intel_display.c revision 1.1 1 /* $NetBSD: intel_display.c,v 1.1 2021/12/18 20:15:28 riastradh Exp $ */
2
3 /*
4 * Copyright 2006-2007 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 *
25 * Authors:
26 * Eric Anholt <eric (at) anholt.net>
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: intel_display.c,v 1.1 2021/12/18 20:15:28 riastradh Exp $");
31
32 #include <linux/i2c.h>
33 #include <linux/input.h>
34 #include <linux/intel-iommu.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/dma-resv.h>
38 #include <linux/slab.h>
39
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_atomic_uapi.h>
43 #include <drm/drm_dp_helper.h>
44 #include <drm/drm_edid.h>
45 #include <drm/drm_fourcc.h>
46 #include <drm/drm_plane_helper.h>
47 #include <drm/drm_probe_helper.h>
48 #include <drm/drm_rect.h>
49 #include <drm/i915_drm.h>
50
51 #include "display/intel_crt.h"
52 #include "display/intel_ddi.h"
53 #include "display/intel_dp.h"
54 #include "display/intel_dp_mst.h"
55 #include "display/intel_dsi.h"
56 #include "display/intel_dvo.h"
57 #include "display/intel_gmbus.h"
58 #include "display/intel_hdmi.h"
59 #include "display/intel_lvds.h"
60 #include "display/intel_sdvo.h"
61 #include "display/intel_tv.h"
62 #include "display/intel_vdsc.h"
63
64 #include "gt/intel_rps.h"
65
66 #include "i915_drv.h"
67 #include "i915_trace.h"
68 #include "intel_acpi.h"
69 #include "intel_atomic.h"
70 #include "intel_atomic_plane.h"
71 #include "intel_bw.h"
72 #include "intel_cdclk.h"
73 #include "intel_color.h"
74 #include "intel_display_types.h"
75 #include "intel_dp_link_training.h"
76 #include "intel_fbc.h"
77 #include "intel_fbdev.h"
78 #include "intel_fifo_underrun.h"
79 #include "intel_frontbuffer.h"
80 #include "intel_hdcp.h"
81 #include "intel_hotplug.h"
82 #include "intel_overlay.h"
83 #include "intel_pipe_crc.h"
84 #include "intel_pm.h"
85 #include "intel_psr.h"
86 #include "intel_quirks.h"
87 #include "intel_sideband.h"
88 #include "intel_sprite.h"
89 #include "intel_tc.h"
90 #include "intel_vga.h"
91
92 /* Primary plane formats for gen <= 3 */
93 static const u32 i8xx_primary_formats[] = {
94 DRM_FORMAT_C8,
95 DRM_FORMAT_XRGB1555,
96 DRM_FORMAT_RGB565,
97 DRM_FORMAT_XRGB8888,
98 };
99
100 /* Primary plane formats for ivb (no fp16 due to hw issue) */
101 static const u32 ivb_primary_formats[] = {
102 DRM_FORMAT_C8,
103 DRM_FORMAT_RGB565,
104 DRM_FORMAT_XRGB8888,
105 DRM_FORMAT_XBGR8888,
106 DRM_FORMAT_XRGB2101010,
107 DRM_FORMAT_XBGR2101010,
108 };
109
110 /* Primary plane formats for gen >= 4, except ivb */
111 static const u32 i965_primary_formats[] = {
112 DRM_FORMAT_C8,
113 DRM_FORMAT_RGB565,
114 DRM_FORMAT_XRGB8888,
115 DRM_FORMAT_XBGR8888,
116 DRM_FORMAT_XRGB2101010,
117 DRM_FORMAT_XBGR2101010,
118 DRM_FORMAT_XBGR16161616F,
119 };
120
121 /* Primary plane formats for vlv/chv */
122 static const u32 vlv_primary_formats[] = {
123 DRM_FORMAT_C8,
124 DRM_FORMAT_RGB565,
125 DRM_FORMAT_XRGB8888,
126 DRM_FORMAT_XBGR8888,
127 DRM_FORMAT_ARGB8888,
128 DRM_FORMAT_ABGR8888,
129 DRM_FORMAT_XRGB2101010,
130 DRM_FORMAT_XBGR2101010,
131 DRM_FORMAT_ARGB2101010,
132 DRM_FORMAT_ABGR2101010,
133 DRM_FORMAT_XBGR16161616F,
134 };
135
136 static const u64 i9xx_format_modifiers[] = {
137 I915_FORMAT_MOD_X_TILED,
138 DRM_FORMAT_MOD_LINEAR,
139 DRM_FORMAT_MOD_INVALID
140 };
141
142 /* Cursor formats */
143 static const u32 intel_cursor_formats[] = {
144 DRM_FORMAT_ARGB8888,
145 };
146
147 static const u64 cursor_format_modifiers[] = {
148 DRM_FORMAT_MOD_LINEAR,
149 DRM_FORMAT_MOD_INVALID
150 };
151
152 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
153 struct intel_crtc_state *pipe_config);
154 static void ilk_pch_clock_get(struct intel_crtc *crtc,
155 struct intel_crtc_state *pipe_config);
156
157 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
158 struct drm_i915_gem_object *obj,
159 struct drm_mode_fb_cmd2 *mode_cmd);
160 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
161 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
162 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
163 const struct intel_link_m_n *m_n,
164 const struct intel_link_m_n *m2_n2);
165 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
166 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state);
167 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state);
168 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
169 static void vlv_prepare_pll(struct intel_crtc *crtc,
170 const struct intel_crtc_state *pipe_config);
171 static void chv_prepare_pll(struct intel_crtc *crtc,
172 const struct intel_crtc_state *pipe_config);
173 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state);
174 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state);
175 static void intel_modeset_setup_hw_state(struct drm_device *dev,
176 struct drm_modeset_acquire_ctx *ctx);
177 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc);
178
179 struct intel_limit {
180 struct {
181 int min, max;
182 } dot, vco, n, m, m1, m2, p, p1;
183
184 struct {
185 int dot_limit;
186 int p2_slow, p2_fast;
187 } p2;
188 };
189
190 /* returns HPLL frequency in kHz */
191 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
192 {
193 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
194
195 /* Obtain SKU information */
196 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
197 CCK_FUSE_HPLL_FREQ_MASK;
198
199 return vco_freq[hpll_freq] * 1000;
200 }
201
202 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
203 const char *name, u32 reg, int ref_freq)
204 {
205 u32 val;
206 int divider;
207
208 val = vlv_cck_read(dev_priv, reg);
209 divider = val & CCK_FREQUENCY_VALUES;
210
211 WARN((val & CCK_FREQUENCY_STATUS) !=
212 (divider << CCK_FREQUENCY_STATUS_SHIFT),
213 "%s change in progress\n", name);
214
215 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
216 }
217
218 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
219 const char *name, u32 reg)
220 {
221 int hpll;
222
223 vlv_cck_get(dev_priv);
224
225 if (dev_priv->hpll_freq == 0)
226 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
227
228 hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
229
230 vlv_cck_put(dev_priv);
231
232 return hpll;
233 }
234
235 static void intel_update_czclk(struct drm_i915_private *dev_priv)
236 {
237 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
238 return;
239
240 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
241 CCK_CZ_CLOCK_CONTROL);
242
243 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
244 }
245
246 static inline u32 /* units of 100MHz */
247 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
248 const struct intel_crtc_state *pipe_config)
249 {
250 if (HAS_DDI(dev_priv))
251 return pipe_config->port_clock; /* SPLL */
252 else
253 return dev_priv->fdi_pll_freq;
254 }
255
256 static const struct intel_limit intel_limits_i8xx_dac = {
257 .dot = { .min = 25000, .max = 350000 },
258 .vco = { .min = 908000, .max = 1512000 },
259 .n = { .min = 2, .max = 16 },
260 .m = { .min = 96, .max = 140 },
261 .m1 = { .min = 18, .max = 26 },
262 .m2 = { .min = 6, .max = 16 },
263 .p = { .min = 4, .max = 128 },
264 .p1 = { .min = 2, .max = 33 },
265 .p2 = { .dot_limit = 165000,
266 .p2_slow = 4, .p2_fast = 2 },
267 };
268
269 static const struct intel_limit intel_limits_i8xx_dvo = {
270 .dot = { .min = 25000, .max = 350000 },
271 .vco = { .min = 908000, .max = 1512000 },
272 .n = { .min = 2, .max = 16 },
273 .m = { .min = 96, .max = 140 },
274 .m1 = { .min = 18, .max = 26 },
275 .m2 = { .min = 6, .max = 16 },
276 .p = { .min = 4, .max = 128 },
277 .p1 = { .min = 2, .max = 33 },
278 .p2 = { .dot_limit = 165000,
279 .p2_slow = 4, .p2_fast = 4 },
280 };
281
282 static const struct intel_limit intel_limits_i8xx_lvds = {
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 908000, .max = 1512000 },
285 .n = { .min = 2, .max = 16 },
286 .m = { .min = 96, .max = 140 },
287 .m1 = { .min = 18, .max = 26 },
288 .m2 = { .min = 6, .max = 16 },
289 .p = { .min = 4, .max = 128 },
290 .p1 = { .min = 1, .max = 6 },
291 .p2 = { .dot_limit = 165000,
292 .p2_slow = 14, .p2_fast = 7 },
293 };
294
295 static const struct intel_limit intel_limits_i9xx_sdvo = {
296 .dot = { .min = 20000, .max = 400000 },
297 .vco = { .min = 1400000, .max = 2800000 },
298 .n = { .min = 1, .max = 6 },
299 .m = { .min = 70, .max = 120 },
300 .m1 = { .min = 8, .max = 18 },
301 .m2 = { .min = 3, .max = 7 },
302 .p = { .min = 5, .max = 80 },
303 .p1 = { .min = 1, .max = 8 },
304 .p2 = { .dot_limit = 200000,
305 .p2_slow = 10, .p2_fast = 5 },
306 };
307
308 static const struct intel_limit intel_limits_i9xx_lvds = {
309 .dot = { .min = 20000, .max = 400000 },
310 .vco = { .min = 1400000, .max = 2800000 },
311 .n = { .min = 1, .max = 6 },
312 .m = { .min = 70, .max = 120 },
313 .m1 = { .min = 8, .max = 18 },
314 .m2 = { .min = 3, .max = 7 },
315 .p = { .min = 7, .max = 98 },
316 .p1 = { .min = 1, .max = 8 },
317 .p2 = { .dot_limit = 112000,
318 .p2_slow = 14, .p2_fast = 7 },
319 };
320
321
322 static const struct intel_limit intel_limits_g4x_sdvo = {
323 .dot = { .min = 25000, .max = 270000 },
324 .vco = { .min = 1750000, .max = 3500000},
325 .n = { .min = 1, .max = 4 },
326 .m = { .min = 104, .max = 138 },
327 .m1 = { .min = 17, .max = 23 },
328 .m2 = { .min = 5, .max = 11 },
329 .p = { .min = 10, .max = 30 },
330 .p1 = { .min = 1, .max = 3},
331 .p2 = { .dot_limit = 270000,
332 .p2_slow = 10,
333 .p2_fast = 10
334 },
335 };
336
337 static const struct intel_limit intel_limits_g4x_hdmi = {
338 .dot = { .min = 22000, .max = 400000 },
339 .vco = { .min = 1750000, .max = 3500000},
340 .n = { .min = 1, .max = 4 },
341 .m = { .min = 104, .max = 138 },
342 .m1 = { .min = 16, .max = 23 },
343 .m2 = { .min = 5, .max = 11 },
344 .p = { .min = 5, .max = 80 },
345 .p1 = { .min = 1, .max = 8},
346 .p2 = { .dot_limit = 165000,
347 .p2_slow = 10, .p2_fast = 5 },
348 };
349
350 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
351 .dot = { .min = 20000, .max = 115000 },
352 .vco = { .min = 1750000, .max = 3500000 },
353 .n = { .min = 1, .max = 3 },
354 .m = { .min = 104, .max = 138 },
355 .m1 = { .min = 17, .max = 23 },
356 .m2 = { .min = 5, .max = 11 },
357 .p = { .min = 28, .max = 112 },
358 .p1 = { .min = 2, .max = 8 },
359 .p2 = { .dot_limit = 0,
360 .p2_slow = 14, .p2_fast = 14
361 },
362 };
363
364 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
365 .dot = { .min = 80000, .max = 224000 },
366 .vco = { .min = 1750000, .max = 3500000 },
367 .n = { .min = 1, .max = 3 },
368 .m = { .min = 104, .max = 138 },
369 .m1 = { .min = 17, .max = 23 },
370 .m2 = { .min = 5, .max = 11 },
371 .p = { .min = 14, .max = 42 },
372 .p1 = { .min = 2, .max = 6 },
373 .p2 = { .dot_limit = 0,
374 .p2_slow = 7, .p2_fast = 7
375 },
376 };
377
378 static const struct intel_limit pnv_limits_sdvo = {
379 .dot = { .min = 20000, .max = 400000},
380 .vco = { .min = 1700000, .max = 3500000 },
381 /* Pineview's Ncounter is a ring counter */
382 .n = { .min = 3, .max = 6 },
383 .m = { .min = 2, .max = 256 },
384 /* Pineview only has one combined m divider, which we treat as m2. */
385 .m1 = { .min = 0, .max = 0 },
386 .m2 = { .min = 0, .max = 254 },
387 .p = { .min = 5, .max = 80 },
388 .p1 = { .min = 1, .max = 8 },
389 .p2 = { .dot_limit = 200000,
390 .p2_slow = 10, .p2_fast = 5 },
391 };
392
393 static const struct intel_limit pnv_limits_lvds = {
394 .dot = { .min = 20000, .max = 400000 },
395 .vco = { .min = 1700000, .max = 3500000 },
396 .n = { .min = 3, .max = 6 },
397 .m = { .min = 2, .max = 256 },
398 .m1 = { .min = 0, .max = 0 },
399 .m2 = { .min = 0, .max = 254 },
400 .p = { .min = 7, .max = 112 },
401 .p1 = { .min = 1, .max = 8 },
402 .p2 = { .dot_limit = 112000,
403 .p2_slow = 14, .p2_fast = 14 },
404 };
405
406 /* Ironlake / Sandybridge
407 *
408 * We calculate clock using (register_value + 2) for N/M1/M2, so here
409 * the range value for them is (actual_value - 2).
410 */
411 static const struct intel_limit ilk_limits_dac = {
412 .dot = { .min = 25000, .max = 350000 },
413 .vco = { .min = 1760000, .max = 3510000 },
414 .n = { .min = 1, .max = 5 },
415 .m = { .min = 79, .max = 127 },
416 .m1 = { .min = 12, .max = 22 },
417 .m2 = { .min = 5, .max = 9 },
418 .p = { .min = 5, .max = 80 },
419 .p1 = { .min = 1, .max = 8 },
420 .p2 = { .dot_limit = 225000,
421 .p2_slow = 10, .p2_fast = 5 },
422 };
423
424 static const struct intel_limit ilk_limits_single_lvds = {
425 .dot = { .min = 25000, .max = 350000 },
426 .vco = { .min = 1760000, .max = 3510000 },
427 .n = { .min = 1, .max = 3 },
428 .m = { .min = 79, .max = 118 },
429 .m1 = { .min = 12, .max = 22 },
430 .m2 = { .min = 5, .max = 9 },
431 .p = { .min = 28, .max = 112 },
432 .p1 = { .min = 2, .max = 8 },
433 .p2 = { .dot_limit = 225000,
434 .p2_slow = 14, .p2_fast = 14 },
435 };
436
437 static const struct intel_limit ilk_limits_dual_lvds = {
438 .dot = { .min = 25000, .max = 350000 },
439 .vco = { .min = 1760000, .max = 3510000 },
440 .n = { .min = 1, .max = 3 },
441 .m = { .min = 79, .max = 127 },
442 .m1 = { .min = 12, .max = 22 },
443 .m2 = { .min = 5, .max = 9 },
444 .p = { .min = 14, .max = 56 },
445 .p1 = { .min = 2, .max = 8 },
446 .p2 = { .dot_limit = 225000,
447 .p2_slow = 7, .p2_fast = 7 },
448 };
449
450 /* LVDS 100mhz refclk limits. */
451 static const struct intel_limit ilk_limits_single_lvds_100m = {
452 .dot = { .min = 25000, .max = 350000 },
453 .vco = { .min = 1760000, .max = 3510000 },
454 .n = { .min = 1, .max = 2 },
455 .m = { .min = 79, .max = 126 },
456 .m1 = { .min = 12, .max = 22 },
457 .m2 = { .min = 5, .max = 9 },
458 .p = { .min = 28, .max = 112 },
459 .p1 = { .min = 2, .max = 8 },
460 .p2 = { .dot_limit = 225000,
461 .p2_slow = 14, .p2_fast = 14 },
462 };
463
464 static const struct intel_limit ilk_limits_dual_lvds_100m = {
465 .dot = { .min = 25000, .max = 350000 },
466 .vco = { .min = 1760000, .max = 3510000 },
467 .n = { .min = 1, .max = 3 },
468 .m = { .min = 79, .max = 126 },
469 .m1 = { .min = 12, .max = 22 },
470 .m2 = { .min = 5, .max = 9 },
471 .p = { .min = 14, .max = 42 },
472 .p1 = { .min = 2, .max = 6 },
473 .p2 = { .dot_limit = 225000,
474 .p2_slow = 7, .p2_fast = 7 },
475 };
476
477 static const struct intel_limit intel_limits_vlv = {
478 /*
479 * These are the data rate limits (measured in fast clocks)
480 * since those are the strictest limits we have. The fast
481 * clock and actual rate limits are more relaxed, so checking
482 * them would make no difference.
483 */
484 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
485 .vco = { .min = 4000000, .max = 6000000 },
486 .n = { .min = 1, .max = 7 },
487 .m1 = { .min = 2, .max = 3 },
488 .m2 = { .min = 11, .max = 156 },
489 .p1 = { .min = 2, .max = 3 },
490 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
491 };
492
493 static const struct intel_limit intel_limits_chv = {
494 /*
495 * These are the data rate limits (measured in fast clocks)
496 * since those are the strictest limits we have. The fast
497 * clock and actual rate limits are more relaxed, so checking
498 * them would make no difference.
499 */
500 .dot = { .min = 25000 * 5, .max = 540000 * 5},
501 .vco = { .min = 4800000, .max = 6480000 },
502 .n = { .min = 1, .max = 1 },
503 .m1 = { .min = 2, .max = 2 },
504 .m2 = { .min = 24 << 22, .max = 175 << 22 },
505 .p1 = { .min = 2, .max = 4 },
506 .p2 = { .p2_slow = 1, .p2_fast = 14 },
507 };
508
509 static const struct intel_limit intel_limits_bxt = {
510 /* FIXME: find real dot limits */
511 .dot = { .min = 0, .max = INT_MAX },
512 .vco = { .min = 4800000, .max = 6700000 },
513 .n = { .min = 1, .max = 1 },
514 .m1 = { .min = 2, .max = 2 },
515 /* FIXME: find real m2 limits */
516 .m2 = { .min = 2 << 22, .max = 255 << 22 },
517 .p1 = { .min = 2, .max = 4 },
518 .p2 = { .p2_slow = 1, .p2_fast = 20 },
519 };
520
521 /* WA Display #0827: Gen9:all */
522 static void
523 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
524 {
525 if (enable)
526 I915_WRITE(CLKGATE_DIS_PSL(pipe),
527 I915_READ(CLKGATE_DIS_PSL(pipe)) |
528 DUPS1_GATING_DIS | DUPS2_GATING_DIS);
529 else
530 I915_WRITE(CLKGATE_DIS_PSL(pipe),
531 I915_READ(CLKGATE_DIS_PSL(pipe)) &
532 ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
533 }
534
535 /* Wa_2006604312:icl */
536 static void
537 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
538 bool enable)
539 {
540 if (enable)
541 I915_WRITE(CLKGATE_DIS_PSL(pipe),
542 I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
543 else
544 I915_WRITE(CLKGATE_DIS_PSL(pipe),
545 I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
546 }
547
548 static bool
549 needs_modeset(const struct intel_crtc_state *state)
550 {
551 return drm_atomic_crtc_needs_modeset(&state->uapi);
552 }
553
554 bool
555 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
556 {
557 return (crtc_state->master_transcoder != INVALID_TRANSCODER ||
558 crtc_state->sync_mode_slaves_mask);
559 }
560
561 static bool
562 is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state)
563 {
564 return crtc_state->master_transcoder != INVALID_TRANSCODER;
565 }
566
567 /*
568 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
569 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
570 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
571 * The helpers' return value is the rate of the clock that is fed to the
572 * display engine's pipe which can be the above fast dot clock rate or a
573 * divided-down version of it.
574 */
575 /* m1 is reserved as 0 in Pineview, n is a ring counter */
576 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
577 {
578 clock->m = clock->m2 + 2;
579 clock->p = clock->p1 * clock->p2;
580 if (WARN_ON(clock->n == 0 || clock->p == 0))
581 return 0;
582 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
583 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
584
585 return clock->dot;
586 }
587
588 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
589 {
590 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
591 }
592
593 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
594 {
595 clock->m = i9xx_dpll_compute_m(clock);
596 clock->p = clock->p1 * clock->p2;
597 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
598 return 0;
599 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
600 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
601
602 return clock->dot;
603 }
604
605 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
606 {
607 clock->m = clock->m1 * clock->m2;
608 clock->p = clock->p1 * clock->p2;
609 if (WARN_ON(clock->n == 0 || clock->p == 0))
610 return 0;
611 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
612 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
613
614 return clock->dot / 5;
615 }
616
617 int chv_calc_dpll_params(int refclk, struct dpll *clock)
618 {
619 clock->m = clock->m1 * clock->m2;
620 clock->p = clock->p1 * clock->p2;
621 if (WARN_ON(clock->n == 0 || clock->p == 0))
622 return 0;
623 clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
624 clock->n << 22);
625 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
626
627 return clock->dot / 5;
628 }
629
630 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
631
632 /*
633 * Returns whether the given set of divisors are valid for a given refclk with
634 * the given connectors.
635 */
636 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
637 const struct intel_limit *limit,
638 const struct dpll *clock)
639 {
640 if (clock->n < limit->n.min || limit->n.max < clock->n)
641 INTELPllInvalid("n out of range\n");
642 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
643 INTELPllInvalid("p1 out of range\n");
644 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
645 INTELPllInvalid("m2 out of range\n");
646 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
647 INTELPllInvalid("m1 out of range\n");
648
649 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
650 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
651 if (clock->m1 <= clock->m2)
652 INTELPllInvalid("m1 <= m2\n");
653
654 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
655 !IS_GEN9_LP(dev_priv)) {
656 if (clock->p < limit->p.min || limit->p.max < clock->p)
657 INTELPllInvalid("p out of range\n");
658 if (clock->m < limit->m.min || limit->m.max < clock->m)
659 INTELPllInvalid("m out of range\n");
660 }
661
662 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
663 INTELPllInvalid("vco out of range\n");
664 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
665 * connector, etc., rather than just a single range.
666 */
667 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
668 INTELPllInvalid("dot out of range\n");
669
670 return true;
671 }
672
673 static int
674 i9xx_select_p2_div(const struct intel_limit *limit,
675 const struct intel_crtc_state *crtc_state,
676 int target)
677 {
678 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
679
680 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
681 /*
682 * For LVDS just rely on its current settings for dual-channel.
683 * We haven't figured out how to reliably set up different
684 * single/dual channel state, if we even can.
685 */
686 if (intel_is_dual_link_lvds(dev_priv))
687 return limit->p2.p2_fast;
688 else
689 return limit->p2.p2_slow;
690 } else {
691 if (target < limit->p2.dot_limit)
692 return limit->p2.p2_slow;
693 else
694 return limit->p2.p2_fast;
695 }
696 }
697
698 /*
699 * Returns a set of divisors for the desired target clock with the given
700 * refclk, or FALSE. The returned values represent the clock equation:
701 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
702 *
703 * Target and reference clocks are specified in kHz.
704 *
705 * If match_clock is provided, then best_clock P divider must match the P
706 * divider from @match_clock used for LVDS downclocking.
707 */
708 static bool
709 i9xx_find_best_dpll(const struct intel_limit *limit,
710 struct intel_crtc_state *crtc_state,
711 int target, int refclk, struct dpll *match_clock,
712 struct dpll *best_clock)
713 {
714 struct drm_device *dev = crtc_state->uapi.crtc->dev;
715 struct dpll clock;
716 int err = target;
717
718 memset(best_clock, 0, sizeof(*best_clock));
719
720 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
721
722 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
723 clock.m1++) {
724 for (clock.m2 = limit->m2.min;
725 clock.m2 <= limit->m2.max; clock.m2++) {
726 if (clock.m2 >= clock.m1)
727 break;
728 for (clock.n = limit->n.min;
729 clock.n <= limit->n.max; clock.n++) {
730 for (clock.p1 = limit->p1.min;
731 clock.p1 <= limit->p1.max; clock.p1++) {
732 int this_err;
733
734 i9xx_calc_dpll_params(refclk, &clock);
735 if (!intel_PLL_is_valid(to_i915(dev),
736 limit,
737 &clock))
738 continue;
739 if (match_clock &&
740 clock.p != match_clock->p)
741 continue;
742
743 this_err = abs(clock.dot - target);
744 if (this_err < err) {
745 *best_clock = clock;
746 err = this_err;
747 }
748 }
749 }
750 }
751 }
752
753 return (err != target);
754 }
755
756 /*
757 * Returns a set of divisors for the desired target clock with the given
758 * refclk, or FALSE. The returned values represent the clock equation:
759 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
760 *
761 * Target and reference clocks are specified in kHz.
762 *
763 * If match_clock is provided, then best_clock P divider must match the P
764 * divider from @match_clock used for LVDS downclocking.
765 */
766 static bool
767 pnv_find_best_dpll(const struct intel_limit *limit,
768 struct intel_crtc_state *crtc_state,
769 int target, int refclk, struct dpll *match_clock,
770 struct dpll *best_clock)
771 {
772 struct drm_device *dev = crtc_state->uapi.crtc->dev;
773 struct dpll clock;
774 int err = target;
775
776 memset(best_clock, 0, sizeof(*best_clock));
777
778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 clock.m1++) {
782 for (clock.m2 = limit->m2.min;
783 clock.m2 <= limit->m2.max; clock.m2++) {
784 for (clock.n = limit->n.min;
785 clock.n <= limit->n.max; clock.n++) {
786 for (clock.p1 = limit->p1.min;
787 clock.p1 <= limit->p1.max; clock.p1++) {
788 int this_err;
789
790 pnv_calc_dpll_params(refclk, &clock);
791 if (!intel_PLL_is_valid(to_i915(dev),
792 limit,
793 &clock))
794 continue;
795 if (match_clock &&
796 clock.p != match_clock->p)
797 continue;
798
799 this_err = abs(clock.dot - target);
800 if (this_err < err) {
801 *best_clock = clock;
802 err = this_err;
803 }
804 }
805 }
806 }
807 }
808
809 return (err != target);
810 }
811
812 /*
813 * Returns a set of divisors for the desired target clock with the given
814 * refclk, or FALSE. The returned values represent the clock equation:
815 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
816 *
817 * Target and reference clocks are specified in kHz.
818 *
819 * If match_clock is provided, then best_clock P divider must match the P
820 * divider from @match_clock used for LVDS downclocking.
821 */
822 static bool
823 g4x_find_best_dpll(const struct intel_limit *limit,
824 struct intel_crtc_state *crtc_state,
825 int target, int refclk, struct dpll *match_clock,
826 struct dpll *best_clock)
827 {
828 struct drm_device *dev = crtc_state->uapi.crtc->dev;
829 struct dpll clock;
830 int max_n;
831 bool found = false;
832 /* approximately equals target * 0.00585 */
833 int err_most = (target >> 8) + (target >> 9);
834
835 memset(best_clock, 0, sizeof(*best_clock));
836
837 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
838
839 max_n = limit->n.max;
840 /* based on hardware requirement, prefer smaller n to precision */
841 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
842 /* based on hardware requirement, prefere larger m1,m2 */
843 for (clock.m1 = limit->m1.max;
844 clock.m1 >= limit->m1.min; clock.m1--) {
845 for (clock.m2 = limit->m2.max;
846 clock.m2 >= limit->m2.min; clock.m2--) {
847 for (clock.p1 = limit->p1.max;
848 clock.p1 >= limit->p1.min; clock.p1--) {
849 int this_err;
850
851 i9xx_calc_dpll_params(refclk, &clock);
852 if (!intel_PLL_is_valid(to_i915(dev),
853 limit,
854 &clock))
855 continue;
856
857 this_err = abs(clock.dot - target);
858 if (this_err < err_most) {
859 *best_clock = clock;
860 err_most = this_err;
861 max_n = clock.n;
862 found = true;
863 }
864 }
865 }
866 }
867 }
868 return found;
869 }
870
871 /*
872 * Check if the calculated PLL configuration is more optimal compared to the
873 * best configuration and error found so far. Return the calculated error.
874 */
875 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
876 const struct dpll *calculated_clock,
877 const struct dpll *best_clock,
878 unsigned int best_error_ppm,
879 unsigned int *error_ppm)
880 {
881 /*
882 * For CHV ignore the error and consider only the P value.
883 * Prefer a bigger P value based on HW requirements.
884 */
885 if (IS_CHERRYVIEW(to_i915(dev))) {
886 *error_ppm = 0;
887
888 return calculated_clock->p > best_clock->p;
889 }
890
891 if (WARN_ON_ONCE(!target_freq))
892 return false;
893
894 *error_ppm = div_u64(1000000ULL *
895 abs(target_freq - calculated_clock->dot),
896 target_freq);
897 /*
898 * Prefer a better P value over a better (smaller) error if the error
899 * is small. Ensure this preference for future configurations too by
900 * setting the error to 0.
901 */
902 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
903 *error_ppm = 0;
904
905 return true;
906 }
907
908 return *error_ppm + 10 < best_error_ppm;
909 }
910
911 /*
912 * Returns a set of divisors for the desired target clock with the given
913 * refclk, or FALSE. The returned values represent the clock equation:
914 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
915 */
916 static bool
917 vlv_find_best_dpll(const struct intel_limit *limit,
918 struct intel_crtc_state *crtc_state,
919 int target, int refclk, struct dpll *match_clock,
920 struct dpll *best_clock)
921 {
922 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
923 struct drm_device *dev = crtc->base.dev;
924 struct dpll clock;
925 unsigned int bestppm = 1000000;
926 /* min update 19.2 MHz */
927 int max_n = min(limit->n.max, refclk / 19200);
928 bool found = false;
929
930 target *= 5; /* fast clock */
931
932 memset(best_clock, 0, sizeof(*best_clock));
933
934 /* based on hardware requirement, prefer smaller n to precision */
935 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
936 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
937 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
938 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939 clock.p = clock.p1 * clock.p2;
940 /* based on hardware requirement, prefer bigger m1,m2 values */
941 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
942 unsigned int ppm;
943
944 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
945 refclk * clock.m1);
946
947 vlv_calc_dpll_params(refclk, &clock);
948
949 if (!intel_PLL_is_valid(to_i915(dev),
950 limit,
951 &clock))
952 continue;
953
954 if (!vlv_PLL_is_optimal(dev, target,
955 &clock,
956 best_clock,
957 bestppm, &ppm))
958 continue;
959
960 *best_clock = clock;
961 bestppm = ppm;
962 found = true;
963 }
964 }
965 }
966 }
967
968 return found;
969 }
970
971 /*
972 * Returns a set of divisors for the desired target clock with the given
973 * refclk, or FALSE. The returned values represent the clock equation:
974 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
975 */
976 static bool
977 chv_find_best_dpll(const struct intel_limit *limit,
978 struct intel_crtc_state *crtc_state,
979 int target, int refclk, struct dpll *match_clock,
980 struct dpll *best_clock)
981 {
982 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
983 struct drm_device *dev = crtc->base.dev;
984 unsigned int best_error_ppm;
985 struct dpll clock;
986 u64 m2;
987 int found = false;
988
989 memset(best_clock, 0, sizeof(*best_clock));
990 best_error_ppm = 1000000;
991
992 /*
993 * Based on hardware doc, the n always set to 1, and m1 always
994 * set to 2. If requires to support 200Mhz refclk, we need to
995 * revisit this because n may not 1 anymore.
996 */
997 clock.n = 1, clock.m1 = 2;
998 target *= 5; /* fast clock */
999
1000 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1001 for (clock.p2 = limit->p2.p2_fast;
1002 clock.p2 >= limit->p2.p2_slow;
1003 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1004 unsigned int error_ppm;
1005
1006 clock.p = clock.p1 * clock.p2;
1007
1008 m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
1009 refclk * clock.m1);
1010
1011 if (m2 > INT_MAX/clock.m1)
1012 continue;
1013
1014 clock.m2 = m2;
1015
1016 chv_calc_dpll_params(refclk, &clock);
1017
1018 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
1019 continue;
1020
1021 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1022 best_error_ppm, &error_ppm))
1023 continue;
1024
1025 *best_clock = clock;
1026 best_error_ppm = error_ppm;
1027 found = true;
1028 }
1029 }
1030
1031 return found;
1032 }
1033
1034 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1035 struct dpll *best_clock)
1036 {
1037 int refclk = 100000;
1038 const struct intel_limit *limit = &intel_limits_bxt;
1039
1040 return chv_find_best_dpll(limit, crtc_state,
1041 crtc_state->port_clock, refclk,
1042 NULL, best_clock);
1043 }
1044
1045 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1046 enum pipe pipe)
1047 {
1048 i915_reg_t reg = PIPEDSL(pipe);
1049 u32 line1, line2;
1050 u32 line_mask;
1051
1052 if (IS_GEN(dev_priv, 2))
1053 line_mask = DSL_LINEMASK_GEN2;
1054 else
1055 line_mask = DSL_LINEMASK_GEN3;
1056
1057 line1 = I915_READ(reg) & line_mask;
1058 msleep(5);
1059 line2 = I915_READ(reg) & line_mask;
1060
1061 return line1 != line2;
1062 }
1063
1064 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1065 {
1066 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1067 enum pipe pipe = crtc->pipe;
1068
1069 /* Wait for the display line to settle/start moving */
1070 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1071 DRM_ERROR("pipe %c scanline %s wait timed out\n",
1072 pipe_name(pipe), onoff(state));
1073 }
1074
1075 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1076 {
1077 wait_for_pipe_scanline_moving(crtc, false);
1078 }
1079
1080 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1081 {
1082 wait_for_pipe_scanline_moving(crtc, true);
1083 }
1084
1085 static void
1086 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1087 {
1088 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1089 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1090
1091 if (INTEL_GEN(dev_priv) >= 4) {
1092 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1093 i915_reg_t reg = PIPECONF(cpu_transcoder);
1094
1095 /* Wait for the Pipe State to go off */
1096 if (intel_de_wait_for_clear(dev_priv, reg,
1097 I965_PIPECONF_ACTIVE, 100))
1098 WARN(1, "pipe_off wait timed out\n");
1099 } else {
1100 intel_wait_for_pipe_scanline_stopped(crtc);
1101 }
1102 }
1103
1104 /* Only for pre-ILK configs */
1105 void assert_pll(struct drm_i915_private *dev_priv,
1106 enum pipe pipe, bool state)
1107 {
1108 u32 val;
1109 bool cur_state;
1110
1111 val = I915_READ(DPLL(pipe));
1112 cur_state = !!(val & DPLL_VCO_ENABLE);
1113 I915_STATE_WARN(cur_state != state,
1114 "PLL state assertion failure (expected %s, current %s)\n",
1115 onoff(state), onoff(cur_state));
1116 }
1117
1118 /* XXX: the dsi pll is shared between MIPI DSI ports */
1119 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1120 {
1121 u32 val;
1122 bool cur_state;
1123
1124 vlv_cck_get(dev_priv);
1125 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1126 vlv_cck_put(dev_priv);
1127
1128 cur_state = val & DSI_PLL_VCO_EN;
1129 I915_STATE_WARN(cur_state != state,
1130 "DSI PLL state assertion failure (expected %s, current %s)\n",
1131 onoff(state), onoff(cur_state));
1132 }
1133
1134 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1135 enum pipe pipe, bool state)
1136 {
1137 bool cur_state;
1138
1139 if (HAS_DDI(dev_priv)) {
1140 /*
1141 * DDI does not have a specific FDI_TX register.
1142 *
1143 * FDI is never fed from EDP transcoder
1144 * so pipe->transcoder cast is fine here.
1145 */
1146 enum transcoder cpu_transcoder = (enum transcoder)pipe;
1147 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1148 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1149 } else {
1150 u32 val = I915_READ(FDI_TX_CTL(pipe));
1151 cur_state = !!(val & FDI_TX_ENABLE);
1152 }
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI TX state assertion failure (expected %s, current %s)\n",
1155 onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1158 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1159
1160 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1161 enum pipe pipe, bool state)
1162 {
1163 u32 val;
1164 bool cur_state;
1165
1166 val = I915_READ(FDI_RX_CTL(pipe));
1167 cur_state = !!(val & FDI_RX_ENABLE);
1168 I915_STATE_WARN(cur_state != state,
1169 "FDI RX state assertion failure (expected %s, current %s)\n",
1170 onoff(state), onoff(cur_state));
1171 }
1172 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1173 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1174
1175 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1176 enum pipe pipe)
1177 {
1178 u32 val;
1179
1180 /* ILK FDI PLL is always enabled */
1181 if (IS_GEN(dev_priv, 5))
1182 return;
1183
1184 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1185 if (HAS_DDI(dev_priv))
1186 return;
1187
1188 val = I915_READ(FDI_TX_CTL(pipe));
1189 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1190 }
1191
1192 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1193 enum pipe pipe, bool state)
1194 {
1195 u32 val;
1196 bool cur_state;
1197
1198 val = I915_READ(FDI_RX_CTL(pipe));
1199 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1200 I915_STATE_WARN(cur_state != state,
1201 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1202 onoff(state), onoff(cur_state));
1203 }
1204
1205 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1206 {
1207 i915_reg_t pp_reg;
1208 u32 val;
1209 enum pipe panel_pipe = INVALID_PIPE;
1210 bool locked = true;
1211
1212 if (WARN_ON(HAS_DDI(dev_priv)))
1213 return;
1214
1215 if (HAS_PCH_SPLIT(dev_priv)) {
1216 u32 port_sel;
1217
1218 pp_reg = PP_CONTROL(0);
1219 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1220
1221 switch (port_sel) {
1222 case PANEL_PORT_SELECT_LVDS:
1223 intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1224 break;
1225 case PANEL_PORT_SELECT_DPA:
1226 intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1227 break;
1228 case PANEL_PORT_SELECT_DPC:
1229 intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1230 break;
1231 case PANEL_PORT_SELECT_DPD:
1232 intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1233 break;
1234 default:
1235 MISSING_CASE(port_sel);
1236 break;
1237 }
1238 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1239 /* presumably write lock depends on pipe, not port select */
1240 pp_reg = PP_CONTROL(pipe);
1241 panel_pipe = pipe;
1242 } else {
1243 u32 port_sel;
1244
1245 pp_reg = PP_CONTROL(0);
1246 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1247
1248 WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS);
1249 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1250 }
1251
1252 val = I915_READ(pp_reg);
1253 if (!(val & PANEL_POWER_ON) ||
1254 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1255 locked = false;
1256
1257 I915_STATE_WARN(panel_pipe == pipe && locked,
1258 "panel assertion failure, pipe %c regs locked\n",
1259 pipe_name(pipe));
1260 }
1261
1262 void assert_pipe(struct drm_i915_private *dev_priv,
1263 enum transcoder cpu_transcoder, bool state)
1264 {
1265 bool cur_state;
1266 enum intel_display_power_domain power_domain;
1267 intel_wakeref_t wakeref;
1268
1269 /* we keep both pipes enabled on 830 */
1270 if (IS_I830(dev_priv))
1271 state = true;
1272
1273 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1274 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1275 if (wakeref) {
1276 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1277 cur_state = !!(val & PIPECONF_ENABLE);
1278
1279 intel_display_power_put(dev_priv, power_domain, wakeref);
1280 } else {
1281 cur_state = false;
1282 }
1283
1284 I915_STATE_WARN(cur_state != state,
1285 "transcoder %s assertion failure (expected %s, current %s)\n",
1286 transcoder_name(cpu_transcoder),
1287 onoff(state), onoff(cur_state));
1288 }
1289
1290 static void assert_plane(struct intel_plane *plane, bool state)
1291 {
1292 enum pipe pipe;
1293 bool cur_state;
1294
1295 cur_state = plane->get_hw_state(plane, &pipe);
1296
1297 I915_STATE_WARN(cur_state != state,
1298 "%s assertion failure (expected %s, current %s)\n",
1299 plane->base.name, onoff(state), onoff(cur_state));
1300 }
1301
1302 #define assert_plane_enabled(p) assert_plane(p, true)
1303 #define assert_plane_disabled(p) assert_plane(p, false)
1304
1305 static void assert_planes_disabled(struct intel_crtc *crtc)
1306 {
1307 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1308 struct intel_plane *plane;
1309
1310 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1311 assert_plane_disabled(plane);
1312 }
1313
1314 static void assert_vblank_disabled(struct drm_crtc *crtc)
1315 {
1316 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1317 drm_crtc_vblank_put(crtc);
1318 }
1319
1320 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe)
1322 {
1323 u32 val;
1324 bool enabled;
1325
1326 val = I915_READ(PCH_TRANSCONF(pipe));
1327 enabled = !!(val & TRANS_ENABLE);
1328 I915_STATE_WARN(enabled,
1329 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1330 pipe_name(pipe));
1331 }
1332
1333 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1334 enum pipe pipe, enum port port,
1335 i915_reg_t dp_reg)
1336 {
1337 enum pipe port_pipe;
1338 bool state;
1339
1340 state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1341
1342 I915_STATE_WARN(state && port_pipe == pipe,
1343 "PCH DP %c enabled on transcoder %c, should be disabled\n",
1344 port_name(port), pipe_name(pipe));
1345
1346 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1347 "IBX PCH DP %c still using transcoder B\n",
1348 port_name(port));
1349 }
1350
1351 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1352 enum pipe pipe, enum port port,
1353 i915_reg_t hdmi_reg)
1354 {
1355 enum pipe port_pipe;
1356 bool state;
1357
1358 state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1359
1360 I915_STATE_WARN(state && port_pipe == pipe,
1361 "PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1362 port_name(port), pipe_name(pipe));
1363
1364 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1365 "IBX PCH HDMI %c still using transcoder B\n",
1366 port_name(port));
1367 }
1368
1369 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1370 enum pipe pipe)
1371 {
1372 enum pipe port_pipe;
1373
1374 assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1375 assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1376 assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1377
1378 I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1379 port_pipe == pipe,
1380 "PCH VGA enabled on transcoder %c, should be disabled\n",
1381 pipe_name(pipe));
1382
1383 I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1384 port_pipe == pipe,
1385 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1386 pipe_name(pipe));
1387
1388 /* PCH SDVOB multiplex with HDMIB */
1389 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1390 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1391 assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1392 }
1393
1394 static void _vlv_enable_pll(struct intel_crtc *crtc,
1395 const struct intel_crtc_state *pipe_config)
1396 {
1397 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1398 enum pipe pipe = crtc->pipe;
1399
1400 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1401 POSTING_READ(DPLL(pipe));
1402 udelay(150);
1403
1404 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1405 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1406 }
1407
1408 static void vlv_enable_pll(struct intel_crtc *crtc,
1409 const struct intel_crtc_state *pipe_config)
1410 {
1411 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1412 enum pipe pipe = crtc->pipe;
1413
1414 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1415
1416 /* PLL is protected by panel, make sure we can write it */
1417 assert_panel_unlocked(dev_priv, pipe);
1418
1419 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1420 _vlv_enable_pll(crtc, pipe_config);
1421
1422 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1423 POSTING_READ(DPLL_MD(pipe));
1424 }
1425
1426
1427 static void _chv_enable_pll(struct intel_crtc *crtc,
1428 const struct intel_crtc_state *pipe_config)
1429 {
1430 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1431 enum pipe pipe = crtc->pipe;
1432 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1433 u32 tmp;
1434
1435 vlv_dpio_get(dev_priv);
1436
1437 /* Enable back the 10bit clock to display controller */
1438 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1439 tmp |= DPIO_DCLKP_EN;
1440 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1441
1442 vlv_dpio_put(dev_priv);
1443
1444 /*
1445 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1446 */
1447 udelay(1);
1448
1449 /* Enable PLL */
1450 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1451
1452 /* Check PLL is locked */
1453 if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1454 DRM_ERROR("PLL %d failed to lock\n", pipe);
1455 }
1456
1457 static void chv_enable_pll(struct intel_crtc *crtc,
1458 const struct intel_crtc_state *pipe_config)
1459 {
1460 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1461 enum pipe pipe = crtc->pipe;
1462
1463 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
1464
1465 /* PLL is protected by panel, make sure we can write it */
1466 assert_panel_unlocked(dev_priv, pipe);
1467
1468 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1469 _chv_enable_pll(crtc, pipe_config);
1470
1471 if (pipe != PIPE_A) {
1472 /*
1473 * WaPixelRepeatModeFixForC0:chv
1474 *
1475 * DPLLCMD is AWOL. Use chicken bits to propagate
1476 * the value from DPLLBMD to either pipe B or C.
