguement, pointing to a drm_crtc_get_sequence structure.
1959 * \param file_priv drm file private for the user's open file descriptor
1960 */
1961
1962 int drm_crtc_get_sequence_ioctl(struct drm_device *dev, void *data,
1963 struct drm_file *file_priv)
1964 {
1965 struct drm_crtc *crtc;
1966 struct drm_vblank_crtc *vblank;
1967 int pipe;
1968 struct drm_crtc_get_sequence *get_seq = data;
1969 ktime_t now;
1970 bool vblank_enabled;
1971 int ret;
1972
1973 if (!drm_core_check_feature(dev, DRIVER_MODESET))
1974 return -EOPNOTSUPP;
1975
1976 if (!dev->irq_enabled)
1977 return -EOPNOTSUPP;
1978
1979 crtc = drm_crtc_find(dev, file_priv, get_seq->crtc_id);
1980 if (!crtc)
1981 return -ENOENT;
1982
1983 pipe = drm_crtc_index(crtc);
1984
1985 vblank = &dev->vblank[pipe];
1986 vblank_enabled = dev->vblank_disable_immediate && READ_ONCE(vblank->enabled);
1987
1988 if (!vblank_enabled) {
1989 ret = drm_crtc_vblank_get(crtc);
1990 if (ret) {
1991 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
1992 return ret;
1993 }
1994 }
1995 drm_modeset_lock(&crtc->mutex, NULL);
1996 if (crtc->state)
1997 get_seq->active = crtc->state->enable;
1998 else
1999 get_seq->active = crtc->enabled;
2000 drm_modeset_unlock(&crtc->mutex);
2001 get_seq->sequence = drm_vblank_count_and_time(dev, pipe, &now);
2002 get_seq->sequence_ns = ktime_to_ns(now);
2003 if (!vblank_enabled)
2004 drm_crtc_vblank_put(crtc);
2005 return 0;
2006 }
2007
2008 /*
2009 * Queue a event for VBLANK sequence
2010 *
2011 * \param dev DRM device
2012 * \param data user arguement, pointing to a drm_crtc_queue_sequence structure.
2013 * \param file_priv drm file private for the user's open file descriptor
2014 */
2015
2016 int drm_crtc_queue_sequence_ioctl(struct drm_device *dev, void *data,
2017 struct drm_file *file_priv)
2018 {
2019 struct drm_crtc *crtc;
2020 struct drm_vblank_crtc *vblank;
2021 int pipe;
2022 struct drm_crtc_queue_sequence *queue_seq = data;
2023 ktime_t now;
2024 struct drm_pending_vblank_event *e;
2025 u32 flags;
2026 u64 seq;
2027 u64 req_seq;
2028 int ret;
2029 unsigned long spin_flags;
2030
2031 if (!drm_core_check_feature(dev, DRIVER_MODESET))
2032 return -EOPNOTSUPP;
2033
2034 if (!dev->irq_enabled)
2035 return -EOPNOTSUPP;
2036
2037 crtc = drm_crtc_find(dev, file_priv, queue_seq->crtc_id);
2038 if (!crtc)
2039 return -ENOENT;
2040
2041 flags = queue_seq->flags;
2042 /* Check valid flag bits */
2043 if (flags & ~(DRM_CRTC_SEQUENCE_RELATIVE|
2044 DRM_CRTC_SEQUENCE_NEXT_ON_MISS))
2045 return -EINVAL;
2046
2047 pipe = drm_crtc_index(crtc);
2048
2049 vblank = &dev->vblank[pipe];
2050
2051 e = kzalloc(sizeof(*e), GFP_KERNEL);
2052 if (e == NULL)
2053 return -ENOMEM;
2054
2055 ret = drm_crtc_vblank_get(crtc);
2056 if (ret) {
2057 DRM_DEBUG("crtc %d failed to acquire vblank counter, %d\n", pipe, ret);
2058 goto err_free;
2059 }
2060
2061 seq = drm_vblank_count_and_time(dev, pipe, &now);
2062 req_seq = queue_seq->sequence;
2063
2064 if (flags & DRM_CRTC_SEQUENCE_RELATIVE)
2065 req_seq += seq;
2066
2067 if ((flags & DRM_CRTC_SEQUENCE_NEXT_ON_MISS) && vblank_passed(seq, req_seq))
2068 req_seq = seq + 1;
2069
2070 e->pipe = pipe;
2071 e->event.base.type = DRM_EVENT_CRTC_SEQUENCE;
2072 e->event.base.length = sizeof(e->event.seq);
2073 e->event.seq.user_data = queue_seq->user_data;
2074
2075 spin_lock_irqsave(&dev->event_lock, spin_flags);
2076
2077 /*
2078 * drm_crtc_vblank_off() might have been called after we called
2079 * drm_crtc_vblank_get(). drm_crtc_vblank_off() holds event_lock around the
2080 * vblank disable, so no need for further locking. The reference from
2081 * drm_crtc_vblank_get() protects against vblank disable from another source.
2082 */
2083 if (!READ_ONCE(vblank->enabled)) {
2084 ret = -EINVAL;
2085 goto err_unlock;
2086 }
2087
2088 ret = drm_event_reserve_init_locked(dev, file_priv, &e->base,
2089 &e->event.base);
2090
2091 if (ret)
2092 goto err_unlock;
2093
2094 e->sequence = req_seq;
2095
2096 if (vblank_passed(seq, req_seq)) {
2097 drm_crtc_vblank_put(crtc);
2098 send_vblank_event(dev, e, seq, now);
2099 queue_seq->sequence = seq;
2100 } else {
2101 /* drm_handle_vblank_events will call drm_vblank_put */
2102 list_add_tail(&e->base.link, &dev->vblank_event_list);
2103 queue_seq->sequence = req_seq;
2104 }
2105
2106 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2107 return 0;
2108
2109 err_unlock:
2110 spin_unlock_irqrestore(&dev->event_lock, spin_flags);
2111 drm_crtc_vblank_put(crtc);
2112 err_free:
2113 kfree(e);
2114 return ret;
2115 }
2116