1477 */
1478 I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1479 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1480 I915_WRITE(CBR4_VLV, 0);
1481 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1482
1483 /*
1484 * DPLLB VGA mode also seems to cause problems.
1485 * We should always have it disabled.
1486 */
1487 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1488 } else {
1489 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1490 POSTING_READ(DPLL_MD(pipe));
1491 }
1492 }
1493
1494 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1495 {
1496 if (IS_I830(dev_priv))
1497 return false;
1498
1499 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1500 }
1501
1502 static void i9xx_enable_pll(struct intel_crtc *crtc,
1503 const struct intel_crtc_state *crtc_state)
1504 {
1505 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1506 i915_reg_t reg = DPLL(crtc->pipe);
1507 u32 dpll = crtc_state->dpll_hw_state.dpll;
1508 int i;
1509
1510 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1511
1512 /* PLL is protected by panel, make sure we can write it */
1513 if (i9xx_has_pps(dev_priv))
1514 assert_panel_unlocked(dev_priv, crtc->pipe);
1515
1516 /*
1517 * Apparently we need to have VGA mode enabled prior to changing
1518 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1519 * dividers, even though the register value does change.
1520 */
1521 I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS);
1522 I915_WRITE(reg, dpll);
1523
1524 /* Wait for the clocks to stabilize. */
1525 POSTING_READ(reg);
1526 udelay(150);
1527
1528 if (INTEL_GEN(dev_priv) >= 4) {
1529 I915_WRITE(DPLL_MD(crtc->pipe),
1530 crtc_state->dpll_hw_state.dpll_md);
1531 } else {
1532 /* The pixel multiplier can only be updated once the
1533 * DPLL is enabled and the clocks are stable.
1534 *
1535 * So write it again.
1536 */
1537 I915_WRITE(reg, dpll);
1538 }
1539
1540 /* We do this three times for luck */
1541 for (i = 0; i < 3; i++) {
1542 I915_WRITE(reg, dpll);
1543 POSTING_READ(reg);
1544 udelay(150); /* wait for warmup */
1545 }
1546 }
1547
1548 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1549 {
1550 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1551 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1552 enum pipe pipe = crtc->pipe;
1553
1554 /* Don't disable pipe or pipe PLLs if needed */
1555 if (IS_I830(dev_priv))
1556 return;
1557
1558 /* Make sure the pipe isn't still relying on us */
1559 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
1560
1561 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1562 POSTING_READ(DPLL(pipe));
1563 }
1564
1565 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1566 {
1567 u32 val;
1568
1569 /* Make sure the pipe isn't still relying on us */
1570 assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1571
1572 val = DPLL_INTEGRATED_REF_CLK_VLV |
1573 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1574 if (pipe != PIPE_A)
1575 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1576
1577 I915_WRITE(DPLL(pipe), val);
1578 POSTING_READ(DPLL(pipe));
1579 }
1580
1581 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1582 {
1583 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1584 u32 val;
1585
1586 /* Make sure the pipe isn't still relying on us */
1587 assert_pipe_disabled(dev_priv, (enum transcoder)pipe);
1588
1589 val = DPLL_SSC_REF_CLK_CHV |
1590 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1591 if (pipe != PIPE_A)
1592 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1593
1594 I915_WRITE(DPLL(pipe), val);
1595 POSTING_READ(DPLL(pipe));
1596
1597 vlv_dpio_get(dev_priv);
1598
1599 /* Disable 10bit clock to display controller */
1600 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1601 val &= ~DPIO_DCLKP_EN;
1602 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1603
1604 vlv_dpio_put(dev_priv);
1605 }
1606
1607 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1608 struct intel_digital_port *dport,
1609 unsigned int expected_mask)
1610 {
1611 u32 port_mask;
1612 i915_reg_t dpll_reg;
1613
1614 switch (dport->base.port) {
1615 case PORT_B:
1616 port_mask = DPLL_PORTB_READY_MASK;
1617 dpll_reg = DPLL(0);
1618 break;
1619 case PORT_C:
1620 port_mask = DPLL_PORTC_READY_MASK;
1621 dpll_reg = DPLL(0);
1622 expected_mask <<= 4;
1623 break;
1624 case PORT_D:
1625 port_mask = DPLL_PORTD_READY_MASK;
1626 dpll_reg = DPIO_PHY_STATUS;
1627 break;
1628 default:
1629 BUG();
1630 }
1631
1632 if (intel_de_wait_for_register(dev_priv, dpll_reg,
1633 port_mask, expected_mask, 1000))
1634 WARN(1, "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1635 dport->base.base.base.id, dport->base.base.name,
1636 I915_READ(dpll_reg) & port_mask, expected_mask);
1637 }
1638
1639 static void ilk_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1640 {
1641 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1642 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1643 enum pipe pipe = crtc->pipe;
1644 i915_reg_t reg;
1645 u32 val, pipeconf_val;
1646
1647 /* Make sure PCH DPLL is enabled */
1648 assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1649
1650 /* FDI must be feeding us bits for PCH ports */
1651 assert_fdi_tx_enabled(dev_priv, pipe);
1652 assert_fdi_rx_enabled(dev_priv, pipe);
1653
1654 if (HAS_PCH_CPT(dev_priv)) {
1655 reg = TRANS_CHICKEN2(pipe);
1656 val = I915_READ(reg);
1657 /*
1658 * Workaround: Set the timing override bit
1659 * before enabling the pch transcoder.
1660 */
1661 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1662 /* Configure frame start delay to match the CPU */
1663 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1664 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1665 I915_WRITE(reg, val);
1666 }
1667
1668 reg = PCH_TRANSCONF(pipe);
1669 val = I915_READ(reg);
1670 pipeconf_val = I915_READ(PIPECONF(pipe));
1671
1672 if (HAS_PCH_IBX(dev_priv)) {
1673 /* Configure frame start delay to match the CPU */
1674 val &= ~TRANS_FRAME_START_DELAY_MASK;
1675 val |= TRANS_FRAME_START_DELAY(0);
1676
1677 /*
1678 * Make the BPC in transcoder be consistent with
1679 * that in pipeconf reg. For HDMI we must use 8bpc
1680 * here for both 8bpc and 12bpc.
1681 */
1682 val &= ~PIPECONF_BPC_MASK;
1683 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1684 val |= PIPECONF_8BPC;
1685 else
1686 val |= pipeconf_val & PIPECONF_BPC_MASK;
1687 }
1688
1689 val &= ~TRANS_INTERLACE_MASK;
1690 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1691 if (HAS_PCH_IBX(dev_priv) &&
1692 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1693 val |= TRANS_LEGACY_INTERLACED_ILK;
1694 else
1695 val |= TRANS_INTERLACED;
1696 } else {
1697 val |= TRANS_PROGRESSIVE;
1698 }
1699
1700 I915_WRITE(reg, val | TRANS_ENABLE);
1701 if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1702 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1703 }
1704
1705 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1706 enum transcoder cpu_transcoder)
1707 {
1708 u32 val, pipeconf_val;
1709
1710 /* FDI must be feeding us bits for PCH ports */
1711 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1712 assert_fdi_rx_enabled(dev_priv, PIPE_A);
1713
1714 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1715 /* Workaround: set timing override bit. */
1716 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1717 /* Configure frame start delay to match the CPU */
1718 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
1719 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
1720 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1721
1722 val = TRANS_ENABLE;
1723 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1724
1725 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1726 PIPECONF_INTERLACED_ILK)
1727 val |= TRANS_INTERLACED;
1728 else
1729 val |= TRANS_PROGRESSIVE;
1730
1731 I915_WRITE(LPT_TRANSCONF, val);
1732 if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1733 TRANS_STATE_ENABLE, 100))
1734 DRM_ERROR("Failed to enable PCH transcoder\n");
1735 }
1736
1737 static void ilk_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1738 enum pipe pipe)
1739 {
1740 i915_reg_t reg;
1741 u32 val;
1742
1743 /* FDI relies on the transcoder */
1744 assert_fdi_tx_disabled(dev_priv, pipe);
1745 assert_fdi_rx_disabled(dev_priv, pipe);
1746
1747 /* Ports must be off as well */
1748 assert_pch_ports_disabled(dev_priv, pipe);
1749
1750 reg = PCH_TRANSCONF(pipe);
1751 val = I915_READ(reg);
1752 val &= ~TRANS_ENABLE;
1753 I915_WRITE(reg, val);
1754 /* wait for PCH transcoder off, transcoder state */
1755 if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1756 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1757
1758 if (HAS_PCH_CPT(dev_priv)) {
1759 /* Workaround: Clear the timing override chicken bit again. */
1760 reg = TRANS_CHICKEN2(pipe);
1761 val = I915_READ(reg);
1762 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1763 I915_WRITE(reg, val);
1764 }
1765 }
1766
1767 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1768 {
1769 u32 val;
1770
1771 val = I915_READ(LPT_TRANSCONF);
1772 val &= ~TRANS_ENABLE;
1773 I915_WRITE(LPT_TRANSCONF, val);
1774 /* wait for PCH transcoder off, transcoder state */
1775 if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1776 TRANS_STATE_ENABLE, 50))
1777 DRM_ERROR("Failed to disable PCH transcoder\n");
1778
1779 /* Workaround: clear timing override bit. */
1780 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1781 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1782 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1783 }
1784
1785 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1786 {
1787 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1788
1789 if (HAS_PCH_LPT(dev_priv))
1790 return PIPE_A;
1791 else
1792 return crtc->pipe;
1793 }
1794
1795 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1796 {
1797 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1798
1799 /*
1800 * On i965gm the hardware frame counter reads
1801 * zero when the TV encoder is enabled :(
1802 */
1803 if (IS_I965GM(dev_priv) &&
1804 (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1805 return 0;
1806
1807 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1808 return 0xffffffff; /* full 32 bit counter */
1809 else if (INTEL_GEN(dev_priv) >= 3)
1810 return 0xffffff; /* only 24 bits of frame count */
1811 else
1812 return 0; /* Gen2 doesn't have a hardware frame counter */
1813 }
1814
1815 static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1816 {
1817 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1818
1819 assert_vblank_disabled(&crtc->base);
1820 drm_crtc_set_max_vblank_count(&crtc->base,
1821 intel_crtc_max_vblank_count(crtc_state));
1822 drm_crtc_vblank_on(&crtc->base);
1823 }
1824
1825 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
1826 {
1827 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1828
1829 drm_crtc_vblank_off(&crtc->base);
1830 assert_vblank_disabled(&crtc->base);
1831 }
1832
1833 static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1834 {
1835 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1836 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1837 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1838 enum pipe pipe = crtc->pipe;
1839 i915_reg_t reg;
1840 u32 val;
1841
1842 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1843
1844 assert_planes_disabled(crtc);
1845
1846 /*
1847 * A pipe without a PLL won't actually be able to drive bits from
1848 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1849 * need the check.
1850 */
1851 if (HAS_GMCH(dev_priv)) {
1852 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1853 assert_dsi_pll_enabled(dev_priv);
1854 else
1855 assert_pll_enabled(dev_priv, pipe);
1856 } else {
1857 if (new_crtc_state->has_pch_encoder) {
1858 /* if driving the PCH, we need FDI enabled */
1859 assert_fdi_rx_pll_enabled(dev_priv,
1860 intel_crtc_pch_transcoder(crtc));
1861 assert_fdi_tx_pll_enabled(dev_priv,
1862 (enum pipe) cpu_transcoder);
1863 }
1864 /* FIXME: assert CPU port conditions for SNB+ */
1865 }
1866
1867 trace_intel_pipe_enable(crtc);
1868
1869 reg = PIPECONF(cpu_transcoder);
1870 val = I915_READ(reg);
1871 if (val & PIPECONF_ENABLE) {
1872 /* we keep both pipes enabled on 830 */
1873 WARN_ON(!IS_I830(dev_priv));
1874 return;
1875 }
1876
1877 I915_WRITE(reg, val | PIPECONF_ENABLE);
1878 POSTING_READ(reg);
1879
1880 /*
1881 * Until the pipe starts PIPEDSL reads will return a stale value,
1882 * which causes an apparent vblank timestamp jump when PIPEDSL
1883 * resets to its proper value. That also messes up the frame count
1884 * when it's derived from the timestamps. So let's wait for the
1885 * pipe to start properly before we call drm_crtc_vblank_on()
1886 */
1887 if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1888 intel_wait_for_pipe_scanline_moving(crtc);
1889 }
1890
1891 void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1892 {
1893 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1894 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1895 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1896 enum pipe pipe = crtc->pipe;
1897 i915_reg_t reg;
1898 u32 val;
1899
1900 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1901
1902 /*
1903 * Make sure planes won't keep trying to pump pixels to us,
1904 * or we might hang the display.
1905 */
1906 assert_planes_disabled(crtc);
1907
1908 trace_intel_pipe_disable(crtc);
1909
1910 reg = PIPECONF(cpu_transcoder);
1911 val = I915_READ(reg);
1912 if ((val & PIPECONF_ENABLE) == 0)
1913 return;
1914
1915 /*
1916 * Double wide has implications for planes
1917 * so best keep it disabled when not needed.
1918 */
1919 if (old_crtc_state->double_wide)
1920 val &= ~PIPECONF_DOUBLE_WIDE;
1921
1922 /* Don't disable pipe or pipe PLLs if needed */
1923 if (!IS_I830(dev_priv))
1924 val &= ~PIPECONF_ENABLE;
1925
1926 I915_WRITE(reg, val);
1927 if ((val & PIPECONF_ENABLE) == 0)
1928 intel_wait_for_pipe_off(old_crtc_state);
1929 }
1930
1931 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1932 {
1933 return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1934 }
1935
1936 static bool is_ccs_plane(const struct drm_framebuffer *fb, int plane)
1937 {
1938 if (!is_ccs_modifier(fb->modifier))
1939 return false;
1940
1941 return plane >= fb->format->num_planes / 2;
1942 }
1943
1944 static bool is_gen12_ccs_modifier(u64 modifier)
1945 {
1946 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
1947 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
1948
1949 }
1950
1951 static bool is_gen12_ccs_plane(const struct drm_framebuffer *fb, int plane)
1952 {
1953 return is_gen12_ccs_modifier(fb->modifier) && is_ccs_plane(fb, plane);
1954 }
1955
1956 static bool is_aux_plane(const struct drm_framebuffer *fb, int plane)
1957 {
1958 if (is_ccs_modifier(fb->modifier))
1959 return is_ccs_plane(fb, plane);
1960
1961 return plane == 1;
1962 }
1963
1964 static int main_to_ccs_plane(const struct drm_framebuffer *fb, int main_plane)
1965 {
1966 WARN_ON(!is_ccs_modifier(fb->modifier) ||
1967 (main_plane && main_plane >= fb->format->num_planes / 2));
1968
1969 return fb->format->num_planes / 2 + main_plane;
1970 }
1971
1972 static int ccs_to_main_plane(const struct drm_framebuffer *fb, int ccs_plane)
1973 {
1974 WARN_ON(!is_ccs_modifier(fb->modifier) ||
1975 ccs_plane < fb->format->num_planes / 2);
1976
1977 return ccs_plane - fb->format->num_planes / 2;
1978 }
1979
1980 /* Return either the main plane's CCS or - if not a CCS FB - UV plane */
1981 int intel_main_to_aux_plane(const struct drm_framebuffer *fb, int main_plane)
1982 {
1983 if (is_ccs_modifier(fb->modifier))
1984 return main_to_ccs_plane(fb, main_plane);
1985
1986 return 1;
1987 }
1988
1989 bool
1990 intel_format_info_is_yuv_semiplanar(const struct drm_format_info *info,
1991 uint64_t modifier)
1992 {
1993 return info->is_yuv &&
1994 info->num_planes == (is_ccs_modifier(modifier) ? 4 : 2);
1995 }
1996
1997 static bool is_semiplanar_uv_plane(const struct drm_framebuffer *fb,
1998 int color_plane)
1999 {
2000 return intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier) &&
2001 color_plane == 1;
2002 }
2003
2004 static unsigned int
2005 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
2006 {
2007 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2008 unsigned int cpp = fb->format->cpp[color_plane];
2009
2010 switch (fb->modifier) {
2011 case DRM_FORMAT_MOD_LINEAR:
2012 return intel_tile_size(dev_priv);
2013 case I915_FORMAT_MOD_X_TILED:
2014 if (IS_GEN(dev_priv, 2))
2015 return 128;
2016 else
2017 return 512;
2018 case I915_FORMAT_MOD_Y_TILED_CCS:
2019 if (is_ccs_plane(fb, color_plane))
2020 return 128;
2021 /* fall through */
2022 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2023 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2024 if (is_ccs_plane(fb, color_plane))
2025 return 64;
2026 /* fall through */
2027 case I915_FORMAT_MOD_Y_TILED:
2028 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
2029 return 128;
2030 else
2031 return 512;
2032 case I915_FORMAT_MOD_Yf_TILED_CCS:
2033 if (is_ccs_plane(fb, color_plane))
2034 return 128;
2035 /* fall through */
2036 case I915_FORMAT_MOD_Yf_TILED:
2037 switch (cpp) {
2038 case 1:
2039 return 64;
2040 case 2:
2041 case 4:
2042 return 128;
2043 case 8:
2044 case 16:
2045 return 256;
2046 default:
2047 MISSING_CASE(cpp);
2048 return cpp;
2049 }
2050 break;
2051 default:
2052 MISSING_CASE(fb->modifier);
2053 return cpp;
2054 }
2055 }
2056
2057 static unsigned int
2058 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
2059 {
2060 if (is_gen12_ccs_plane(fb, color_plane))
2061 return 1;
2062
2063 return intel_tile_size(to_i915(fb->dev)) /
2064 intel_tile_width_bytes(fb, color_plane);
2065 }
2066
2067 /* Return the tile dimensions in pixel units */
2068 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
2069 unsigned int *tile_width,
2070 unsigned int *tile_height)
2071 {
2072 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
2073 unsigned int cpp = fb->format->cpp[color_plane];
2074
2075 *tile_width = tile_width_bytes / cpp;
2076 *tile_height = intel_tile_height(fb, color_plane);
2077 }
2078
2079 static unsigned int intel_tile_row_size(const struct drm_framebuffer *fb,
2080 int color_plane)
2081 {
2082 unsigned int tile_width, tile_height;
2083
2084 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2085
2086 return fb->pitches[color_plane] * tile_height;
2087 }
2088
2089 unsigned int
2090 intel_fb_align_height(const struct drm_framebuffer *fb,
2091 int color_plane, unsigned int height)
2092 {
2093 unsigned int tile_height = intel_tile_height(fb, color_plane);
2094
2095 return ALIGN(height, tile_height);
2096 }
2097
2098 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2099 {
2100 unsigned int size = 0;
2101 int i;
2102
2103 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2104 size += rot_info->plane[i].width * rot_info->plane[i].height;
2105
2106 return size;
2107 }
2108
2109 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2110 {
2111 unsigned int size = 0;
2112 int i;
2113
2114 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2115 size += rem_info->plane[i].width * rem_info->plane[i].height;
2116
2117 return size;
2118 }
2119
2120 static void
2121 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2122 const struct drm_framebuffer *fb,
2123 unsigned int rotation)
2124 {
2125 view->type = I915_GGTT_VIEW_NORMAL;
2126 if (drm_rotation_90_or_270(rotation)) {
2127 view->type = I915_GGTT_VIEW_ROTATED;
2128 view->rotated = to_intel_framebuffer(fb)->rot_info;
2129 }
2130 }
2131
2132 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2133 {
2134 if (IS_I830(dev_priv))
2135 return 16 * 1024;
2136 else if (IS_I85X(dev_priv))
2137 return 256;
2138 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2139 return 32;
2140 else
2141 return 4 * 1024;
2142 }
2143
2144 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2145 {
2146 if (INTEL_GEN(dev_priv) >= 9)
2147 return 256 * 1024;
2148 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2149 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2150 return 128 * 1024;
2151 else if (INTEL_GEN(dev_priv) >= 4)
2152 return 4 * 1024;
2153 else
2154 return 0;
2155 }
2156
2157 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2158 int color_plane)
2159 {
2160 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2161
2162 /* AUX_DIST needs only 4K alignment */
2163 if ((INTEL_GEN(dev_priv) < 12 && is_aux_plane(fb, color_plane)) ||
2164 is_ccs_plane(fb, color_plane))
2165 return 4096;
2166
2167 switch (fb->modifier) {
2168 case DRM_FORMAT_MOD_LINEAR:
2169 return intel_linear_alignment(dev_priv);
2170 case I915_FORMAT_MOD_X_TILED:
2171 if (INTEL_GEN(dev_priv) >= 9)
2172 return 256 * 1024;
2173 return 0;
2174 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2175 if (is_semiplanar_uv_plane(fb, color_plane))
2176 return intel_tile_row_size(fb, color_plane);
2177 /* Fall-through */
2178 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2179 return 16 * 1024;
2180 case I915_FORMAT_MOD_Y_TILED_CCS:
2181 case I915_FORMAT_MOD_Yf_TILED_CCS:
2182 case I915_FORMAT_MOD_Y_TILED:
2183 if (INTEL_GEN(dev_priv) >= 12 &&
2184 is_semiplanar_uv_plane(fb, color_plane))
2185 return intel_tile_row_size(fb, color_plane);
2186 /* Fall-through */
2187 case I915_FORMAT_MOD_Yf_TILED:
2188 return 1 * 1024 * 1024;
2189 default:
2190 MISSING_CASE(fb->modifier);
2191 return 0;
2192 }
2193 }
2194
2195 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2196 {
2197 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2198 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2199
2200 return INTEL_GEN(dev_priv) < 4 ||
2201 (plane->has_fbc &&
2202 plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2203 }
2204
2205 struct i915_vma *
2206 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2207 const struct i915_ggtt_view *view,
2208 bool uses_fence,
2209 unsigned long *out_flags)
2210 {
2211 struct drm_device *dev = fb->dev;
2212 struct drm_i915_private *dev_priv = to_i915(dev);
2213 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2214 intel_wakeref_t wakeref;
2215 struct i915_vma *vma;
2216 unsigned int pinctl;
2217 u32 alignment;
2218
2219 if (WARN_ON(!i915_gem_object_is_framebuffer(obj)))
2220 return ERR_PTR(-EINVAL);
2221
2222 alignment = intel_surf_alignment(fb, 0);
2223 if (WARN_ON(alignment && !is_power_of_2(alignment)))
2224 return ERR_PTR(-EINVAL);
2225
2226 /* Note that the w/a also requires 64 PTE of padding following the
2227 * bo. We currently fill all unused PTE with the shadow page and so
2228 * we should always have valid PTE following the scanout preventing
2229 * the VT-d warning.
2230 */
2231 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2232 alignment = 256 * 1024;
2233
2234 /*
2235 * Global gtt pte registers are special registers which actually forward
2236 * writes to a chunk of system memory. Which means that there is no risk
2237 * that the register values disappear as soon as we call
2238 * intel_runtime_pm_put(), so it is correct to wrap only the
2239 * pin/unpin/fence and not more.
2240 */
2241 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2242
2243 atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2244
2245 /*
2246 * Valleyview is definitely limited to scanning out the first
2247 * 512MiB. Lets presume this behaviour was inherited from the
2248 * g4x display engine and that all earlier gen are similarly
2249 * limited. Testing suggests that it is a little more
2250 * complicated than this. For example, Cherryview appears quite
2251 * happy to scanout from anywhere within its global aperture.
2252 */
2253 pinctl = 0;
2254 if (HAS_GMCH(dev_priv))
2255 pinctl |= PIN_MAPPABLE;
2256
2257 vma = i915_gem_object_pin_to_display_plane(obj,
2258 alignment, view, pinctl);
2259 if (IS_ERR(vma))
2260 goto err;
2261
2262 if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2263 int ret;
2264
2265 /*
2266 * Install a fence for tiled scan-out. Pre-i965 always needs a
2267 * fence, whereas 965+ only requires a fence if using
2268 * framebuffer compression. For simplicity, we always, when
2269 * possible, install a fence as the cost is not that onerous.
2270 *
2271 * If we fail to fence the tiled scanout, then either the
2272 * modeset will reject the change (which is highly unlikely as
2273 * the affected systems, all but one, do not have unmappable
2274 * space) or we will not be able to enable full powersaving
2275 * techniques (also likely not to apply due to various limits
2276 * FBC and the like impose on the size of the buffer, which
2277 * presumably we violated anyway with this unmappable buffer).
2278 * Anyway, it is presumably better to stumble onwards with
2279 * something and try to run the system in a "less than optimal"
2280 * mode that matches the user configuration.
2281 */
2282 ret = i915_vma_pin_fence(vma);
2283 if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2284 i915_gem_object_unpin_from_display_plane(vma);
2285 vma = ERR_PTR(ret);
2286 goto err;
2287 }
2288
2289 if (ret == 0 && vma->fence)
2290 *out_flags |= PLANE_HAS_FENCE;
2291 }
2292
2293 i915_vma_get(vma);
2294 err:
2295 atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2296 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2297 return vma;
2298 }
2299
2300 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2301 {
2302 i915_gem_object_lock(vma->obj);
2303 if (flags & PLANE_HAS_FENCE)
2304 i915_vma_unpin_fence(vma);
2305 i915_gem_object_unpin_from_display_plane(vma);
2306 i915_gem_object_unlock(vma->obj);
2307
2308 i915_vma_put(vma);
2309 }
2310
2311 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2312 unsigned int rotation)
2313 {
2314 if (drm_rotation_90_or_270(rotation))
2315 return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2316 else
2317 return fb->pitches[color_plane];
2318 }
2319
2320 /*
2321 * Convert the x/y offsets into a linear offset.
2322 * Only valid with 0/180 degree rotation, which is fine since linear
2323 * offset is only used with linear buffers on pre-hsw and tiled buffers
2324 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2325 */
2326 u32 intel_fb_xy_to_linear(int x, int y,
2327 const struct intel_plane_state *state,
2328 int color_plane)
2329 {
2330 const struct drm_framebuffer *fb = state->hw.fb;
2331 unsigned int cpp = fb->format->cpp[color_plane];
2332 unsigned int pitch = state->color_plane[color_plane].stride;
2333
2334 return y * pitch + x * cpp;
2335 }
2336
2337 /*
2338 * Add the x/y offsets derived from fb->offsets[] to the user
2339 * specified plane src x/y offsets. The resulting x/y offsets
2340 * specify the start of scanout from the beginning of the gtt mapping.
2341 */
2342 void intel_add_fb_offsets(int *x, int *y,
2343 const struct intel_plane_state *state,
2344 int color_plane)
2345
2346 {
2347 *x += state->color_plane[color_plane].x;
2348 *y += state->color_plane[color_plane].y;
2349 }
2350
2351 static u32 intel_adjust_tile_offset(int *x, int *y,
2352 unsigned int tile_width,
2353 unsigned int tile_height,
2354 unsigned int tile_size,
2355 unsigned int pitch_tiles,
2356 u32 old_offset,
2357 u32 new_offset)
2358 {
2359 unsigned int pitch_pixels = pitch_tiles * tile_width;
2360 unsigned int tiles;
2361
2362 WARN_ON(old_offset & (tile_size - 1));
2363 WARN_ON(new_offset & (tile_size - 1));
2364 WARN_ON(new_offset > old_offset);
2365
2366 tiles = (old_offset - new_offset) / tile_size;
2367
2368 *y += tiles / pitch_tiles * tile_height;
2369 *x += tiles % pitch_tiles * tile_width;
2370
2371 /* minimize x in case it got needlessly big */
2372 *y += *x / pitch_pixels * tile_height;
2373 *x %= pitch_pixels;
2374
2375 return new_offset;
2376 }
2377
2378 static bool is_surface_linear(const struct drm_framebuffer *fb, int color_plane)
2379 {
2380 return fb->modifier == DRM_FORMAT_MOD_LINEAR ||
2381 is_gen12_ccs_plane(fb, color_plane);
2382 }
2383
2384 static u32 intel_adjust_aligned_offset(int *x, int *y,
2385 const struct drm_framebuffer *fb,
2386 int color_plane,
2387 unsigned int rotation,
2388 unsigned int pitch,
2389 u32 old_offset, u32 new_offset)
2390 {
2391 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2392 unsigned int cpp = fb->format->cpp[color_plane];
2393
2394 WARN_ON(new_offset > old_offset);
2395
2396 if (!is_surface_linear(fb, color_plane)) {
2397 unsigned int tile_size, tile_width, tile_height;
2398 unsigned int pitch_tiles;
2399
2400 tile_size = intel_tile_size(dev_priv);
2401 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2402
2403 if (drm_rotation_90_or_270(rotation)) {
2404 pitch_tiles = pitch / tile_height;
2405 swap(tile_width, tile_height);
2406 } else {
2407 pitch_tiles = pitch / (tile_width * cpp);
2408 }
2409
2410 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2411 tile_size, pitch_tiles,
2412 old_offset, new_offset);
2413 } else {
2414 old_offset += *y * pitch + *x * cpp;
2415
2416 *y = (old_offset - new_offset) / pitch;
2417 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2418 }
2419
2420 return new_offset;
2421 }
2422
2423 /*
2424 * Adjust the tile offset by moving the difference into
2425 * the x/y offsets.
2426 */
2427 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2428 const struct intel_plane_state *state,
2429 int color_plane,
2430 u32 old_offset, u32 new_offset)
2431 {
2432 return intel_adjust_aligned_offset(x, y, state->hw.fb, color_plane,
2433 state->hw.rotation,
2434 state->color_plane[color_plane].stride,
2435 old_offset, new_offset);
2436 }
2437
2438 /*
2439 * Computes the aligned offset to the base tile and adjusts
2440 * x, y. bytes per pixel is assumed to be a power-of-two.
2441 *
2442 * In the 90/270 rotated case, x and y are assumed
2443 * to be already rotated to match the rotated GTT view, and
2444 * pitch is the tile_height aligned framebuffer height.
2445 *
2446 * This function is used when computing the derived information
2447 * under intel_framebuffer, so using any of that information
2448 * here is not allowed. Anything under drm_framebuffer can be
2449 * used. This is why the user has to pass in the pitch since it
2450 * is specified in the rotated orientation.
2451 */
2452 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2453 int *x, int *y,
2454 const struct drm_framebuffer *fb,
2455 int color_plane,
2456 unsigned int pitch,
2457 unsigned int rotation,
2458 u32 alignment)
2459 {
2460 unsigned int cpp = fb->format->cpp[color_plane];
2461 u32 offset, offset_aligned;
2462
2463 if (!is_surface_linear(fb, color_plane)) {
2464 unsigned int tile_size, tile_width, tile_height;
2465 unsigned int tile_rows, tiles, pitch_tiles;
2466
2467 tile_size = intel_tile_size(dev_priv);
2468 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2469
2470 if (drm_rotation_90_or_270(rotation)) {
2471 pitch_tiles = pitch / tile_height;
2472 swap(tile_width, tile_height);
2473 } else {
2474 pitch_tiles = pitch / (tile_width * cpp);
2475 }
2476
2477 tile_rows = *y / tile_height;
2478 *y %= tile_height;
2479
2480 tiles = *x / tile_width;
2481 *x %= tile_width;
2482
2483 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2484
2485 offset_aligned = offset;
2486 if (alignment)
2487 offset_aligned = rounddown(offset_aligned, alignment);
2488
2489 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2490 tile_size, pitch_tiles,
2491 offset, offset_aligned);
2492 } else {
2493 offset = *y * pitch + *x * cpp;
2494 offset_aligned = offset;
2495 if (alignment) {
2496 offset_aligned = rounddown(offset_aligned, alignment);
2497 *y = (offset % alignment) / pitch;
2498 *x = ((offset % alignment) - *y * pitch) / cpp;
2499 } else {
2500 *y = *x = 0;
2501 }
2502 }
2503
2504 return offset_aligned;
2505 }
2506
2507 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2508 const struct intel_plane_state *state,
2509 int color_plane)
2510 {
2511 struct intel_plane *intel_plane = to_intel_plane(state->uapi.plane);
2512 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2513 const struct drm_framebuffer *fb = state->hw.fb;
2514 unsigned int rotation = state->hw.rotation;
2515 int pitch = state->color_plane[color_plane].stride;
2516 u32 alignment;
2517
2518 if (intel_plane->id == PLANE_CURSOR)
2519 alignment = intel_cursor_alignment(dev_priv);
2520 else
2521 alignment = intel_surf_alignment(fb, color_plane);
2522
2523 return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2524 pitch, rotation, alignment);
2525 }
2526
2527 /* Convert the fb->offset[] into x/y offsets */
2528 static int intel_fb_offset_to_xy(int *x, int *y,
2529 const struct drm_framebuffer *fb,
2530 int color_plane)
2531 {
2532 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2533 unsigned int height;
2534 u32 alignment;
2535
2536 if (INTEL_GEN(dev_priv) >= 12 &&
2537 is_semiplanar_uv_plane(fb, color_plane))
2538 alignment = intel_tile_row_size(fb, color_plane);
2539 else if (fb->modifier != DRM_FORMAT_MOD_LINEAR)
2540 alignment = intel_tile_size(dev_priv);
2541 else
2542 alignment = 0;
2543
2544 if (alignment != 0 && fb->offsets[color_plane] % alignment) {
2545 DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n",
2546 fb->offsets[color_plane], color_plane);
2547 return -EINVAL;
2548 }
2549
2550 height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2551 height = ALIGN(height, intel_tile_height(fb, color_plane));
2552
2553 /* Catch potential overflows early */
2554 if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2555 fb->offsets[color_plane])) {
2556 DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n",
2557 fb->offsets[color_plane], fb->pitches[color_plane],
2558 color_plane);
2559 return -ERANGE;
2560 }
2561
2562 *x = 0;
2563 *y = 0;
2564
2565 intel_adjust_aligned_offset(x, y,
2566 fb, color_plane, DRM_MODE_ROTATE_0,
2567 fb->pitches[color_plane],
2568 fb->offsets[color_plane], 0);
2569
2570 return 0;
2571 }
2572
2573 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2574 {
2575 switch (fb_modifier) {
2576 case I915_FORMAT_MOD_X_TILED:
2577 return I915_TILING_X;
2578 case I915_FORMAT_MOD_Y_TILED:
2579 case I915_FORMAT_MOD_Y_TILED_CCS:
2580 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2581 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2582 return I915_TILING_Y;
2583 default:
2584 return I915_TILING_NONE;
2585 }
2586 }
2587
2588 /*
2589 * From the Sky Lake PRM:
2590 * "The Color Control Surface (CCS) contains the compression status of
2591 * the cache-line pairs. The compression state of the cache-line pair
2592 * is specified by 2 bits in the CCS. Each CCS cache-line represents
2593 * an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2594 * cache-line-pairs. CCS is always Y tiled."
2595 *
2596 * Since cache line pairs refers to horizontally adjacent cache lines,
2597 * each cache line in the CCS corresponds to an area of 32x16 cache
2598 * lines on the main surface. Since each pixel is 4 bytes, this gives
2599 * us a ratio of one byte in the CCS for each 8x16 pixels in the
2600 * main surface.
2601 */
2602 static const struct drm_format_info skl_ccs_formats[] = {
2603 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2604 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2605 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2606 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2607 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2608 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2609 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2610 .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2611 };
2612
2613 /*
2614 * Gen-12 compression uses 4 bits of CCS data for each cache line pair in the
2615 * main surface. And each 64B CCS cache line represents an area of 4x1 Y-tiles
2616 * in the main surface. With 4 byte pixels and each Y-tile having dimensions of
2617 * 32x32 pixels, the ratio turns out to 1B in the CCS for every 2x32 pixels in
2618 * the main surface.
2619 */
2620 static const struct drm_format_info gen12_ccs_formats[] = {
2621 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2622 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2623 .hsub = 1, .vsub = 1, },
2624 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2625 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2626 .hsub = 1, .vsub = 1, },
2627 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2628 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2629 .hsub = 1, .vsub = 1, .has_alpha = true },
2630 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2631 .char_per_block = { 4, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2632 .hsub = 1, .vsub = 1, .has_alpha = true },
2633 { .format = DRM_FORMAT_YUYV, .num_planes = 2,
2634 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2635 .hsub = 2, .vsub = 1, .is_yuv = true },
2636 { .format = DRM_FORMAT_YVYU, .num_planes = 2,
2637 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2638 .hsub = 2, .vsub = 1, .is_yuv = true },
2639 { .format = DRM_FORMAT_UYVY, .num_planes = 2,
2640 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2641 .hsub = 2, .vsub = 1, .is_yuv = true },
2642 { .format = DRM_FORMAT_VYUY, .num_planes = 2,
2643 .char_per_block = { 2, 1 }, .block_w = { 1, 2 }, .block_h = { 1, 1 },
2644 .hsub = 2, .vsub = 1, .is_yuv = true },
2645 { .format = DRM_FORMAT_NV12, .num_planes = 4,
2646 .char_per_block = { 1, 2, 1, 1 }, .block_w = { 1, 1, 4, 4 }, .block_h = { 1, 1, 1, 1 },
2647 .hsub = 2, .vsub = 2, .is_yuv = true },
2648 { .format = DRM_FORMAT_P010, .num_planes = 4,
2649 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2650 .hsub = 2, .vsub = 2, .is_yuv = true },
2651 { .format = DRM_FORMAT_P012, .num_planes = 4,
2652 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2653 .hsub = 2, .vsub = 2, .is_yuv = true },
2654 { .format = DRM_FORMAT_P016, .num_planes = 4,
2655 .char_per_block = { 2, 4, 1, 1 }, .block_w = { 1, 1, 2, 2 }, .block_h = { 1, 1, 1, 1 },
2656 .hsub = 2, .vsub = 2, .is_yuv = true },
2657 };
2658
2659 static const struct drm_format_info *
2660 lookup_format_info(const struct drm_format_info formats[],
2661 int num_formats, u32 format)
2662 {
2663 int i;
2664
2665 for (i = 0; i < num_formats; i++) {
2666 if (formats[i].format == format)
2667 return &formats[i];
2668 }
2669
2670 return NULL;
2671 }
2672
2673 static const struct drm_format_info *
2674 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2675 {
2676 switch (cmd->modifier[0]) {
2677 case I915_FORMAT_MOD_Y_TILED_CCS:
2678 case I915_FORMAT_MOD_Yf_TILED_CCS:
2679 return lookup_format_info(skl_ccs_formats,
2680 ARRAY_SIZE(skl_ccs_formats),
2681 cmd->pixel_format);
2682 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
2683 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
2684 return lookup_format_info(gen12_ccs_formats,
2685 ARRAY_SIZE(gen12_ccs_formats),
2686 cmd->pixel_format);
2687 default:
2688 return NULL;
2689 }
2690 }
2691
2692 bool is_ccs_modifier(u64 modifier)
2693 {
2694 return modifier == I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS ||
2695 modifier == I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS ||
2696 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2697 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2698 }
2699
2700 static int gen12_ccs_aux_stride(struct drm_framebuffer *fb, int ccs_plane)
2701 {
2702 return DIV_ROUND_UP(fb->pitches[ccs_to_main_plane(fb, ccs_plane)],
2703 512) * 64;
2704 }
2705
2706 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2707 u32 pixel_format, u64 modifier)
2708 {
2709 struct intel_crtc *crtc;
2710 struct intel_plane *plane;
2711
2712 /*
2713 * We assume the primary plane for pipe A has
2714 * the highest stride limits of them all.
2715 */
2716 crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
2717 if (!crtc)
2718 return 0;
2719
2720 plane = to_intel_plane(crtc->base.primary);
2721
2722 return plane->max_stride(plane, pixel_format, modifier,
2723 DRM_MODE_ROTATE_0);
2724 }
2725
2726 static
2727 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2728 u32 pixel_format, u64 modifier)
2729 {
2730 /*
2731 * Arbitrary limit for gen4+ chosen to match the
2732 * render engine max stride.
2733 *
2734 * The new CCS hash mode makes remapping impossible
2735 */
2736 if (!is_ccs_modifier(modifier)) {
2737 if (INTEL_GEN(dev_priv) >= 7)
2738 return 256*1024;
2739 else if (INTEL_GEN(dev_priv) >= 4)
2740 return 128*1024;
2741 }
2742
2743 return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2744 }
2745
2746 static u32
2747 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2748 {
2749 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2750 u32 tile_width;
2751
2752 if (is_surface_linear(fb, color_plane)) {
2753 u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2754 fb->format->format,
2755 fb->modifier);
2756
2757 /*
2758 * To make remapping with linear generally feasible
2759 * we need the stride to be page aligned.
2760 */
2761 if (fb->pitches[color_plane] > max_stride &&
2762 !is_ccs_modifier(fb->modifier))
2763 return intel_tile_size(dev_priv);
2764 else
2765 return 64;
2766 }
2767
2768 tile_width = intel_tile_width_bytes(fb, color_plane);
2769 if (is_ccs_modifier(fb->modifier)) {
2770 /*
2771 * Display WA #0531: skl,bxt,kbl,glk
2772 *
2773 * Render decompression and plane width > 3840
2774 * combined with horizontal panning requires the
2775 * plane stride to be a multiple of 4. We'll just
2776 * require the entire fb to accommodate that to avoid
2777 * potential runtime errors at plane configuration time.
2778 */
2779 if (IS_GEN(dev_priv, 9) && color_plane == 0 && fb->width > 3840)
2780 tile_width *= 4;
2781 /*
2782 * The main surface pitch must be padded to a multiple of four
2783 * tile widths.
2784 */
2785 else if (INTEL_GEN(dev_priv) >= 12)
2786 tile_width *= 4;
2787 }
2788 return tile_width;
2789 }
2790
2791 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2792 {
2793 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2794 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2795 const struct drm_framebuffer *fb = plane_state->hw.fb;
2796 int i;
2797
2798 /* We don't want to deal with remapping with cursors */
2799 if (plane->id == PLANE_CURSOR)
2800 return false;
2801
2802 /*
2803 * The display engine limits already match/exceed the
2804 * render engine limits, so not much point in remapping.
2805 * Would also need to deal with the fence POT alignment
2806 * and gen2 2KiB GTT tile size.
2807 */
2808 if (INTEL_GEN(dev_priv) < 4)
2809 return false;
2810
2811 /*
2812 * The new CCS hash mode isn't compatible with remapping as
2813 * the virtual address of the pages affects the compressed data.
2814 */
2815 if (is_ccs_modifier(fb->modifier))
2816 return false;
2817
2818 /* Linear needs a page aligned stride for remapping */
2819 if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2820 unsigned int alignment = intel_tile_size(dev_priv) - 1;
2821
2822 for (i = 0; i < fb->format->num_planes; i++) {
2823 if (fb->pitches[i] & alignment)
2824 return false;
2825 }
2826 }
2827
2828 return true;
2829 }
2830
2831 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2832 {
2833 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2834 const struct drm_framebuffer *fb = plane_state->hw.fb;
2835 unsigned int rotation = plane_state->hw.rotation;
2836 u32 stride, max_stride;
2837
2838 /*
2839 * No remapping for invisible planes since we don't have
2840 * an actual source viewport to remap.
2841 */
2842 if (!plane_state->uapi.visible)
2843 return false;
2844
2845 if (!intel_plane_can_remap(plane_state))
2846 return false;
2847
2848 /*
2849 * FIXME: aux plane limits on gen9+ are
2850 * unclear in Bspec, for now no checking.
2851 */
2852 stride = intel_fb_pitch(fb, 0, rotation);
2853 max_stride = plane->max_stride(plane, fb->format->format,
2854 fb->modifier, rotation);
2855
2856 return stride > max_stride;
2857 }
2858
2859 static void
2860 intel_fb_plane_get_subsampling(int *hsub, int *vsub,
2861 const struct drm_framebuffer *fb,
2862 int color_plane)
2863 {
2864 int main_plane;
2865
2866 if (color_plane == 0) {
2867 *hsub = 1;
2868 *vsub = 1;
2869
2870 return;
2871 }
2872
2873 /*
2874 * TODO: Deduct the subsampling from the char block for all CCS
2875 * formats and planes.
2876 */
2877 if (!is_gen12_ccs_plane(fb, color_plane)) {
2878 *hsub = fb->format->hsub;
2879 *vsub = fb->format->vsub;
2880
2881 return;
2882 }
2883
2884 main_plane = ccs_to_main_plane(fb, color_plane);
2885 *hsub = drm_format_info_block_width(fb->format, color_plane) /
2886 drm_format_info_block_width(fb->format, main_plane);
2887
2888 /*
2889 * The min stride check in the core framebuffer_check() function
2890 * assumes that format->hsub applies to every plane except for the
2891 * first plane. That's incorrect for the CCS AUX plane of the first
2892 * plane, but for the above check to pass we must define the block
2893 * width with that subsampling applied to it. Adjust the width here
2894 * accordingly, so we can calculate the actual subsampling factor.
2895 */
2896 if (main_plane == 0)
2897 *hsub *= fb->format->hsub;
2898
2899 *vsub = 32;
2900 }
2901 static int
2902 intel_fb_check_ccs_xy(struct drm_framebuffer *fb, int ccs_plane, int x, int y)
2903 {
2904 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2905 int main_plane;
2906 int hsub, vsub;
2907 int tile_width, tile_height;
2908 int ccs_x, ccs_y;
2909 int main_x, main_y;
2910
2911 if (!is_ccs_plane(fb, ccs_plane))
2912 return 0;
2913
2914 intel_tile_dims(fb, ccs_plane, &tile_width, &tile_height);
2915 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
2916
2917 tile_width *= hsub;
2918 tile_height *= vsub;
2919
2920 ccs_x = (x * hsub) % tile_width;
2921 ccs_y = (y * vsub) % tile_height;
2922
2923 main_plane = ccs_to_main_plane(fb, ccs_plane);
2924 main_x = intel_fb->normal[main_plane].x % tile_width;
2925 main_y = intel_fb->normal[main_plane].y % tile_height;
2926
2927 /*
2928 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2929 * x/y offsets must match between CCS and the main surface.
2930 */
2931 if (main_x != ccs_x || main_y != ccs_y) {
2932 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2933 main_x, main_y,
2934 ccs_x, ccs_y,
2935 intel_fb->normal[main_plane].x,
2936 intel_fb->normal[main_plane].y,
2937 x, y);
2938 return -EINVAL;
2939 }
2940
2941 return 0;
2942 }
2943
2944 static void
2945 intel_fb_plane_dims(int *w, int *h, struct drm_framebuffer *fb, int color_plane)
2946 {
2947 int main_plane = is_ccs_plane(fb, color_plane) ?
2948 ccs_to_main_plane(fb, color_plane) : 0;
2949 int main_hsub, main_vsub;
2950 int hsub, vsub;
2951
2952 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb, main_plane);
2953 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, color_plane);
2954 *w = fb->width / main_hsub / hsub;
2955 *h = fb->height / main_vsub / vsub;
2956 }
2957
2958 /*
2959 * Setup the rotated view for an FB plane and return the size the GTT mapping
2960 * requires for this view.
2961 */
2962 static u32
2963 setup_fb_rotation(int plane, const struct intel_remapped_plane_info *plane_info,
2964 u32 gtt_offset_rotated, int x, int y,
2965 unsigned int width, unsigned int height,
2966 unsigned int tile_size,
2967 unsigned int tile_width, unsigned int tile_height,
2968 struct drm_framebuffer *fb)
2969 {
2970 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2971 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2972 unsigned int pitch_tiles;
2973 struct drm_rect r;
2974
2975 /* Y or Yf modifiers required for 90/270 rotation */
2976 if (fb->modifier != I915_FORMAT_MOD_Y_TILED &&
2977 fb->modifier != I915_FORMAT_MOD_Yf_TILED)
2978 return 0;
2979
2980 if (WARN_ON(plane >= ARRAY_SIZE(rot_info->plane)))
2981 return 0;
2982
2983 rot_info->plane[plane] = *plane_info;
2984
2985 intel_fb->rotated[plane].pitch = plane_info->height * tile_height;
2986
2987 /* rotate the x/y offsets to match the GTT view */
2988 drm_rect_init(&r, x, y, width, height);
2989 drm_rect_rotate(&r,
2990 plane_info->width * tile_width,
2991 plane_info->height * tile_height,
2992 DRM_MODE_ROTATE_270);
2993 x = r.x1;
2994 y = r.y1;
2995
2996 /* rotate the tile dimensions to match the GTT view */
2997 pitch_tiles = intel_fb->rotated[plane].pitch / tile_height;
2998 swap(tile_width, tile_height);
2999
3000 /*
3001 * We only keep the x/y offsets, so push all of the
3002 * gtt offset into the x/y offsets.
3003 */
3004 intel_adjust_tile_offset(&x, &y,
3005 tile_width, tile_height,
3006 tile_size, pitch_tiles,
3007 gtt_offset_rotated * tile_size, 0);
3008
3009 /*
3010 * First pixel of the framebuffer from
3011 * the start of the rotated gtt mapping.
3012 */
3013 intel_fb->rotated[plane].x = x;
3014 intel_fb->rotated[plane].y = y;
3015
3016 return plane_info->width * plane_info->height;
3017 }
3018
3019 static int
3020 intel_fill_fb_info(struct drm_i915_private *dev_priv,
3021 struct drm_framebuffer *fb)
3022 {
3023 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3024 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3025 u32 gtt_offset_rotated = 0;
3026 unsigned int max_size = 0;
3027 int i, num_planes = fb->format->num_planes;
3028 unsigned int tile_size = intel_tile_size(dev_priv);
3029
3030 for (i = 0; i < num_planes; i++) {
3031 unsigned int width, height;
3032 unsigned int cpp, size;
3033 u32 offset;
3034 int x, y;
3035 int ret;
3036
3037 cpp = fb->format->cpp[i];
3038 intel_fb_plane_dims(&width, &height, fb, i);
3039
3040 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
3041 if (ret) {
3042 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
3043 i, fb->offsets[i]);
3044 return ret;
3045 }
3046
3047 ret = intel_fb_check_ccs_xy(fb, i, x, y);
3048 if (ret)
3049 return ret;
3050
3051 /*
3052 * The fence (if used) is aligned to the start of the object
3053 * so having the framebuffer wrap around across the edge of the
3054 * fenced region doesn't really work. We have no API to configure
3055 * the fence start offset within the object (nor could we probably
3056 * on gen2/3). So it's just easier if we just require that the
3057 * fb layout agrees with the fence layout. We already check that the
3058 * fb stride matches the fence stride elsewhere.
3059 */
3060 if (i == 0 && i915_gem_object_is_tiled(obj) &&
3061 (x + width) * cpp > fb->pitches[i]) {
3062 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
3063 i, fb->offsets[i]);
3064 return -EINVAL;
3065 }
3066
3067 /*
3068 * First pixel of the framebuffer from
3069 * the start of the normal gtt mapping.
3070 */
3071 intel_fb->normal[i].x = x;
3072 intel_fb->normal[i].y = y;
3073
3074 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
3075 fb->pitches[i],
3076 DRM_MODE_ROTATE_0,
3077 tile_size);
3078 offset /= tile_size;
3079
3080 if (!is_surface_linear(fb, i)) {
3081 struct intel_remapped_plane_info plane_info;
3082 unsigned int tile_width, tile_height;
3083
3084 intel_tile_dims(fb, i, &tile_width, &tile_height);
3085
3086 plane_info.offset = offset;
3087 plane_info.stride = DIV_ROUND_UP(fb->pitches[i],
3088 tile_width * cpp);
3089 plane_info.width = DIV_ROUND_UP(x + width, tile_width);
3090 plane_info.height = DIV_ROUND_UP(y + height,
3091 tile_height);
3092
3093 /* how many tiles does this plane need */
3094 size = plane_info.stride * plane_info.height;
3095 /*
3096 * If the plane isn't horizontally tile aligned,
3097 * we need one more tile.
3098 */
3099 if (x != 0)
3100 size++;
3101
3102 gtt_offset_rotated +=
3103 setup_fb_rotation(i, &plane_info,
3104 gtt_offset_rotated,
3105 x, y, width, height,
3106 tile_size,
3107 tile_width, tile_height,
3108 fb);
3109 } else {
3110 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
3111 x * cpp, tile_size);
3112 }
3113
3114 /* how many tiles in total needed in the bo */
3115 max_size = max(max_size, offset + size);
3116 }
3117
3118 if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
3119 DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n",
3120 mul_u32_u32(max_size, tile_size), obj->base.size);
3121 return -EINVAL;
3122 }
3123
3124 return 0;
3125 }
3126
3127 static void
3128 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
3129 {
3130 struct drm_i915_private *dev_priv =
3131 to_i915(plane_state->uapi.plane->dev);
3132 struct drm_framebuffer *fb = plane_state->hw.fb;
3133 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3134 struct intel_rotation_info *info = &plane_state->view.rotated;
3135 unsigned int rotation = plane_state->hw.rotation;
3136 int i, num_planes = fb->format->num_planes;
3137 unsigned int tile_size = intel_tile_size(dev_priv);
3138 unsigned int src_x, src_y;
3139 unsigned int src_w, src_h;
3140 u32 gtt_offset = 0;
3141
3142 memset(&plane_state->view, 0, sizeof(plane_state->view));
3143 plane_state->view.type = drm_rotation_90_or_270(rotation) ?
3144 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
3145
3146 src_x = plane_state->uapi.src.x1 >> 16;
3147 src_y = plane_state->uapi.src.y1 >> 16;
3148 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
3149 src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
3150
3151 WARN_ON(is_ccs_modifier(fb->modifier));
3152
3153 /* Make src coordinates relative to the viewport */
3154 drm_rect_translate(&plane_state->uapi.src,
3155 -(src_x << 16), -(src_y << 16));
3156
3157 /* Rotate src coordinates to match rotated GTT view */
3158 if (drm_rotation_90_or_270(rotation))
3159 drm_rect_rotate(&plane_state->uapi.src,
3160 src_w << 16, src_h << 16,
3161 DRM_MODE_ROTATE_270);
3162
3163 for (i = 0; i < num_planes; i++) {
3164 unsigned int hsub = i ? fb->format->hsub : 1;
3165 unsigned int vsub = i ? fb->format->vsub : 1;
3166 unsigned int cpp = fb->format->cpp[i];
3167 unsigned int tile_width, tile_height;
3168 unsigned int width, height;
3169 unsigned int pitch_tiles;
3170 unsigned int x, y;
3171 u32 offset;
3172
3173 intel_tile_dims(fb, i, &tile_width, &tile_height);
3174
3175 x = src_x / hsub;
3176 y = src_y / vsub;
3177 width = src_w / hsub;
3178 height = src_h / vsub;
3179
3180 /*
3181 * First pixel of the src viewport from the
3182 * start of the normal gtt mapping.
3183 */
3184 x += intel_fb->normal[i].x;
3185 y += intel_fb->normal[i].y;
3186
3187 offset = intel_compute_aligned_offset(dev_priv, &x, &y,
3188 fb, i, fb->pitches[i],
3189 DRM_MODE_ROTATE_0, tile_size);
3190 offset /= tile_size;
3191
3192 WARN_ON(i >= ARRAY_SIZE(info->plane));
3193 info->plane[i].offset = offset;
3194 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
3195 tile_width * cpp);
3196 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
3197 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
3198
3199 if (drm_rotation_90_or_270(rotation)) {
3200 struct drm_rect r;
3201
3202 /* rotate the x/y offsets to match the GTT view */
3203 drm_rect_init(&r, x, y, width, height);
3204 drm_rect_rotate(&r,
3205 info->plane[i].width * tile_width,
3206 info->plane[i].height * tile_height,
3207 DRM_MODE_ROTATE_270);
3208 x = r.x1;
3209 y = r.y1;
3210
3211 pitch_tiles = info->plane[i].height;
3212 plane_state->color_plane[i].stride = pitch_tiles * tile_height;
3213
3214 /* rotate the tile dimensions to match the GTT view */
3215 swap(tile_width, tile_height);
3216 } else {
3217 pitch_tiles = info->plane[i].width;
3218 plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
3219 }
3220
3221 /*
3222 * We only keep the x/y offsets, so push all of the
3223 * gtt offset into the x/y offsets.
3224 */
3225 intel_adjust_tile_offset(&x, &y,
3226 tile_width, tile_height,
3227 tile_size, pitch_tiles,
3228 gtt_offset * tile_size, 0);
3229
3230 gtt_offset += info->plane[i].width * info->plane[i].height;
3231
3232 plane_state->color_plane[i].offset = 0;
3233 plane_state->color_plane[i].x = x;
3234 plane_state->color_plane[i].y = y;
3235 }
3236 }
3237
3238 static int
3239 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
3240 {
3241 const struct intel_framebuffer *fb =
3242 to_intel_framebuffer(plane_state->hw.fb);
3243 unsigned int rotation = plane_state->hw.rotation;
3244 int i, num_planes;
3245
3246 if (!fb)
3247 return 0;
3248
3249 num_planes = fb->base.format->num_planes;
3250
3251 if (intel_plane_needs_remap(plane_state)) {
3252 intel_plane_remap_gtt(plane_state);
3253
3254 /*
3255 * Sometimes even remapping can't overcome
3256 * the stride limitations :( Can happen with
3257 * big plane sizes and suitably misaligned
3258 * offsets.
3259 */
3260 return intel_plane_check_stride(plane_state);
3261 }
3262
3263 intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
3264
3265 for (i = 0; i < num_planes; i++) {
3266 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
3267 plane_state->color_plane[i].offset = 0;
3268
3269 if (drm_rotation_90_or_270(rotation)) {
3270 plane_state->color_plane[i].x = fb->rotated[i].x;
3271 plane_state->color_plane[i].y = fb->rotated[i].y;
3272 } else {
3273 plane_state->color_plane[i].x = fb->normal[i].x;
3274 plane_state->color_plane[i].y = fb->normal[i].y;
3275 }
3276 }
3277
3278 /* Rotate src coordinates to match rotated GTT view */
3279 if (drm_rotation_90_or_270(rotation))
3280 drm_rect_rotate(&plane_state->uapi.src,
3281 fb->base.width << 16, fb->base.height << 16,
3282 DRM_MODE_ROTATE_270);
3283
3284 return intel_plane_check_stride(plane_state);
3285 }
3286
3287 static int i9xx_format_to_fourcc(int format)
3288 {
3289 switch (format) {
3290 case DISPPLANE_8BPP:
3291 return DRM_FORMAT_C8;
3292 case DISPPLANE_BGRA555:
3293 return DRM_FORMAT_ARGB1555;
3294 case DISPPLANE_BGRX555:
3295 return DRM_FORMAT_XRGB1555;
3296 case DISPPLANE_BGRX565:
3297 return DRM_FORMAT_RGB565;
3298 default:
3299 case DISPPLANE_BGRX888:
3300 return DRM_FORMAT_XRGB8888;
3301 case DISPPLANE_RGBX888:
3302 return DRM_FORMAT_XBGR8888;
3303 case DISPPLANE_BGRA888:
3304 return DRM_FORMAT_ARGB8888;
3305 case DISPPLANE_RGBA888:
3306 return DRM_FORMAT_ABGR8888;
3307 case DISPPLANE_BGRX101010:
3308 return DRM_FORMAT_XRGB2101010;
3309 case DISPPLANE_RGBX101010:
3310 return DRM_FORMAT_XBGR2101010;
3311 case DISPPLANE_BGRA101010:
3312 return DRM_FORMAT_ARGB2101010;
3313 case DISPPLANE_RGBA101010:
3314 return DRM_FORMAT_ABGR2101010;
3315 case DISPPLANE_RGBX161616:
3316 return DRM_FORMAT_XBGR16161616F;
3317 }
3318 }
3319
3320 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
3321 {
3322 switch (format) {
3323 case PLANE_CTL_FORMAT_RGB_565:
3324 return DRM_FORMAT_RGB565;
3325 case PLANE_CTL_FORMAT_NV12:
3326 return DRM_FORMAT_NV12;
3327 case PLANE_CTL_FORMAT_P010:
3328 return DRM_FORMAT_P010;
3329 case PLANE_CTL_FORMAT_P012:
3330 return DRM_FORMAT_P012;
3331 case PLANE_CTL_FORMAT_P016:
3332 return DRM_FORMAT_P016;
3333 case PLANE_CTL_FORMAT_Y210:
3334 return DRM_FORMAT_Y210;
3335 case PLANE_CTL_FORMAT_Y212:
3336 return DRM_FORMAT_Y212;
3337 case PLANE_CTL_FORMAT_Y216:
3338 return DRM_FORMAT_Y216;
3339 case PLANE_CTL_FORMAT_Y410:
3340 return DRM_FORMAT_XVYU2101010;
3341 case PLANE_CTL_FORMAT_Y412:
3342 return DRM_FORMAT_XVYU12_16161616;
3343 case PLANE_CTL_FORMAT_Y416:
3344 return DRM_FORMAT_XVYU16161616;
3345 default:
3346 case PLANE_CTL_FORMAT_XRGB_8888:
3347 if (rgb_order) {
3348 if (alpha)
3349 return DRM_FORMAT_ABGR8888;
3350 else
3351 return DRM_FORMAT_XBGR8888;
3352 } else {
3353 if (alpha)
3354 return DRM_FORMAT_ARGB8888;
3355 else
3356 return DRM_FORMAT_XRGB8888;
3357 }
3358 case PLANE_CTL_FORMAT_XRGB_2101010:
3359 if (rgb_order) {
3360 if (alpha)
3361 return DRM_FORMAT_ABGR2101010;
3362 else
3363 return DRM_FORMAT_XBGR2101010;
3364 } else {
3365 if (alpha)
3366 return DRM_FORMAT_ARGB2101010;
3367 else
3368 return DRM_FORMAT_XRGB2101010;
3369 }
3370 case PLANE_CTL_FORMAT_XRGB_16161616F:
3371 if (rgb_order) {
3372 if (alpha)
3373 return DRM_FORMAT_ABGR16161616F;
3374 else
3375 return DRM_FORMAT_XBGR16161616F;
3376 } else {
3377 if (alpha)
3378 return DRM_FORMAT_ARGB16161616F;
3379 else
3380 return DRM_FORMAT_XRGB16161616F;
3381 }
3382 }
3383 }
3384
3385 static bool
3386 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3387 struct intel_initial_plane_config *plane_config)
3388 {
3389 struct drm_device *dev = crtc->base.dev;
3390 struct drm_i915_private *dev_priv = to_i915(dev);
3391 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3392 struct drm_framebuffer *fb = &plane_config->fb->base;
3393 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
3394 u32 size_aligned = round_up(plane_config->base + plane_config->size,
3395 PAGE_SIZE);
3396 struct drm_i915_gem_object *obj;
3397 bool ret = false;
3398
3399 size_aligned -= base_aligned;
3400
3401 if (plane_config->size == 0)
3402 return false;
3403
3404 /* If the FB is too big, just don't use it since fbdev is not very
3405 * important and we should probably use that space with FBC or other
3406 * features. */
3407 if (size_aligned * 2 > dev_priv->stolen_usable_size)
3408 return false;
3409
3410 switch (fb->modifier) {
3411 case DRM_FORMAT_MOD_LINEAR:
3412 case I915_FORMAT_MOD_X_TILED:
3413 case I915_FORMAT_MOD_Y_TILED:
3414 break;
3415 default:
3416 DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n",
3417 fb->modifier);
3418 return false;
3419 }
3420
3421 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
3422 base_aligned,
3423 base_aligned,
3424 size_aligned);
3425 if (IS_ERR(obj))
3426 return false;
3427
3428 switch (plane_config->tiling) {
3429 case I915_TILING_NONE:
3430 break;
3431 case I915_TILING_X:
3432 case I915_TILING_Y:
3433 obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling;
3434 break;
3435 default:
3436 MISSING_CASE(plane_config->tiling);
3437 goto out;
3438 }
3439
3440 mode_cmd.pixel_format = fb->format->format;
3441 mode_cmd.width = fb->width;
3442 mode_cmd.height = fb->height;
3443 mode_cmd.pitches[0] = fb->pitches[0];
3444 mode_cmd.modifier[0] = fb->modifier;
3445 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3446
3447 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
3448 DRM_DEBUG_KMS("intel fb init failed\n");
3449 goto out;
3450 }
3451
3452
3453 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
3454 ret = true;
3455 out:
3456 i915_gem_object_put(obj);
3457 return ret;
3458 }
3459
3460 static void
3461 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3462 struct intel_plane_state *plane_state,
3463 bool visible)
3464 {
3465 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
3466
3467 plane_state->uapi.visible = visible;
3468
3469 if (visible)
3470 crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base);
3471 else
3472 crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base);
3473 }
3474
3475 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3476 {
3477 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
3478 struct drm_plane *plane;
3479
3480 /*
3481 * Active_planes aliases if multiple "primary" or cursor planes
3482 * have been used on the same (or wrong) pipe. plane_mask uses
3483 * unique ids, hence we can use that to reconstruct active_planes.
3484 */
3485 crtc_state->active_planes = 0;
3486
3487 drm_for_each_plane_mask(plane, &dev_priv->drm,
3488 crtc_state->uapi.plane_mask)
3489 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3490 }
3491
3492 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3493 struct intel_plane *plane)
3494 {
3495 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3496 struct intel_crtc_state *crtc_state =
3497 to_intel_crtc_state(crtc->base.state);
3498 struct intel_plane_state *plane_state =
3499 to_intel_plane_state(plane->base.state);
3500
3501 DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3502 plane->base.base.id, plane->base.name,
3503 crtc->base.base.id, crtc->base.name);
3504
3505 intel_set_plane_visible(crtc_state, plane_state, false);
3506 fixup_active_planes(crtc_state);
3507 crtc_state->data_rate[plane->id] = 0;
3508 crtc_state->min_cdclk[plane->id] = 0;
3509
3510 if (plane->id == PLANE_PRIMARY)
3511 hsw_disable_ips(crtc_state);
3512
3513 /*
3514 * Vblank time updates from the shadow to live plane control register
3515 * are blocked if the memory self-refresh mode is active at that
3516 * moment. So to make sure the plane gets truly disabled, disable
3517 * first the self-refresh mode. The self-refresh enable bit in turn
3518 * will be checked/applied by the HW only at the next frame start
3519 * event which is after the vblank start event, so we need to have a
3520 * wait-for-vblank between disabling the plane and the pipe.
3521 */
3522 if (HAS_GMCH(dev_priv) &&
3523 intel_set_memory_cxsr(dev_priv, false))
3524 intel_wait_for_vblank(dev_priv, crtc->pipe);
3525
3526 /*
3527 * Gen2 reports pipe underruns whenever all planes are disabled.
3528 * So disable underrun reporting before all the planes get disabled.
3529 */
3530 if (IS_GEN(dev_priv, 2) && !crtc_state->active_planes)
3531 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
3532
3533 intel_disable_plane(plane, crtc_state);
3534 }
3535
3536 static struct intel_frontbuffer *
3537 to_intel_frontbuffer(struct drm_framebuffer *fb)
3538 {
3539 return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3540 }
3541
3542 static void
3543 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3544 struct intel_initial_plane_config *plane_config)
3545 {
3546 struct drm_device *dev = intel_crtc->base.dev;
3547 struct drm_i915_private *dev_priv = to_i915(dev);
3548 struct drm_crtc *c;
3549 struct drm_plane *primary = intel_crtc->base.primary;
3550 struct drm_plane_state *plane_state = primary->state;
3551 struct intel_plane *intel_plane = to_intel_plane(primary);
3552 struct intel_plane_state *intel_state =
3553 to_intel_plane_state(plane_state);
3554 struct drm_framebuffer *fb;
3555
3556 if (!plane_config->fb)
3557 return;
3558
3559 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3560 fb = &plane_config->fb->base;
3561 goto valid_fb;
3562 }
3563
3564 kfree(plane_config->fb);
3565
3566 /*
3567 * Failed to alloc the obj, check to see if we should share
3568 * an fb with another CRTC instead
3569 */
3570 for_each_crtc(dev, c) {
3571 struct intel_plane_state *state;
3572
3573 if (c == &intel_crtc->base)
3574 continue;
3575
3576 if (!to_intel_crtc(c)->active)
3577 continue;
3578
3579 state = to_intel_plane_state(c->primary->state);
3580 if (!state->vma)
3581 continue;
3582
3583 if (intel_plane_ggtt_offset(state) == plane_config->base) {
3584 fb = state->hw.fb;
3585 drm_framebuffer_get(fb);
3586 goto valid_fb;
3587 }
3588 }
3589
3590 /*
3591 * We've failed to reconstruct the BIOS FB. Current display state
3592 * indicates that the primary plane is visible, but has a NULL FB,
3593 * which will lead to problems later if we don't fix it up. The
3594 * simplest solution is to just disable the primary plane now and
3595 * pretend the BIOS never had it enabled.
3596 */
3597 intel_plane_disable_noatomic(intel_crtc, intel_plane);
3598
3599 return;
3600
3601 valid_fb:
3602 intel_state->hw.rotation = plane_config->rotation;
3603 intel_fill_fb_ggtt_view(&intel_state->view, fb,
3604 intel_state->hw.rotation);
3605 intel_state->color_plane[0].stride =
3606 intel_fb_pitch(fb, 0, intel_state->hw.rotation);
3607
3608 intel_state->vma =
3609 intel_pin_and_fence_fb_obj(fb,
3610 &intel_state->view,
3611 intel_plane_uses_fence(intel_state),
3612 &intel_state->flags);
3613 if (IS_ERR(intel_state->vma)) {
3614 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
3615 intel_crtc->pipe, PTR_ERR(intel_state->vma));
3616
3617 intel_state->vma = NULL;
3618 drm_framebuffer_put(fb);
3619 return;
3620 }
3621
3622 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3623
3624 plane_state->src_x = 0;
3625 plane_state->src_y = 0;
3626 plane_state->src_w = fb->width << 16;
3627 plane_state->src_h = fb->height << 16;
3628
3629 plane_state->crtc_x = 0;
3630 plane_state->crtc_y = 0;
3631 plane_state->crtc_w = fb->width;
3632 plane_state->crtc_h = fb->height;
3633
3634 intel_state->uapi.src = drm_plane_state_src(plane_state);
3635 intel_state->uapi.dst = drm_plane_state_dest(plane_state);
3636
3637 if (plane_config->tiling)
3638 dev_priv->preserve_bios_swizzle = true;
3639
3640 plane_state->fb = fb;
3641 plane_state->crtc = &intel_crtc->base;
3642 intel_plane_copy_uapi_to_hw_state(intel_state, intel_state);
3643
3644 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3645 &to_intel_frontbuffer(fb)->bits);
3646 }
3647
3648 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3649 int color_plane,
3650 unsigned int rotation)
3651 {
3652 int cpp = fb->format->cpp[color_plane];
3653
3654 switch (fb->modifier) {
3655 case DRM_FORMAT_MOD_LINEAR:
3656 case I915_FORMAT_MOD_X_TILED:
3657 /*
3658 * Validated limit is 4k, but has 5k should
3659 * work apart from the following features:
3660 * - Ytile (already limited to 4k)
3661 * - FP16 (already limited to 4k)
3662 * - render compression (already limited to 4k)
3663 * - KVMR sprite and cursor (don't care)
3664 * - horizontal panning (TODO verify this)
3665 * - pipe and plane scaling (TODO verify this)
3666 */
3667 if (cpp == 8)
3668 return 4096;
3669 else
3670 return 5120;
3671 case I915_FORMAT_MOD_Y_TILED_CCS:
3672 case I915_FORMAT_MOD_Yf_TILED_CCS:
3673 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
3674 /* FIXME AUX plane? */
3675 case I915_FORMAT_MOD_Y_TILED:
3676 case I915_FORMAT_MOD_Yf_TILED:
3677 if (cpp == 8)
3678 return 2048;
3679 else
3680 return 4096;
3681 default:
3682 MISSING_CASE(fb->modifier);
3683 return 2048;
3684 }
3685 }
3686
3687 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3688 int color_plane,
3689 unsigned int rotation)
3690 {
3691 int cpp = fb->format->cpp[color_plane];
3692
3693 switch (fb->modifier) {
3694 case DRM_FORMAT_MOD_LINEAR:
3695 case I915_FORMAT_MOD_X_TILED:
3696 if (cpp == 8)
3697 return 4096;
3698 else
3699 return 5120;
3700 case I915_FORMAT_MOD_Y_TILED_CCS:
3701 case I915_FORMAT_MOD_Yf_TILED_CCS:
3702 /* FIXME AUX plane? */
3703 case I915_FORMAT_MOD_Y_TILED:
3704 case I915_FORMAT_MOD_Yf_TILED:
3705 if (cpp == 8)
3706 return 2048;
3707 else
3708 return 5120;
3709 default:
3710 MISSING_CASE(fb->modifier);
3711 return 2048;
3712 }
3713 }
3714
3715 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3716 int color_plane,
3717 unsigned int rotation)
3718 {
3719 return 5120;
3720 }
3721
3722 static int skl_max_plane_height(void)
3723 {
3724 return 4096;
3725 }
3726
3727 static int icl_max_plane_height(void)
3728 {
3729 return 4320;
3730 }
3731
3732 static bool
3733 skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3734 int main_x, int main_y, u32 main_offset,
3735 int ccs_plane)
3736 {
3737 const struct drm_framebuffer *fb = plane_state->hw.fb;
3738 int aux_x = plane_state->color_plane[ccs_plane].x;
3739 int aux_y = plane_state->color_plane[ccs_plane].y;
3740 u32 aux_offset = plane_state->color_plane[ccs_plane].offset;
3741 u32 alignment = intel_surf_alignment(fb, ccs_plane);
3742 int hsub;
3743 int vsub;
3744
3745 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3746 while (aux_offset >= main_offset && aux_y <= main_y) {
3747 int x, y;
3748
3749 if (aux_x == main_x && aux_y == main_y)
3750 break;
3751
3752 if (aux_offset == 0)
3753 break;
3754
3755 x = aux_x / hsub;
3756 y = aux_y / vsub;
3757 aux_offset = intel_plane_adjust_aligned_offset(&x, &y,
3758 plane_state,
3759 ccs_plane,
3760 aux_offset,
3761 aux_offset -
3762 alignment);
3763 aux_x = x * hsub + aux_x % hsub;
3764 aux_y = y * vsub + aux_y % vsub;
3765 }
3766
3767 if (aux_x != main_x || aux_y != main_y)
3768 return false;
3769
3770 plane_state->color_plane[ccs_plane].offset = aux_offset;
3771 plane_state->color_plane[ccs_plane].x = aux_x;
3772 plane_state->color_plane[ccs_plane].y = aux_y;
3773
3774 return true;
3775 }
3776
3777 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3778 {
3779 struct drm_i915_private *dev_priv = to_i915(plane_state->uapi.plane->dev);
3780 const struct drm_framebuffer *fb = plane_state->hw.fb;
3781 unsigned int rotation = plane_state->hw.rotation;
3782 int x = plane_state->uapi.src.x1 >> 16;
3783 int y = plane_state->uapi.src.y1 >> 16;
3784 int w = drm_rect_width(&plane_state->uapi.src) >> 16;
3785 int h = drm_rect_height(&plane_state->uapi.src) >> 16;
3786 int max_width;
3787 int max_height;
3788 u32 alignment;
3789 u32 offset;
3790 int aux_plane = intel_main_to_aux_plane(fb, 0);
3791 u32 aux_offset = plane_state->color_plane[aux_plane].offset;
3792
3793 if (INTEL_GEN(dev_priv) >= 11)
3794 max_width = icl_max_plane_width(fb, 0, rotation);
3795 else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
3796 max_width = glk_max_plane_width(fb, 0, rotation);
3797 else
3798 max_width = skl_max_plane_width(fb, 0, rotation);
3799
3800 if (INTEL_GEN(dev_priv) >= 11)
3801 max_height = icl_max_plane_height();
3802 else
3803 max_height = skl_max_plane_height();
3804
3805 if (w > max_width || h > max_height) {
3806 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
3807 w, h, max_width, max_height);
3808 return -EINVAL;
3809 }
3810
3811 intel_add_fb_offsets(&x, &y, plane_state, 0);
3812 offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3813 alignment = intel_surf_alignment(fb, 0);
3814 if (WARN_ON(alignment && !is_power_of_2(alignment)))
3815 return -EINVAL;
3816
3817 /*
3818 * AUX surface offset is specified as the distance from the
3819 * main surface offset, and it must be non-negative. Make
3820 * sure that is what we will get.
3821 */
3822 if (offset > aux_offset)
3823 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3824 offset, aux_offset & ~(alignment - 1));
3825
3826 /*
3827 * When using an X-tiled surface, the plane blows up
3828 * if the x offset + width exceed the stride.
3829 *
3830 * TODO: linear and Y-tiled seem fine, Yf untested,
3831 */
3832 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3833 int cpp = fb->format->cpp[0];
3834
3835 while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3836 if (offset == 0) {
3837 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
3838 return -EINVAL;
3839 }
3840
3841 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3842 offset, offset - alignment);
3843 }
3844 }
3845
3846 /*
3847 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3848 * they match with the main surface x/y offsets.
3849 */
3850 if (is_ccs_modifier(fb->modifier)) {
3851 while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3852 offset, aux_plane)) {
3853 if (offset == 0)
3854 break;
3855
3856 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3857 offset, offset - alignment);
3858 }
3859
3860 if (x != plane_state->color_plane[aux_plane].x ||
3861 y != plane_state->color_plane[aux_plane].y) {
3862 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3863 return -EINVAL;
3864 }
3865 }
3866
3867 plane_state->color_plane[0].offset = offset;
3868 plane_state->color_plane[0].x = x;
3869 plane_state->color_plane[0].y = y;
3870
3871 /*
3872 * Put the final coordinates back so that the src
3873 * coordinate checks will see the right values.
3874 */
3875 drm_rect_translate_to(&plane_state->uapi.src,
3876 x << 16, y << 16);
3877
3878 return 0;
3879 }
3880
3881 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3882 {
3883 const struct drm_framebuffer *fb = plane_state->hw.fb;
3884 unsigned int rotation = plane_state->hw.rotation;
3885 int uv_plane = 1;
3886 int max_width = skl_max_plane_width(fb, uv_plane, rotation);
3887 int max_height = 4096;
3888 int x = plane_state->uapi.src.x1 >> 17;
3889 int y = plane_state->uapi.src.y1 >> 17;
3890 int w = drm_rect_width(&plane_state->uapi.src) >> 17;
3891 int h = drm_rect_height(&plane_state->uapi.src) >> 17;
3892 u32 offset;
3893
3894 intel_add_fb_offsets(&x, &y, plane_state, uv_plane);
3895 offset = intel_plane_compute_aligned_offset(&x, &y,
3896 plane_state, uv_plane);
3897
3898 /* FIXME not quite sure how/if these apply to the chroma plane */
3899 if (w > max_width || h > max_height) {
3900 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3901 w, h, max_width, max_height);
3902 return -EINVAL;
3903 }
3904
3905 if (is_ccs_modifier(fb->modifier)) {
3906 int ccs_plane = main_to_ccs_plane(fb, uv_plane);
3907 int aux_offset = plane_state->color_plane[ccs_plane].offset;
3908 int alignment = intel_surf_alignment(fb, uv_plane);
3909
3910 if (offset > aux_offset)
3911 offset = intel_plane_adjust_aligned_offset(&x, &y,
3912 plane_state,
3913 uv_plane,
3914 offset,
3915 aux_offset & ~(alignment - 1));
3916
3917 while (!skl_check_main_ccs_coordinates(plane_state, x, y,
3918 offset, ccs_plane)) {
3919 if (offset == 0)
3920 break;
3921
3922 offset = intel_plane_adjust_aligned_offset(&x, &y,
3923 plane_state,
3924 uv_plane,
3925 offset, offset - alignment);
3926 }
3927
3928 if (x != plane_state->color_plane[ccs_plane].x ||
3929 y != plane_state->color_plane[ccs_plane].y) {
3930 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3931 return -EINVAL;
3932 }
3933 }
3934
3935 plane_state->color_plane[uv_plane].offset = offset;
3936 plane_state->color_plane[uv_plane].x = x;
3937 plane_state->color_plane[uv_plane].y = y;
3938
3939 return 0;
3940 }
3941
3942 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3943 {
3944 const struct drm_framebuffer *fb = plane_state->hw.fb;
3945 int src_x = plane_state->uapi.src.x1 >> 16;
3946 int src_y = plane_state->uapi.src.y1 >> 16;
3947 u32 offset;
3948 int ccs_plane;
3949
3950 for (ccs_plane = 0; ccs_plane < fb->format->num_planes; ccs_plane++) {
3951 int main_hsub, main_vsub;
3952 int hsub, vsub;
3953 int x, y;
3954
3955 if (!is_ccs_plane(fb, ccs_plane))
3956 continue;
3957
3958 intel_fb_plane_get_subsampling(&main_hsub, &main_vsub, fb,
3959 ccs_to_main_plane(fb, ccs_plane));
3960 intel_fb_plane_get_subsampling(&hsub, &vsub, fb, ccs_plane);
3961
3962 hsub *= main_hsub;
3963 vsub *= main_vsub;
3964 x = src_x / hsub;
3965 y = src_y / vsub;
3966
3967 intel_add_fb_offsets(&x, &y, plane_state, ccs_plane);
3968
3969 offset = intel_plane_compute_aligned_offset(&x, &y,
3970 plane_state,
3971 ccs_plane);
3972
3973 plane_state->color_plane[ccs_plane].offset = offset;
3974 plane_state->color_plane[ccs_plane].x = (x * hsub +
3975 src_x % hsub) /
3976 main_hsub;
3977 plane_state->color_plane[ccs_plane].y = (y * vsub +
3978 src_y % vsub) /
3979 main_vsub;
3980 }
3981
3982 return 0;
3983 }
3984
3985 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3986 {
3987 const struct drm_framebuffer *fb = plane_state->hw.fb;
3988 int ret;
3989 bool needs_aux = false;
3990
3991 ret = intel_plane_compute_gtt(plane_state);
3992 if (ret)
3993 return ret;
3994
3995 if (!plane_state->uapi.visible)
3996 return 0;
3997
3998 /*
3999 * Handle the AUX surface first since the main surface setup depends on
4000 * it.
4001 */
4002 if (is_ccs_modifier(fb->modifier)) {
4003 needs_aux = true;
4004 ret = skl_check_ccs_aux_surface(plane_state);
4005 if (ret)
4006 return ret;
4007 }
4008
4009 if (intel_format_info_is_yuv_semiplanar(fb->format,
4010 fb->modifier)) {
4011 needs_aux = true;
4012 ret = skl_check_nv12_aux_surface(plane_state);
4013 if (ret)
4014 return ret;
4015 }
4016
4017 if (!needs_aux) {
4018 int i;
4019
4020 for (i = 1; i < fb->format->num_planes; i++) {
4021 plane_state->color_plane[i].offset = ~0xfff;
4022 plane_state->color_plane[i].x = 0;
4023 plane_state->color_plane[i].y = 0;
4024 }
4025 }
4026
4027 ret = skl_check_main_surface(plane_state);
4028 if (ret)
4029 return ret;
4030
4031 return 0;
4032 }
4033
4034 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
4035 const struct intel_plane_state *plane_state,
4036 unsigned int *num, unsigned int *den)
4037 {
4038 const struct drm_framebuffer *fb = plane_state->hw.fb;
4039 unsigned int cpp = fb->format->cpp[0];
4040
4041 /*
4042 * g4x bspec says 64bpp pixel rate can't exceed 80%
4043 * of cdclk when the sprite plane is enabled on the
4044 * same pipe. ilk/snb bspec says 64bpp pixel rate is
4045 * never allowed to exceed 80% of cdclk. Let's just go
4046 * with the ilk/snb limit always.
4047 */
4048 if (cpp == 8) {
4049 *num = 10;
4050 *den = 8;
4051 } else {
4052 *num = 1;
4053 *den = 1;
4054 }
4055 }
4056
4057 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
4058 const struct intel_plane_state *plane_state)
4059 {
4060 unsigned int pixel_rate;
4061 unsigned int num, den;
4062
4063 /*
4064 * Note that crtc_state->pixel_rate accounts for both
4065 * horizontal and vertical panel fitter downscaling factors.
4066 * Pre-HSW bspec tells us to only consider the horizontal
4067 * downscaling factor here. We ignore that and just consider
4068 * both for simplicity.
4069 */
4070 pixel_rate = crtc_state->pixel_rate;
4071
4072 i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
4073
4074 /* two pixels per clock with double wide pipe */
4075 if (crtc_state->double_wide)
4076 den *= 2;
4077
4078 return DIV_ROUND_UP(pixel_rate * num, den);
4079 }
4080
4081 unsigned int
4082 i9xx_plane_max_stride(struct intel_plane *plane,
4083 u32 pixel_format, u64 modifier,
4084 unsigned int rotation)
4085 {
4086 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4087
4088 if (!HAS_GMCH(dev_priv)) {
4089 return 32*1024;
4090 } else if (INTEL_GEN(dev_priv) >= 4) {
4091 if (modifier == I915_FORMAT_MOD_X_TILED)
4092 return 16*1024;
4093 else
4094 return 32*1024;
4095 } else if (INTEL_GEN(dev_priv) >= 3) {
4096 if (modifier == I915_FORMAT_MOD_X_TILED)
4097 return 8*1024;
4098 else
4099 return 16*1024;
4100 } else {
4101 if (plane->i9xx_plane == PLANE_C)
4102 return 4*1024;
4103 else
4104 return 8*1024;
4105 }
4106 }
4107
4108 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4109 {
4110 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4111 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4112 u32 dspcntr = 0;
4113
4114 if (crtc_state->gamma_enable)
4115 dspcntr |= DISPPLANE_GAMMA_ENABLE;
4116
4117 if (crtc_state->csc_enable)
4118 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
4119
4120 if (INTEL_GEN(dev_priv) < 5)
4121 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
4122
4123 return dspcntr;
4124 }
4125
4126 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
4127 const struct intel_plane_state *plane_state)
4128 {
4129 struct drm_i915_private *dev_priv =
4130 to_i915(plane_state->uapi.plane->dev);
4131 const struct drm_framebuffer *fb = plane_state->hw.fb;
4132 unsigned int rotation = plane_state->hw.rotation;
4133 u32 dspcntr;
4134
4135 dspcntr = DISPLAY_PLANE_ENABLE;
4136
4137 if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
4138 IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
4139 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
4140
4141 switch (fb->format->format) {
4142 case DRM_FORMAT_C8:
4143 dspcntr |= DISPPLANE_8BPP;
4144 break;
4145 case DRM_FORMAT_XRGB1555:
4146 dspcntr |= DISPPLANE_BGRX555;
4147 break;
4148 case DRM_FORMAT_ARGB1555:
4149 dspcntr |= DISPPLANE_BGRA555;
4150 break;
4151 case DRM_FORMAT_RGB565:
4152 dspcntr |= DISPPLANE_BGRX565;
4153 break;
4154 case DRM_FORMAT_XRGB8888:
4155 dspcntr |= DISPPLANE_BGRX888;
4156 break;
4157 case DRM_FORMAT_XBGR8888:
4158 dspcntr |= DISPPLANE_RGBX888;
4159 break;
4160 case DRM_FORMAT_ARGB8888:
4161 dspcntr |= DISPPLANE_BGRA888;
4162 break;
4163 case DRM_FORMAT_ABGR8888:
4164 dspcntr |= DISPPLANE_RGBA888;
4165 break;
4166 case DRM_FORMAT_XRGB2101010:
4167 dspcntr |= DISPPLANE_BGRX101010;
4168 break;
4169 case DRM_FORMAT_XBGR2101010:
4170 dspcntr |= DISPPLANE_RGBX101010;
4171 break;
4172 case DRM_FORMAT_ARGB2101010:
4173 dspcntr |= DISPPLANE_BGRA101010;
4174 break;
4175 case DRM_FORMAT_ABGR2101010:
4176 dspcntr |= DISPPLANE_RGBA101010;
4177 break;
4178 case DRM_FORMAT_XBGR16161616F:
4179 dspcntr |= DISPPLANE_RGBX161616;
4180 break;
4181 default:
4182 MISSING_CASE(fb->format->format);
4183 return 0;
4184 }
4185
4186 if (INTEL_GEN(dev_priv) >= 4 &&
4187 fb->modifier == I915_FORMAT_MOD_X_TILED)
4188 dspcntr |= DISPPLANE_TILED;
4189
4190 if (rotation & DRM_MODE_ROTATE_180)
4191 dspcntr |= DISPPLANE_ROTATE_180;
4192
4193 if (rotation & DRM_MODE_REFLECT_X)
4194 dspcntr |= DISPPLANE_MIRROR;
4195
4196 return dspcntr;
4197 }
4198
4199 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
4200 {
4201 struct drm_i915_private *dev_priv =
4202 to_i915(plane_state->uapi.plane->dev);
4203 const struct drm_framebuffer *fb = plane_state->hw.fb;
4204 int src_x, src_y, src_w;
4205 u32 offset;
4206 int ret;
4207
4208 ret = intel_plane_compute_gtt(plane_state);
4209 if (ret)
4210 return ret;
4211
4212 if (!plane_state->uapi.visible)
4213 return 0;
4214
4215 src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4216 src_x = plane_state->uapi.src.x1 >> 16;
4217 src_y = plane_state->uapi.src.y1 >> 16;
4218
4219 /* Undocumented hardware limit on i965/g4x/vlv/chv */
4220 if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
4221 return -EINVAL;
4222
4223 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
4224
4225 if (INTEL_GEN(dev_priv) >= 4)
4226 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
4227 plane_state, 0);
4228 else
4229 offset = 0;
4230
4231 /*
4232 * Put the final coordinates back so that the src
4233 * coordinate checks will see the right values.
4234 */
4235 drm_rect_translate_to(&plane_state->uapi.src,
4236 src_x << 16, src_y << 16);
4237
4238 /* HSW/BDW do this automagically in hardware */
4239 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
4240 unsigned int rotation = plane_state->hw.rotation;
4241 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
4242 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
4243
4244 if (rotation & DRM_MODE_ROTATE_180) {
4245 src_x += src_w - 1;
4246 src_y += src_h - 1;
4247 } else if (rotation & DRM_MODE_REFLECT_X) {
4248 src_x += src_w - 1;
4249 }
4250 }
4251
4252 plane_state->color_plane[0].offset = offset;
4253 plane_state->color_plane[0].x = src_x;
4254 plane_state->color_plane[0].y = src_y;
4255
4256 return 0;
4257 }
4258
4259 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
4260 {
4261 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4262 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4263
4264 if (IS_CHERRYVIEW(dev_priv))
4265 return i9xx_plane == PLANE_B;
4266 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
4267 return false;
4268 else if (IS_GEN(dev_priv, 4))
4269 return i9xx_plane == PLANE_C;
4270 else
4271 return i9xx_plane == PLANE_B ||
4272 i9xx_plane == PLANE_C;
4273 }
4274
4275 static int
4276 i9xx_plane_check(struct intel_crtc_state *crtc_state,
4277 struct intel_plane_state *plane_state)
4278 {
4279 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4280 int ret;
4281
4282 ret = chv_plane_check_rotation(plane_state);
4283 if (ret)
4284 return ret;
4285
4286 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
4287 &crtc_state->uapi,
4288 DRM_PLANE_HELPER_NO_SCALING,
4289 DRM_PLANE_HELPER_NO_SCALING,
4290 i9xx_plane_has_windowing(plane),
4291 true);
4292 if (ret)
4293 return ret;
4294
4295 ret = i9xx_check_plane_surface(plane_state);
4296 if (ret)
4297 return ret;
4298
4299 if (!plane_state->uapi.visible)
4300 return 0;
4301
4302 ret = intel_plane_check_src_coordinates(plane_state);
4303 if (ret)
4304 return ret;
4305
4306 plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
4307
4308 return 0;
4309 }
4310
4311 static void i9xx_update_plane(struct intel_plane *plane,
4312 const struct intel_crtc_state *crtc_state,
4313 const struct intel_plane_state *plane_state)
4314 {
4315 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4316 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4317 u32 linear_offset;
4318 int x = plane_state->color_plane[0].x;
4319 int y = plane_state->color_plane[0].y;
4320 int crtc_x = plane_state->uapi.dst.x1;
4321 int crtc_y = plane_state->uapi.dst.y1;
4322 int crtc_w = drm_rect_width(&plane_state->uapi.dst);
4323 int crtc_h = drm_rect_height(&plane_state->uapi.dst);
4324 unsigned long irqflags;
4325 u32 dspaddr_offset;
4326 u32 dspcntr;
4327
4328 dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
4329
4330 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
4331
4332 if (INTEL_GEN(dev_priv) >= 4)
4333 dspaddr_offset = plane_state->color_plane[0].offset;
4334 else
4335 dspaddr_offset = linear_offset;
4336
4337 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4338
4339 I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride);
4340
4341 if (INTEL_GEN(dev_priv) < 4) {
4342 /*
4343 * PLANE_A doesn't actually have a full window
4344 * generator but let's assume we still need to
4345 * program whatever is there.
4346 */
4347 I915_WRITE_FW(DSPPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
4348 I915_WRITE_FW(DSPSIZE(i9xx_plane),
4349 ((crtc_h - 1) << 16) | (crtc_w - 1));
4350 } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
4351 I915_WRITE_FW(PRIMPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
4352 I915_WRITE_FW(PRIMSIZE(i9xx_plane),
4353 ((crtc_h - 1) << 16) | (crtc_w - 1));
4354 I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0);
4355 }
4356
4357 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
4358 I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x);
4359 } else if (INTEL_GEN(dev_priv) >= 4) {
4360 I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset);
4361 I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x);
4362 }
4363
4364 /*
4365 * The control register self-arms if the plane was previously
4366 * disabled. Try to make the plane enable atomic by writing
4367 * the control register just before the surface register.
4368 */
4369 I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
4370 if (INTEL_GEN(dev_priv) >= 4)
4371 I915_WRITE_FW(DSPSURF(i9xx_plane),
4372 intel_plane_ggtt_offset(plane_state) +
4373 dspaddr_offset);
4374 else
4375 I915_WRITE_FW(DSPADDR(i9xx_plane),
4376 intel_plane_ggtt_offset(plane_state) +
4377 dspaddr_offset);
4378
4379 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4380 }
4381
4382 static void i9xx_disable_plane(struct intel_plane *plane,
4383 const struct intel_crtc_state *crtc_state)
4384 {
4385 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4386 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4387 unsigned long irqflags;
4388 u32 dspcntr;
4389
4390 /*
4391 * DSPCNTR pipe gamma enable on g4x+ and pipe csc
4392 * enable on ilk+ affect the pipe bottom color as
4393 * well, so we must configure them even if the plane
4394 * is disabled.
4395 *
4396 * On pre-g4x there is no way to gamma correct the
4397 * pipe bottom color but we'll keep on doing this
4398 * anyway so that the crtc state readout works correctly.
4399 */
4400 dspcntr = i9xx_plane_ctl_crtc(crtc_state);
4401
4402 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
4403
4404 I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
4405 if (INTEL_GEN(dev_priv) >= 4)
4406 I915_WRITE_FW(DSPSURF(i9xx_plane), 0);
4407 else
4408 I915_WRITE_FW(DSPADDR(i9xx_plane), 0);
4409
4410 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
4411 }
4412
4413 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
4414 enum pipe *pipe)
4415 {
4416 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
4417 enum intel_display_power_domain power_domain;
4418 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
4419 intel_wakeref_t wakeref;
4420 bool ret;
4421 u32 val;
4422
4423 /*
4424 * Not 100% correct for planes that can move between pipes,
4425 * but that's only the case for gen2-4 which don't have any
4426 * display power wells.
4427 */
4428 power_domain = POWER_DOMAIN_PIPE(plane->pipe);
4429 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4430 if (!wakeref)
4431 return false;
4432
4433 val = I915_READ(DSPCNTR(i9xx_plane));
4434
4435 ret = val & DISPLAY_PLANE_ENABLE;
4436
4437 if (INTEL_GEN(dev_priv) >= 5)
4438 *pipe = plane->pipe;
4439 else
4440 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
4441 DISPPLANE_SEL_PIPE_SHIFT;
4442
4443 intel_display_power_put(dev_priv, power_domain, wakeref);
4444
4445 return ret;
4446 }
4447
4448 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4449 {
4450 struct drm_device *dev = intel_crtc->base.dev;
4451 struct drm_i915_private *dev_priv = to_i915(dev);
4452
4453 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4454 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4455 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4456 }
4457
4458 /*
4459 * This function detaches (aka. unbinds) unused scalers in hardware
4460 */
4461 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4462 {
4463 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
4464 const struct intel_crtc_scaler_state *scaler_state =
4465 &crtc_state->scaler_state;
4466 int i;
4467
4468 /* loop through and disable scalers that aren't in use */
4469 for (i = 0; i < intel_crtc->num_scalers; i++) {
4470 if (!scaler_state->scalers[i].in_use)
4471 skl_detach_scaler(intel_crtc, i);
4472 }
4473 }
4474
4475 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4476 int color_plane, unsigned int rotation)
4477 {
4478 /*
4479 * The stride is either expressed as a multiple of 64 bytes chunks for
4480 * linear buffers or in number of tiles for tiled buffers.
4481 */
4482 if (is_surface_linear(fb, color_plane))
4483 return 64;
4484 else if (drm_rotation_90_or_270(rotation))
4485 return intel_tile_height(fb, color_plane);
4486 else
4487 return intel_tile_width_bytes(fb, color_plane);
4488 }
4489
4490 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4491 int color_plane)
4492 {
4493 const struct drm_framebuffer *fb = plane_state->hw.fb;
4494 unsigned int rotation = plane_state->hw.rotation;
4495 u32 stride = plane_state->color_plane[color_plane].stride;
4496
4497 if (color_plane >= fb->format->num_planes)
4498 return 0;
4499
4500 return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4501 }
4502
4503 static u32 skl_plane_ctl_format(u32 pixel_format)
4504 {
4505 switch (pixel_format) {
4506 case DRM_FORMAT_C8:
4507 return PLANE_CTL_FORMAT_INDEXED;
4508 case DRM_FORMAT_RGB565:
4509 return PLANE_CTL_FORMAT_RGB_565;
4510 case DRM_FORMAT_XBGR8888:
4511 case DRM_FORMAT_ABGR8888:
4512 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4513 case DRM_FORMAT_XRGB8888:
4514 case DRM_FORMAT_ARGB8888:
4515 return PLANE_CTL_FORMAT_XRGB_8888;
4516 case DRM_FORMAT_XBGR2101010:
4517 case DRM_FORMAT_ABGR2101010:
4518 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4519 case DRM_FORMAT_XRGB2101010:
4520 case DRM_FORMAT_ARGB2101010:
4521 return PLANE_CTL_FORMAT_XRGB_2101010;
4522 case DRM_FORMAT_XBGR16161616F:
4523 case DRM_FORMAT_ABGR16161616F:
4524 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4525 case DRM_FORMAT_XRGB16161616F:
4526 case DRM_FORMAT_ARGB16161616F:
4527 return PLANE_CTL_FORMAT_XRGB_16161616F;
4528 case DRM_FORMAT_YUYV:
4529 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4530 case DRM_FORMAT_YVYU:
4531 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4532 case DRM_FORMAT_UYVY:
4533 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4534 case DRM_FORMAT_VYUY:
4535 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4536 case DRM_FORMAT_NV12:
4537 return PLANE_CTL_FORMAT_NV12;
4538 case DRM_FORMAT_P010:
4539 return PLANE_CTL_FORMAT_P010;
4540 case DRM_FORMAT_P012:
4541 return PLANE_CTL_FORMAT_P012;
4542 case DRM_FORMAT_P016:
4543 return PLANE_CTL_FORMAT_P016;
4544 case DRM_FORMAT_Y210:
4545 return PLANE_CTL_FORMAT_Y210;
4546 case DRM_FORMAT_Y212:
4547 return PLANE_CTL_FORMAT_Y212;
4548 case DRM_FORMAT_Y216:
4549 return PLANE_CTL_FORMAT_Y216;
4550 case DRM_FORMAT_XVYU2101010:
4551 return PLANE_CTL_FORMAT_Y410;
4552 case DRM_FORMAT_XVYU12_16161616:
4553 return PLANE_CTL_FORMAT_Y412;
4554 case DRM_FORMAT_XVYU16161616:
4555 return PLANE_CTL_FORMAT_Y416;
4556 default:
4557 MISSING_CASE(pixel_format);
4558 }
4559
4560 return 0;
4561 }
4562
4563 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4564 {
4565 if (!plane_state->hw.fb->format->has_alpha)
4566 return PLANE_CTL_ALPHA_DISABLE;
4567
4568 switch (plane_state->hw.pixel_blend_mode) {
4569 case DRM_MODE_BLEND_PIXEL_NONE:
4570 return PLANE_CTL_ALPHA_DISABLE;
4571 case DRM_MODE_BLEND_PREMULTI:
4572 return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4573 case DRM_MODE_BLEND_COVERAGE:
4574 return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4575 default:
4576 MISSING_CASE(plane_state->hw.pixel_blend_mode);
4577 return PLANE_CTL_ALPHA_DISABLE;
4578 }
4579 }
4580
4581 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4582 {
4583 if (!plane_state->hw.fb->format->has_alpha)
4584 return PLANE_COLOR_ALPHA_DISABLE;
4585
4586 switch (plane_state->hw.pixel_blend_mode) {
4587 case DRM_MODE_BLEND_PIXEL_NONE:
4588 return PLANE_COLOR_ALPHA_DISABLE;
4589 case DRM_MODE_BLEND_PREMULTI:
4590 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4591 case DRM_MODE_BLEND_COVERAGE:
4592 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4593 default:
4594 MISSING_CASE(plane_state->hw.pixel_blend_mode);
4595 return PLANE_COLOR_ALPHA_DISABLE;
4596 }
4597 }
4598
4599 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4600 {
4601 switch (fb_modifier) {
4602 case DRM_FORMAT_MOD_LINEAR:
4603 break;
4604 case I915_FORMAT_MOD_X_TILED:
4605 return PLANE_CTL_TILED_X;
4606 case I915_FORMAT_MOD_Y_TILED:
4607 return PLANE_CTL_TILED_Y;
4608 case I915_FORMAT_MOD_Y_TILED_CCS:
4609 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4610 case I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS:
4611 return PLANE_CTL_TILED_Y |
4612 PLANE_CTL_RENDER_DECOMPRESSION_ENABLE |
4613 PLANE_CTL_CLEAR_COLOR_DISABLE;
4614 case I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS:
4615 return PLANE_CTL_TILED_Y | PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE;
4616 case I915_FORMAT_MOD_Yf_TILED:
4617 return PLANE_CTL_TILED_YF;
4618 case I915_FORMAT_MOD_Yf_TILED_CCS:
4619 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4620 default:
4621 MISSING_CASE(fb_modifier);
4622 }
4623
4624 return 0;
4625 }
4626
4627 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4628 {
4629 switch (rotate) {
4630 case DRM_MODE_ROTATE_0:
4631 break;
4632 /*
4633 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4634 * while i915 HW rotation is clockwise, thats why this swapping.
4635 */
4636 case DRM_MODE_ROTATE_90:
4637 return PLANE_CTL_ROTATE_270;
4638 case DRM_MODE_ROTATE_180:
4639 return PLANE_CTL_ROTATE_180;
4640 case DRM_MODE_ROTATE_270:
4641 return PLANE_CTL_ROTATE_90;
4642 default:
4643 MISSING_CASE(rotate);
4644 }
4645
4646 return 0;
4647 }
4648
4649 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4650 {
4651 switch (reflect) {
4652 case 0:
4653 break;
4654 case DRM_MODE_REFLECT_X:
4655 return PLANE_CTL_FLIP_HORIZONTAL;
4656 case DRM_MODE_REFLECT_Y:
4657 default:
4658 MISSING_CASE(reflect);
4659 }
4660
4661 return 0;
4662 }
4663
4664 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4665 {
4666 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4667 u32 plane_ctl = 0;
4668
4669 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4670 return plane_ctl;
4671
4672 if (crtc_state->gamma_enable)
4673 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4674
4675 if (crtc_state->csc_enable)
4676 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4677
4678 return plane_ctl;
4679 }
4680
4681 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4682 const struct intel_plane_state *plane_state)
4683 {
4684 struct drm_i915_private *dev_priv =
4685 to_i915(plane_state->uapi.plane->dev);
4686 const struct drm_framebuffer *fb = plane_state->hw.fb;
4687 unsigned int rotation = plane_state->hw.rotation;
4688 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4689 u32 plane_ctl;
4690
4691 plane_ctl = PLANE_CTL_ENABLE;
4692
4693 if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4694 plane_ctl |= skl_plane_ctl_alpha(plane_state);
4695 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4696
4697 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4698 plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4699
4700 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4701 plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4702 }
4703
4704 plane_ctl |= skl_plane_ctl_format(fb->format->format);
4705 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4706 plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4707
4708 if (INTEL_GEN(dev_priv) >= 10)
4709 plane_ctl |= cnl_plane_ctl_flip(rotation &
4710 DRM_MODE_REFLECT_MASK);
4711
4712 if (key->flags & I915_SET_COLORKEY_DESTINATION)
4713 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4714 else if (key->flags & I915_SET_COLORKEY_SOURCE)
4715 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4716
4717 return plane_ctl;
4718 }
4719
4720 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4721 {
4722 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
4723 u32 plane_color_ctl = 0;
4724
4725 if (INTEL_GEN(dev_priv) >= 11)
4726 return plane_color_ctl;
4727
4728 if (crtc_state->gamma_enable)
4729 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4730
4731 if (crtc_state->csc_enable)
4732 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4733
4734 return plane_color_ctl;
4735 }
4736
4737 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4738 const struct intel_plane_state *plane_state)
4739 {
4740 struct drm_i915_private *dev_priv =
4741 to_i915(plane_state->uapi.plane->dev);
4742 const struct drm_framebuffer *fb = plane_state->hw.fb;
4743 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
4744 u32 plane_color_ctl = 0;
4745
4746 plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4747 plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4748
4749 if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4750 if (plane_state->hw.color_encoding == DRM_COLOR_YCBCR_BT709)
4751 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4752 else
4753 plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709;
4754
4755 if (plane_state->hw.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4756 plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4757 } else if (fb->format->is_yuv) {
4758 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4759 }
4760
4761 return plane_color_ctl;
4762 }
4763
4764 static int
4765 __intel_display_resume(struct drm_device *dev,
4766 struct drm_atomic_state *state,
4767 struct drm_modeset_acquire_ctx *ctx)
4768 {
4769 struct drm_crtc_state *crtc_state;
4770 struct drm_crtc *crtc;
4771 int i, ret;
4772
4773 intel_modeset_setup_hw_state(dev, ctx);
4774 intel_vga_redisable(to_i915(dev));
4775
4776 if (!state)
4777 return 0;
4778
4779 /*
4780 * We've duplicated the state, pointers to the old state are invalid.
4781 *
4782 * Don't attempt to use the old state until we commit the duplicated state.
4783 */
4784 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4785 /*
4786 * Force recalculation even if we restore
4787 * current state. With fast modeset this may not result
4788 * in a modeset when the state is compatible.
4789 */
4790 crtc_state->mode_changed = true;
4791 }
4792
4793 /* ignore any reset values/BIOS leftovers in the WM registers */
4794 if (!HAS_GMCH(to_i915(dev)))
4795 to_intel_atomic_state(state)->skip_intermediate_wm = true;
4796
4797 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4798
4799 WARN_ON(ret == -EDEADLK);
4800 return ret;
4801 }
4802
4803 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4804 {
4805 return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4806 intel_has_gpu_reset(&dev_priv->gt));
4807 }
4808
4809 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4810 {
4811 struct drm_device *dev = &dev_priv->drm;
4812 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4813 struct drm_atomic_state *state;
4814 int ret;
4815
4816 /* reset doesn't touch the display */
4817 if (!i915_modparams.force_reset_modeset_test &&
4818 !gpu_reset_clobbers_display(dev_priv))
4819 return;
4820
4821 /* We have a modeset vs reset deadlock, defensively unbreak it. */
4822 set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4823 smp_mb__after_atomic();
4824 wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4825
4826 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4827 DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
4828 intel_gt_set_wedged(&dev_priv->gt);
4829 }
4830
4831 /*
4832 * Need mode_config.mutex so that we don't
4833 * trample ongoing ->detect() and whatnot.
4834 */
4835 mutex_lock(&dev->mode_config.mutex);
4836 drm_modeset_acquire_init(ctx, 0);
4837 while (1) {
4838 ret = drm_modeset_lock_all_ctx(dev, ctx);
4839 if (ret != -EDEADLK)
4840 break;
4841
4842 drm_modeset_backoff(ctx);
4843 }
4844 /*
4845 * Disabling the crtcs gracefully seems nicer. Also the
4846 * g33 docs say we should at least disable all the planes.
4847 */
4848 state = drm_atomic_helper_duplicate_state(dev, ctx);
4849 if (IS_ERR(state)) {
4850 ret = PTR_ERR(state);
4851 DRM_ERROR("Duplicating state failed with %i\n", ret);
4852 return;
4853 }
4854
4855 ret = drm_atomic_helper_disable_all(dev, ctx);
4856 if (ret) {
4857 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
4858 drm_atomic_state_put(state);
4859 return;
4860 }
4861
4862 dev_priv->modeset_restore_state = state;
4863 state->acquire_ctx = ctx;
4864 }
4865
4866 void intel_finish_reset(struct drm_i915_private *dev_priv)
4867 {
4868 struct drm_device *dev = &dev_priv->drm;
4869 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4870 struct drm_atomic_state *state;
4871 int ret;
4872
4873 /* reset doesn't touch the display */
4874 if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
4875 return;
4876
4877 state = fetch_and_zero(&dev_priv->modeset_restore_state);
4878 if (!state)
4879 goto unlock;
4880
4881 /* reset doesn't touch the display */
4882 if (!gpu_reset_clobbers_display(dev_priv)) {
4883 /* for testing only restore the display */
4884 ret = __intel_display_resume(dev, state, ctx);
4885 if (ret)
4886 DRM_ERROR("Restoring old state failed with %i\n", ret);
4887 } else {
4888 /*
4889 * The display has been reset as well,
4890 * so need a full re-initialization.
4891 */
4892 intel_pps_unlock_regs_wa(dev_priv);
4893 intel_modeset_init_hw(dev_priv);
4894 intel_init_clock_gating(dev_priv);
4895
4896 spin_lock_irq(&dev_priv->irq_lock);
4897 if (dev_priv->display.hpd_irq_setup)
4898 dev_priv->display.hpd_irq_setup(dev_priv);
4899 spin_unlock_irq(&dev_priv->irq_lock);
4900
4901 ret = __intel_display_resume(dev, state, ctx);
4902 if (ret)
4903 DRM_ERROR("Restoring old state failed with %i\n", ret);
4904
4905 intel_hpd_init(dev_priv);
4906 }
4907
4908 drm_atomic_state_put(state);
4909 unlock:
4910 drm_modeset_drop_locks(ctx);
4911 drm_modeset_acquire_fini(ctx);
4912 mutex_unlock(&dev->mode_config.mutex);
4913
4914 clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4915 }
4916
4917 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
4918 {
4919 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4920 enum pipe pipe = crtc->pipe;
4921 u32 tmp;
4922
4923 tmp = I915_READ(PIPE_CHICKEN(pipe));
4924
4925 /*
4926 * Display WA #1153: icl
4927 * enable hardware to bypass the alpha math
4928 * and rounding for per-pixel values 00 and 0xff
4929 */
4930 tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
4931 /*
4932 * Display WA # 1605353570: icl
4933 * Set the pixel rounding bit to 1 for allowing
4934 * passthrough of Frame buffer pixels unmodified
4935 * across pipe
4936 */
4937 tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
4938 I915_WRITE(PIPE_CHICKEN(pipe), tmp);
4939 }
4940
4941 static void icl_enable_trans_port_sync(const struct intel_crtc_state *crtc_state)
4942 {
4943 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4944 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4945 u32 trans_ddi_func_ctl2_val;
4946 u8 master_select;
4947
4948 /*
4949 * Configure the master select and enable Transcoder Port Sync for
4950 * Slave CRTCs transcoder.
4951 */
4952 if (crtc_state->master_transcoder == INVALID_TRANSCODER)
4953 return;
4954
4955 if (crtc_state->master_transcoder == TRANSCODER_EDP)
4956 master_select = 0;
4957 else
4958 master_select = crtc_state->master_transcoder + 1;
4959
4960 /* Set the master select bits for Tranascoder Port Sync */
4961 trans_ddi_func_ctl2_val = (PORT_SYNC_MODE_MASTER_SELECT(master_select) &
4962 PORT_SYNC_MODE_MASTER_SELECT_MASK) <<
4963 PORT_SYNC_MODE_MASTER_SELECT_SHIFT;
4964 /* Enable Transcoder Port Sync */
4965 trans_ddi_func_ctl2_val |= PORT_SYNC_MODE_ENABLE;
4966
4967 I915_WRITE(TRANS_DDI_FUNC_CTL2(crtc_state->cpu_transcoder),
4968 trans_ddi_func_ctl2_val);
4969 }
4970
4971 static void intel_fdi_normal_train(struct intel_crtc *crtc)
4972 {
4973 struct drm_device *dev = crtc->base.dev;
4974 struct drm_i915_private *dev_priv = to_i915(dev);
4975 enum pipe pipe = crtc->pipe;
4976 i915_reg_t reg;
4977 u32 temp;
4978
4979 /* enable normal train */
4980 reg = FDI_TX_CTL(pipe);
4981 temp = I915_READ(reg);
4982 if (IS_IVYBRIDGE(dev_priv)) {
4983 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4984 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
4985 } else {
4986 temp &= ~FDI_LINK_TRAIN_NONE;
4987 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
4988 }
4989 I915_WRITE(reg, temp);
4990
4991 reg = FDI_RX_CTL(pipe);
4992 temp = I915_READ(reg);
4993 if (HAS_PCH_CPT(dev_priv)) {
4994 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4995 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
4996 } else {
4997 temp &= ~FDI_LINK_TRAIN_NONE;
4998 temp |= FDI_LINK_TRAIN_NONE;
4999 }
5000 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
5001
5002 /* wait one idle pattern time */
5003 POSTING_READ(reg);
5004 udelay(1000);
5005
5006 /* IVB wants error correction enabled */
5007 if (IS_IVYBRIDGE(dev_priv))
5008 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
5009 FDI_FE_ERRC_ENABLE);
5010 }
5011
5012 /* The FDI link training functions for ILK/Ibexpeak. */
5013 static void ilk_fdi_link_train(struct intel_crtc *crtc,
5014 const struct intel_crtc_state *crtc_state)
5015 {
5016 struct drm_device *dev = crtc->base.dev;
5017 struct drm_i915_private *dev_priv = to_i915(dev);
5018 enum pipe pipe = crtc->pipe;
5019 i915_reg_t reg;
5020 u32 temp, tries;
5021
5022 /* FDI needs bits from pipe first */
5023 assert_pipe_enabled(dev_priv, crtc_state->cpu_transcoder);
5024
5025 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5026 for train result */
5027 reg = FDI_RX_IMR(pipe);
5028 temp = I915_READ(reg);
5029 temp &= ~FDI_RX_SYMBOL_LOCK;
5030 temp &= ~FDI_RX_BIT_LOCK;
5031 I915_WRITE(reg, temp);
5032 I915_READ(reg);
5033 udelay(150);
5034
5035 /* enable CPU FDI TX and PCH FDI RX */
5036 reg = FDI_TX_CTL(pipe);
5037 temp = I915_READ(reg);
5038 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5039 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5040 temp &= ~FDI_LINK_TRAIN_NONE;
5041 temp |= FDI_LINK_TRAIN_PATTERN_1;
5042 I915_WRITE(reg, temp | FDI_TX_ENABLE);
5043
5044 reg = FDI_RX_CTL(pipe);
5045 temp = I915_READ(reg);
5046 temp &= ~FDI_LINK_TRAIN_NONE;
5047 temp |= FDI_LINK_TRAIN_PATTERN_1;
5048 I915_WRITE(reg, temp | FDI_RX_ENABLE);
5049
5050 POSTING_READ(reg);
5051 udelay(150);
5052
5053 /* Ironlake workaround, enable clock pointer after FDI enable*/
5054 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
5055 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
5056 FDI_RX_PHASE_SYNC_POINTER_EN);
5057
5058 reg = FDI_RX_IIR(pipe);
5059 for (tries = 0; tries < 5; tries++) {
5060 temp = I915_READ(reg);
5061 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5062
5063 if ((temp & FDI_RX_BIT_LOCK)) {
5064 DRM_DEBUG_KMS("FDI train 1 done.\n");
5065 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
5066 break;
5067 }
5068 }
5069 if (tries == 5)
5070 DRM_ERROR("FDI train 1 fail!\n");
5071
5072 /* Train 2 */
5073 reg = FDI_TX_CTL(pipe);
5074 temp = I915_READ(reg);
5075 temp &= ~FDI_LINK_TRAIN_NONE;
5076 temp |= FDI_LINK_TRAIN_PATTERN_2;
5077 I915_WRITE(reg, temp);
5078
5079 reg = FDI_RX_CTL(pipe);
5080 temp = I915_READ(reg);
5081 temp &= ~FDI_LINK_TRAIN_NONE;
5082 temp |= FDI_LINK_TRAIN_PATTERN_2;
5083 I915_WRITE(reg, temp);
5084
5085 POSTING_READ(reg);
5086 udelay(150);
5087
5088 reg = FDI_RX_IIR(pipe);
5089 for (tries = 0; tries < 5; tries++) {
5090 temp = I915_READ(reg);
5091 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5092
5093 if (temp & FDI_RX_SYMBOL_LOCK) {
5094 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
5095 DRM_DEBUG_KMS("FDI train 2 done.\n");
5096 break;
5097 }
5098 }
5099 if (tries == 5)
5100 DRM_ERROR("FDI train 2 fail!\n");
5101
5102 DRM_DEBUG_KMS("FDI train done\n");
5103
5104 }
5105
5106 static const int snb_b_fdi_train_param[] = {
5107 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
5108 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
5109 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
5110 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
5111 };
5112
5113 /* The FDI link training functions for SNB/Cougarpoint. */
5114 static void gen6_fdi_link_train(struct intel_crtc *crtc,
5115 const struct intel_crtc_state *crtc_state)
5116 {
5117 struct drm_device *dev = crtc->base.dev;
5118 struct drm_i915_private *dev_priv = to_i915(dev);
5119 enum pipe pipe = crtc->pipe;
5120 i915_reg_t reg;
5121 u32 temp, i, retry;
5122
5123 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5124 for train result */
5125 reg = FDI_RX_IMR(pipe);
5126 temp = I915_READ(reg);
5127 temp &= ~FDI_RX_SYMBOL_LOCK;
5128 temp &= ~FDI_RX_BIT_LOCK;
5129 I915_WRITE(reg, temp);
5130
5131 POSTING_READ(reg);
5132 udelay(150);
5133
5134 /* enable CPU FDI TX and PCH FDI RX */
5135 reg = FDI_TX_CTL(pipe);
5136 temp = I915_READ(reg);
5137 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5138 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5139 temp &= ~FDI_LINK_TRAIN_NONE;
5140 temp |= FDI_LINK_TRAIN_PATTERN_1;
5141 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5142 /* SNB-B */
5143 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5144 I915_WRITE(reg, temp | FDI_TX_ENABLE);
5145
5146 I915_WRITE(FDI_RX_MISC(pipe),
5147 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5148
5149 reg = FDI_RX_CTL(pipe);
5150 temp = I915_READ(reg);
5151 if (HAS_PCH_CPT(dev_priv)) {
5152 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5153 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5154 } else {
5155 temp &= ~FDI_LINK_TRAIN_NONE;
5156 temp |= FDI_LINK_TRAIN_PATTERN_1;
5157 }
5158 I915_WRITE(reg, temp | FDI_RX_ENABLE);
5159
5160 POSTING_READ(reg);
5161 udelay(150);
5162
5163 for (i = 0; i < 4; i++) {
5164 reg = FDI_TX_CTL(pipe);
5165 temp = I915_READ(reg);
5166 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5167 temp |= snb_b_fdi_train_param[i];
5168 I915_WRITE(reg, temp);
5169
5170 POSTING_READ(reg);
5171 udelay(500);
5172
5173 for (retry = 0; retry < 5; retry++) {
5174 reg = FDI_RX_IIR(pipe);
5175 temp = I915_READ(reg);
5176 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5177 if (temp & FDI_RX_BIT_LOCK) {
5178 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
5179 DRM_DEBUG_KMS("FDI train 1 done.\n");
5180 break;
5181 }
5182 udelay(50);
5183 }
5184 if (retry < 5)
5185 break;
5186 }
5187 if (i == 4)
5188 DRM_ERROR("FDI train 1 fail!\n");
5189
5190 /* Train 2 */
5191 reg = FDI_TX_CTL(pipe);
5192 temp = I915_READ(reg);
5193 temp &= ~FDI_LINK_TRAIN_NONE;
5194 temp |= FDI_LINK_TRAIN_PATTERN_2;
5195 if (IS_GEN(dev_priv, 6)) {
5196 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5197 /* SNB-B */
5198 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5199 }
5200 I915_WRITE(reg, temp);
5201
5202 reg = FDI_RX_CTL(pipe);
5203 temp = I915_READ(reg);
5204 if (HAS_PCH_CPT(dev_priv)) {
5205 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5206 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5207 } else {
5208 temp &= ~FDI_LINK_TRAIN_NONE;
5209 temp |= FDI_LINK_TRAIN_PATTERN_2;
5210 }
5211 I915_WRITE(reg, temp);
5212
5213 POSTING_READ(reg);
5214 udelay(150);
5215
5216 for (i = 0; i < 4; i++) {
5217 reg = FDI_TX_CTL(pipe);
5218 temp = I915_READ(reg);
5219 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5220 temp |= snb_b_fdi_train_param[i];
5221 I915_WRITE(reg, temp);
5222
5223 POSTING_READ(reg);
5224 udelay(500);
5225
5226 for (retry = 0; retry < 5; retry++) {
5227 reg = FDI_RX_IIR(pipe);
5228 temp = I915_READ(reg);
5229 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5230 if (temp & FDI_RX_SYMBOL_LOCK) {
5231 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
5232 DRM_DEBUG_KMS("FDI train 2 done.\n");
5233 break;
5234 }
5235 udelay(50);
5236 }
5237 if (retry < 5)
5238 break;
5239 }
5240 if (i == 4)
5241 DRM_ERROR("FDI train 2 fail!\n");
5242
5243 DRM_DEBUG_KMS("FDI train done.\n");
5244 }
5245
5246 /* Manual link training for Ivy Bridge A0 parts */
5247 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
5248 const struct intel_crtc_state *crtc_state)
5249 {
5250 struct drm_device *dev = crtc->base.dev;
5251 struct drm_i915_private *dev_priv = to_i915(dev);
5252 enum pipe pipe = crtc->pipe;
5253 i915_reg_t reg;
5254 u32 temp, i, j;
5255
5256 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
5257 for train result */
5258 reg = FDI_RX_IMR(pipe);
5259 temp = I915_READ(reg);
5260 temp &= ~FDI_RX_SYMBOL_LOCK;
5261 temp &= ~FDI_RX_BIT_LOCK;
5262 I915_WRITE(reg, temp);
5263
5264 POSTING_READ(reg);
5265 udelay(150);
5266
5267 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
5268 I915_READ(FDI_RX_IIR(pipe)));
5269
5270 /* Try each vswing and preemphasis setting twice before moving on */
5271 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
5272 /* disable first in case we need to retry */
5273 reg = FDI_TX_CTL(pipe);
5274 temp = I915_READ(reg);
5275 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
5276 temp &= ~FDI_TX_ENABLE;
5277 I915_WRITE(reg, temp);
5278
5279 reg = FDI_RX_CTL(pipe);
5280 temp = I915_READ(reg);
5281 temp &= ~FDI_LINK_TRAIN_AUTO;
5282 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5283 temp &= ~FDI_RX_ENABLE;
5284 I915_WRITE(reg, temp);
5285
5286 /* enable CPU FDI TX and PCH FDI RX */
5287 reg = FDI_TX_CTL(pipe);
5288 temp = I915_READ(reg);
5289 temp &= ~FDI_DP_PORT_WIDTH_MASK;
5290 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5291 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
5292 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
5293 temp |= snb_b_fdi_train_param[j/2];
5294 temp |= FDI_COMPOSITE_SYNC;
5295 I915_WRITE(reg, temp | FDI_TX_ENABLE);
5296
5297 I915_WRITE(FDI_RX_MISC(pipe),
5298 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
5299
5300 reg = FDI_RX_CTL(pipe);
5301 temp = I915_READ(reg);
5302 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5303 temp |= FDI_COMPOSITE_SYNC;
5304 I915_WRITE(reg, temp | FDI_RX_ENABLE);
5305
5306 POSTING_READ(reg);
5307 udelay(1); /* should be 0.5us */
5308
5309 for (i = 0; i < 4; i++) {
5310 reg = FDI_RX_IIR(pipe);
5311 temp = I915_READ(reg);
5312 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5313
5314 if (temp & FDI_RX_BIT_LOCK ||
5315 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
5316 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
5317 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
5318 i);
5319 break;
5320 }
5321 udelay(1); /* should be 0.5us */
5322 }
5323 if (i == 4) {
5324 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
5325 continue;
5326 }
5327
5328 /* Train 2 */
5329 reg = FDI_TX_CTL(pipe);
5330 temp = I915_READ(reg);
5331 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
5332 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
5333 I915_WRITE(reg, temp);
5334
5335 reg = FDI_RX_CTL(pipe);
5336 temp = I915_READ(reg);
5337 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5338 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
5339 I915_WRITE(reg, temp);
5340
5341 POSTING_READ(reg);
5342 udelay(2); /* should be 1.5us */
5343
5344 for (i = 0; i < 4; i++) {
5345 reg = FDI_RX_IIR(pipe);
5346 temp = I915_READ(reg);
5347 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
5348
5349 if (temp & FDI_RX_SYMBOL_LOCK ||
5350 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
5351 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
5352 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
5353 i);
5354 goto train_done;
5355 }
5356 udelay(2); /* should be 1.5us */
5357 }
5358 if (i == 4)
5359 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
5360 }
5361
5362 train_done:
5363 DRM_DEBUG_KMS("FDI train done.\n");
5364 }
5365
5366 static void ilk_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
5367 {
5368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
5369 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5370 enum pipe pipe = intel_crtc->pipe;
5371 i915_reg_t reg;
5372 u32 temp;
5373
5374 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5375 reg = FDI_RX_CTL(pipe);
5376 temp = I915_READ(reg);
5377 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
5378 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
5379 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5380 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
5381
5382 POSTING_READ(reg);
5383 udelay(200);
5384
5385 /* Switch from Rawclk to PCDclk */
5386 temp = I915_READ(reg);
5387 I915_WRITE(reg, temp | FDI_PCDCLK);
5388
5389 POSTING_READ(reg);
5390 udelay(200);
5391
5392 /* Enable CPU FDI TX PLL, always on for Ironlake */
5393 reg = FDI_TX_CTL(pipe);
5394 temp = I915_READ(reg);
5395 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5396 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5397
5398 POSTING_READ(reg);
5399 udelay(100);
5400 }
5401 }
5402
5403 static void ilk_fdi_pll_disable(struct intel_crtc *intel_crtc)
5404 {
5405 struct drm_device *dev = intel_crtc->base.dev;
5406 struct drm_i915_private *dev_priv = to_i915(dev);
5407 enum pipe pipe = intel_crtc->pipe;
5408 i915_reg_t reg;
5409 u32 temp;
5410
5411 /* Switch from PCDclk to Rawclk */
5412 reg = FDI_RX_CTL(pipe);
5413 temp = I915_READ(reg);
5414 I915_WRITE(reg, temp & ~FDI_PCDCLK);
5415
5416 /* Disable CPU FDI TX PLL */
5417 reg = FDI_TX_CTL(pipe);
5418 temp = I915_READ(reg);
5419 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
5420
5421 POSTING_READ(reg);
5422 udelay(100);
5423
5424 reg = FDI_RX_CTL(pipe);
5425 temp = I915_READ(reg);
5426 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
5427
5428 /* Wait for the clocks to turn off. */
5429 POSTING_READ(reg);
5430 udelay(100);
5431 }
5432
5433 static void ilk_fdi_disable(struct intel_crtc *crtc)
5434 {
5435 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5436 enum pipe pipe = crtc->pipe;
5437 i915_reg_t reg;
5438 u32 temp;
5439
5440 /* disable CPU FDI tx and PCH FDI rx */
5441 reg = FDI_TX_CTL(pipe);
5442 temp = I915_READ(reg);
5443 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
5444 POSTING_READ(reg);
5445
5446 reg = FDI_RX_CTL(pipe);
5447 temp = I915_READ(reg);
5448 temp &= ~(0x7 << 16);
5449 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5450 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
5451
5452 POSTING_READ(reg);
5453 udelay(100);
5454
5455 /* Ironlake workaround, disable clock pointer after downing FDI */
5456 if (HAS_PCH_IBX(dev_priv))
5457 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
5458
5459 /* still set train pattern 1 */
5460 reg = FDI_TX_CTL(pipe);
5461 temp = I915_READ(reg);
5462 temp &= ~FDI_LINK_TRAIN_NONE;
5463 temp |= FDI_LINK_TRAIN_PATTERN_1;
5464 I915_WRITE(reg, temp);
5465
5466 reg = FDI_RX_CTL(pipe);
5467 temp = I915_READ(reg);
5468 if (HAS_PCH_CPT(dev_priv)) {
5469 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5470 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5471 } else {
5472 temp &= ~FDI_LINK_TRAIN_NONE;
5473 temp |= FDI_LINK_TRAIN_PATTERN_1;
5474 }
5475 /* BPC in FDI rx is consistent with that in PIPECONF */
5476 temp &= ~(0x07 << 16);
5477 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5478 I915_WRITE(reg, temp);
5479
5480 POSTING_READ(reg);
5481 udelay(100);
5482 }
5483
5484 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5485 {
5486 struct drm_crtc *crtc;
5487 bool cleanup_done;
5488
5489 drm_for_each_crtc(crtc, &dev_priv->drm) {
5490 struct drm_crtc_commit *commit;
5491 spin_lock(&crtc->commit_lock);
5492 commit = list_first_entry_or_null(&crtc->commit_list,
5493 struct drm_crtc_commit, commit_entry);
5494 cleanup_done = commit ?
5495 try_wait_for_completion(&commit->cleanup_done) : true;
5496 spin_unlock(&crtc->commit_lock);
5497
5498 if (cleanup_done)
5499 continue;
5500
5501 drm_crtc_wait_one_vblank(crtc);
5502
5503 return true;
5504 }
5505
5506 return false;
5507 }
5508
5509 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5510 {
5511 u32 temp;
5512
5513 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
5514
5515 mutex_lock(&dev_priv->sb_lock);
5516
5517 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5518 temp |= SBI_SSCCTL_DISABLE;
5519 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5520
5521 mutex_unlock(&dev_priv->sb_lock);
5522 }
5523
5524 /* Program iCLKIP clock to the desired frequency */
5525 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5526 {
5527 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5528 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5529 int clock = crtc_state->hw.adjusted_mode.crtc_clock;
5530 u32 divsel, phaseinc, auxdiv, phasedir = 0;
5531 u32 temp;
5532
5533 lpt_disable_iclkip(dev_priv);
5534
5535 /* The iCLK virtual clock root frequency is in MHz,
5536 * but the adjusted_mode->crtc_clock in in KHz. To get the
5537 * divisors, it is necessary to divide one by another, so we
5538 * convert the virtual clock precision to KHz here for higher
5539 * precision.
5540 */
5541 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5542 u32 iclk_virtual_root_freq = 172800 * 1000;
5543 u32 iclk_pi_range = 64;
5544 u32 desired_divisor;
5545
5546 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5547 clock << auxdiv);
5548 divsel = (desired_divisor / iclk_pi_range) - 2;
5549 phaseinc = desired_divisor % iclk_pi_range;
5550
5551 /*
5552 * Near 20MHz is a corner case which is
5553 * out of range for the 7-bit divisor
5554 */
5555 if (divsel <= 0x7f)
5556 break;
5557 }
5558
5559 /* This should not happen with any sane values */
5560 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5561 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5562 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
5563 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5564
5565 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5566 clock,
5567 auxdiv,
5568 divsel,
5569 phasedir,
5570 phaseinc);
5571
5572 mutex_lock(&dev_priv->sb_lock);
5573
5574 /* Program SSCDIVINTPHASE6 */
5575 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5576 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5577 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5578 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5579 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5580 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5581 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5582 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5583
5584 /* Program SSCAUXDIV */
5585 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5586 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5587 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5588 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5589
5590 /* Enable modulator and associated divider */
5591 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5592 temp &= ~SBI_SSCCTL_DISABLE;
5593 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5594
5595 mutex_unlock(&dev_priv->sb_lock);
5596
5597 /* Wait for initialization time */
5598 udelay(24);
5599
5600 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5601 }
5602
5603 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5604 {
5605 u32 divsel, phaseinc, auxdiv;
5606 u32 iclk_virtual_root_freq = 172800 * 1000;
5607 u32 iclk_pi_range = 64;
5608 u32 desired_divisor;
5609 u32 temp;
5610
5611 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5612 return 0;
5613
5614 mutex_lock(&dev_priv->sb_lock);
5615
5616 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5617 if (temp & SBI_SSCCTL_DISABLE) {
5618 mutex_unlock(&dev_priv->sb_lock);
5619 return 0;
5620 }
5621
5622 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5623 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5624 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5625 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5626 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5627
5628 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5629 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5630 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5631
5632 mutex_unlock(&dev_priv->sb_lock);
5633
5634 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5635
5636 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5637 desired_divisor << auxdiv);
5638 }
5639
5640 static void ilk_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5641 enum pipe pch_transcoder)
5642 {
5643 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5644 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5645 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5646
5647 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
5648 I915_READ(HTOTAL(cpu_transcoder)));
5649 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
5650 I915_READ(HBLANK(cpu_transcoder)));
5651 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
5652 I915_READ(HSYNC(cpu_transcoder)));
5653
5654 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
5655 I915_READ(VTOTAL(cpu_transcoder)));
5656 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
5657 I915_READ(VBLANK(cpu_transcoder)));
5658 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
5659 I915_READ(VSYNC(cpu_transcoder)));
5660 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5661 I915_READ(VSYNCSHIFT(cpu_transcoder)));
5662 }
5663
5664 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5665 {
5666 u32 temp;
5667
5668 temp = I915_READ(SOUTH_CHICKEN1);
5669 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5670 return;
5671
5672 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5673 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5674
5675 temp &= ~FDI_BC_BIFURCATION_SELECT;
5676 if (enable)
5677 temp |= FDI_BC_BIFURCATION_SELECT;
5678
5679 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
5680 I915_WRITE(SOUTH_CHICKEN1, temp);
5681 POSTING_READ(SOUTH_CHICKEN1);
5682 }
5683
5684 static void ivb_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5685 {
5686 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5687 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5688
5689 switch (crtc->pipe) {
5690 case PIPE_A:
5691 break;
5692 case PIPE_B:
5693 if (crtc_state->fdi_lanes > 2)
5694 cpt_set_fdi_bc_bifurcation(dev_priv, false);
5695 else
5696 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5697
5698 break;
5699 case PIPE_C:
5700 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5701
5702 break;
5703 default:
5704 BUG();
5705 }
5706 }
5707
5708 /*
5709 * Finds the encoder associated with the given CRTC. This can only be
5710 * used when we know that the CRTC isn't feeding multiple encoders!
5711 */
5712 static struct intel_encoder *
5713 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5714 const struct intel_crtc_state *crtc_state)
5715 {
5716 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5717 const struct drm_connector_state *connector_state;
5718 const struct drm_connector *connector;
5719 struct intel_encoder *encoder = NULL;
5720 int num_encoders = 0;
5721 int i;
5722
5723 for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5724 if (connector_state->crtc != &crtc->base)
5725 continue;
5726
5727 encoder = to_intel_encoder(connector_state->best_encoder);
5728 num_encoders++;
5729 }
5730
5731 WARN(num_encoders != 1, "%d encoders for pipe %c\n",
5732 num_encoders, pipe_name(crtc->pipe));
5733
5734 return encoder;
5735 }
5736
5737 /*
5738 * Enable PCH resources required for PCH ports:
5739 * - PCH PLLs
5740 * - FDI training & RX/TX
5741 * - update transcoder timings
5742 * - DP transcoding bits
5743 * - transcoder
5744 */
5745 static void ilk_pch_enable(const struct intel_atomic_state *state,
5746 const struct intel_crtc_state *crtc_state)
5747 {
5748 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5749 struct drm_device *dev = crtc->base.dev;
5750 struct drm_i915_private *dev_priv = to_i915(dev);
5751 enum pipe pipe = crtc->pipe;
5752 u32 temp;
5753
5754 assert_pch_transcoder_disabled(dev_priv, pipe);
5755
5756 if (IS_IVYBRIDGE(dev_priv))
5757 ivb_update_fdi_bc_bifurcation(crtc_state);
5758
5759 /* Write the TU size bits before fdi link training, so that error
5760 * detection works. */
5761 I915_WRITE(FDI_RX_TUSIZE1(pipe),
5762 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5763
5764 /* For PCH output, training FDI link */
5765 dev_priv->display.fdi_link_train(crtc, crtc_state);
5766
5767 /* We need to program the right clock selection before writing the pixel
5768 * mutliplier into the DPLL. */
5769 if (HAS_PCH_CPT(dev_priv)) {
5770 u32 sel;
5771
5772 temp = I915_READ(PCH_DPLL_SEL);
5773 temp |= TRANS_DPLL_ENABLE(pipe);
5774 sel = TRANS_DPLLB_SEL(pipe);
5775 if (crtc_state->shared_dpll ==
5776 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5777 temp |= sel;
5778 else
5779 temp &= ~sel;
5780 I915_WRITE(PCH_DPLL_SEL, temp);
5781 }
5782
5783 /* XXX: pch pll's can be enabled any time before we enable the PCH
5784 * transcoder, and we actually should do this to not upset any PCH
5785 * transcoder that already use the clock when we share it.
5786 *
5787 * Note that enable_shared_dpll tries to do the right thing, but
5788 * get_shared_dpll unconditionally resets the pll - we need that to have
5789 * the right LVDS enable sequence. */
5790 intel_enable_shared_dpll(crtc_state);
5791
5792 /* set transcoder timing, panel must allow it */
5793 assert_panel_unlocked(dev_priv, pipe);
5794 ilk_pch_transcoder_set_timings(crtc_state, pipe);
5795
5796 intel_fdi_normal_train(crtc);
5797
5798 /* For PCH DP, enable TRANS_DP_CTL */
5799 if (HAS_PCH_CPT(dev_priv) &&
5800 intel_crtc_has_dp_encoder(crtc_state)) {
5801 const struct drm_display_mode *adjusted_mode =
5802 &crtc_state->hw.adjusted_mode;
5803 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5804 i915_reg_t reg = TRANS_DP_CTL(pipe);
5805 enum port port;
5806
5807 temp = I915_READ(reg);
5808 temp &= ~(TRANS_DP_PORT_SEL_MASK |
5809 TRANS_DP_SYNC_MASK |
5810 TRANS_DP_BPC_MASK);
5811 temp |= TRANS_DP_OUTPUT_ENABLE;
5812 temp |= bpc << 9; /* same format but at 11:9 */
5813
5814 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5815 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5816 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5817 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5818
5819 port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5820 WARN_ON(port < PORT_B || port > PORT_D);
5821 temp |= TRANS_DP_PORT_SEL(port);
5822
5823 I915_WRITE(reg, temp);
5824 }
5825
5826 ilk_enable_pch_transcoder(crtc_state);
5827 }
5828
5829 static void lpt_pch_enable(const struct intel_atomic_state *state,
5830 const struct intel_crtc_state *crtc_state)
5831 {
5832 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
5833 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5834 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5835
5836 assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5837
5838 lpt_program_iclkip(crtc_state);
5839
5840 /* Set transcoder timing. */
5841 ilk_pch_transcoder_set_timings(crtc_state, PIPE_A);
5842
5843 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5844 }
5845
5846 static void cpt_verify_modeset(struct drm_i915_private *dev_priv,
5847 enum pipe pipe)
5848 {
5849 i915_reg_t dslreg = PIPEDSL(pipe);
5850 u32 temp;
5851
5852 temp = I915_READ(dslreg);
5853 udelay(500);
5854 if (wait_for(I915_READ(dslreg) != temp, 5)) {
5855 if (wait_for(I915_READ(dslreg) != temp, 5))
5856 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
5857 }
5858 }
5859
5860 /*
5861 * The hardware phase 0.0 refers to the center of the pixel.
5862 * We want to start from the top/left edge which is phase
5863 * -0.5. That matches how the hardware calculates the scaling
5864 * factors (from top-left of the first pixel to bottom-right
5865 * of the last pixel, as opposed to the pixel centers).
5866 *
5867 * For 4:2:0 subsampled chroma planes we obviously have to
5868 * adjust that so that the chroma sample position lands in
5869 * the right spot.
5870 *
5871 * Note that for packed YCbCr 4:2:2 formats there is no way to
5872 * control chroma siting. The hardware simply replicates the
5873 * chroma samples for both of the luma samples, and thus we don't
5874 * actually get the expected MPEG2 chroma siting convention :(
5875 * The same behaviour is observed on pre-SKL platforms as well.
5876 *
5877 * Theory behind the formula (note that we ignore sub-pixel
5878 * source coordinates):
5879 * s = source sample position
5880 * d = destination sample position
5881 *
5882 * Downscaling 4:1:
5883 * -0.5
5884 * | 0.0
5885 * | | 1.5 (initial phase)
5886 * | | |
5887 * v v v
5888 * | s | s | s | s |
5889 * | d |
5890 *
5891 * Upscaling 1:4:
5892 * -0.5
5893 * | -0.375 (initial phase)
5894 * | | 0.0
5895 * | | |
5896 * v v v
5897 * | s |
5898 * | d | d | d | d |
5899 */
5900 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
5901 {
5902 int phase = -0x8000;
5903 u16 trip = 0;
5904
5905 if (chroma_cosited)
5906 phase += (sub - 1) * 0x8000 / sub;
5907
5908 phase += scale / (2 * sub);
5909
5910 /*
5911 * Hardware initial phase limited to [-0.5:1.5].
5912 * Since the max hardware scale factor is 3.0, we
5913 * should never actually excdeed 1.0 here.
5914 */
5915 WARN_ON(phase < -0x8000 || phase > 0x18000);
5916
5917 if (phase < 0)
5918 phase = 0x10000 + phase;
5919 else
5920 trip = PS_PHASE_TRIP;
5921
5922 return ((phase >> 2) & PS_PHASE_MASK) | trip;
5923 }
5924
5925 #define SKL_MIN_SRC_W 8
5926 #define SKL_MAX_SRC_W 4096
5927 #define SKL_MIN_SRC_H 8
5928 #define SKL_MAX_SRC_H 4096
5929 #define SKL_MIN_DST_W 8
5930 #define SKL_MAX_DST_W 4096
5931 #define SKL_MIN_DST_H 8
5932 #define SKL_MAX_DST_H 4096
5933 #define ICL_MAX_SRC_W 5120
5934 #define ICL_MAX_SRC_H 4096
5935 #define ICL_MAX_DST_W 5120
5936 #define ICL_MAX_DST_H 4096
5937 #define SKL_MIN_YUV_420_SRC_W 16
5938 #define SKL_MIN_YUV_420_SRC_H 16
5939
5940 static int
5941 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
5942 unsigned int scaler_user, int *scaler_id,
5943 int src_w, int src_h, int dst_w, int dst_h,
5944 const struct drm_format_info *format,
5945 u64 modifier, bool need_scaler)
5946 {
5947 struct intel_crtc_scaler_state *scaler_state =
5948 &crtc_state->scaler_state;
5949 struct intel_crtc *intel_crtc =
5950 to_intel_crtc(crtc_state->uapi.crtc);
5951 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5952 const struct drm_display_mode *adjusted_mode =
5953 &crtc_state->hw.adjusted_mode;
5954
5955 /*
5956 * Src coordinates are already rotated by 270 degrees for
5957 * the 90/270 degree plane rotation cases (to match the
5958 * GTT mapping), hence no need to account for rotation here.
5959 */
5960 if (src_w != dst_w || src_h != dst_h)
5961 need_scaler = true;
5962
5963 /*
5964 * Scaling/fitting not supported in IF-ID mode in GEN9+
5965 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
5966 * Once NV12 is enabled, handle it here while allocating scaler
5967 * for NV12.
5968 */
5969 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->hw.enable &&
5970 need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5971 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
5972 return -EINVAL;
5973 }
5974
5975 /*
5976 * if plane is being disabled or scaler is no more required or force detach
5977 * - free scaler binded to this plane/crtc
5978 * - in order to do this, update crtc->scaler_usage
5979 *
5980 * Here scaler state in crtc_state is set free so that
5981 * scaler can be assigned to other user. Actual register
5982 * update to free the scaler is done in plane/panel-fit programming.
5983 * For this purpose crtc/plane_state->scaler_id isn't reset here.
5984 */
5985 if (force_detach || !need_scaler) {
5986 if (*scaler_id >= 0) {
5987 scaler_state->scaler_users &= ~(1 << scaler_user);
5988 scaler_state->scalers[*scaler_id].in_use = 0;
5989
5990 DRM_DEBUG_KMS("scaler_user index %u.%u: "
5991 "Staged freeing scaler id %d scaler_users = 0x%x\n",
5992 intel_crtc->pipe, scaler_user, *scaler_id,
5993 scaler_state->scaler_users);
5994 *scaler_id = -1;
5995 }
5996 return 0;
5997 }
5998
5999 if (format && intel_format_info_is_yuv_semiplanar(format, modifier) &&
6000 (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
6001 DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n");
6002 return -EINVAL;
6003 }
6004
6005 /* range checks */
6006 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
6007 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
6008 (INTEL_GEN(dev_priv) >= 11 &&
6009 (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
6010 dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
6011 (INTEL_GEN(dev_priv) < 11 &&
6012 (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
6013 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) {
6014 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
6015 "size is out of scaler range\n",
6016 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
6017 return -EINVAL;
6018 }
6019
6020 /* mark this plane as a scaler user in crtc_state */
6021 scaler_state->scaler_users |= (1 << scaler_user);
6022 DRM_DEBUG_KMS("scaler_user index %u.%u: "
6023 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
6024 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
6025 scaler_state->scaler_users);
6026
6027 return 0;
6028 }
6029
6030 /**
6031 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
6032 *
6033 * @state: crtc's scaler state
6034 *
6035 * Return
6036 * 0 - scaler_usage updated successfully
6037 * error - requested scaling cannot be supported or other error condition
6038 */
6039 int skl_update_scaler_crtc(struct intel_crtc_state *state)
6040 {
6041 const struct drm_display_mode *adjusted_mode = &state->hw.adjusted_mode;
6042 bool need_scaler = false;
6043
6044 if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
6045 need_scaler = true;
6046
6047 return skl_update_scaler(state, !state->hw.active, SKL_CRTC_INDEX,
6048 &state->scaler_state.scaler_id,
6049 state->pipe_src_w, state->pipe_src_h,
6050 adjusted_mode->crtc_hdisplay,
6051 adjusted_mode->crtc_vdisplay, NULL, 0,
6052 need_scaler);
6053 }
6054
6055 /**
6056 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
6057 * @crtc_state: crtc's scaler state
6058 * @plane_state: atomic plane state to update
6059 *
6060 * Return
6061 * 0 - scaler_usage updated successfully
6062 * error - requested scaling cannot be supported or other error condition
6063 */
6064 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
6065 struct intel_plane_state *plane_state)
6066 {
6067 struct intel_plane *intel_plane =
6068 to_intel_plane(plane_state->uapi.plane);
6069 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
6070 struct drm_framebuffer *fb = plane_state->hw.fb;
6071 int ret;
6072 bool force_detach = !fb || !plane_state->uapi.visible;
6073 bool need_scaler = false;
6074
6075 /* Pre-gen11 and SDR planes always need a scaler for planar formats. */
6076 if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
6077 fb && intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
6078 need_scaler = true;
6079
6080 ret = skl_update_scaler(crtc_state, force_detach,
6081 drm_plane_index(&intel_plane->base),
6082 &plane_state->scaler_id,
6083 drm_rect_width(&plane_state->uapi.src) >> 16,
6084 drm_rect_height(&plane_state->uapi.src) >> 16,
6085 drm_rect_width(&plane_state->uapi.dst),
6086 drm_rect_height(&plane_state->uapi.dst),
6087 fb ? fb->format : NULL,
6088 fb ? fb->modifier : 0,
6089 need_scaler);
6090
6091 if (ret || plane_state->scaler_id < 0)
6092 return ret;
6093
6094 /* check colorkey */
6095 if (plane_state->ckey.flags) {
6096 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
6097 intel_plane->base.base.id,
6098 intel_plane->base.name);
6099 return -EINVAL;
6100 }
6101
6102 /* Check src format */
6103 switch (fb->format->format) {
6104 case DRM_FORMAT_RGB565:
6105 case DRM_FORMAT_XBGR8888:
6106 case DRM_FORMAT_XRGB8888:
6107 case DRM_FORMAT_ABGR8888:
6108 case DRM_FORMAT_ARGB8888:
6109 case DRM_FORMAT_XRGB2101010:
6110 case DRM_FORMAT_XBGR2101010:
6111 case DRM_FORMAT_ARGB2101010:
6112 case DRM_FORMAT_ABGR2101010:
6113 case DRM_FORMAT_YUYV:
6114 case DRM_FORMAT_YVYU:
6115 case DRM_FORMAT_UYVY:
6116 case DRM_FORMAT_VYUY:
6117 case DRM_FORMAT_NV12:
6118 case DRM_FORMAT_P010:
6119 case DRM_FORMAT_P012:
6120 case DRM_FORMAT_P016:
6121 case DRM_FORMAT_Y210:
6122 case DRM_FORMAT_Y212:
6123 case DRM_FORMAT_Y216:
6124 case DRM_FORMAT_XVYU2101010:
6125 case DRM_FORMAT_XVYU12_16161616:
6126 case DRM_FORMAT_XVYU16161616:
6127 break;
6128 case DRM_FORMAT_XBGR16161616F:
6129 case DRM_FORMAT_ABGR16161616F:
6130 case DRM_FORMAT_XRGB16161616F:
6131 case DRM_FORMAT_ARGB16161616F:
6132 if (INTEL_GEN(dev_priv) >= 11)
6133 break;
6134 /* fall through */
6135 default:
6136 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
6137 intel_plane->base.base.id, intel_plane->base.name,
6138 fb->base.id, fb->format->format);
6139 return -EINVAL;
6140 }
6141
6142 return 0;
6143 }
6144
6145 void skl_scaler_disable(const struct intel_crtc_state *old_crtc_state)
6146 {
6147 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
6148 int i;
6149
6150 for (i = 0; i < crtc->num_scalers; i++)
6151 skl_detach_scaler(crtc, i);
6152 }
6153
6154 static void skl_pfit_enable(const struct intel_crtc_state *crtc_state)
6155 {
6156 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6157 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6158 enum pipe pipe = crtc->pipe;
6159 const struct intel_crtc_scaler_state *scaler_state =
6160 &crtc_state->scaler_state;
6161
6162 if (crtc_state->pch_pfit.enabled) {
6163 u16 uv_rgb_hphase, uv_rgb_vphase;
6164 int pfit_w, pfit_h, hscale, vscale;
6165 int id;
6166
6167 if (WARN_ON(crtc_state->scaler_state.scaler_id < 0))
6168 return;
6169
6170 pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF;
6171 pfit_h = crtc_state->pch_pfit.size & 0xFFFF;
6172
6173 hscale = (crtc_state->pipe_src_w << 16) / pfit_w;
6174 vscale = (crtc_state->pipe_src_h << 16) / pfit_h;
6175
6176 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
6177 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
6178
6179 id = scaler_state->scaler_id;
6180 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
6181 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
6182 I915_WRITE_FW(SKL_PS_VPHASE(pipe, id),
6183 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
6184 I915_WRITE_FW(SKL_PS_HPHASE(pipe, id),
6185 PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
6186 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos);
6187 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size);
6188 }
6189 }
6190
6191 static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state)
6192 {
6193 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6194 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6195 enum pipe pipe = crtc->pipe;
6196
6197 if (crtc_state->pch_pfit.enabled) {
6198 /* Force use of hard-coded filter coefficients
6199 * as some pre-programmed values are broken,
6200 * e.g. x201.
6201 */
6202 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
6203 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
6204 PF_PIPE_SEL_IVB(pipe));
6205 else
6206 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6207 I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos);
6208 I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size);
6209 }
6210 }
6211
6212 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
6213 {
6214 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6215 struct drm_device *dev = crtc->base.dev;
6216 struct drm_i915_private *dev_priv = to_i915(dev);
6217
6218 if (!crtc_state->ips_enabled)
6219 return;
6220
6221 /*
6222 * We can only enable IPS after we enable a plane and wait for a vblank
6223 * This function is called from post_plane_update, which is run after
6224 * a vblank wait.
6225 */
6226 WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
6227
6228 if (IS_BROADWELL(dev_priv)) {
6229 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
6230 IPS_ENABLE | IPS_PCODE_CONTROL));
6231 /* Quoting Art Runyan: "its not safe to expect any particular
6232 * value in IPS_CTL bit 31 after enabling IPS through the
6233 * mailbox." Moreover, the mailbox may return a bogus state,
6234 * so we need to just enable it and continue on.
6235 */
6236 } else {
6237 I915_WRITE(IPS_CTL, IPS_ENABLE);
6238 /* The bit only becomes 1 in the next vblank, so this wait here
6239 * is essentially intel_wait_for_vblank. If we don't have this
6240 * and don't wait for vblanks until the end of crtc_enable, then
6241 * the HW state readout code will complain that the expected
6242 * IPS_CTL value is not the one we read. */
6243 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
6244 DRM_ERROR("Timed out waiting for IPS enable\n");
6245 }
6246 }
6247
6248 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
6249 {
6250 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6251 struct drm_device *dev = crtc->base.dev;
6252 struct drm_i915_private *dev_priv = to_i915(dev);
6253
6254 if (!crtc_state->ips_enabled)
6255 return;
6256
6257 if (IS_BROADWELL(dev_priv)) {
6258 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
6259 /*
6260 * Wait for PCODE to finish disabling IPS. The BSpec specified
6261 * 42ms timeout value leads to occasional timeouts so use 100ms
6262 * instead.
6263 */
6264 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
6265 DRM_ERROR("Timed out waiting for IPS disable\n");
6266 } else {
6267 I915_WRITE(IPS_CTL, 0);
6268 POSTING_READ(IPS_CTL);
6269 }
6270
6271 /* We need to wait for a vblank before we can disable the plane. */
6272 intel_wait_for_vblank(dev_priv, crtc->pipe);
6273 }
6274
6275 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
6276 {
6277 if (intel_crtc->overlay)
6278 (void) intel_overlay_switch_off(intel_crtc->overlay);
6279
6280 /* Let userspace switch the overlay on again. In most cases userspace
6281 * has to recompute where to put it anyway.
6282 */
6283 }
6284
6285 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
6286 const struct intel_crtc_state *new_crtc_state)
6287 {
6288 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6289 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6290
6291 if (!old_crtc_state->ips_enabled)
6292 return false;
6293
6294 if (needs_modeset(new_crtc_state))
6295 return true;
6296
6297 /*
6298 * Workaround : Do not read or write the pipe palette/gamma data while
6299 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6300 *
6301 * Disable IPS before we program the LUT.
6302 */
6303 if (IS_HASWELL(dev_priv) &&
6304 (new_crtc_state->uapi.color_mgmt_changed ||
6305 new_crtc_state->update_pipe) &&
6306 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6307 return true;
6308
6309 return !new_crtc_state->ips_enabled;
6310 }
6311
6312 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
6313 const struct intel_crtc_state *new_crtc_state)
6314 {
6315 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
6316 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6317
6318 if (!new_crtc_state->ips_enabled)
6319 return false;
6320
6321 if (needs_modeset(new_crtc_state))
6322 return true;
6323
6324 /*
6325 * Workaround : Do not read or write the pipe palette/gamma data while
6326 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6327 *
6328 * Re-enable IPS after the LUT has been programmed.
6329 */
6330 if (IS_HASWELL(dev_priv) &&
6331 (new_crtc_state->uapi.color_mgmt_changed ||
6332 new_crtc_state->update_pipe) &&
6333 new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
6334 return true;
6335
6336 /*
6337 * We can't read out IPS on broadwell, assume the worst and
6338 * forcibly enable IPS on the first fastset.
6339 */
6340 if (new_crtc_state->update_pipe &&
6341 old_crtc_state->hw.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED)
6342 return true;
6343
6344 return !old_crtc_state->ips_enabled;
6345 }
6346
6347 static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state)
6348 {
6349 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6350
6351 if (!crtc_state->nv12_planes)
6352 return false;
6353
6354 /* WA Display #0827: Gen9:all */
6355 if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
6356 return true;
6357
6358 return false;
6359 }
6360
6361 static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state)
6362 {
6363 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
6364
6365 /* Wa_2006604312:icl */
6366 if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv))
6367 return true;
6368
6369 return false;
6370 }
6371
6372 static bool planes_enabling(const struct intel_crtc_state *old_crtc_state,
6373 const struct intel_crtc_state *new_crtc_state)
6374 {
6375 return (!old_crtc_state->active_planes || needs_modeset(new_crtc_state)) &&
6376 new_crtc_state->active_planes;
6377 }
6378
6379 static bool planes_disabling(const struct intel_crtc_state *old_crtc_state,
6380 const struct intel_crtc_state *new_crtc_state)
6381 {
6382 return old_crtc_state->active_planes &&
6383 (!new_crtc_state->active_planes || needs_modeset(new_crtc_state));
6384 }
6385
6386 static void intel_post_plane_update(struct intel_atomic_state *state,
6387 struct intel_crtc *crtc)
6388 {
6389 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6390 struct intel_plane *primary = to_intel_plane(crtc->base.primary);
6391 const struct intel_crtc_state *old_crtc_state =
6392 intel_atomic_get_old_crtc_state(state, crtc);
6393 const struct intel_crtc_state *new_crtc_state =
6394 intel_atomic_get_new_crtc_state(state, crtc);
6395 const struct intel_plane_state *new_primary_state =
6396 intel_atomic_get_new_plane_state(state, primary);
6397 enum pipe pipe = crtc->pipe;
6398
6399 intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits);
6400
6401 if (new_crtc_state->update_wm_post && new_crtc_state->hw.active)
6402 intel_update_watermarks(crtc);
6403
6404 if (hsw_post_update_enable_ips(old_crtc_state, new_crtc_state))
6405 hsw_enable_ips(new_crtc_state);
6406
6407 if (new_primary_state)
6408 intel_fbc_post_update(crtc);
6409
6410 if (needs_nv12_wa(old_crtc_state) &&
6411 !needs_nv12_wa(new_crtc_state))
6412 skl_wa_827(dev_priv, pipe, false);
6413
6414 if (needs_scalerclk_wa(old_crtc_state) &&
6415 !needs_scalerclk_wa(new_crtc_state))
6416 icl_wa_scalerclkgating(dev_priv, pipe, false);
6417 }
6418
6419 static void intel_pre_plane_update(struct intel_atomic_state *state,
6420 struct intel_crtc *crtc)
6421 {
6422 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6423 struct intel_plane *primary = to_intel_plane(crtc->base.primary);
6424 const struct intel_crtc_state *old_crtc_state =
6425 intel_atomic_get_old_crtc_state(state, crtc);
6426 const struct intel_crtc_state *new_crtc_state =
6427 intel_atomic_get_new_crtc_state(state, crtc);
6428 const struct intel_plane_state *new_primary_state =
6429 intel_atomic_get_new_plane_state(state, primary);
6430 enum pipe pipe = crtc->pipe;
6431
6432 if (hsw_pre_update_disable_ips(old_crtc_state, new_crtc_state))
6433 hsw_disable_ips(old_crtc_state);
6434
6435 if (new_primary_state &&
6436 intel_fbc_pre_update(crtc, new_crtc_state, new_primary_state))
6437 intel_wait_for_vblank(dev_priv, pipe);
6438
6439 /* Display WA 827 */
6440 if (!needs_nv12_wa(old_crtc_state) &&
6441 needs_nv12_wa(new_crtc_state))
6442 skl_wa_827(dev_priv, pipe, true);
6443
6444 /* Wa_2006604312:icl */
6445 if (!needs_scalerclk_wa(old_crtc_state) &&
6446 needs_scalerclk_wa(new_crtc_state))
6447 icl_wa_scalerclkgating(dev_priv, pipe, true);
6448
6449 /*
6450 * Vblank time updates from the shadow to live plane control register
6451 * are blocked if the memory self-refresh mode is active at that
6452 * moment. So to make sure the plane gets truly disabled, disable
6453 * first the self-refresh mode. The self-refresh enable bit in turn
6454 * will be checked/applied by the HW only at the next frame start
6455 * event which is after the vblank start event, so we need to have a
6456 * wait-for-vblank between disabling the plane and the pipe.
6457 */
6458 if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active &&
6459 new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6460 intel_wait_for_vblank(dev_priv, pipe);
6461
6462 /*
6463 * IVB workaround: must disable low power watermarks for at least
6464 * one frame before enabling scaling. LP watermarks can be re-enabled
6465 * when scaling is disabled.
6466 *
6467 * WaCxSRDisabledForSpriteScaling:ivb
6468 */
6469 if (old_crtc_state->hw.active &&
6470 new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv))
6471 intel_wait_for_vblank(dev_priv, pipe);
6472
6473 /*
6474 * If we're doing a modeset we don't need to do any
6475 * pre-vblank watermark programming here.
6476 */
6477 if (!needs_modeset(new_crtc_state)) {
6478 /*
6479 * For platforms that support atomic watermarks, program the
6480 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
6481 * will be the intermediate values that are safe for both pre- and
6482 * post- vblank; when vblank happens, the 'active' values will be set
6483 * to the final 'target' values and we'll do this again to get the
6484 * optimal watermarks. For gen9+ platforms, the values we program here
6485 * will be the final target values which will get automatically latched
6486 * at vblank time; no further programming will be necessary.
6487 *
6488 * If a platform hasn't been transitioned to atomic watermarks yet,
6489 * we'll continue to update watermarks the old way, if flags tell
6490 * us to.
6491 */
6492 if (dev_priv->display.initial_watermarks)
6493 dev_priv->display.initial_watermarks(state, crtc);
6494 else if (new_crtc_state->update_wm_pre)
6495 intel_update_watermarks(crtc);
6496 }
6497
6498 /*
6499 * Gen2 reports pipe underruns whenever all planes are disabled.
6500 * So disable underrun reporting before all the planes get disabled.
6501 *
6502 * We do this after .initial_watermarks() so that we have a
6503 * chance of catching underruns with the intermediate watermarks
6504 * vs. the old plane configuration.
6505 */
6506 if (IS_GEN(dev_priv, 2) && planes_disabling(old_crtc_state, new_crtc_state))
6507 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6508 }
6509
6510 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6511 struct intel_crtc *crtc)
6512 {
6513 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6514 const struct intel_crtc_state *new_crtc_state =
6515 intel_atomic_get_new_crtc_state(state, crtc);
6516 unsigned int update_mask = new_crtc_state->update_planes;
6517 const struct intel_plane_state *old_plane_state;
6518 struct intel_plane *plane;
6519 unsigned fb_bits = 0;
6520 int i;
6521
6522 intel_crtc_dpms_overlay_disable(crtc);
6523
6524 for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6525 if (crtc->pipe != plane->pipe ||
6526 !(update_mask & BIT(plane->id)))
6527 continue;
6528
6529 intel_disable_plane(plane, new_crtc_state);
6530
6531 if (old_plane_state->uapi.visible)
6532 fb_bits |= plane->frontbuffer_bit;
6533 }
6534
6535 intel_frontbuffer_flip(dev_priv, fb_bits);
6536 }
6537
6538 /*
6539 * intel_connector_primary_encoder - get the primary encoder for a connector
6540 * @connector: connector for which to return the encoder
6541 *
6542 * Returns the primary encoder for a connector. There is a 1:1 mapping from
6543 * all connectors to their encoder, except for DP-MST connectors which have
6544 * both a virtual and a primary encoder. These DP-MST primary encoders can be
6545 * pointed to by as many DP-MST connectors as there are pipes.
6546 */
6547 static struct intel_encoder *
6548 intel_connector_primary_encoder(struct intel_connector *connector)
6549 {
6550 struct intel_encoder *encoder;
6551
6552 if (connector->mst_port)
6553 return &dp_to_dig_port(connector->mst_port)->base;
6554
6555 encoder = intel_attached_encoder(connector);
6556 WARN_ON(!encoder);
6557
6558 return encoder;
6559 }
6560
6561 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6562 {
6563 struct drm_connector_state *new_conn_state;
6564 struct drm_connector *connector;
6565 int i;
6566
6567 for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6568 i) {
6569 struct intel_connector *intel_connector;
6570 struct intel_encoder *encoder;
6571 struct intel_crtc *crtc;
6572
6573 if (!intel_connector_needs_modeset(state, connector))
6574 continue;
6575
6576 intel_connector = to_intel_connector(connector);
6577 encoder = intel_connector_primary_encoder(intel_connector);
6578 if (!encoder->update_prepare)
6579 continue;
6580
6581 crtc = new_conn_state->crtc ?
6582 to_intel_crtc(new_conn_state->crtc) : NULL;
6583 encoder->update_prepare(state, encoder, crtc);
6584 }
6585 }
6586
6587 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6588 {
6589 struct drm_connector_state *new_conn_state;
6590 struct drm_connector *connector;
6591 int i;
6592
6593 for_each_new_connector_in_state(&state->base, connector, new_conn_state,
6594 i) {
6595 struct intel_connector *intel_connector;
6596 struct intel_encoder *encoder;
6597 struct intel_crtc *crtc;
6598
6599 if (!intel_connector_needs_modeset(state, connector))
6600 continue;
6601
6602 intel_connector = to_intel_connector(connector);
6603 encoder = intel_connector_primary_encoder(intel_connector);
6604 if (!encoder->update_complete)
6605 continue;
6606
6607 crtc = new_conn_state->crtc ?
6608 to_intel_crtc(new_conn_state->crtc) : NULL;
6609 encoder->update_complete(state, encoder, crtc);
6610 }
6611 }
6612
6613 static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state,
6614 struct intel_crtc *crtc)
6615 {
6616 const struct intel_crtc_state *crtc_state =
6617 intel_atomic_get_new_crtc_state(state, crtc);
6618 const struct drm_connector_state *conn_state;
6619 struct drm_connector *conn;
6620 int i;
6621
6622 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6623 struct intel_encoder *encoder =
6624 to_intel_encoder(conn_state->best_encoder);
6625
6626 if (conn_state->crtc != &crtc->base)
6627 continue;
6628
6629 if (encoder->pre_pll_enable)
6630 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
6631 }
6632 }
6633
6634 static void intel_encoders_pre_enable(struct intel_atomic_state *state,
6635 struct intel_crtc *crtc)
6636 {
6637 const struct intel_crtc_state *crtc_state =
6638 intel_atomic_get_new_crtc_state(state, crtc);
6639 const struct drm_connector_state *conn_state;
6640 struct drm_connector *conn;
6641 int i;
6642
6643 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6644 struct intel_encoder *encoder =
6645 to_intel_encoder(conn_state->best_encoder);
6646
6647 if (conn_state->crtc != &crtc->base)
6648 continue;
6649
6650 if (encoder->pre_enable)
6651 encoder->pre_enable(encoder, crtc_state, conn_state);
6652 }
6653 }
6654
6655 static void intel_encoders_enable(struct intel_atomic_state *state,
6656 struct intel_crtc *crtc)
6657 {
6658 const struct intel_crtc_state *crtc_state =
6659 intel_atomic_get_new_crtc_state(state, crtc);
6660 const struct drm_connector_state *conn_state;
6661 struct drm_connector *conn;
6662 int i;
6663
6664 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6665 struct intel_encoder *encoder =
6666 to_intel_encoder(conn_state->best_encoder);
6667
6668 if (conn_state->crtc != &crtc->base)
6669 continue;
6670
6671 if (encoder->enable)
6672 encoder->enable(encoder, crtc_state, conn_state);
6673 intel_opregion_notify_encoder(encoder, true);
6674 }
6675 }
6676
6677 static void intel_encoders_disable(struct intel_atomic_state *state,
6678 struct intel_crtc *crtc)
6679 {
6680 const struct intel_crtc_state *old_crtc_state =
6681 intel_atomic_get_old_crtc_state(state, crtc);
6682 const struct drm_connector_state *old_conn_state;
6683 struct drm_connector *conn;
6684 int i;
6685
6686 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6687 struct intel_encoder *encoder =
6688 to_intel_encoder(old_conn_state->best_encoder);
6689
6690 if (old_conn_state->crtc != &crtc->base)
6691 continue;
6692
6693 intel_opregion_notify_encoder(encoder, false);
6694 if (encoder->disable)
6695 encoder->disable(encoder, old_crtc_state, old_conn_state);
6696 }
6697 }
6698
6699 static void intel_encoders_post_disable(struct intel_atomic_state *state,
6700 struct intel_crtc *crtc)
6701 {
6702 const struct intel_crtc_state *old_crtc_state =
6703 intel_atomic_get_old_crtc_state(state, crtc);
6704 const struct drm_connector_state *old_conn_state;
6705 struct drm_connector *conn;
6706 int i;
6707
6708 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6709 struct intel_encoder *encoder =
6710 to_intel_encoder(old_conn_state->best_encoder);
6711
6712 if (old_conn_state->crtc != &crtc->base)
6713 continue;
6714
6715 if (encoder->post_disable)
6716 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
6717 }
6718 }
6719
6720 static void intel_encoders_post_pll_disable(struct intel_atomic_state *state,
6721 struct intel_crtc *crtc)
6722 {
6723 const struct intel_crtc_state *old_crtc_state =
6724 intel_atomic_get_old_crtc_state(state, crtc);
6725 const struct drm_connector_state *old_conn_state;
6726 struct drm_connector *conn;
6727 int i;
6728
6729 for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6730 struct intel_encoder *encoder =
6731 to_intel_encoder(old_conn_state->best_encoder);
6732
6733 if (old_conn_state->crtc != &crtc->base)
6734 continue;
6735
6736 if (encoder->post_pll_disable)
6737 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
6738 }
6739 }
6740
6741 static void intel_encoders_update_pipe(struct intel_atomic_state *state,
6742 struct intel_crtc *crtc)
6743 {
6744 const struct intel_crtc_state *crtc_state =
6745 intel_atomic_get_new_crtc_state(state, crtc);
6746 const struct drm_connector_state *conn_state;
6747 struct drm_connector *conn;
6748 int i;
6749
6750 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6751 struct intel_encoder *encoder =
6752 to_intel_encoder(conn_state->best_encoder);
6753
6754 if (conn_state->crtc != &crtc->base)
6755 continue;
6756
6757 if (encoder->update_pipe)
6758 encoder->update_pipe(encoder, crtc_state, conn_state);
6759 }
6760 }
6761
6762 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6763 {
6764 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6765 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6766
6767 plane->disable_plane(plane, crtc_state);
6768 }
6769
6770 static void ilk_crtc_enable(struct intel_atomic_state *state,
6771 struct intel_crtc *crtc)
6772 {
6773 const struct intel_crtc_state *new_crtc_state =
6774 intel_atomic_get_new_crtc_state(state, crtc);
6775 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6776 enum pipe pipe = crtc->pipe;
6777
6778 if (WARN_ON(crtc->active))
6779 return;
6780
6781 /*
6782 * Sometimes spurious CPU pipe underruns happen during FDI
6783 * training, at least with VGA+HDMI cloning. Suppress them.
6784 *
6785 * On ILK we get an occasional spurious CPU pipe underruns
6786 * between eDP port A enable and vdd enable. Also PCH port
6787 * enable seems to result in the occasional CPU pipe underrun.
6788 *
6789 * Spurious PCH underruns also occur during PCH enabling.
6790 */
6791 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6792 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6793
6794 if (new_crtc_state->has_pch_encoder)
6795 intel_prepare_shared_dpll(new_crtc_state);
6796
6797 if (intel_crtc_has_dp_encoder(new_crtc_state))
6798 intel_dp_set_m_n(new_crtc_state, M1_N1);
6799
6800 intel_set_pipe_timings(new_crtc_state);
6801 intel_set_pipe_src_size(new_crtc_state);
6802
6803 if (new_crtc_state->has_pch_encoder)
6804 intel_cpu_transcoder_set_m_n(new_crtc_state,
6805 &new_crtc_state->fdi_m_n, NULL);
6806
6807 ilk_set_pipeconf(new_crtc_state);
6808
6809 crtc->active = true;
6810
6811 intel_encoders_pre_enable(state, crtc);
6812
6813 if (new_crtc_state->has_pch_encoder) {
6814 /* Note: FDI PLL enabling _must_ be done before we enable the
6815 * cpu pipes, hence this is separate from all the other fdi/pch
6816 * enabling. */
6817 ilk_fdi_pll_enable(new_crtc_state);
6818 } else {
6819 assert_fdi_tx_disabled(dev_priv, pipe);
6820 assert_fdi_rx_disabled(dev_priv, pipe);
6821 }
6822
6823 ilk_pfit_enable(new_crtc_state);
6824
6825 /*
6826 * On ILK+ LUT must be loaded before the pipe is running but with
6827 * clocks enabled
6828 */
6829 intel_color_load_luts(new_crtc_state);
6830 intel_color_commit(new_crtc_state);
6831 /* update DSPCNTR to configure gamma for pipe bottom color */
6832 intel_disable_primary_plane(new_crtc_state);
6833
6834 if (dev_priv->display.initial_watermarks)
6835 dev_priv->display.initial_watermarks(state, crtc);
6836 intel_enable_pipe(new_crtc_state);
6837
6838 if (new_crtc_state->has_pch_encoder)
6839 ilk_pch_enable(state, new_crtc_state);
6840
6841 intel_crtc_vblank_on(new_crtc_state);
6842
6843 intel_encoders_enable(state, crtc);
6844
6845 if (HAS_PCH_CPT(dev_priv))
6846 cpt_verify_modeset(dev_priv, pipe);
6847
6848 /*
6849 * Must wait for vblank to avoid spurious PCH FIFO underruns.
6850 * And a second vblank wait is needed at least on ILK with
6851 * some interlaced HDMI modes. Let's do the double wait always
6852 * in case there are more corner cases we don't know about.
6853 */
6854 if (new_crtc_state->has_pch_encoder) {
6855 intel_wait_for_vblank(dev_priv, pipe);
6856 intel_wait_for_vblank(dev_priv, pipe);
6857 }
6858 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6859 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6860 }
6861
6862 /* IPS only exists on ULT machines and is tied to pipe A. */
6863 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
6864 {
6865 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
6866 }
6867
6868 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
6869 enum pipe pipe, bool apply)
6870 {
6871 u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
6872 u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
6873
6874 if (apply)
6875 val |= mask;
6876 else
6877 val &= ~mask;
6878
6879 I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
6880 }
6881
6882 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
6883 {
6884 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6885 enum pipe pipe = crtc->pipe;
6886 u32 val;
6887
6888 val = MBUS_DBOX_A_CREDIT(2);
6889
6890 if (INTEL_GEN(dev_priv) >= 12) {
6891 val |= MBUS_DBOX_BW_CREDIT(2);
6892 val |= MBUS_DBOX_B_CREDIT(12);
6893 } else {
6894 val |= MBUS_DBOX_BW_CREDIT(1);
6895 val |= MBUS_DBOX_B_CREDIT(8);
6896 }
6897
6898 I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val);
6899 }
6900
6901 static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state)
6902 {
6903 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
6904 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6905 i915_reg_t reg = CHICKEN_TRANS(crtc_state->cpu_transcoder);
6906 u32 val;
6907
6908 val = I915_READ(reg);
6909 val &= ~HSW_FRAME_START_DELAY_MASK;
6910 val |= HSW_FRAME_START_DELAY(0);
6911 I915_WRITE(reg, val);
6912 }
6913
6914 static void hsw_crtc_enable(struct intel_atomic_state *state,
6915 struct intel_crtc *crtc)
6916 {
6917 const struct intel_crtc_state *new_crtc_state =
6918 intel_atomic_get_new_crtc_state(state, crtc);
6919 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6920 enum pipe pipe = crtc->pipe, hsw_workaround_pipe;
6921 enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
6922 bool psl_clkgate_wa;
6923
6924 if (WARN_ON(crtc->active))
6925 return;
6926
6927 intel_encoders_pre_pll_enable(state, crtc);
6928
6929 if (new_crtc_state->shared_dpll)
6930 intel_enable_shared_dpll(new_crtc_state);
6931
6932 intel_encoders_pre_enable(state, crtc);
6933
6934 if (intel_crtc_has_dp_encoder(new_crtc_state))
6935 intel_dp_set_m_n(new_crtc_state, M1_N1);
6936
6937 if (!transcoder_is_dsi(cpu_transcoder))
6938 intel_set_pipe_timings(new_crtc_state);
6939
6940 if (INTEL_GEN(dev_priv) >= 11)
6941 icl_enable_trans_port_sync(new_crtc_state);
6942
6943 intel_set_pipe_src_size(new_crtc_state);
6944
6945 if (cpu_transcoder != TRANSCODER_EDP &&
6946 !transcoder_is_dsi(cpu_transcoder))
6947 I915_WRITE(PIPE_MULT(cpu_transcoder),
6948 new_crtc_state->pixel_multiplier - 1);
6949
6950 if (new_crtc_state->has_pch_encoder)
6951 intel_cpu_transcoder_set_m_n(new_crtc_state,
6952 &new_crtc_state->fdi_m_n, NULL);
6953
6954 if (!transcoder_is_dsi(cpu_transcoder)) {
6955 hsw_set_frame_start_delay(new_crtc_state);
6956 hsw_set_pipeconf(new_crtc_state);
6957 }
6958
6959 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
6960 bdw_set_pipemisc(new_crtc_state);
6961
6962 crtc->active = true;
6963
6964 /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
6965 psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
6966 new_crtc_state->pch_pfit.enabled;
6967 if (psl_clkgate_wa)
6968 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
6969
6970 if (INTEL_GEN(dev_priv) >= 9)
6971 skl_pfit_enable(new_crtc_state);
6972 else
6973 ilk_pfit_enable(new_crtc_state);
6974
6975 /*
6976 * On ILK+ LUT must be loaded before the pipe is running but with
6977 * clocks enabled
6978 */
6979 intel_color_load_luts(new_crtc_state);
6980 intel_color_commit(new_crtc_state);
6981 /* update DSPCNTR to configure gamma/csc for pipe bottom color */
6982 if (INTEL_GEN(dev_priv) < 9)
6983 intel_disable_primary_plane(new_crtc_state);
6984
6985 if (INTEL_GEN(dev_priv) >= 11)
6986 icl_set_pipe_chicken(crtc);
6987
6988 if (!transcoder_is_dsi(cpu_transcoder))
6989 intel_ddi_enable_transcoder_func(new_crtc_state);
6990
6991 if (dev_priv->display.initial_watermarks)
6992 dev_priv->display.initial_watermarks(state, crtc);
6993
6994 if (INTEL_GEN(dev_priv) >= 11)
6995 icl_pipe_mbus_enable(crtc);
6996
6997 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
6998 if (!transcoder_is_dsi(cpu_transcoder))
6999 intel_enable_pipe(new_crtc_state);
7000
7001 if (new_crtc_state->has_pch_encoder)
7002 lpt_pch_enable(state, new_crtc_state);
7003
7004 intel_crtc_vblank_on(new_crtc_state);
7005
7006 intel_encoders_enable(state, crtc);
7007
7008 if (psl_clkgate_wa) {
7009 intel_wait_for_vblank(dev_priv, pipe);
7010 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
7011 }
7012
7013 /* If we change the relative order between pipe/planes enabling, we need
7014 * to change the workaround. */
7015 hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe;
7016 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
7017 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7018 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
7019 }
7020 }
7021
7022 void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7023 {
7024 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7025 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7026 enum pipe pipe = crtc->pipe;
7027
7028 /* To avoid upsetting the power well on haswell only disable the pfit if
7029 * it's in use. The hw state code will make sure we get this right. */
7030 if (old_crtc_state->pch_pfit.enabled) {
7031 I915_WRITE(PF_CTL(pipe), 0);
7032 I915_WRITE(PF_WIN_POS(pipe), 0);
7033 I915_WRITE(PF_WIN_SZ(pipe), 0);
7034 }
7035 }
7036
7037 static void ilk_crtc_disable(struct intel_atomic_state *state,
7038 struct intel_crtc *crtc)
7039 {
7040 const struct intel_crtc_state *old_crtc_state =
7041 intel_atomic_get_old_crtc_state(state, crtc);
7042 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7043 enum pipe pipe = crtc->pipe;
7044
7045 /*
7046 * Sometimes spurious CPU pipe underruns happen when the
7047 * pipe is already disabled, but FDI RX/TX is still enabled.
7048 * Happens at least with VGA+HDMI cloning. Suppress them.
7049 */
7050 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7051 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
7052
7053 intel_encoders_disable(state, crtc);
7054
7055 intel_crtc_vblank_off(old_crtc_state);
7056
7057 intel_disable_pipe(old_crtc_state);
7058
7059 ilk_pfit_disable(old_crtc_state);
7060
7061 if (old_crtc_state->has_pch_encoder)
7062 ilk_fdi_disable(crtc);
7063
7064 intel_encoders_post_disable(state, crtc);
7065
7066 if (old_crtc_state->has_pch_encoder) {
7067 ilk_disable_pch_transcoder(dev_priv, pipe);
7068
7069 if (HAS_PCH_CPT(dev_priv)) {
7070 i915_reg_t reg;
7071 u32 temp;
7072
7073 /* disable TRANS_DP_CTL */
7074 reg = TRANS_DP_CTL(pipe);
7075 temp = I915_READ(reg);
7076 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
7077 TRANS_DP_PORT_SEL_MASK);
7078 temp |= TRANS_DP_PORT_SEL_NONE;
7079 I915_WRITE(reg, temp);
7080
7081 /* disable DPLL_SEL */
7082 temp = I915_READ(PCH_DPLL_SEL);
7083 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
7084 I915_WRITE(PCH_DPLL_SEL, temp);
7085 }
7086
7087 ilk_fdi_pll_disable(crtc);
7088 }
7089
7090 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7091 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
7092 }
7093
7094 static void hsw_crtc_disable(struct intel_atomic_state *state,
7095 struct intel_crtc *crtc)
7096 {
7097 /*
7098 * FIXME collapse everything to one hook.
7099 * Need care with mst->ddi interactions.
7100 */
7101 intel_encoders_disable(state, crtc);
7102 intel_encoders_post_disable(state, crtc);
7103 }
7104
7105 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
7106 {
7107 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7108 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7109
7110 if (!crtc_state->gmch_pfit.control)
7111 return;
7112
7113 /*
7114 * The panel fitter should only be adjusted whilst the pipe is disabled,
7115 * according to register description and PRM.
7116 */
7117 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
7118 assert_pipe_disabled(dev_priv, crtc_state->cpu_transcoder);
7119
7120 I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios);
7121 I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control);
7122
7123 /* Border color in case we don't scale up to the full screen. Black by
7124 * default, change to something else for debugging. */
7125 I915_WRITE(BCLRPAT(crtc->pipe), 0);
7126 }
7127
7128 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
7129 {
7130 if (phy == PHY_NONE)
7131 return false;
7132
7133 if (IS_ELKHARTLAKE(dev_priv))
7134 return phy <= PHY_C;
7135
7136 if (INTEL_GEN(dev_priv) >= 11)
7137 return phy <= PHY_B;
7138
7139 return false;
7140 }
7141
7142 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
7143 {
7144 if (INTEL_GEN(dev_priv) >= 12)
7145 return phy >= PHY_D && phy <= PHY_I;
7146
7147 if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
7148 return phy >= PHY_C && phy <= PHY_F;
7149
7150 return false;
7151 }
7152
7153 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
7154 {
7155 if (IS_ELKHARTLAKE(i915) && port == PORT_D)
7156 return PHY_A;
7157
7158 return (enum phy)port;
7159 }
7160
7161 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
7162 {
7163 if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
7164 return PORT_TC_NONE;
7165
7166 if (INTEL_GEN(dev_priv) >= 12)
7167 return port - PORT_D;
7168
7169 return port - PORT_C;
7170 }
7171
7172 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
7173 {
7174 switch (port) {
7175 case PORT_A:
7176 return POWER_DOMAIN_PORT_DDI_A_LANES;
7177 case PORT_B:
7178 return POWER_DOMAIN_PORT_DDI_B_LANES;
7179 case PORT_C:
7180 return POWER_DOMAIN_PORT_DDI_C_LANES;
7181 case PORT_D:
7182 return POWER_DOMAIN_PORT_DDI_D_LANES;
7183 case PORT_E:
7184 return POWER_DOMAIN_PORT_DDI_E_LANES;
7185 case PORT_F:
7186 return POWER_DOMAIN_PORT_DDI_F_LANES;
7187 case PORT_G:
7188 return POWER_DOMAIN_PORT_DDI_G_LANES;
7189 default:
7190 MISSING_CASE(port);
7191 return POWER_DOMAIN_PORT_OTHER;
7192 }
7193 }
7194
7195 enum intel_display_power_domain
7196 intel_aux_power_domain(struct intel_digital_port *dig_port)
7197 {
7198 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
7199 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
7200
7201 if (intel_phy_is_tc(dev_priv, phy) &&
7202 dig_port->tc_mode == TC_PORT_TBT_ALT) {
7203 switch (dig_port->aux_ch) {
7204 case AUX_CH_C:
7205 return POWER_DOMAIN_AUX_C_TBT;
7206 case AUX_CH_D:
7207 return POWER_DOMAIN_AUX_D_TBT;
7208 case AUX_CH_E:
7209 return POWER_DOMAIN_AUX_E_TBT;
7210 case AUX_CH_F:
7211 return POWER_DOMAIN_AUX_F_TBT;
7212 case AUX_CH_G:
7213 return POWER_DOMAIN_AUX_G_TBT;
7214 default:
7215 MISSING_CASE(dig_port->aux_ch);
7216 return POWER_DOMAIN_AUX_C_TBT;
7217 }
7218 }
7219
7220 switch (dig_port->aux_ch) {
7221 case AUX_CH_A:
7222 return POWER_DOMAIN_AUX_A;
7223 case AUX_CH_B:
7224 return POWER_DOMAIN_AUX_B;
7225 case AUX_CH_C:
7226 return POWER_DOMAIN_AUX_C;
7227 case AUX_CH_D:
7228 return POWER_DOMAIN_AUX_D;
7229 case AUX_CH_E:
7230 return POWER_DOMAIN_AUX_E;
7231 case AUX_CH_F:
7232 return POWER_DOMAIN_AUX_F;
7233 case AUX_CH_G:
7234 return POWER_DOMAIN_AUX_G;
7235 default:
7236 MISSING_CASE(dig_port->aux_ch);
7237 return POWER_DOMAIN_AUX_A;
7238 }
7239 }
7240
7241 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7242 {
7243 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7244 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7245 struct drm_encoder *encoder;
7246 enum pipe pipe = crtc->pipe;
7247 u64 mask;
7248 enum transcoder transcoder = crtc_state->cpu_transcoder;
7249
7250 if (!crtc_state->hw.active)
7251 return 0;
7252
7253 mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
7254 mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
7255 if (crtc_state->pch_pfit.enabled ||
7256 crtc_state->pch_pfit.force_thru)
7257 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
7258
7259 drm_for_each_encoder_mask(encoder, &dev_priv->drm,
7260 crtc_state->uapi.encoder_mask) {
7261 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7262
7263 mask |= BIT_ULL(intel_encoder->power_domain);
7264 }
7265
7266 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
7267 mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
7268
7269 if (crtc_state->shared_dpll)
7270 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
7271
7272 return mask;
7273 }
7274
7275 static u64
7276 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
7277 {
7278 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7279 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7280 enum intel_display_power_domain domain;
7281 u64 domains, new_domains, old_domains;
7282
7283 old_domains = crtc->enabled_power_domains;
7284 crtc->enabled_power_domains = new_domains =
7285 get_crtc_power_domains(crtc_state);
7286
7287 domains = new_domains & ~old_domains;
7288
7289 for_each_power_domain(domain, domains)
7290 intel_display_power_get(dev_priv, domain);
7291
7292 return old_domains & ~new_domains;
7293 }
7294
7295 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
7296 u64 domains)
7297 {
7298 enum intel_display_power_domain domain;
7299
7300 for_each_power_domain(domain, domains)
7301 intel_display_power_put_unchecked(dev_priv, domain);
7302 }
7303
7304 static void valleyview_crtc_enable(struct intel_atomic_state *state,
7305 struct intel_crtc *crtc)
7306 {
7307 const struct intel_crtc_state *new_crtc_state =
7308 intel_atomic_get_new_crtc_state(state, crtc);
7309 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7310 enum pipe pipe = crtc->pipe;
7311
7312 if (WARN_ON(crtc->active))
7313 return;
7314
7315 if (intel_crtc_has_dp_encoder(new_crtc_state))
7316 intel_dp_set_m_n(new_crtc_state, M1_N1);
7317
7318 intel_set_pipe_timings(new_crtc_state);
7319 intel_set_pipe_src_size(new_crtc_state);
7320
7321 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
7322 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
7323 I915_WRITE(CHV_CANVAS(pipe), 0);
7324 }
7325
7326 i9xx_set_pipeconf(new_crtc_state);
7327
7328 crtc->active = true;
7329
7330 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7331
7332 intel_encoders_pre_pll_enable(state, crtc);
7333
7334 if (IS_CHERRYVIEW(dev_priv)) {
7335 chv_prepare_pll(crtc, new_crtc_state);
7336 chv_enable_pll(crtc, new_crtc_state);
7337 } else {
7338 vlv_prepare_pll(crtc, new_crtc_state);
7339 vlv_enable_pll(crtc, new_crtc_state);
7340 }
7341
7342 intel_encoders_pre_enable(state, crtc);
7343
7344 i9xx_pfit_enable(new_crtc_state);
7345
7346 intel_color_load_luts(new_crtc_state);
7347 intel_color_commit(new_crtc_state);
7348 /* update DSPCNTR to configure gamma for pipe bottom color */
7349 intel_disable_primary_plane(new_crtc_state);
7350
7351 dev_priv->display.initial_watermarks(state, crtc);
7352 intel_enable_pipe(new_crtc_state);
7353
7354 intel_crtc_vblank_on(new_crtc_state);
7355
7356 intel_encoders_enable(state, crtc);
7357 }
7358
7359 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7360 {
7361 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7362 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7363
7364 I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0);
7365 I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1);
7366 }
7367
7368 static void i9xx_crtc_enable(struct intel_atomic_state *state,
7369 struct intel_crtc *crtc)
7370 {
7371 const struct intel_crtc_state *new_crtc_state =
7372 intel_atomic_get_new_crtc_state(state, crtc);
7373 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7374 enum pipe pipe = crtc->pipe;
7375
7376 if (WARN_ON(crtc->active))
7377 return;
7378
7379 i9xx_set_pll_dividers(new_crtc_state);
7380
7381 if (intel_crtc_has_dp_encoder(new_crtc_state))
7382 intel_dp_set_m_n(new_crtc_state, M1_N1);
7383
7384 intel_set_pipe_timings(new_crtc_state);
7385 intel_set_pipe_src_size(new_crtc_state);
7386
7387 i9xx_set_pipeconf(new_crtc_state);
7388
7389 crtc->active = true;
7390
7391 if (!IS_GEN(dev_priv, 2))
7392 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7393
7394 intel_encoders_pre_enable(state, crtc);
7395
7396 i9xx_enable_pll(crtc, new_crtc_state);
7397
7398 i9xx_pfit_enable(new_crtc_state);
7399
7400 intel_color_load_luts(new_crtc_state);
7401 intel_color_commit(new_crtc_state);
7402 /* update DSPCNTR to configure gamma for pipe bottom color */
7403 intel_disable_primary_plane(new_crtc_state);
7404
7405 if (dev_priv->display.initial_watermarks)
7406 dev_priv->display.initial_watermarks(state, crtc);
7407 else
7408 intel_update_watermarks(crtc);
7409 intel_enable_pipe(new_crtc_state);
7410
7411 intel_crtc_vblank_on(new_crtc_state);
7412
7413 intel_encoders_enable(state, crtc);
7414 }
7415
7416 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7417 {
7418 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
7419 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7420
7421 if (!old_crtc_state->gmch_pfit.control)
7422 return;
7423
7424 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
7425
7426 DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n",
7427 I915_READ(PFIT_CONTROL));
7428 I915_WRITE(PFIT_CONTROL, 0);
7429 }
7430
7431 static void i9xx_crtc_disable(struct intel_atomic_state *state,
7432 struct intel_crtc *crtc)
7433 {
7434 struct intel_crtc_state *old_crtc_state =
7435 intel_atomic_get_old_crtc_state(state, crtc);
7436 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7437 enum pipe pipe = crtc->pipe;
7438
7439 /*
7440 * On gen2 planes are double buffered but the pipe isn't, so we must
7441 * wait for planes to fully turn off before disabling the pipe.
7442 */
7443 if (IS_GEN(dev_priv, 2))
7444 intel_wait_for_vblank(dev_priv, pipe);
7445
7446 intel_encoders_disable(state, crtc);
7447
7448 intel_crtc_vblank_off(old_crtc_state);
7449
7450 intel_disable_pipe(old_crtc_state);
7451
7452 i9xx_pfit_disable(old_crtc_state);
7453
7454 intel_encoders_post_disable(state, crtc);
7455
7456 if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7457 if (IS_CHERRYVIEW(dev_priv))
7458 chv_disable_pll(dev_priv, pipe);
7459 else if (IS_VALLEYVIEW(dev_priv))
7460 vlv_disable_pll(dev_priv, pipe);
7461 else
7462 i9xx_disable_pll(old_crtc_state);
7463 }
7464
7465 intel_encoders_post_pll_disable(state, crtc);
7466
7467 if (!IS_GEN(dev_priv, 2))
7468 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7469
7470 if (!dev_priv->display.initial_watermarks)
7471 intel_update_watermarks(crtc);
7472
7473 /* clock the pipe down to 640x480@60 to potentially save power */
7474 if (IS_I830(dev_priv))
7475 i830_enable_pipe(dev_priv, pipe);
7476 }
7477
7478 static void intel_crtc_disable_noatomic(struct intel_crtc *crtc,
7479 struct drm_modeset_acquire_ctx *ctx)
7480 {
7481 struct intel_encoder *encoder;
7482 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7483 struct intel_bw_state *bw_state =
7484 to_intel_bw_state(dev_priv->bw_obj.state);
7485 struct intel_crtc_state *crtc_state =
7486 to_intel_crtc_state(crtc->base.state);
7487 enum intel_display_power_domain domain;
7488 struct intel_plane *plane;
7489 struct drm_atomic_state *state;
7490 struct intel_crtc_state *temp_crtc_state;
7491 enum pipe pipe = crtc->pipe;
7492 u64 domains;
7493 int ret;
7494
7495 if (!crtc_state->hw.active)
7496 return;
7497
7498 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
7499 const struct intel_plane_state *plane_state =
7500 to_intel_plane_state(plane->base.state);
7501
7502 if (plane_state->uapi.visible)
7503 intel_plane_disable_noatomic(crtc, plane);
7504 }
7505
7506 state = drm_atomic_state_alloc(&dev_priv->drm);
7507 if (!state) {
7508 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
7509 crtc->base.base.id, crtc->base.name);
7510 return;
7511 }
7512
7513 state->acquire_ctx = ctx;
7514
7515 /* Everything's already locked, -EDEADLK can't happen. */
7516 temp_crtc_state = intel_atomic_get_crtc_state(state, crtc);
7517 ret = drm_atomic_add_affected_connectors(state, &crtc->base);
7518
7519 WARN_ON(IS_ERR(temp_crtc_state) || ret);
7520
7521 dev_priv->display.crtc_disable(to_intel_atomic_state(state), crtc);
7522
7523 drm_atomic_state_put(state);
7524
7525 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7526 crtc->base.base.id, crtc->base.name);
7527
7528 crtc->active = false;
7529 crtc->base.enabled = false;
7530
7531 WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->uapi, NULL) < 0);
7532 crtc_state->uapi.active = false;
7533 crtc_state->uapi.connector_mask = 0;
7534 crtc_state->uapi.encoder_mask = 0;
7535 intel_crtc_free_hw_state(crtc_state);
7536 memset(&crtc_state->hw, 0, sizeof(crtc_state->hw));
7537
7538 for_each_encoder_on_crtc(&dev_priv->drm, &crtc->base, encoder)
7539 encoder->base.crtc = NULL;
7540
7541 intel_fbc_disable(crtc);
7542 intel_update_watermarks(crtc);
7543 intel_disable_shared_dpll(crtc_state);
7544
7545 domains = crtc->enabled_power_domains;
7546 for_each_power_domain(domain, domains)
7547 intel_display_power_put_unchecked(dev_priv, domain);
7548 crtc->enabled_power_domains = 0;
7549
7550 dev_priv->active_pipes &= ~BIT(pipe);
7551 dev_priv->min_cdclk[pipe] = 0;
7552 dev_priv->min_voltage_level[pipe] = 0;
7553
7554 bw_state->data_rate[pipe] = 0;
7555 bw_state->num_active_planes[pipe] = 0;
7556 }
7557
7558 /*
7559 * turn all crtc's off, but do not adjust state
7560 * This has to be paired with a call to intel_modeset_setup_hw_state.
7561 */
7562 int intel_display_suspend(struct drm_device *dev)
7563 {
7564 struct drm_i915_private *dev_priv = to_i915(dev);
7565 struct drm_atomic_state *state;
7566 int ret;
7567
7568 state = drm_atomic_helper_suspend(dev);
7569 ret = PTR_ERR_OR_ZERO(state);
7570 if (ret)
7571 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
7572 else
7573 dev_priv->modeset_restore_state = state;
7574 return ret;
7575 }
7576
7577 void intel_encoder_destroy(struct drm_encoder *encoder)
7578 {
7579 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7580
7581 drm_encoder_cleanup(encoder);
7582 kfree(intel_encoder);
7583 }
7584
7585 /* Cross check the actual hw state with our own modeset state tracking (and it's
7586 * internal consistency). */
7587 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7588 struct drm_connector_state *conn_state)
7589 {
7590 struct intel_connector *connector = to_intel_connector(conn_state->connector);
7591
7592 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
7593 connector->base.base.id,
7594 connector->base.name);
7595
7596 if (connector->get_hw_state(connector)) {
7597 struct intel_encoder *encoder = connector->encoder;
7598
7599 I915_STATE_WARN(!crtc_state,
7600 "connector enabled without attached crtc\n");
7601
7602 if (!crtc_state)
7603 return;
7604
7605 I915_STATE_WARN(!crtc_state->hw.active,
7606 "connector is active, but attached crtc isn't\n");
7607
7608 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7609 return;
7610
7611 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7612 "atomic encoder doesn't match attached encoder\n");
7613
7614 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7615 "attached encoder crtc differs from connector crtc\n");
7616 } else {
7617 I915_STATE_WARN(crtc_state && crtc_state->hw.active,
7618 "attached crtc is active, but connector isn't\n");
7619 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7620 "best encoder set without crtc!\n");
7621 }
7622 }
7623
7624 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7625 {
7626 if (crtc_state->hw.enable && crtc_state->has_pch_encoder)
7627 return crtc_state->fdi_lanes;
7628
7629 return 0;
7630 }
7631
7632 static int ilk_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7633 struct intel_crtc_state *pipe_config)
7634 {
7635 struct drm_i915_private *dev_priv = to_i915(dev);
7636 struct drm_atomic_state *state = pipe_config->uapi.state;
7637 struct intel_crtc *other_crtc;
7638 struct intel_crtc_state *other_crtc_state;
7639
7640 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7641 pipe_name(pipe), pipe_config->fdi_lanes);
7642 if (pipe_config->fdi_lanes > 4) {
7643 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7644 pipe_name(pipe), pipe_config->fdi_lanes);
7645 return -EINVAL;
7646 }
7647
7648 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7649 if (pipe_config->fdi_lanes > 2) {
7650 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7651 pipe_config->fdi_lanes);
7652 return -EINVAL;
7653 } else {
7654 return 0;
7655 }
7656 }
7657
7658 if (INTEL_NUM_PIPES(dev_priv) == 2)
7659 return 0;
7660
7661 /* Ivybridge 3 pipe is really complicated */
7662 switch (pipe) {
7663 case PIPE_A:
7664 return 0;
7665 case PIPE_B:
7666 if (pipe_config->fdi_lanes <= 2)
7667 return 0;
7668
7669 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7670 other_crtc_state =
7671 intel_atomic_get_crtc_state(state, other_crtc);
7672 if (IS_ERR(other_crtc_state))
7673 return PTR_ERR(other_crtc_state);
7674
7675 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7676 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7677 pipe_name(pipe), pipe_config->fdi_lanes);
7678 return -EINVAL;
7679 }
7680 return 0;
7681 case PIPE_C:
7682 if (pipe_config->fdi_lanes > 2) {
7683 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7684 pipe_name(pipe), pipe_config->fdi_lanes);
7685 return -EINVAL;
7686 }
7687
7688 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7689 other_crtc_state =
7690 intel_atomic_get_crtc_state(state, other_crtc);
7691 if (IS_ERR(other_crtc_state))
7692 return PTR_ERR(other_crtc_state);
7693
7694 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7695 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7696 return -EINVAL;
7697 }
7698 return 0;
7699 default:
7700 BUG();
7701 }
7702 }
7703
7704 #define RETRY 1
7705 static int ilk_fdi_compute_config(struct intel_crtc *intel_crtc,
7706 struct intel_crtc_state *pipe_config)
7707 {
7708 struct drm_device *dev = intel_crtc->base.dev;
7709 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7710 int lane, link_bw, fdi_dotclock, ret;
7711 bool needs_recompute = false;
7712
7713 retry:
7714 /* FDI is a binary signal running at ~2.7GHz, encoding
7715 * each output octet as 10 bits. The actual frequency
7716 * is stored as a divider into a 100MHz clock, and the
7717 * mode pixel clock is stored in units of 1KHz.
7718 * Hence the bw of each lane in terms of the mode signal
7719 * is:
7720 */
7721 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7722
7723 fdi_dotclock = adjusted_mode->crtc_clock;
7724
7725 lane = ilk_get_lanes_required(fdi_dotclock, link_bw,
7726 pipe_config->pipe_bpp);
7727
7728 pipe_config->fdi_lanes = lane;
7729
7730 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7731 link_bw, &pipe_config->fdi_m_n, false, false);
7732
7733 ret = ilk_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7734 if (ret == -EDEADLK)
7735 return ret;
7736
7737 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7738 pipe_config->pipe_bpp -= 2*3;
7739 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7740 pipe_config->pipe_bpp);
7741 needs_recompute = true;
7742 pipe_config->bw_constrained = true;
7743
7744 goto retry;
7745 }
7746
7747 if (needs_recompute)
7748 return RETRY;
7749
7750 return ret;
7751 }
7752
7753 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7754 {
7755 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
7756 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7757
7758 /* IPS only exists on ULT machines and is tied to pipe A. */
7759 if (!hsw_crtc_supports_ips(crtc))
7760 return false;
7761
7762 if (!i915_modparams.enable_ips)
7763 return false;
7764
7765 if (crtc_state->pipe_bpp > 24)
7766 return false;
7767
7768 /*
7769 * We compare against max which means we must take
7770 * the increased cdclk requirement into account when
7771 * calculating the new cdclk.
7772 *
7773 * Should measure whether using a lower cdclk w/o IPS
7774 */
7775 if (IS_BROADWELL(dev_priv) &&
7776 crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7777 return false;
7778
7779 return true;
7780 }
7781
7782 static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7783 {
7784 struct drm_i915_private *dev_priv =
7785 to_i915(crtc_state->uapi.crtc->dev);
7786 struct intel_atomic_state *intel_state =
7787 to_intel_atomic_state(crtc_state->uapi.state);
7788
7789 if (!hsw_crtc_state_ips_capable(crtc_state))
7790 return false;
7791
7792 /*
7793 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7794 * enabled and disabled dynamically based on package C states,
7795 * user space can't make reliable use of the CRCs, so let's just
7796 * completely disable it.
7797 */
7798 if (crtc_state->crc_enabled)
7799 return false;
7800
7801 /* IPS should be fine as long as at least one plane is enabled. */
7802 if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7803 return false;
7804
7805 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
7806 if (IS_BROADWELL(dev_priv) &&
7807 crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100)
7808 return false;
7809
7810 return true;
7811 }
7812
7813 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7814 {
7815 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7816
7817 /* GDG double wide on either pipe, otherwise pipe A only */
7818 return INTEL_GEN(dev_priv) < 4 &&
7819 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7820 }
7821
7822 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
7823 {
7824 u32 pixel_rate;
7825
7826 pixel_rate = pipe_config->hw.adjusted_mode.crtc_clock;
7827
7828 /*
7829 * We only use IF-ID interlacing. If we ever use
7830 * PF-ID we'll need to adjust the pixel_rate here.
7831 */
7832
7833 if (pipe_config->pch_pfit.enabled) {
7834 u64 pipe_w, pipe_h, pfit_w, pfit_h;
7835 u32 pfit_size = pipe_config->pch_pfit.size;
7836
7837 pipe_w = pipe_config->pipe_src_w;
7838 pipe_h = pipe_config->pipe_src_h;
7839
7840 pfit_w = (pfit_size >> 16) & 0xFFFF;
7841 pfit_h = pfit_size & 0xFFFF;
7842 if (pipe_w < pfit_w)
7843 pipe_w = pfit_w;
7844 if (pipe_h < pfit_h)
7845 pipe_h = pfit_h;
7846
7847 if (WARN_ON(!pfit_w || !pfit_h))
7848 return pixel_rate;
7849
7850 pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
7851 pfit_w * pfit_h);
7852 }
7853
7854 return pixel_rate;
7855 }
7856
7857 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
7858 {
7859 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
7860
7861 if (HAS_GMCH(dev_priv))
7862 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
7863 crtc_state->pixel_rate =
7864 crtc_state->hw.adjusted_mode.crtc_clock;
7865 else
7866 crtc_state->pixel_rate =
7867 ilk_pipe_pixel_rate(crtc_state);
7868 }
7869
7870 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7871 struct intel_crtc_state *pipe_config)
7872 {
7873 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7874 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
7875 int clock_limit = dev_priv->max_dotclk_freq;
7876
7877 if (INTEL_GEN(dev_priv) < 4) {
7878 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7879
7880 /*
7881 * Enable double wide mode when the dot clock
7882 * is > 90% of the (display) core speed.
7883 */
7884 if (intel_crtc_supports_double_wide(crtc) &&
7885 adjusted_mode->crtc_clock > clock_limit) {
7886 clock_limit = dev_priv->max_dotclk_freq;
7887 pipe_config->double_wide = true;
7888 }
7889 }
7890
7891 if (adjusted_mode->crtc_clock > clock_limit) {
7892 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7893 adjusted_mode->crtc_clock, clock_limit,
7894 yesno(pipe_config->double_wide));
7895 return -EINVAL;
7896 }
7897
7898 if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
7899 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
7900 pipe_config->hw.ctm) {
7901 /*
7902 * There is only one pipe CSC unit per pipe, and we need that
7903 * for output conversion from RGB->YCBCR. So if CTM is already
7904 * applied we can't support YCBCR420 output.
7905 */
7906 DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
7907 return -EINVAL;
7908 }
7909
7910 /*
7911 * Pipe horizontal size must be even in:
7912 * - DVO ganged mode
7913 * - LVDS dual channel mode
7914 * - Double wide pipe
7915 */
7916 if (pipe_config->pipe_src_w & 1) {
7917 if (pipe_config->double_wide) {
7918 DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n");
7919 return -EINVAL;
7920 }
7921
7922 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7923 intel_is_dual_link_lvds(dev_priv)) {
7924 DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n");
7925 return -EINVAL;
7926 }
7927 }
7928
7929 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7930 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7931 */
7932 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7933 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7934 return -EINVAL;
7935
7936 intel_crtc_compute_pixel_rate(pipe_config);
7937
7938 if (pipe_config->has_pch_encoder)
7939 return ilk_fdi_compute_config(crtc, pipe_config);
7940
7941 return 0;
7942 }
7943
7944 static void
7945 intel_reduce_m_n_ratio(u32 *num, u32 *den)
7946 {
7947 while (*num > DATA_LINK_M_N_MASK ||
7948 *den > DATA_LINK_M_N_MASK) {
7949 *num >>= 1;
7950 *den >>= 1;
7951 }
7952 }
7953
7954 static void compute_m_n(unsigned int m, unsigned int n,
7955 u32 *ret_m, u32 *ret_n,
7956 bool constant_n)
7957 {
7958 /*
7959 * Several DP dongles in particular seem to be fussy about
7960 * too large link M/N values. Give N value as 0x8000 that
7961 * should be acceptable by specific devices. 0x8000 is the
7962 * specified fixed N value for asynchronous clock mode,
7963 * which the devices expect also in synchronous clock mode.
7964 */
7965 if (constant_n)
7966 *ret_n = 0x8000;
7967 else
7968 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7969
7970 *ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
7971 intel_reduce_m_n_ratio(ret_m, ret_n);
7972 }
7973
7974 void
7975 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
7976 int pixel_clock, int link_clock,
7977 struct intel_link_m_n *m_n,
7978 bool constant_n, bool fec_enable)
7979 {
7980 u32 data_clock = bits_per_pixel * pixel_clock;
7981
7982 if (fec_enable)
7983 data_clock = intel_dp_mode_to_fec_clock(data_clock);
7984
7985 m_n->tu = 64;
7986 compute_m_n(data_clock,
7987 link_clock * nlanes * 8,
7988 &m_n->gmch_m, &m_n->gmch_n,
7989 constant_n);
7990
7991 compute_m_n(pixel_clock, link_clock,
7992 &m_n->link_m, &m_n->link_n,
7993 constant_n);
7994 }
7995
7996 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
7997 {
7998 /*
7999 * There may be no VBT; and if the BIOS enabled SSC we can
8000 * just keep using it to avoid unnecessary flicker. Whereas if the
8001 * BIOS isn't using it, don't assume it will work even if the VBT
8002 * indicates as much.
8003 */
8004 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
8005 bool bios_lvds_use_ssc = I915_READ(PCH_DREF_CONTROL) &
8006 DREF_SSC1_ENABLE;
8007
8008 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
8009 DRM_DEBUG_KMS("SSC %s by BIOS, overriding VBT which says %s\n",
8010 enableddisabled(bios_lvds_use_ssc),
8011 enableddisabled(dev_priv->vbt.lvds_use_ssc));
8012 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
8013 }
8014 }
8015 }
8016
8017 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
8018 {
8019 if (i915_modparams.panel_use_ssc >= 0)
8020 return i915_modparams.panel_use_ssc != 0;
8021 return dev_priv->vbt.lvds_use_ssc
8022 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
8023 }
8024
8025 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
8026 {
8027 return (1 << dpll->n) << 16 | dpll->m2;
8028 }
8029
8030 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
8031 {
8032 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
8033 }
8034
8035 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
8036 struct intel_crtc_state *crtc_state,
8037 struct dpll *reduced_clock)
8038 {
8039 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8040 u32 fp, fp2 = 0;
8041
8042 if (IS_PINEVIEW(dev_priv)) {
8043 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
8044 if (reduced_clock)
8045 fp2 = pnv_dpll_compute_fp(reduced_clock);
8046 } else {
8047 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8048 if (reduced_clock)
8049 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8050 }
8051
8052 crtc_state->dpll_hw_state.fp0 = fp;
8053
8054 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8055 reduced_clock) {
8056 crtc_state->dpll_hw_state.fp1 = fp2;
8057 } else {
8058 crtc_state->dpll_hw_state.fp1 = fp;
8059 }
8060 }
8061
8062 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
8063 pipe)
8064 {
8065 u32 reg_val;
8066
8067 /*
8068 * PLLB opamp always calibrates to max value of 0x3f, force enable it
8069 * and set it to a reasonable value instead.
8070 */
8071 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8072 reg_val &= 0xffffff00;
8073 reg_val |= 0x00000030;
8074 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8075
8076 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8077 reg_val &= 0x00ffffff;
8078 reg_val |= 0x8c000000;
8079 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8080
8081 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
8082 reg_val &= 0xffffff00;
8083 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
8084
8085 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
8086 reg_val &= 0x00ffffff;
8087 reg_val |= 0xb0000000;
8088 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
8089 }
8090
8091 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8092 const struct intel_link_m_n *m_n)
8093 {
8094 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8095 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8096 enum pipe pipe = crtc->pipe;
8097
8098 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
8099 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
8100 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
8101 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
8102 }
8103
8104 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
8105 enum transcoder transcoder)
8106 {
8107 if (IS_HASWELL(dev_priv))
8108 return transcoder == TRANSCODER_EDP;
8109
8110 /*
8111 * Strictly speaking some registers are available before
8112 * gen7, but we only support DRRS on gen7+
8113 */
8114 return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
8115 }
8116
8117 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
8118 const struct intel_link_m_n *m_n,
8119 const struct intel_link_m_n *m2_n2)
8120 {
8121 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8122 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8123 enum pipe pipe = crtc->pipe;
8124 enum transcoder transcoder = crtc_state->cpu_transcoder;
8125
8126 if (INTEL_GEN(dev_priv) >= 5) {
8127 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
8128 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
8129 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
8130 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
8131 /*
8132 * M2_N2 registers are set only if DRRS is supported
8133 * (to make sure the registers are not unnecessarily accessed).
8134 */
8135 if (m2_n2 && crtc_state->has_drrs &&
8136 transcoder_has_m2_n2(dev_priv, transcoder)) {
8137 I915_WRITE(PIPE_DATA_M2(transcoder),
8138 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
8139 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
8140 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
8141 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
8142 }
8143 } else {
8144 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
8145 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
8146 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
8147 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
8148 }
8149 }
8150
8151 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
8152 {
8153 const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
8154
8155 if (m_n == M1_N1) {
8156 dp_m_n = &crtc_state->dp_m_n;
8157 dp_m2_n2 = &crtc_state->dp_m2_n2;
8158 } else if (m_n == M2_N2) {
8159
8160 /*
8161 * M2_N2 registers are not supported. Hence m2_n2 divider value
8162 * needs to be programmed into M1_N1.
8163 */
8164 dp_m_n = &crtc_state->dp_m2_n2;
8165 } else {
8166 DRM_ERROR("Unsupported divider value\n");
8167 return;
8168 }
8169
8170 if (crtc_state->has_pch_encoder)
8171 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
8172 else
8173 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
8174 }
8175
8176 static void vlv_compute_dpll(struct intel_crtc *crtc,
8177 struct intel_crtc_state *pipe_config)
8178 {
8179 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
8180 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8181 if (crtc->pipe != PIPE_A)
8182 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8183
8184 /* DPLL not used with DSI, but still need the rest set up */
8185 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8186 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
8187 DPLL_EXT_BUFFER_ENABLE_VLV;
8188
8189 pipe_config->dpll_hw_state.dpll_md =
8190 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8191 }
8192
8193 static void chv_compute_dpll(struct intel_crtc *crtc,
8194 struct intel_crtc_state *pipe_config)
8195 {
8196 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
8197 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
8198 if (crtc->pipe != PIPE_A)
8199 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
8200
8201 /* DPLL not used with DSI, but still need the rest set up */
8202 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
8203 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
8204
8205 pipe_config->dpll_hw_state.dpll_md =
8206 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8207 }
8208
8209 static void vlv_prepare_pll(struct intel_crtc *crtc,
8210 const struct intel_crtc_state *pipe_config)
8211 {
8212 struct drm_device *dev = crtc->base.dev;
8213 struct drm_i915_private *dev_priv = to_i915(dev);
8214 enum pipe pipe = crtc->pipe;
8215 u32 mdiv;
8216 u32 bestn, bestm1, bestm2, bestp1, bestp2;
8217 u32 coreclk, reg_val;
8218
8219 /* Enable Refclk */
8220 I915_WRITE(DPLL(pipe),
8221 pipe_config->dpll_hw_state.dpll &
8222 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
8223
8224 /* No need to actually set up the DPLL with DSI */
8225 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8226 return;
8227
8228 vlv_dpio_get(dev_priv);
8229
8230 bestn = pipe_config->dpll.n;
8231 bestm1 = pipe_config->dpll.m1;
8232 bestm2 = pipe_config->dpll.m2;
8233 bestp1 = pipe_config->dpll.p1;
8234 bestp2 = pipe_config->dpll.p2;
8235
8236 /* See eDP HDMI DPIO driver vbios notes doc */
8237
8238 /* PLL B needs special handling */
8239 if (pipe == PIPE_B)
8240 vlv_pllb_recal_opamp(dev_priv, pipe);
8241
8242 /* Set up Tx target for periodic Rcomp update */
8243 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
8244
8245 /* Disable target IRef on PLL */
8246 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
8247 reg_val &= 0x00ffffff;
8248 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
8249
8250 /* Disable fast lock */
8251 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
8252
8253 /* Set idtafcrecal before PLL is enabled */
8254 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
8255 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
8256 mdiv |= ((bestn << DPIO_N_SHIFT));
8257 mdiv |= (1 << DPIO_K_SHIFT);
8258
8259 /*
8260 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
8261 * but we don't support that).
8262 * Note: don't use the DAC post divider as it seems unstable.
8263 */
8264 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
8265 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8266
8267 mdiv |= DPIO_ENABLE_CALIBRATION;
8268 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
8269
8270 /* Set HBR and RBR LPF coefficients */
8271 if (pipe_config->port_clock == 162000 ||
8272 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
8273 intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
8274 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8275 0x009f0003);
8276 else
8277 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
8278 0x00d0000f);
8279
8280 if (intel_crtc_has_dp_encoder(pipe_config)) {
8281 /* Use SSC source */
8282 if (pipe == PIPE_A)
8283 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8284 0x0df40000);
8285 else
8286 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8287 0x0df70000);
8288 } else { /* HDMI or VGA */
8289 /* Use bend source */
8290 if (pipe == PIPE_A)
8291 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8292 0x0df70000);
8293 else
8294 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
8295 0x0df40000);
8296 }
8297
8298 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
8299 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
8300 if (intel_crtc_has_dp_encoder(pipe_config))
8301 coreclk |= 0x01000000;
8302 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
8303
8304 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
8305
8306 vlv_dpio_put(dev_priv);
8307 }
8308
8309 static void chv_prepare_pll(struct intel_crtc *crtc,
8310 const struct intel_crtc_state *pipe_config)
8311 {
8312 struct drm_device *dev = crtc->base.dev;
8313 struct drm_i915_private *dev_priv = to_i915(dev);
8314 enum pipe pipe = crtc->pipe;
8315 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8316 u32 loopfilter, tribuf_calcntr;
8317 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
8318 u32 dpio_val;
8319 int vco;
8320
8321 /* Enable Refclk and SSC */
8322 I915_WRITE(DPLL(pipe),
8323 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
8324
8325 /* No need to actually set up the DPLL with DSI */
8326 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8327 return;
8328
8329 bestn = pipe_config->dpll.n;
8330 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
8331 bestm1 = pipe_config->dpll.m1;
8332 bestm2 = pipe_config->dpll.m2 >> 22;
8333 bestp1 = pipe_config->dpll.p1;
8334 bestp2 = pipe_config->dpll.p2;
8335 vco = pipe_config->dpll.vco;
8336 dpio_val = 0;
8337 loopfilter = 0;
8338
8339 vlv_dpio_get(dev_priv);
8340
8341 /* p1 and p2 divider */
8342 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8343 5 << DPIO_CHV_S1_DIV_SHIFT |
8344 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8345 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8346 1 << DPIO_CHV_K_DIV_SHIFT);
8347
8348 /* Feedback post-divider - m2 */
8349 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8350
8351 /* Feedback refclk divider - n and m1 */
8352 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8353 DPIO_CHV_M1_DIV_BY_2 |
8354 1 << DPIO_CHV_N_DIV_SHIFT);
8355
8356 /* M2 fraction division */
8357 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8358
8359 /* M2 fraction division enable */
8360 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8361 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8362 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8363 if (bestm2_frac)
8364 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8365 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8366
8367 /* Program digital lock detect threshold */
8368 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8369 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8370 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8371 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8372 if (!bestm2_frac)
8373 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8374 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8375
8376 /* Loop filter */
8377 if (vco == 5400000) {
8378 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8379 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8380 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8381 tribuf_calcntr = 0x9;
8382 } else if (vco <= 6200000) {
8383 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8384 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8385 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8386 tribuf_calcntr = 0x9;
8387 } else if (vco <= 6480000) {
8388 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8389 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8390 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8391 tribuf_calcntr = 0x8;
8392 } else {
8393 /* Not supported. Apply the same limits as in the max case */
8394 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8395 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8396 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8397 tribuf_calcntr = 0;
8398 }
8399 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8400
8401 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8402 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8403 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8404 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8405
8406 /* AFC Recal */
8407 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8408 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8409 DPIO_AFC_RECAL);
8410
8411 vlv_dpio_put(dev_priv);
8412 }
8413
8414 /**
8415 * vlv_force_pll_on - forcibly enable just the PLL
8416 * @dev_priv: i915 private structure
8417 * @pipe: pipe PLL to enable
8418 * @dpll: PLL configuration
8419 *
8420 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8421 * in cases where we need the PLL enabled even when @pipe is not going to
8422 * be enabled.
8423 */
8424 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8425 const struct dpll *dpll)
8426 {
8427 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8428 struct intel_crtc_state *pipe_config;
8429
8430 pipe_config = intel_crtc_state_alloc(crtc);
8431 if (!pipe_config)
8432 return -ENOMEM;
8433
8434 pipe_config->cpu_transcoder = (enum transcoder)pipe;
8435 pipe_config->pixel_multiplier = 1;
8436 pipe_config->dpll = *dpll;
8437
8438 if (IS_CHERRYVIEW(dev_priv)) {
8439 chv_compute_dpll(crtc, pipe_config);
8440 chv_prepare_pll(crtc, pipe_config);
8441 chv_enable_pll(crtc, pipe_config);
8442 } else {
8443 vlv_compute_dpll(crtc, pipe_config);
8444 vlv_prepare_pll(crtc, pipe_config);
8445 vlv_enable_pll(crtc, pipe_config);
8446 }
8447
8448 kfree(pipe_config);
8449
8450 return 0;
8451 }
8452
8453 /**
8454 * vlv_force_pll_off - forcibly disable just the PLL
8455 * @dev_priv: i915 private structure
8456 * @pipe: pipe PLL to disable
8457 *
8458 * Disable the PLL for @pipe. To be used in cases where we need
8459 * the PLL enabled even when @pipe is not going to be enabled.
8460 */
8461 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8462 {
8463 if (IS_CHERRYVIEW(dev_priv))
8464 chv_disable_pll(dev_priv, pipe);
8465 else
8466 vlv_disable_pll(dev_priv, pipe);
8467 }
8468
8469 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8470 struct intel_crtc_state *crtc_state,
8471 struct dpll *reduced_clock)
8472 {
8473 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8474 u32 dpll;
8475 struct dpll *clock = &crtc_state->dpll;
8476
8477 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8478
8479 dpll = DPLL_VGA_MODE_DIS;
8480
8481 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8482 dpll |= DPLLB_MODE_LVDS;
8483 else
8484 dpll |= DPLLB_MODE_DAC_SERIAL;
8485
8486 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8487 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8488 dpll |= (crtc_state->pixel_multiplier - 1)
8489 << SDVO_MULTIPLIER_SHIFT_HIRES;
8490 }
8491
8492 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8493 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8494 dpll |= DPLL_SDVO_HIGH_SPEED;
8495
8496 if (intel_crtc_has_dp_encoder(crtc_state))
8497 dpll |= DPLL_SDVO_HIGH_SPEED;
8498
8499 /* compute bitmask from p1 value */
8500 if (IS_PINEVIEW(dev_priv))
8501 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8502 else {
8503 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8504 if (IS_G4X(dev_priv) && reduced_clock)
8505 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8506 }
8507 switch (clock->p2) {
8508 case 5:
8509 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8510 break;
8511 case 7:
8512 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8513 break;
8514 case 10:
8515 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8516 break;
8517 case 14:
8518 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8519 break;
8520 }
8521 if (INTEL_GEN(dev_priv) >= 4)
8522 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8523
8524 if (crtc_state->sdvo_tv_clock)
8525 dpll |= PLL_REF_INPUT_TVCLKINBC;
8526 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8527 intel_panel_use_ssc(dev_priv))
8528 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8529 else
8530 dpll |= PLL_REF_INPUT_DREFCLK;
8531
8532 dpll |= DPLL_VCO_ENABLE;
8533 crtc_state->dpll_hw_state.dpll = dpll;
8534
8535 if (INTEL_GEN(dev_priv) >= 4) {
8536 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8537 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8538 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8539 }
8540 }
8541
8542 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8543 struct intel_crtc_state *crtc_state,
8544 struct dpll *reduced_clock)
8545 {
8546 struct drm_device *dev = crtc->base.dev;
8547 struct drm_i915_private *dev_priv = to_i915(dev);
8548 u32 dpll;
8549 struct dpll *clock = &crtc_state->dpll;
8550
8551 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8552
8553 dpll = DPLL_VGA_MODE_DIS;
8554
8555 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8556 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8557 } else {
8558 if (clock->p1 == 2)
8559 dpll |= PLL_P1_DIVIDE_BY_TWO;
8560 else
8561 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8562 if (clock->p2 == 4)
8563 dpll |= PLL_P2_DIVIDE_BY_4;
8564 }
8565
8566 /*
8567 * Bspec:
8568 * "[Almador Errata}: For the correct operation of the muxed DVO pins
8569 * (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8570 * GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8571 * Enable) must be set to 1 in both the DPLL A Control Register
8572 * (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8573 *
8574 * For simplicity We simply keep both bits always enabled in
8575 * both DPLLS. The spec says we should disable the DVO 2X clock
8576 * when not needed, but this seems to work fine in practice.
8577 */
8578 if (IS_I830(dev_priv) ||
8579 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8580 dpll |= DPLL_DVO_2X_MODE;
8581
8582 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8583 intel_panel_use_ssc(dev_priv))
8584 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8585 else
8586 dpll |= PLL_REF_INPUT_DREFCLK;
8587
8588 dpll |= DPLL_VCO_ENABLE;
8589 crtc_state->dpll_hw_state.dpll = dpll;
8590 }
8591
8592 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8593 {
8594 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8595 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8596 enum pipe pipe = crtc->pipe;
8597 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8598 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
8599 u32 crtc_vtotal, crtc_vblank_end;
8600 int vsyncshift = 0;
8601
8602 /* We need to be careful not to changed the adjusted mode, for otherwise
8603 * the hw state checker will get angry at the mismatch. */
8604 crtc_vtotal = adjusted_mode->crtc_vtotal;
8605 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8606
8607 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8608 /* the chip adds 2 halflines automatically */
8609 crtc_vtotal -= 1;
8610 crtc_vblank_end -= 1;
8611
8612 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8613 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8614 else
8615 vsyncshift = adjusted_mode->crtc_hsync_start -
8616 adjusted_mode->crtc_htotal / 2;
8617 if (vsyncshift < 0)
8618 vsyncshift += adjusted_mode->crtc_htotal;
8619 }
8620
8621 if (INTEL_GEN(dev_priv) > 3)
8622 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8623
8624 I915_WRITE(HTOTAL(cpu_transcoder),
8625 (adjusted_mode->crtc_hdisplay - 1) |
8626 ((adjusted_mode->crtc_htotal - 1) << 16));
8627 I915_WRITE(HBLANK(cpu_transcoder),
8628 (adjusted_mode->crtc_hblank_start - 1) |
8629 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8630 I915_WRITE(HSYNC(cpu_transcoder),
8631 (adjusted_mode->crtc_hsync_start - 1) |
8632 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8633
8634 I915_WRITE(VTOTAL(cpu_transcoder),
8635 (adjusted_mode->crtc_vdisplay - 1) |
8636 ((crtc_vtotal - 1) << 16));
8637 I915_WRITE(VBLANK(cpu_transcoder),
8638 (adjusted_mode->crtc_vblank_start - 1) |
8639 ((crtc_vblank_end - 1) << 16));
8640 I915_WRITE(VSYNC(cpu_transcoder),
8641 (adjusted_mode->crtc_vsync_start - 1) |
8642 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8643
8644 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8645 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8646 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8647 * bits. */
8648 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8649 (pipe == PIPE_B || pipe == PIPE_C))
8650 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8651
8652 }
8653
8654 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8655 {
8656 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8657 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8658 enum pipe pipe = crtc->pipe;
8659
8660 /* pipesrc controls the size that is scaled from, which should
8661 * always be the user's requested size.
8662 */
8663 I915_WRITE(PIPESRC(pipe),
8664 ((crtc_state->pipe_src_w - 1) << 16) |
8665 (crtc_state->pipe_src_h - 1));
8666 }
8667
8668 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8669 {
8670 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
8671 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8672
8673 if (IS_GEN(dev_priv, 2))
8674 return false;
8675
8676 if (INTEL_GEN(dev_priv) >= 9 ||
8677 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8678 return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8679 else
8680 return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8681 }
8682
8683 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8684 struct intel_crtc_state *pipe_config)
8685 {
8686 struct drm_device *dev = crtc->base.dev;
8687 struct drm_i915_private *dev_priv = to_i915(dev);
8688 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8689 u32 tmp;
8690
8691 tmp = I915_READ(HTOTAL(cpu_transcoder));
8692 pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8693 pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8694
8695 if (!transcoder_is_dsi(cpu_transcoder)) {
8696 tmp = I915_READ(HBLANK(cpu_transcoder));
8697 pipe_config->hw.adjusted_mode.crtc_hblank_start =
8698 (tmp & 0xffff) + 1;
8699 pipe_config->hw.adjusted_mode.crtc_hblank_end =
8700 ((tmp >> 16) & 0xffff) + 1;
8701 }
8702 tmp = I915_READ(HSYNC(cpu_transcoder));
8703 pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8704 pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8705
8706 tmp = I915_READ(VTOTAL(cpu_transcoder));
8707 pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8708 pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8709
8710 if (!transcoder_is_dsi(cpu_transcoder)) {
8711 tmp = I915_READ(VBLANK(cpu_transcoder));
8712 pipe_config->hw.adjusted_mode.crtc_vblank_start =
8713 (tmp & 0xffff) + 1;
8714 pipe_config->hw.adjusted_mode.crtc_vblank_end =
8715 ((tmp >> 16) & 0xffff) + 1;
8716 }
8717 tmp = I915_READ(VSYNC(cpu_transcoder));
8718 pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8719 pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8720
8721 if (intel_pipe_is_interlaced(pipe_config)) {
8722 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8723 pipe_config->hw.adjusted_mode.crtc_vtotal += 1;
8724 pipe_config->hw.adjusted_mode.crtc_vblank_end += 1;
8725 }
8726 }
8727
8728 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8729 struct intel_crtc_state *pipe_config)
8730 {
8731 struct drm_device *dev = crtc->base.dev;
8732 struct drm_i915_private *dev_priv = to_i915(dev);
8733 u32 tmp;
8734
8735 tmp = I915_READ(PIPESRC(crtc->pipe));
8736 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8737 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8738
8739 pipe_config->hw.mode.vdisplay = pipe_config->pipe_src_h;
8740 pipe_config->hw.mode.hdisplay = pipe_config->pipe_src_w;
8741 }
8742
8743 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8744 struct intel_crtc_state *pipe_config)
8745 {
8746 mode->hdisplay = pipe_config->hw.adjusted_mode.crtc_hdisplay;
8747 mode->htotal = pipe_config->hw.adjusted_mode.crtc_htotal;
8748 mode->hsync_start = pipe_config->hw.adjusted_mode.crtc_hsync_start;
8749 mode->hsync_end = pipe_config->hw.adjusted_mode.crtc_hsync_end;
8750
8751 mode->vdisplay = pipe_config->hw.adjusted_mode.crtc_vdisplay;
8752 mode->vtotal = pipe_config->hw.adjusted_mode.crtc_vtotal;
8753 mode->vsync_start = pipe_config->hw.adjusted_mode.crtc_vsync_start;
8754 mode->vsync_end = pipe_config->hw.adjusted_mode.crtc_vsync_end;
8755
8756 mode->flags = pipe_config->hw.adjusted_mode.flags;
8757 mode->type = DRM_MODE_TYPE_DRIVER;
8758
8759 mode->clock = pipe_config->hw.adjusted_mode.crtc_clock;
8760
8761 mode->hsync = drm_mode_hsync(mode);
8762 mode->vrefresh = drm_mode_vrefresh(mode);
8763 drm_mode_set_name(mode);
8764 }
8765
8766 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8767 {
8768 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
8769 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8770 u32 pipeconf;
8771
8772 pipeconf = 0;
8773
8774 /* we keep both pipes enabled on 830 */
8775 if (IS_I830(dev_priv))
8776 pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8777
8778 if (crtc_state->double_wide)
8779 pipeconf |= PIPECONF_DOUBLE_WIDE;
8780
8781 /* only g4x and later have fancy bpc/dither controls */
8782 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8783 IS_CHERRYVIEW(dev_priv)) {
8784 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8785 if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8786 pipeconf |= PIPECONF_DITHER_EN |
8787 PIPECONF_DITHER_TYPE_SP;
8788
8789 switch (crtc_state->pipe_bpp) {
8790 case 18:
8791 pipeconf |= PIPECONF_6BPC;
8792 break;
8793 case 24:
8794 pipeconf |= PIPECONF_8BPC;
8795 break;
8796 case 30:
8797 pipeconf |= PIPECONF_10BPC;
8798 break;
8799 default:
8800 /* Case prevented by intel_choose_pipe_bpp_dither. */
8801 BUG();
8802 }
8803 }
8804
8805 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8806 if (INTEL_GEN(dev_priv) < 4 ||
8807 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8808 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8809 else
8810 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8811 } else {
8812 pipeconf |= PIPECONF_PROGRESSIVE;
8813 }
8814
8815 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8816 crtc_state->limited_color_range)
8817 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8818
8819 pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
8820
8821 pipeconf |= PIPECONF_FRAME_START_DELAY(0);
8822
8823 I915_WRITE(PIPECONF(crtc->pipe), pipeconf);
8824 POSTING_READ(PIPECONF(crtc->pipe));
8825 }
8826
8827 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8828 struct intel_crtc_state *crtc_state)
8829 {
8830 struct drm_device *dev = crtc->base.dev;
8831 struct drm_i915_private *dev_priv = to_i915(dev);
8832 const struct intel_limit *limit;
8833 int refclk = 48000;
8834
8835 memset(&crtc_state->dpll_hw_state, 0,
8836 sizeof(crtc_state->dpll_hw_state));
8837
8838 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8839 if (intel_panel_use_ssc(dev_priv)) {
8840 refclk = dev_priv->vbt.lvds_ssc_freq;
8841 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8842 }
8843
8844 limit = &intel_limits_i8xx_lvds;
8845 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8846 limit = &intel_limits_i8xx_dvo;
8847 } else {
8848 limit = &intel_limits_i8xx_dac;
8849 }
8850
8851 if (!crtc_state->clock_set &&
8852 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8853 refclk, NULL, &crtc_state->dpll)) {
8854 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8855 return -EINVAL;
8856 }
8857
8858 i8xx_compute_dpll(crtc, crtc_state, NULL);
8859
8860 return 0;
8861 }
8862
8863 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8864 struct intel_crtc_state *crtc_state)
8865 {
8866 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8867 const struct intel_limit *limit;
8868 int refclk = 96000;
8869
8870 memset(&crtc_state->dpll_hw_state, 0,
8871 sizeof(crtc_state->dpll_hw_state));
8872
8873 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8874 if (intel_panel_use_ssc(dev_priv)) {
8875 refclk = dev_priv->vbt.lvds_ssc_freq;
8876 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8877 }
8878
8879 if (intel_is_dual_link_lvds(dev_priv))
8880 limit = &intel_limits_g4x_dual_channel_lvds;
8881 else
8882 limit = &intel_limits_g4x_single_channel_lvds;
8883 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8884 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8885 limit = &intel_limits_g4x_hdmi;
8886 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8887 limit = &intel_limits_g4x_sdvo;
8888 } else {
8889 /* The option is for other outputs */
8890 limit = &intel_limits_i9xx_sdvo;
8891 }
8892
8893 if (!crtc_state->clock_set &&
8894 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8895 refclk, NULL, &crtc_state->dpll)) {
8896 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8897 return -EINVAL;
8898 }
8899
8900 i9xx_compute_dpll(crtc, crtc_state, NULL);
8901
8902 return 0;
8903 }
8904
8905 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8906 struct intel_crtc_state *crtc_state)
8907 {
8908 struct drm_device *dev = crtc->base.dev;
8909 struct drm_i915_private *dev_priv = to_i915(dev);
8910 const struct intel_limit *limit;
8911 int refclk = 96000;
8912
8913 memset(&crtc_state->dpll_hw_state, 0,
8914 sizeof(crtc_state->dpll_hw_state));
8915
8916 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8917 if (intel_panel_use_ssc(dev_priv)) {
8918 refclk = dev_priv->vbt.lvds_ssc_freq;
8919 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8920 }
8921
8922 limit = &pnv_limits_lvds;
8923 } else {
8924 limit = &pnv_limits_sdvo;
8925 }
8926
8927 if (!crtc_state->clock_set &&
8928 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8929 refclk, NULL, &crtc_state->dpll)) {
8930 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8931 return -EINVAL;
8932 }
8933
8934 i9xx_compute_dpll(crtc, crtc_state, NULL);
8935
8936 return 0;
8937 }
8938
8939 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8940 struct intel_crtc_state *crtc_state)
8941 {
8942 struct drm_device *dev = crtc->base.dev;
8943 struct drm_i915_private *dev_priv = to_i915(dev);
8944 const struct intel_limit *limit;
8945 int refclk = 96000;
8946
8947 memset(&crtc_state->dpll_hw_state, 0,
8948 sizeof(crtc_state->dpll_hw_state));
8949
8950 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8951 if (intel_panel_use_ssc(dev_priv)) {
8952 refclk = dev_priv->vbt.lvds_ssc_freq;
8953 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8954 }
8955
8956 limit = &intel_limits_i9xx_lvds;
8957 } else {
8958 limit = &intel_limits_i9xx_sdvo;
8959 }
8960
8961 if (!crtc_state->clock_set &&
8962 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8963 refclk, NULL, &crtc_state->dpll)) {
8964 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8965 return -EINVAL;
8966 }
8967
8968 i9xx_compute_dpll(crtc, crtc_state, NULL);
8969
8970 return 0;
8971 }
8972
8973 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8974 struct intel_crtc_state *crtc_state)
8975 {
8976 int refclk = 100000;
8977 const struct intel_limit *limit = &intel_limits_chv;
8978
8979 memset(&crtc_state->dpll_hw_state, 0,
8980 sizeof(crtc_state->dpll_hw_state));
8981
8982 if (!crtc_state->clock_set &&
8983 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8984 refclk, NULL, &crtc_state->dpll)) {
8985 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8986 return -EINVAL;
8987 }
8988
8989 chv_compute_dpll(crtc, crtc_state);
8990
8991 return 0;
8992 }
8993
8994 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8995 struct intel_crtc_state *crtc_state)
8996 {
8997 int refclk = 100000;
8998 const struct intel_limit *limit = &intel_limits_vlv;
8999
9000 memset(&crtc_state->dpll_hw_state, 0,
9001 sizeof(crtc_state->dpll_hw_state));
9002
9003 if (!crtc_state->clock_set &&
9004 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9005 refclk, NULL, &crtc_state->dpll)) {
9006 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9007 return -EINVAL;
9008 }
9009
9010 vlv_compute_dpll(crtc, crtc_state);
9011
9012 return 0;
9013 }
9014
9015 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
9016 {
9017 if (IS_I830(dev_priv))
9018 return false;
9019
9020 return INTEL_GEN(dev_priv) >= 4 ||
9021 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
9022 }
9023
9024 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
9025 struct intel_crtc_state *pipe_config)
9026 {
9027 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9028 u32 tmp;
9029
9030 if (!i9xx_has_pfit(dev_priv))
9031 return;
9032
9033 tmp = I915_READ(PFIT_CONTROL);
9034 if (!(tmp & PFIT_ENABLE))
9035 return;
9036
9037 /* Check whether the pfit is attached to our pipe. */
9038 if (INTEL_GEN(dev_priv) < 4) {
9039 if (crtc->pipe != PIPE_B)
9040 return;
9041 } else {
9042 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
9043 return;
9044 }
9045
9046 pipe_config->gmch_pfit.control = tmp;
9047 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
9048 }
9049
9050 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
9051 struct intel_crtc_state *pipe_config)
9052 {
9053 struct drm_device *dev = crtc->base.dev;
9054 struct drm_i915_private *dev_priv = to_i915(dev);
9055 enum pipe pipe = crtc->pipe;
9056 struct dpll clock;
9057 u32 mdiv;
9058 int refclk = 100000;
9059
9060 /* In case of DSI, DPLL will not be used */
9061 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9062 return;
9063
9064 vlv_dpio_get(dev_priv);
9065 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
9066 vlv_dpio_put(dev_priv);
9067
9068 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
9069 clock.m2 = mdiv & DPIO_M2DIV_MASK;
9070 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
9071 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
9072 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
9073
9074 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
9075 }
9076
9077 static void
9078 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
9079 struct intel_initial_plane_config *plane_config)
9080 {
9081 struct drm_device *dev = crtc->base.dev;
9082 struct drm_i915_private *dev_priv = to_i915(dev);
9083 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9084 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9085 enum pipe pipe;
9086 u32 val, base, offset;
9087 int fourcc, pixel_format;
9088 unsigned int aligned_height;
9089 struct drm_framebuffer *fb;
9090 struct intel_framebuffer *intel_fb;
9091
9092 if (!plane->get_hw_state(plane, &pipe))
9093 return;
9094
9095 WARN_ON(pipe != crtc->pipe);
9096
9097 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9098 if (!intel_fb) {
9099 DRM_DEBUG_KMS("failed to alloc fb\n");
9100 return;
9101 }
9102
9103 fb = &intel_fb->base;
9104
9105 fb->dev = dev;
9106
9107 val = I915_READ(DSPCNTR(i9xx_plane));
9108
9109 if (INTEL_GEN(dev_priv) >= 4) {
9110 if (val & DISPPLANE_TILED) {
9111 plane_config->tiling = I915_TILING_X;
9112 fb->modifier = I915_FORMAT_MOD_X_TILED;
9113 }
9114
9115 if (val & DISPPLANE_ROTATE_180)
9116 plane_config->rotation = DRM_MODE_ROTATE_180;
9117 }
9118
9119 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
9120 val & DISPPLANE_MIRROR)
9121 plane_config->rotation |= DRM_MODE_REFLECT_X;
9122
9123 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9124 fourcc = i9xx_format_to_fourcc(pixel_format);
9125 fb->format = drm_format_info(fourcc);
9126
9127 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
9128 offset = I915_READ(DSPOFFSET(i9xx_plane));
9129 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
9130 } else if (INTEL_GEN(dev_priv) >= 4) {
9131 if (plane_config->tiling)
9132 offset = I915_READ(DSPTILEOFF(i9xx_plane));
9133 else
9134 offset = I915_READ(DSPLINOFF(i9xx_plane));
9135 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
9136 } else {
9137 base = I915_READ(DSPADDR(i9xx_plane));
9138 }
9139 plane_config->base = base;
9140
9141 val = I915_READ(PIPESRC(pipe));
9142 fb->width = ((val >> 16) & 0xfff) + 1;
9143 fb->height = ((val >> 0) & 0xfff) + 1;
9144
9145 val = I915_READ(DSPSTRIDE(i9xx_plane));
9146 fb->pitches[0] = val & 0xffffffc0;
9147
9148 aligned_height = intel_fb_align_height(fb, 0, fb->height);
9149
9150 plane_config->size = fb->pitches[0] * aligned_height;
9151
9152 DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9153 crtc->base.name, plane->base.name, fb->width, fb->height,
9154 fb->format->cpp[0] * 8, base, fb->pitches[0],
9155 plane_config->size);
9156
9157 plane_config->fb = intel_fb;
9158 }
9159
9160 static void chv_crtc_clock_get(struct intel_crtc *crtc,
9161 struct intel_crtc_state *pipe_config)
9162 {
9163 struct drm_device *dev = crtc->base.dev;
9164 struct drm_i915_private *dev_priv = to_i915(dev);
9165 enum pipe pipe = crtc->pipe;
9166 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9167 struct dpll clock;
9168 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
9169 int refclk = 100000;
9170
9171 /* In case of DSI, DPLL will not be used */
9172 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
9173 return;
9174
9175 vlv_dpio_get(dev_priv);
9176 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
9177 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
9178 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
9179 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
9180 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
9181 vlv_dpio_put(dev_priv);
9182
9183 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
9184 clock.m2 = (pll_dw0 & 0xff) << 22;
9185 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
9186 clock.m2 |= pll_dw2 & 0x3fffff;
9187 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
9188 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
9189 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
9190
9191 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
9192 }
9193
9194 static enum intel_output_format
9195 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
9196 {
9197 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9198 u32 tmp;
9199
9200 tmp = I915_READ(PIPEMISC(crtc->pipe));
9201
9202 if (tmp & PIPEMISC_YUV420_ENABLE) {
9203 /* We support 4:2:0 in full blend mode only */
9204 WARN_ON((tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
9205
9206 return INTEL_OUTPUT_FORMAT_YCBCR420;
9207 } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
9208 return INTEL_OUTPUT_FORMAT_YCBCR444;
9209 } else {
9210 return INTEL_OUTPUT_FORMAT_RGB;
9211 }
9212 }
9213
9214 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
9215 {
9216 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9217 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9218 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9219 enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
9220 u32 tmp;
9221
9222 tmp = I915_READ(DSPCNTR(i9xx_plane));
9223
9224 if (tmp & DISPPLANE_GAMMA_ENABLE)
9225 crtc_state->gamma_enable = true;
9226
9227 if (!HAS_GMCH(dev_priv) &&
9228 tmp & DISPPLANE_PIPE_CSC_ENABLE)
9229 crtc_state->csc_enable = true;
9230 }
9231
9232 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
9233 struct intel_crtc_state *pipe_config)
9234 {
9235 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9236 enum intel_display_power_domain power_domain;
9237 intel_wakeref_t wakeref;
9238 u32 tmp;
9239 bool ret;
9240
9241 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9242 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
9243 if (!wakeref)
9244 return false;
9245
9246 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
9247 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9248 pipe_config->shared_dpll = NULL;
9249 pipe_config->master_transcoder = INVALID_TRANSCODER;
9250
9251 ret = false;
9252
9253 tmp = I915_READ(PIPECONF(crtc->pipe));
9254 if (!(tmp & PIPECONF_ENABLE))
9255 goto out;
9256
9257 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
9258 IS_CHERRYVIEW(dev_priv)) {
9259 switch (tmp & PIPECONF_BPC_MASK) {
9260 case PIPECONF_6BPC:
9261 pipe_config->pipe_bpp = 18;
9262 break;
9263 case PIPECONF_8BPC:
9264 pipe_config->pipe_bpp = 24;
9265 break;
9266 case PIPECONF_10BPC:
9267 pipe_config->pipe_bpp = 30;
9268 break;
9269 default:
9270 break;
9271 }
9272 }
9273
9274 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
9275 (tmp & PIPECONF_COLOR_RANGE_SELECT))
9276 pipe_config->limited_color_range = true;
9277
9278 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
9279 PIPECONF_GAMMA_MODE_SHIFT;
9280
9281 if (IS_CHERRYVIEW(dev_priv))
9282 pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe));
9283
9284 i9xx_get_pipe_color_config(pipe_config);
9285 intel_color_get_config(pipe_config);
9286
9287 if (INTEL_GEN(dev_priv) < 4)
9288 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
9289
9290 intel_get_pipe_timings(crtc, pipe_config);
9291 intel_get_pipe_src_size(crtc, pipe_config);
9292
9293 i9xx_get_pfit_config(crtc, pipe_config);
9294
9295 if (INTEL_GEN(dev_priv) >= 4) {
9296 /* No way to read it out on pipes B and C */
9297 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
9298 tmp = dev_priv->chv_dpll_md[crtc->pipe];
9299 else
9300 tmp = I915_READ(DPLL_MD(crtc->pipe));
9301 pipe_config->pixel_multiplier =
9302 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
9303 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
9304 pipe_config->dpll_hw_state.dpll_md = tmp;
9305 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
9306 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
9307 tmp = I915_READ(DPLL(crtc->pipe));
9308 pipe_config->pixel_multiplier =
9309 ((tmp & SDVO_MULTIPLIER_MASK)
9310 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
9311 } else {
9312 /* Note that on i915G/GM the pixel multiplier is in the sdvo
9313 * port and will be fixed up in the encoder->get_config
9314 * function. */
9315 pipe_config->pixel_multiplier = 1;
9316 }
9317 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
9318 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
9319 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
9320 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
9321 } else {
9322 /* Mask out read-only status bits. */
9323 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
9324 DPLL_PORTC_READY_MASK |
9325 DPLL_PORTB_READY_MASK);
9326 }
9327
9328 if (IS_CHERRYVIEW(dev_priv))
9329 chv_crtc_clock_get(crtc, pipe_config);
9330 else if (IS_VALLEYVIEW(dev_priv))
9331 vlv_crtc_clock_get(crtc, pipe_config);
9332 else
9333 i9xx_crtc_clock_get(crtc, pipe_config);
9334
9335 /*
9336 * Normally the dotclock is filled in by the encoder .get_config()
9337 * but in case the pipe is enabled w/o any ports we need a sane
9338 * default.
9339 */
9340 pipe_config->hw.adjusted_mode.crtc_clock =
9341 pipe_config->port_clock / pipe_config->pixel_multiplier;
9342
9343 ret = true;
9344
9345 out:
9346 intel_display_power_put(dev_priv, power_domain, wakeref);
9347
9348 return ret;
9349 }
9350
9351 static void ilk_init_pch_refclk(struct drm_i915_private *dev_priv)
9352 {
9353 struct intel_encoder *encoder;
9354 int i;
9355 u32 val, final;
9356 bool has_lvds = false;
9357 bool has_cpu_edp = false;
9358 bool has_panel = false;
9359 bool has_ck505 = false;
9360 bool can_ssc = false;
9361 bool using_ssc_source = false;
9362
9363 /* We need to take the global config into account */
9364 for_each_intel_encoder(&dev_priv->drm, encoder) {
9365 switch (encoder->type) {
9366 case INTEL_OUTPUT_LVDS:
9367 has_panel = true;
9368 has_lvds = true;
9369 break;
9370 case INTEL_OUTPUT_EDP:
9371 has_panel = true;
9372 if (encoder->port == PORT_A)
9373 has_cpu_edp = true;
9374 break;
9375 default:
9376 break;
9377 }
9378 }
9379
9380 if (HAS_PCH_IBX(dev_priv)) {
9381 has_ck505 = dev_priv->vbt.display_clock_mode;
9382 can_ssc = has_ck505;
9383 } else {
9384 has_ck505 = false;
9385 can_ssc = true;
9386 }
9387
9388 /* Check if any DPLLs are using the SSC source */
9389 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9390 u32 temp = I915_READ(PCH_DPLL(i));
9391
9392 if (!(temp & DPLL_VCO_ENABLE))
9393 continue;
9394
9395 if ((temp & PLL_REF_INPUT_MASK) ==
9396 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9397 using_ssc_source = true;
9398 break;
9399 }
9400 }
9401
9402 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9403 has_panel, has_lvds, has_ck505, using_ssc_source);
9404
9405 /* Ironlake: try to setup display ref clock before DPLL
9406 * enabling. This is only under driver's control after
9407 * PCH B stepping, previous chipset stepping should be
9408 * ignoring this setting.
9409 */
9410 val = I915_READ(PCH_DREF_CONTROL);
9411
9412 /* As we must carefully and slowly disable/enable each source in turn,
9413 * compute the final state we want first and check if we need to
9414 * make any changes at all.
9415 */
9416 final = val;
9417 final &= ~DREF_NONSPREAD_SOURCE_MASK;
9418 if (has_ck505)
9419 final |= DREF_NONSPREAD_CK505_ENABLE;
9420 else
9421 final |= DREF_NONSPREAD_SOURCE_ENABLE;
9422
9423 final &= ~DREF_SSC_SOURCE_MASK;
9424 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9425 final &= ~DREF_SSC1_ENABLE;
9426
9427 if (has_panel) {
9428 final |= DREF_SSC_SOURCE_ENABLE;
9429
9430 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9431 final |= DREF_SSC1_ENABLE;
9432
9433 if (has_cpu_edp) {
9434 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9435 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9436 else
9437 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9438 } else
9439 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9440 } else if (using_ssc_source) {
9441 final |= DREF_SSC_SOURCE_ENABLE;
9442 final |= DREF_SSC1_ENABLE;
9443 }
9444
9445 if (final == val)
9446 return;
9447
9448 /* Always enable nonspread source */
9449 val &= ~DREF_NONSPREAD_SOURCE_MASK;
9450
9451 if (has_ck505)
9452 val |= DREF_NONSPREAD_CK505_ENABLE;
9453 else
9454 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9455
9456 if (has_panel) {
9457 val &= ~DREF_SSC_SOURCE_MASK;
9458 val |= DREF_SSC_SOURCE_ENABLE;
9459
9460 /* SSC must be turned on before enabling the CPU output */
9461 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9462 DRM_DEBUG_KMS("Using SSC on panel\n");
9463 val |= DREF_SSC1_ENABLE;
9464 } else
9465 val &= ~DREF_SSC1_ENABLE;
9466
9467 /* Get SSC going before enabling the outputs */
9468 I915_WRITE(PCH_DREF_CONTROL, val);
9469 POSTING_READ(PCH_DREF_CONTROL);
9470 udelay(200);
9471
9472 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9473
9474 /* Enable CPU source on CPU attached eDP */
9475 if (has_cpu_edp) {
9476 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9477 DRM_DEBUG_KMS("Using SSC on eDP\n");
9478 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9479 } else
9480 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9481 } else
9482 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9483
9484 I915_WRITE(PCH_DREF_CONTROL, val);
9485 POSTING_READ(PCH_DREF_CONTROL);
9486 udelay(200);
9487 } else {
9488 DRM_DEBUG_KMS("Disabling CPU source output\n");
9489
9490 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9491
9492 /* Turn off CPU output */
9493 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9494
9495 I915_WRITE(PCH_DREF_CONTROL, val);
9496 POSTING_READ(PCH_DREF_CONTROL);
9497 udelay(200);
9498
9499 if (!using_ssc_source) {
9500 DRM_DEBUG_KMS("Disabling SSC source\n");
9501
9502 /* Turn off the SSC source */
9503 val &= ~DREF_SSC_SOURCE_MASK;
9504 val |= DREF_SSC_SOURCE_DISABLE;
9505
9506 /* Turn off SSC1 */
9507 val &= ~DREF_SSC1_ENABLE;
9508
9509 I915_WRITE(PCH_DREF_CONTROL, val);
9510 POSTING_READ(PCH_DREF_CONTROL);
9511 udelay(200);
9512 }
9513 }
9514
9515 BUG_ON(val != final);
9516 }
9517
9518 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9519 {
9520 u32 tmp;
9521
9522 tmp = I915_READ(SOUTH_CHICKEN2);
9523 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9524 I915_WRITE(SOUTH_CHICKEN2, tmp);
9525
9526 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9527 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9528 DRM_ERROR("FDI mPHY reset assert timeout\n");
9529
9530 tmp = I915_READ(SOUTH_CHICKEN2);
9531 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9532 I915_WRITE(SOUTH_CHICKEN2, tmp);
9533
9534 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9535 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9536 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9537 }
9538
9539 /* WaMPhyProgramming:hsw */
9540 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9541 {
9542 u32 tmp;
9543
9544 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9545 tmp &= ~(0xFF << 24);
9546 tmp |= (0x12 << 24);
9547 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9548
9549 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9550 tmp |= (1 << 11);
9551 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9552
9553 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9554 tmp |= (1 << 11);
9555 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9556
9557 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9558 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9559 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9560
9561 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9562 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9563 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9564
9565 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9566 tmp &= ~(7 << 13);
9567 tmp |= (5 << 13);
9568 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9569
9570 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9571 tmp &= ~(7 << 13);
9572 tmp |= (5 << 13);
9573 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9574
9575 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9576 tmp &= ~0xFF;
9577 tmp |= 0x1C;
9578 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9579
9580 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9581 tmp &= ~0xFF;
9582 tmp |= 0x1C;
9583 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9584
9585 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9586 tmp &= ~(0xFF << 16);
9587 tmp |= (0x1C << 16);
9588 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9589
9590 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9591 tmp &= ~(0xFF << 16);
9592 tmp |= (0x1C << 16);
9593 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9594
9595 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9596 tmp |= (1 << 27);
9597 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9598
9599 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9600 tmp |= (1 << 27);
9601 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9602
9603 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9604 tmp &= ~(0xF << 28);
9605 tmp |= (4 << 28);
9606 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9607
9608 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9609 tmp &= ~(0xF << 28);
9610 tmp |= (4 << 28);
9611 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9612 }
9613
9614 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9615 * Programming" based on the parameters passed:
9616 * - Sequence to enable CLKOUT_DP
9617 * - Sequence to enable CLKOUT_DP without spread
9618 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9619 */
9620 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9621 bool with_spread, bool with_fdi)
9622 {
9623 u32 reg, tmp;
9624
9625 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9626 with_spread = true;
9627 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9628 with_fdi, "LP PCH doesn't have FDI\n"))
9629 with_fdi = false;
9630
9631 mutex_lock(&dev_priv->sb_lock);
9632
9633 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9634 tmp &= ~SBI_SSCCTL_DISABLE;
9635 tmp |= SBI_SSCCTL_PATHALT;
9636 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9637
9638 udelay(24);
9639
9640 if (with_spread) {
9641 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9642 tmp &= ~SBI_SSCCTL_PATHALT;
9643 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9644
9645 if (with_fdi) {
9646 lpt_reset_fdi_mphy(dev_priv);
9647 lpt_program_fdi_mphy(dev_priv);
9648 }
9649 }
9650
9651 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9652 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9653 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9654 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9655
9656 mutex_unlock(&dev_priv->sb_lock);
9657 }
9658
9659 /* Sequence to disable CLKOUT_DP */
9660 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9661 {
9662 u32 reg, tmp;
9663
9664 mutex_lock(&dev_priv->sb_lock);
9665
9666 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9667 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9668 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9669 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9670
9671 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9672 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9673 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9674 tmp |= SBI_SSCCTL_PATHALT;
9675 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9676 udelay(32);
9677 }
9678 tmp |= SBI_SSCCTL_DISABLE;
9679 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9680 }
9681
9682 mutex_unlock(&dev_priv->sb_lock);
9683 }
9684
9685 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9686
9687 static const u16 sscdivintphase[] = {
9688 [BEND_IDX( 50)] = 0x3B23,
9689 [BEND_IDX( 45)] = 0x3B23,
9690 [BEND_IDX( 40)] = 0x3C23,
9691 [BEND_IDX( 35)] = 0x3C23,
9692 [BEND_IDX( 30)] = 0x3D23,
9693 [BEND_IDX( 25)] = 0x3D23,
9694 [BEND_IDX( 20)] = 0x3E23,
9695 [BEND_IDX( 15)] = 0x3E23,
9696 [BEND_IDX( 10)] = 0x3F23,
9697 [BEND_IDX( 5)] = 0x3F23,
9698 [BEND_IDX( 0)] = 0x0025,
9699 [BEND_IDX( -5)] = 0x0025,
9700 [BEND_IDX(-10)] = 0x0125,
9701 [BEND_IDX(-15)] = 0x0125,
9702 [BEND_IDX(-20)] = 0x0225,
9703 [BEND_IDX(-25)] = 0x0225,
9704 [BEND_IDX(-30)] = 0x0325,
9705 [BEND_IDX(-35)] = 0x0325,
9706 [BEND_IDX(-40)] = 0x0425,
9707 [BEND_IDX(-45)] = 0x0425,
9708 [BEND_IDX(-50)] = 0x0525,
9709 };
9710
9711 /*
9712 * Bend CLKOUT_DP
9713 * steps -50 to 50 inclusive, in steps of 5
9714 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9715 * change in clock period = -(steps / 10) * 5.787 ps
9716 */
9717 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9718 {
9719 u32 tmp;
9720 int idx = BEND_IDX(steps);
9721
9722 if (WARN_ON(steps % 5 != 0))
9723 return;
9724
9725 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9726 return;
9727
9728 mutex_lock(&dev_priv->sb_lock);
9729
9730 if (steps % 10 != 0)
9731 tmp = 0xAAAAAAAB;
9732 else
9733 tmp = 0x00000000;
9734 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9735
9736 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9737 tmp &= 0xffff0000;
9738 tmp |= sscdivintphase[idx];
9739 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9740
9741 mutex_unlock(&dev_priv->sb_lock);
9742 }
9743
9744 #undef BEND_IDX
9745
9746 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9747 {
9748 u32 fuse_strap = I915_READ(FUSE_STRAP);
9749 u32 ctl = I915_READ(SPLL_CTL);
9750
9751 if ((ctl & SPLL_PLL_ENABLE) == 0)
9752 return false;
9753
9754 if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9755 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9756 return true;
9757
9758 if (IS_BROADWELL(dev_priv) &&
9759 (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9760 return true;
9761
9762 return false;
9763 }
9764
9765 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
9766 enum intel_dpll_id id)
9767 {
9768 u32 fuse_strap = I915_READ(FUSE_STRAP);
9769 u32 ctl = I915_READ(WRPLL_CTL(id));
9770
9771 if ((ctl & WRPLL_PLL_ENABLE) == 0)
9772 return false;
9773
9774 if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
9775 return true;
9776
9777 if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
9778 (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
9779 (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9780 return true;
9781
9782 return false;
9783 }
9784
9785 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9786 {
9787 struct intel_encoder *encoder;
9788 bool has_fdi = false;
9789
9790 for_each_intel_encoder(&dev_priv->drm, encoder) {
9791 switch (encoder->type) {
9792 case INTEL_OUTPUT_ANALOG:
9793 has_fdi = true;
9794 break;
9795 default:
9796 break;
9797 }
9798 }
9799
9800 /*
9801 * The BIOS may have decided to use the PCH SSC
9802 * reference so we must not disable it until the
9803 * relevant PLLs have stopped relying on it. We'll
9804 * just leave the PCH SSC reference enabled in case
9805 * any active PLL is using it. It will get disabled
9806 * after runtime suspend if we don't have FDI.
9807 *
9808 * TODO: Move the whole reference clock handling
9809 * to the modeset sequence proper so that we can
9810 * actually enable/disable/reconfigure these things
9811 * safely. To do that we need to introduce a real
9812 * clock hierarchy. That would also allow us to do
9813 * clock bending finally.
9814 */
9815 dev_priv->pch_ssc_use = 0;
9816
9817 if (spll_uses_pch_ssc(dev_priv)) {
9818 DRM_DEBUG_KMS("SPLL using PCH SSC\n");
9819 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
9820 }
9821
9822 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
9823 DRM_DEBUG_KMS("WRPLL1 using PCH SSC\n");
9824 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
9825 }
9826
9827 if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
9828 DRM_DEBUG_KMS("WRPLL2 using PCH SSC\n");
9829 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
9830 }
9831
9832 if (dev_priv->pch_ssc_use)
9833 return;
9834
9835 if (has_fdi) {
9836 lpt_bend_clkout_dp(dev_priv, 0);
9837 lpt_enable_clkout_dp(dev_priv, true, true);
9838 } else {
9839 lpt_disable_clkout_dp(dev_priv);
9840 }
9841 }
9842
9843 /*
9844 * Initialize reference clocks when the driver loads
9845 */
9846 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9847 {
9848 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9849 ilk_init_pch_refclk(dev_priv);
9850 else if (HAS_PCH_LPT(dev_priv))
9851 lpt_init_pch_refclk(dev_priv);
9852 }
9853
9854 static void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state)
9855 {
9856 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9857 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9858 enum pipe pipe = crtc->pipe;
9859 u32 val;
9860
9861 val = 0;
9862
9863 switch (crtc_state->pipe_bpp) {
9864 case 18:
9865 val |= PIPECONF_6BPC;
9866 break;
9867 case 24:
9868 val |= PIPECONF_8BPC;
9869 break;
9870 case 30:
9871 val |= PIPECONF_10BPC;
9872 break;
9873 case 36:
9874 val |= PIPECONF_12BPC;
9875 break;
9876 default:
9877 /* Case prevented by intel_choose_pipe_bpp_dither. */
9878 BUG();
9879 }
9880
9881 if (crtc_state->dither)
9882 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9883
9884 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9885 val |= PIPECONF_INTERLACED_ILK;
9886 else
9887 val |= PIPECONF_PROGRESSIVE;
9888
9889 /*
9890 * This would end up with an odd purple hue over
9891 * the entire display. Make sure we don't do it.
9892 */
9893 WARN_ON(crtc_state->limited_color_range &&
9894 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
9895
9896 if (crtc_state->limited_color_range)
9897 val |= PIPECONF_COLOR_RANGE_SELECT;
9898
9899 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
9900 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
9901
9902 val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9903
9904 val |= PIPECONF_FRAME_START_DELAY(0);
9905
9906 I915_WRITE(PIPECONF(pipe), val);
9907 POSTING_READ(PIPECONF(pipe));
9908 }
9909
9910 static void hsw_set_pipeconf(const struct intel_crtc_state *crtc_state)
9911 {
9912 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9913 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9914 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
9915 u32 val = 0;
9916
9917 if (IS_HASWELL(dev_priv) && crtc_state->dither)
9918 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9919
9920 if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9921 val |= PIPECONF_INTERLACED_ILK;
9922 else
9923 val |= PIPECONF_PROGRESSIVE;
9924
9925 if (IS_HASWELL(dev_priv) &&
9926 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
9927 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
9928
9929 I915_WRITE(PIPECONF(cpu_transcoder), val);
9930 POSTING_READ(PIPECONF(cpu_transcoder));
9931 }
9932
9933 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
9934 {
9935 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
9936 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9937 u32 val = 0;
9938
9939 switch (crtc_state->pipe_bpp) {
9940 case 18:
9941 val |= PIPEMISC_DITHER_6_BPC;
9942 break;
9943 case 24:
9944 val |= PIPEMISC_DITHER_8_BPC;
9945 break;
9946 case 30:
9947 val |= PIPEMISC_DITHER_10_BPC;
9948 break;
9949 case 36:
9950 val |= PIPEMISC_DITHER_12_BPC;
9951 break;
9952 default:
9953 MISSING_CASE(crtc_state->pipe_bpp);
9954 break;
9955 }
9956
9957 if (crtc_state->dither)
9958 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9959
9960 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
9961 crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
9962 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
9963
9964 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
9965 val |= PIPEMISC_YUV420_ENABLE |
9966 PIPEMISC_YUV420_MODE_FULL_BLEND;
9967
9968 if (INTEL_GEN(dev_priv) >= 11 &&
9969 (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
9970 BIT(PLANE_CURSOR))) == 0)
9971 val |= PIPEMISC_HDR_MODE_PRECISION;
9972
9973 I915_WRITE(PIPEMISC(crtc->pipe), val);
9974 }
9975
9976 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
9977 {
9978 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9979 u32 tmp;
9980
9981 tmp = I915_READ(PIPEMISC(crtc->pipe));
9982
9983 switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
9984 case PIPEMISC_DITHER_6_BPC:
9985 return 18;
9986 case PIPEMISC_DITHER_8_BPC:
9987 return 24;
9988 case PIPEMISC_DITHER_10_BPC:
9989 return 30;
9990 case PIPEMISC_DITHER_12_BPC:
9991 return 36;
9992 default:
9993 MISSING_CASE(tmp);
9994 return 0;
9995 }
9996 }
9997
9998 int ilk_get_lanes_required(int target_clock, int link_bw, int bpp)
9999 {
10000 /*
10001 * Account for spread spectrum to avoid
10002 * oversubscribing the link. Max center spread
10003 * is 2.5%; use 5% for safety's sake.
10004 */
10005 u32 bps = target_clock * bpp * 21 / 20;
10006 return DIV_ROUND_UP(bps, link_bw * 8);
10007 }
10008
10009 static bool ilk_needs_fb_cb_tune(struct dpll *dpll, int factor)
10010 {
10011 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
10012 }
10013
10014 static void ilk_compute_dpll(struct intel_crtc *crtc,
10015 struct intel_crtc_state *crtc_state,
10016 struct dpll *reduced_clock)
10017 {
10018 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10019 u32 dpll, fp, fp2;
10020 int factor;
10021
10022 /* Enable autotuning of the PLL clock (if permissible) */
10023 factor = 21;
10024 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10025 if ((intel_panel_use_ssc(dev_priv) &&
10026 dev_priv->vbt.lvds_ssc_freq == 100000) ||
10027 (HAS_PCH_IBX(dev_priv) &&
10028 intel_is_dual_link_lvds(dev_priv)))
10029 factor = 25;
10030 } else if (crtc_state->sdvo_tv_clock) {
10031 factor = 20;
10032 }
10033
10034 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
10035
10036 if (ilk_needs_fb_cb_tune(&crtc_state->dpll, factor))
10037 fp |= FP_CB_TUNE;
10038
10039 if (reduced_clock) {
10040 fp2 = i9xx_dpll_compute_fp(reduced_clock);
10041
10042 if (reduced_clock->m < factor * reduced_clock->n)
10043 fp2 |= FP_CB_TUNE;
10044 } else {
10045 fp2 = fp;
10046 }
10047
10048 dpll = 0;
10049
10050 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
10051 dpll |= DPLLB_MODE_LVDS;
10052 else
10053 dpll |= DPLLB_MODE_DAC_SERIAL;
10054
10055 dpll |= (crtc_state->pixel_multiplier - 1)
10056 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
10057
10058 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
10059 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
10060 dpll |= DPLL_SDVO_HIGH_SPEED;
10061
10062 if (intel_crtc_has_dp_encoder(crtc_state))
10063 dpll |= DPLL_SDVO_HIGH_SPEED;
10064
10065 /*
10066 * The high speed IO clock is only really required for
10067 * SDVO/HDMI/DP, but we also enable it for CRT to make it
10068 * possible to share the DPLL between CRT and HDMI. Enabling
10069 * the clock needlessly does no real harm, except use up a
10070 * bit of power potentially.
10071 *
10072 * We'll limit this to IVB with 3 pipes, since it has only two
10073 * DPLLs and so DPLL sharing is the only way to get three pipes
10074 * driving PCH ports at the same time. On SNB we could do this,
10075 * and potentially avoid enabling the second DPLL, but it's not
10076 * clear if it''s a win or loss power wise. No point in doing
10077 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
10078 */
10079 if (INTEL_NUM_PIPES(dev_priv) == 3 &&
10080 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
10081 dpll |= DPLL_SDVO_HIGH_SPEED;
10082
10083 /* compute bitmask from p1 value */
10084 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
10085 /* also FPA1 */
10086 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
10087
10088 switch (crtc_state->dpll.p2) {
10089 case 5:
10090 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
10091 break;
10092 case 7:
10093 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
10094 break;
10095 case 10:
10096 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
10097 break;
10098 case 14:
10099 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
10100 break;
10101 }
10102
10103 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
10104 intel_panel_use_ssc(dev_priv))
10105 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
10106 else
10107 dpll |= PLL_REF_INPUT_DREFCLK;
10108
10109 dpll |= DPLL_VCO_ENABLE;
10110
10111 crtc_state->dpll_hw_state.dpll = dpll;
10112 crtc_state->dpll_hw_state.fp0 = fp;
10113 crtc_state->dpll_hw_state.fp1 = fp2;
10114 }
10115
10116 static int ilk_crtc_compute_clock(struct intel_crtc *crtc,
10117 struct intel_crtc_state *crtc_state)
10118 {
10119 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10120 struct intel_atomic_state *state =
10121 to_intel_atomic_state(crtc_state->uapi.state);
10122 const struct intel_limit *limit;
10123 int refclk = 120000;
10124
10125 memset(&crtc_state->dpll_hw_state, 0,
10126 sizeof(crtc_state->dpll_hw_state));
10127
10128 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
10129 if (!crtc_state->has_pch_encoder)
10130 return 0;
10131
10132 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
10133 if (intel_panel_use_ssc(dev_priv)) {
10134 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
10135 dev_priv->vbt.lvds_ssc_freq);
10136 refclk = dev_priv->vbt.lvds_ssc_freq;
10137 }
10138
10139 if (intel_is_dual_link_lvds(dev_priv)) {
10140 if (refclk == 100000)
10141 limit = &ilk_limits_dual_lvds_100m;
10142 else
10143 limit = &ilk_limits_dual_lvds;
10144 } else {
10145 if (refclk == 100000)
10146 limit = &ilk_limits_single_lvds_100m;
10147 else
10148 limit = &ilk_limits_single_lvds;
10149 }
10150 } else {
10151 limit = &ilk_limits_dac;
10152 }
10153
10154 if (!crtc_state->clock_set &&
10155 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
10156 refclk, NULL, &crtc_state->dpll)) {
10157 DRM_ERROR("Couldn't find PLL settings for mode!\n");
10158 return -EINVAL;
10159 }
10160
10161 ilk_compute_dpll(crtc, crtc_state, NULL);
10162
10163 if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
10164 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
10165 pipe_name(crtc->pipe));
10166 return -EINVAL;
10167 }
10168
10169 return 0;
10170 }
10171
10172 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
10173 struct intel_link_m_n *m_n)
10174 {
10175 struct drm_device *dev = crtc->base.dev;
10176 struct drm_i915_private *dev_priv = to_i915(dev);
10177 enum pipe pipe = crtc->pipe;
10178
10179 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
10180 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
10181 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
10182 & ~TU_SIZE_MASK;
10183 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
10184 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
10185 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10186 }
10187
10188 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
10189 enum transcoder transcoder,
10190 struct intel_link_m_n *m_n,
10191 struct intel_link_m_n *m2_n2)
10192 {
10193 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10194 enum pipe pipe = crtc->pipe;
10195
10196 if (INTEL_GEN(dev_priv) >= 5) {
10197 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
10198 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
10199 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
10200 & ~TU_SIZE_MASK;
10201 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
10202 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
10203 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10204
10205 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
10206 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
10207 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
10208 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
10209 & ~TU_SIZE_MASK;
10210 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
10211 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
10212 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10213 }
10214 } else {
10215 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
10216 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
10217 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
10218 & ~TU_SIZE_MASK;
10219 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
10220 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
10221 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
10222 }
10223 }
10224
10225 void intel_dp_get_m_n(struct intel_crtc *crtc,
10226 struct intel_crtc_state *pipe_config)
10227 {
10228 if (pipe_config->has_pch_encoder)
10229 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
10230 else
10231 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10232 &pipe_config->dp_m_n,
10233 &pipe_config->dp_m2_n2);
10234 }
10235
10236 static void ilk_get_fdi_m_n_config(struct intel_crtc *crtc,
10237 struct intel_crtc_state *pipe_config)
10238 {
10239 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
10240 &pipe_config->fdi_m_n, NULL);
10241 }
10242
10243 static void skl_get_pfit_config(struct intel_crtc *crtc,
10244 struct intel_crtc_state *pipe_config)
10245 {
10246 struct drm_device *dev = crtc->base.dev;
10247 struct drm_i915_private *dev_priv = to_i915(dev);
10248 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
10249 u32 ps_ctrl = 0;
10250 int id = -1;
10251 int i;
10252
10253 /* find scaler attached to this pipe */
10254 for (i = 0; i < crtc->num_scalers; i++) {
10255 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
10256 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
10257 id = i;
10258 pipe_config->pch_pfit.enabled = true;
10259 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
10260 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
10261 scaler_state->scalers[i].in_use = true;
10262 break;
10263 }
10264 }
10265
10266 scaler_state->scaler_id = id;
10267 if (id >= 0) {
10268 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
10269 } else {
10270 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
10271 }
10272 }
10273
10274 static void
10275 skl_get_initial_plane_config(struct intel_crtc *crtc,
10276 struct intel_initial_plane_config *plane_config)
10277 {
10278 struct drm_device *dev = crtc->base.dev;
10279 struct drm_i915_private *dev_priv = to_i915(dev);
10280 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
10281 enum plane_id plane_id = plane->id;
10282 enum pipe pipe;
10283 u32 val, base, offset, stride_mult, tiling, alpha;
10284 int fourcc, pixel_format;
10285 unsigned int aligned_height;
10286 struct drm_framebuffer *fb;
10287 struct intel_framebuffer *intel_fb;
10288
10289 if (!plane->get_hw_state(plane, &pipe))
10290 return;
10291
10292 WARN_ON(pipe != crtc->pipe);
10293
10294 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10295 if (!intel_fb) {
10296 DRM_DEBUG_KMS("failed to alloc fb\n");
10297 return;
10298 }
10299
10300 fb = &intel_fb->base;
10301
10302 fb->dev = dev;
10303
10304 val = I915_READ(PLANE_CTL(pipe, plane_id));
10305
10306 if (INTEL_GEN(dev_priv) >= 11)
10307 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
10308 else
10309 pixel_format = val & PLANE_CTL_FORMAT_MASK;
10310
10311 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
10312 alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id));
10313 alpha &= PLANE_COLOR_ALPHA_MASK;
10314 } else {
10315 alpha = val & PLANE_CTL_ALPHA_MASK;
10316 }
10317
10318 fourcc = skl_format_to_fourcc(pixel_format,
10319 val & PLANE_CTL_ORDER_RGBX, alpha);
10320 fb->format = drm_format_info(fourcc);
10321
10322 tiling = val & PLANE_CTL_TILED_MASK;
10323 switch (tiling) {
10324 case PLANE_CTL_TILED_LINEAR:
10325 fb->modifier = DRM_FORMAT_MOD_LINEAR;
10326 break;
10327 case PLANE_CTL_TILED_X:
10328 plane_config->tiling = I915_TILING_X;
10329 fb->modifier = I915_FORMAT_MOD_X_TILED;
10330 break;
10331 case PLANE_CTL_TILED_Y:
10332 plane_config->tiling = I915_TILING_Y;
10333 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10334 fb->modifier = INTEL_GEN(dev_priv) >= 12 ?
10335 I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS :
10336 I915_FORMAT_MOD_Y_TILED_CCS;
10337 else if (val & PLANE_CTL_MEDIA_DECOMPRESSION_ENABLE)
10338 fb->modifier = I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS;
10339 else
10340 fb->modifier = I915_FORMAT_MOD_Y_TILED;
10341 break;
10342 case PLANE_CTL_TILED_YF:
10343 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
10344 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
10345 else
10346 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
10347 break;
10348 default:
10349 MISSING_CASE(tiling);
10350 goto error;
10351 }
10352
10353 /*
10354 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10355 * while i915 HW rotation is clockwise, thats why this swapping.
10356 */
10357 switch (val & PLANE_CTL_ROTATE_MASK) {
10358 case PLANE_CTL_ROTATE_0:
10359 plane_config->rotation = DRM_MODE_ROTATE_0;
10360 break;
10361 case PLANE_CTL_ROTATE_90:
10362 plane_config->rotation = DRM_MODE_ROTATE_270;
10363 break;
10364 case PLANE_CTL_ROTATE_180:
10365 plane_config->rotation = DRM_MODE_ROTATE_180;
10366 break;
10367 case PLANE_CTL_ROTATE_270:
10368 plane_config->rotation = DRM_MODE_ROTATE_90;
10369 break;
10370 }
10371
10372 if (INTEL_GEN(dev_priv) >= 10 &&
10373 val & PLANE_CTL_FLIP_HORIZONTAL)
10374 plane_config->rotation |= DRM_MODE_REFLECT_X;
10375
10376 base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10377 plane_config->base = base;
10378
10379 offset = I915_READ(PLANE_OFFSET(pipe, plane_id));
10380
10381 val = I915_READ(PLANE_SIZE(pipe, plane_id));
10382 fb->height = ((val >> 16) & 0xffff) + 1;
10383 fb->width = ((val >> 0) & 0xffff) + 1;
10384
10385 val = I915_READ(PLANE_STRIDE(pipe, plane_id));
10386 stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10387 fb->pitches[0] = (val & 0x3ff) * stride_mult;
10388
10389 aligned_height = intel_fb_align_height(fb, 0, fb->height);
10390
10391 plane_config->size = fb->pitches[0] * aligned_height;
10392
10393 DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10394 crtc->base.name, plane->base.name, fb->width, fb->height,
10395 fb->format->cpp[0] * 8, base, fb->pitches[0],
10396 plane_config->size);
10397
10398 plane_config->fb = intel_fb;
10399 return;
10400
10401 error:
10402 kfree(intel_fb);
10403 }
10404
10405 static void ilk_get_pfit_config(struct intel_crtc *crtc,
10406 struct intel_crtc_state *pipe_config)
10407 {
10408 struct drm_device *dev = crtc->base.dev;
10409 struct drm_i915_private *dev_priv = to_i915(dev);
10410 u32 tmp;
10411
10412 tmp = I915_READ(PF_CTL(crtc->pipe));
10413
10414 if (tmp & PF_ENABLE) {
10415 pipe_config->pch_pfit.enabled = true;
10416 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
10417 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
10418
10419 /* We currently do not free assignements of panel fitters on
10420 * ivb/hsw (since we don't use the higher upscaling modes which
10421 * differentiates them) so just WARN about this case for now. */
10422 if (IS_GEN(dev_priv, 7)) {
10423 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
10424 PF_PIPE_SEL_IVB(crtc->pipe));
10425 }
10426 }
10427 }
10428
10429 static bool ilk_get_pipe_config(struct intel_crtc *crtc,
10430 struct intel_crtc_state *pipe_config)
10431 {
10432 struct drm_device *dev = crtc->base.dev;
10433 struct drm_i915_private *dev_priv = to_i915(dev);
10434 enum intel_display_power_domain power_domain;
10435 intel_wakeref_t wakeref;
10436 u32 tmp;
10437 bool ret;
10438
10439 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10440 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10441 if (!wakeref)
10442 return false;
10443
10444 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10445 pipe_config->shared_dpll = NULL;
10446 pipe_config->master_transcoder = INVALID_TRANSCODER;
10447
10448 ret = false;
10449 tmp = I915_READ(PIPECONF(crtc->pipe));
10450 if (!(tmp & PIPECONF_ENABLE))
10451 goto out;
10452
10453 switch (tmp & PIPECONF_BPC_MASK) {
10454 case PIPECONF_6BPC:
10455 pipe_config->pipe_bpp = 18;
10456 break;
10457 case PIPECONF_8BPC:
10458 pipe_config->pipe_bpp = 24;
10459 break;
10460 case PIPECONF_10BPC:
10461 pipe_config->pipe_bpp = 30;
10462 break;
10463 case PIPECONF_12BPC:
10464 pipe_config->pipe_bpp = 36;
10465 break;
10466 default:
10467 break;
10468 }
10469
10470 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10471 pipe_config->limited_color_range = true;
10472
10473 switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10474 case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10475 case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10476 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10477 break;
10478 default:
10479 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10480 break;
10481 }
10482
10483 pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10484 PIPECONF_GAMMA_MODE_SHIFT;
10485
10486 pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
10487
10488 i9xx_get_pipe_color_config(pipe_config);
10489 intel_color_get_config(pipe_config);
10490
10491 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10492 struct intel_shared_dpll *pll;
10493 enum intel_dpll_id pll_id;
10494
10495 pipe_config->has_pch_encoder = true;
10496
10497 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
10498 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10499 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10500
10501 ilk_get_fdi_m_n_config(crtc, pipe_config);
10502
10503 if (HAS_PCH_IBX(dev_priv)) {
10504 /*
10505 * The pipe->pch transcoder and pch transcoder->pll
10506 * mapping is fixed.
10507 */
10508 pll_id = (enum intel_dpll_id) crtc->pipe;
10509 } else {
10510 tmp = I915_READ(PCH_DPLL_SEL);
10511 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10512 pll_id = DPLL_ID_PCH_PLL_B;
10513 else
10514 pll_id= DPLL_ID_PCH_PLL_A;
10515 }
10516
10517 pipe_config->shared_dpll =
10518 intel_get_shared_dpll_by_id(dev_priv, pll_id);
10519 pll = pipe_config->shared_dpll;
10520
10521 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10522 &pipe_config->dpll_hw_state));
10523
10524 tmp = pipe_config->dpll_hw_state.dpll;
10525 pipe_config->pixel_multiplier =
10526 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10527 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10528
10529 ilk_pch_clock_get(crtc, pipe_config);
10530 } else {
10531 pipe_config->pixel_multiplier = 1;
10532 }
10533
10534 intel_get_pipe_timings(crtc, pipe_config);
10535 intel_get_pipe_src_size(crtc, pipe_config);
10536
10537 ilk_get_pfit_config(crtc, pipe_config);
10538
10539 ret = true;
10540
10541 out:
10542 intel_display_power_put(dev_priv, power_domain, wakeref);
10543
10544 return ret;
10545 }
10546
10547 static int hsw_crtc_compute_clock(struct intel_crtc *crtc,
10548 struct intel_crtc_state *crtc_state)
10549 {
10550 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10551 struct intel_atomic_state *state =
10552 to_intel_atomic_state(crtc_state->uapi.state);
10553
10554 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10555 INTEL_GEN(dev_priv) >= 11) {
10556 struct intel_encoder *encoder =
10557 intel_get_crtc_new_encoder(state, crtc_state);
10558
10559 if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10560 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
10561 pipe_name(crtc->pipe));
10562 return -EINVAL;
10563 }
10564 }
10565
10566 return 0;
10567 }
10568
10569 static void cnl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10570 struct intel_crtc_state *pipe_config)
10571 {
10572 enum intel_dpll_id id;
10573 u32 temp;
10574
10575 temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10576 id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10577
10578 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
10579 return;
10580
10581 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10582 }
10583
10584 static void icl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10585 struct intel_crtc_state *pipe_config)
10586 {
10587 enum phy phy = intel_port_to_phy(dev_priv, port);
10588 enum icl_port_dpll_id port_dpll_id;
10589 enum intel_dpll_id id;
10590 u32 temp;
10591
10592 if (intel_phy_is_combo(dev_priv, phy)) {
10593 temp = I915_READ(ICL_DPCLKA_CFGCR0) &
10594 ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10595 id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10596 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10597 } else if (intel_phy_is_tc(dev_priv, phy)) {
10598 u32 clk_sel = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10599
10600 if (clk_sel == DDI_CLK_SEL_MG) {
10601 id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10602 port));
10603 port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10604 } else {
10605 WARN_ON(clk_sel < DDI_CLK_SEL_TBT_162);
10606 id = DPLL_ID_ICL_TBTPLL;
10607 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10608 }
10609 } else {
10610 WARN(1, "Invalid port %x\n", port);
10611 return;
10612 }
10613
10614 pipe_config->icl_port_dplls[port_dpll_id].pll =
10615 intel_get_shared_dpll_by_id(dev_priv, id);
10616
10617 icl_set_active_port_dpll(pipe_config, port_dpll_id);
10618 }
10619
10620 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10621 enum port port,
10622 struct intel_crtc_state *pipe_config)
10623 {
10624 enum intel_dpll_id id;
10625
10626 switch (port) {
10627 case PORT_A:
10628 id = DPLL_ID_SKL_DPLL0;
10629 break;
10630 case PORT_B:
10631 id = DPLL_ID_SKL_DPLL1;
10632 break;
10633 case PORT_C:
10634 id = DPLL_ID_SKL_DPLL2;
10635 break;
10636 default:
10637 DRM_ERROR("Incorrect port type\n");
10638 return;
10639 }
10640
10641 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10642 }
10643
10644 static void skl_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10645 struct intel_crtc_state *pipe_config)
10646 {
10647 enum intel_dpll_id id;
10648 u32 temp;
10649
10650 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10651 id = temp >> (port * 3 + 1);
10652
10653 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10654 return;
10655
10656 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10657 }
10658
10659 static void hsw_get_ddi_pll(struct drm_i915_private *dev_priv, enum port port,
10660 struct intel_crtc_state *pipe_config)
10661 {
10662 enum intel_dpll_id id;
10663 u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10664
10665 switch (ddi_pll_sel) {
10666 case PORT_CLK_SEL_WRPLL1:
10667 id = DPLL_ID_WRPLL1;
10668 break;
10669 case PORT_CLK_SEL_WRPLL2:
10670 id = DPLL_ID_WRPLL2;
10671 break;
10672 case PORT_CLK_SEL_SPLL:
10673 id = DPLL_ID_SPLL;
10674 break;
10675 case PORT_CLK_SEL_LCPLL_810:
10676 id = DPLL_ID_LCPLL_810;
10677 break;
10678 case PORT_CLK_SEL_LCPLL_1350:
10679 id = DPLL_ID_LCPLL_1350;
10680 break;
10681 case PORT_CLK_SEL_LCPLL_2700:
10682 id = DPLL_ID_LCPLL_2700;
10683 break;
10684 default:
10685 MISSING_CASE(ddi_pll_sel);
10686 /* fall through */
10687 case PORT_CLK_SEL_NONE:
10688 return;
10689 }
10690
10691 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10692 }
10693
10694 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10695 struct intel_crtc_state *pipe_config,
10696 u64 *power_domain_mask,
10697 intel_wakeref_t *wakerefs)
10698 {
10699 struct drm_device *dev = crtc->base.dev;
10700 struct drm_i915_private *dev_priv = to_i915(dev);
10701 enum intel_display_power_domain power_domain;
10702 unsigned long panel_transcoder_mask = 0;
10703 unsigned long enabled_panel_transcoders = 0;
10704 enum transcoder panel_transcoder;
10705 intel_wakeref_t wf;
10706 u32 tmp;
10707
10708 if (INTEL_GEN(dev_priv) >= 11)
10709 panel_transcoder_mask |=
10710 BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10711
10712 if (HAS_TRANSCODER_EDP(dev_priv))
10713 panel_transcoder_mask |= BIT(TRANSCODER_EDP);
10714
10715 /*
10716 * The pipe->transcoder mapping is fixed with the exception of the eDP
10717 * and DSI transcoders handled below.
10718 */
10719 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10720
10721 /*
10722 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10723 * consistency and less surprising code; it's in always on power).
10724 */
10725 for_each_set_bit(panel_transcoder,
10726 &panel_transcoder_mask,
10727 ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) {
10728 bool force_thru = false;
10729 enum pipe trans_pipe;
10730
10731 tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder));
10732 if (!(tmp & TRANS_DDI_FUNC_ENABLE))
10733 continue;
10734
10735 /*
10736 * Log all enabled ones, only use the first one.
10737 *
10738 * FIXME: This won't work for two separate DSI displays.
10739 */
10740 enabled_panel_transcoders |= BIT(panel_transcoder);
10741 if (enabled_panel_transcoders != BIT(panel_transcoder))
10742 continue;
10743
10744 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10745 default:
10746 WARN(1, "unknown pipe linked to transcoder %s\n",
10747 transcoder_name(panel_transcoder));
10748 /* fall through */
10749 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10750 force_thru = true;
10751 /* fall through */
10752 case TRANS_DDI_EDP_INPUT_A_ON:
10753 trans_pipe = PIPE_A;
10754 break;
10755 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10756 trans_pipe = PIPE_B;
10757 break;
10758 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10759 trans_pipe = PIPE_C;
10760 break;
10761 case TRANS_DDI_EDP_INPUT_D_ONOFF:
10762 trans_pipe = PIPE_D;
10763 break;
10764 }
10765
10766 if (trans_pipe == crtc->pipe) {
10767 pipe_config->cpu_transcoder = panel_transcoder;
10768 pipe_config->pch_pfit.force_thru = force_thru;
10769 }
10770 }
10771
10772 /*
10773 * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
10774 */
10775 WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
10776 enabled_panel_transcoders != BIT(TRANSCODER_EDP));
10777
10778 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10779 WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10780
10781 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10782 if (!wf)
10783 return false;
10784
10785 wakerefs[power_domain] = wf;
10786 *power_domain_mask |= BIT_ULL(power_domain);
10787
10788 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10789
10790 return tmp & PIPECONF_ENABLE;
10791 }
10792
10793 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10794 struct intel_crtc_state *pipe_config,
10795 u64 *power_domain_mask,
10796 intel_wakeref_t *wakerefs)
10797 {
10798 struct drm_device *dev = crtc->base.dev;
10799 struct drm_i915_private *dev_priv = to_i915(dev);
10800 enum intel_display_power_domain power_domain;
10801 enum transcoder cpu_transcoder;
10802 intel_wakeref_t wf;
10803 enum port port;
10804 u32 tmp;
10805
10806 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10807 if (port == PORT_A)
10808 cpu_transcoder = TRANSCODER_DSI_A;
10809 else
10810 cpu_transcoder = TRANSCODER_DSI_C;
10811
10812 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10813 WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10814
10815 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10816 if (!wf)
10817 continue;
10818
10819 wakerefs[power_domain] = wf;
10820 *power_domain_mask |= BIT_ULL(power_domain);
10821
10822 /*
10823 * The PLL needs to be enabled with a valid divider
10824 * configuration, otherwise accessing DSI registers will hang
10825 * the machine. See BSpec North Display Engine
10826 * registers/MIPI[BXT]. We can break out here early, since we
10827 * need the same DSI PLL to be enabled for both DSI ports.
10828 */
10829 if (!bxt_dsi_pll_is_enabled(dev_priv))
10830 break;
10831
10832 /* XXX: this works for video mode only */
10833 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10834 if (!(tmp & DPI_ENABLE))
10835 continue;
10836
10837 tmp = I915_READ(MIPI_CTRL(port));
10838 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10839 continue;
10840
10841 pipe_config->cpu_transcoder = cpu_transcoder;
10842 break;
10843 }
10844
10845 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10846 }
10847
10848 static void hsw_get_ddi_port_state(struct intel_crtc *crtc,
10849 struct intel_crtc_state *pipe_config)
10850 {
10851 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10852 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
10853 struct intel_shared_dpll *pll;
10854 enum port port;
10855 u32 tmp;
10856
10857 if (transcoder_is_dsi(cpu_transcoder)) {
10858 port = (cpu_transcoder == TRANSCODER_DSI_A) ?
10859 PORT_A : PORT_B;
10860 } else {
10861 tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
10862 if (INTEL_GEN(dev_priv) >= 12)
10863 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10864 else
10865 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10866 }
10867
10868 if (INTEL_GEN(dev_priv) >= 11)
10869 icl_get_ddi_pll(dev_priv, port, pipe_config);
10870 else if (IS_CANNONLAKE(dev_priv))
10871 cnl_get_ddi_pll(dev_priv, port, pipe_config);
10872 else if (IS_GEN9_BC(dev_priv))
10873 skl_get_ddi_pll(dev_priv, port, pipe_config);
10874 else if (IS_GEN9_LP(dev_priv))
10875 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10876 else
10877 hsw_get_ddi_pll(dev_priv, port, pipe_config);
10878
10879 pll = pipe_config->shared_dpll;
10880 if (pll) {
10881 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10882 &pipe_config->dpll_hw_state));
10883 }
10884
10885 /*
10886 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10887 * DDI E. So just check whether this pipe is wired to DDI E and whether
10888 * the PCH transcoder is on.
10889 */
10890 if (INTEL_GEN(dev_priv) < 9 &&
10891 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10892 pipe_config->has_pch_encoder = true;
10893
10894 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10895 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10896 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10897
10898 ilk_get_fdi_m_n_config(crtc, pipe_config);
10899 }
10900 }
10901
10902 static enum transcoder transcoder_master_readout(struct drm_i915_private *dev_priv,
10903 enum transcoder cpu_transcoder)
10904 {
10905 u32 trans_port_sync, master_select;
10906
10907 trans_port_sync = I915_READ(TRANS_DDI_FUNC_CTL2(cpu_transcoder));
10908
10909 if ((trans_port_sync & PORT_SYNC_MODE_ENABLE) == 0)
10910 return INVALID_TRANSCODER;
10911
10912 master_select = trans_port_sync &
10913 PORT_SYNC_MODE_MASTER_SELECT_MASK;
10914 if (master_select == 0)
10915 return TRANSCODER_EDP;
10916 else
10917 return master_select - 1;
10918 }
10919
10920 static void icl_get_trans_port_sync_config(struct intel_crtc_state *crtc_state)
10921 {
10922 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
10923 u32 transcoders;
10924 enum transcoder cpu_transcoder;
10925
10926 crtc_state->master_transcoder = transcoder_master_readout(dev_priv,
10927 crtc_state->cpu_transcoder);
10928
10929 transcoders = BIT(TRANSCODER_A) |
10930 BIT(TRANSCODER_B) |
10931 BIT(TRANSCODER_C) |
10932 BIT(TRANSCODER_D);
10933 for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
10934 enum intel_display_power_domain power_domain;
10935 intel_wakeref_t trans_wakeref;
10936
10937 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10938 trans_wakeref = intel_display_power_get_if_enabled(dev_priv,
10939 power_domain);
10940
10941 if (!trans_wakeref)
10942 continue;
10943
10944 if (transcoder_master_readout(dev_priv, cpu_transcoder) ==
10945 crtc_state->cpu_transcoder)
10946 crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder);
10947
10948 intel_display_power_put(dev_priv, power_domain, trans_wakeref);
10949 }
10950
10951 WARN_ON(crtc_state->master_transcoder != INVALID_TRANSCODER &&
10952 crtc_state->sync_mode_slaves_mask);
10953 }
10954
10955 static bool hsw_get_pipe_config(struct intel_crtc *crtc,
10956 struct intel_crtc_state *pipe_config)
10957 {
10958 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10959 intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
10960 enum intel_display_power_domain power_domain;
10961 u64 power_domain_mask;
10962 bool active;
10963
10964 pipe_config->master_transcoder = INVALID_TRANSCODER;
10965
10966 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10967 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10968 if (!wf)
10969 return false;
10970
10971 wakerefs[power_domain] = wf;
10972 power_domain_mask = BIT_ULL(power_domain);
10973
10974 pipe_config->shared_dpll = NULL;
10975
10976 active = hsw_get_transcoder_state(crtc, pipe_config,
10977 &power_domain_mask, wakerefs);
10978
10979 if (IS_GEN9_LP(dev_priv) &&
10980 bxt_get_dsi_transcoder_state(crtc, pipe_config,
10981 &power_domain_mask, wakerefs)) {
10982 WARN_ON(active);
10983 active = true;
10984 }
10985
10986 if (!active)
10987 goto out;
10988
10989 if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
10990 INTEL_GEN(dev_priv) >= 11) {
10991 hsw_get_ddi_port_state(crtc, pipe_config);
10992 intel_get_pipe_timings(crtc, pipe_config);
10993 }
10994
10995 intel_get_pipe_src_size(crtc, pipe_config);
10996
10997 if (IS_HASWELL(dev_priv)) {
10998 u32 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10999
11000 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
11001 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
11002 else
11003 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
11004 } else {
11005 pipe_config->output_format =
11006 bdw_get_pipemisc_output_format(crtc);
11007
11008 /*
11009 * Currently there is no interface defined to
11010 * check user preference between RGB/YCBCR444
11011 * or YCBCR420. So the only possible case for
11012 * YCBCR444 usage is driving YCBCR420 output
11013 * with LSPCON, when pipe is configured for
11014 * YCBCR444 output and LSPCON takes care of
11015 * downsampling it.
11016 */
11017 pipe_config->lspcon_downsampling =
11018 pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
11019 }
11020
11021 pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe));
11022
11023 pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
11024
11025 if (INTEL_GEN(dev_priv) >= 9) {
11026 u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe));
11027
11028 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
11029 pipe_config->gamma_enable = true;
11030
11031 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
11032 pipe_config->csc_enable = true;
11033 } else {
11034 i9xx_get_pipe_color_config(pipe_config);
11035 }
11036
11037 intel_color_get_config(pipe_config);
11038
11039 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
11040 WARN_ON(power_domain_mask & BIT_ULL(power_domain));
11041
11042 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
11043 if (wf) {
11044 wakerefs[power_domain] = wf;
11045 power_domain_mask |= BIT_ULL(power_domain);
11046
11047 if (INTEL_GEN(dev_priv) >= 9)
11048 skl_get_pfit_config(crtc, pipe_config);
11049 else
11050 ilk_get_pfit_config(crtc, pipe_config);
11051 }
11052
11053 if (hsw_crtc_supports_ips(crtc)) {
11054 if (IS_HASWELL(dev_priv))
11055 pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE;
11056 else {
11057 /*
11058 * We cannot readout IPS state on broadwell, set to
11059 * true so we can set it to a defined state on first
11060 * commit.
11061 */
11062 pipe_config->ips_enabled = true;
11063 }
11064 }
11065
11066 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
11067 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
11068 pipe_config->pixel_multiplier =
11069 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
11070 } else {
11071 pipe_config->pixel_multiplier = 1;
11072 }
11073
11074 if (INTEL_GEN(dev_priv) >= 11 &&
11075 !transcoder_is_dsi(pipe_config->cpu_transcoder))
11076 icl_get_trans_port_sync_config(pipe_config);
11077
11078 out:
11079 for_each_power_domain(power_domain, power_domain_mask)
11080 intel_display_power_put(dev_priv,
11081 power_domain, wakerefs[power_domain]);
11082
11083 return active;
11084 }
11085
11086 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
11087 {
11088 struct drm_i915_private *dev_priv =
11089 to_i915(plane_state->uapi.plane->dev);
11090 const struct drm_framebuffer *fb = plane_state->hw.fb;
11091 const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11092 u32 base;
11093
11094 if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
11095 base = sg_dma_address(obj->mm.pages->sgl);
11096 else
11097 base = intel_plane_ggtt_offset(plane_state);
11098
11099 return base + plane_state->color_plane[0].offset;
11100 }
11101
11102 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
11103 {
11104 int x = plane_state->uapi.dst.x1;
11105 int y = plane_state->uapi.dst.y1;
11106 u32 pos = 0;
11107
11108 if (x < 0) {
11109 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
11110 x = -x;
11111 }
11112 pos |= x << CURSOR_X_SHIFT;
11113
11114 if (y < 0) {
11115 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
11116 y = -y;
11117 }
11118 pos |= y << CURSOR_Y_SHIFT;
11119
11120 return pos;
11121 }
11122
11123 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
11124 {
11125 const struct drm_mode_config *config =
11126 &plane_state->uapi.plane->dev->mode_config;
11127 int width = drm_rect_width(&plane_state->uapi.dst);
11128 int height = drm_rect_height(&plane_state->uapi.dst);
11129
11130 return width > 0 && width <= config->cursor_width &&
11131 height > 0 && height <= config->cursor_height;
11132 }
11133
11134 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
11135 {
11136 struct drm_i915_private *dev_priv =
11137 to_i915(plane_state->uapi.plane->dev);
11138 unsigned int rotation = plane_state->hw.rotation;
11139 int src_x, src_y;
11140 u32 offset;
11141 int ret;
11142
11143 ret = intel_plane_compute_gtt(plane_state);
11144 if (ret)
11145 return ret;
11146
11147 if (!plane_state->uapi.visible)
11148 return 0;
11149
11150 src_x = plane_state->uapi.src.x1 >> 16;
11151 src_y = plane_state->uapi.src.y1 >> 16;
11152
11153 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
11154 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
11155 plane_state, 0);
11156
11157 if (src_x != 0 || src_y != 0) {
11158 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
11159 return -EINVAL;
11160 }
11161
11162 /*
11163 * Put the final coordinates back so that the src
11164 * coordinate checks will see the right values.
11165 */
11166 drm_rect_translate_to(&plane_state->uapi.src,
11167 src_x << 16, src_y << 16);
11168
11169 /* ILK+ do this automagically in hardware */
11170 if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
11171 const struct drm_framebuffer *fb = plane_state->hw.fb;
11172 int src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
11173 int src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
11174
11175 offset += (src_h * src_w - 1) * fb->format->cpp[0];
11176 }
11177
11178 plane_state->color_plane[0].offset = offset;
11179 plane_state->color_plane[0].x = src_x;
11180 plane_state->color_plane[0].y = src_y;
11181
11182 return 0;
11183 }
11184
11185 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
11186 struct intel_plane_state *plane_state)
11187 {
11188 const struct drm_framebuffer *fb = plane_state->hw.fb;
11189 int ret;
11190
11191 if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
11192 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11193 return -EINVAL;
11194 }
11195
11196 ret = drm_atomic_helper_check_plane_state(&plane_state->uapi,
11197 &crtc_state->uapi,
11198 DRM_PLANE_HELPER_NO_SCALING,
11199 DRM_PLANE_HELPER_NO_SCALING,
11200 true, true);
11201 if (ret)
11202 return ret;
11203
11204 /* Use the unclipped src/dst rectangles, which we program to hw */
11205 plane_state->uapi.src = drm_plane_state_src(&plane_state->uapi);
11206 plane_state->uapi.dst = drm_plane_state_dest(&plane_state->uapi);
11207
11208 ret = intel_cursor_check_surface(plane_state);
11209 if (ret)
11210 return ret;
11211
11212 if (!plane_state->uapi.visible)
11213 return 0;
11214
11215 ret = intel_plane_check_src_coordinates(plane_state);
11216 if (ret)
11217 return ret;
11218
11219 return 0;
11220 }
11221
11222 static unsigned int
11223 i845_cursor_max_stride(struct intel_plane *plane,
11224 u32 pixel_format, u64 modifier,
11225 unsigned int rotation)
11226 {
11227 return 2048;
11228 }
11229
11230 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11231 {
11232 u32 cntl = 0;
11233
11234 if (crtc_state->gamma_enable)
11235 cntl |= CURSOR_GAMMA_ENABLE;
11236
11237 return cntl;
11238 }
11239
11240 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
11241 const struct intel_plane_state *plane_state)
11242 {
11243 return CURSOR_ENABLE |
11244 CURSOR_FORMAT_ARGB |
11245 CURSOR_STRIDE(plane_state->color_plane[0].stride);
11246 }
11247
11248 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
11249 {
11250 int width = drm_rect_width(&plane_state->uapi.dst);
11251
11252 /*
11253 * 845g/865g are only limited by the width of their cursors,
11254 * the height is arbitrary up to the precision of the register.
11255 */
11256 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
11257 }
11258
11259 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
11260 struct intel_plane_state *plane_state)
11261 {
11262 const struct drm_framebuffer *fb = plane_state->hw.fb;
11263 int ret;
11264
11265 ret = intel_check_cursor(crtc_state, plane_state);
11266 if (ret)
11267 return ret;
11268
11269 /* if we want to turn off the cursor ignore width and height */
11270 if (!fb)
11271 return 0;
11272
11273 /* Check for which cursor types we support */
11274 if (!i845_cursor_size_ok(plane_state)) {
11275 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
11276 drm_rect_width(&plane_state->uapi.dst),
11277 drm_rect_height(&plane_state->uapi.dst));
11278 return -EINVAL;
11279 }
11280
11281 WARN_ON(plane_state->uapi.visible &&
11282 plane_state->color_plane[0].stride != fb->pitches[0]);
11283
11284 switch (fb->pitches[0]) {
11285 case 256:
11286 case 512:
11287 case 1024:
11288 case 2048:
11289 break;
11290 default:
11291 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
11292 fb->pitches[0]);
11293 return -EINVAL;
11294 }
11295
11296 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
11297
11298 return 0;
11299 }
11300
11301 static void i845_update_cursor(struct intel_plane *plane,
11302 const struct intel_crtc_state *crtc_state,
11303 const struct intel_plane_state *plane_state)
11304 {
11305 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11306 u32 cntl = 0, base = 0, pos = 0, size = 0;
11307 unsigned long irqflags;
11308
11309 if (plane_state && plane_state->uapi.visible) {
11310 unsigned int width = drm_rect_width(&plane_state->uapi.dst);
11311 unsigned int height = drm_rect_height(&plane_state->uapi.dst);
11312
11313 cntl = plane_state->ctl |
11314 i845_cursor_ctl_crtc(crtc_state);
11315
11316 size = (height << 12) | width;
11317
11318 base = intel_cursor_base(plane_state);
11319 pos = intel_cursor_position(plane_state);
11320 }
11321
11322 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11323
11324 /* On these chipsets we can only modify the base/size/stride
11325 * whilst the cursor is disabled.
11326 */
11327 if (plane->cursor.base != base ||
11328 plane->cursor.size != size ||
11329 plane->cursor.cntl != cntl) {
11330 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
11331 I915_WRITE_FW(CURBASE(PIPE_A), base);
11332 I915_WRITE_FW(CURSIZE, size);
11333 I915_WRITE_FW(CURPOS(PIPE_A), pos);
11334 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
11335
11336 plane->cursor.base = base;
11337 plane->cursor.size = size;
11338 plane->cursor.cntl = cntl;
11339 } else {
11340 I915_WRITE_FW(CURPOS(PIPE_A), pos);
11341 }
11342
11343 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11344 }
11345
11346 static void i845_disable_cursor(struct intel_plane *plane,
11347 const struct intel_crtc_state *crtc_state)
11348 {
11349 i845_update_cursor(plane, crtc_state, NULL);
11350 }
11351
11352 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
11353 enum pipe *pipe)
11354 {
11355 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11356 enum intel_display_power_domain power_domain;
11357 intel_wakeref_t wakeref;
11358 bool ret;
11359
11360 power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11361 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11362 if (!wakeref)
11363 return false;
11364
11365 ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11366
11367 *pipe = PIPE_A;
11368
11369 intel_display_power_put(dev_priv, power_domain, wakeref);
11370
11371 return ret;
11372 }
11373
11374 static unsigned int
11375 i9xx_cursor_max_stride(struct intel_plane *plane,
11376 u32 pixel_format, u64 modifier,
11377 unsigned int rotation)
11378 {
11379 return plane->base.dev->mode_config.cursor_width * 4;
11380 }
11381
11382 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11383 {
11384 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
11385 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11386 u32 cntl = 0;
11387
11388 if (INTEL_GEN(dev_priv) >= 11)
11389 return cntl;
11390
11391 if (crtc_state->gamma_enable)
11392 cntl = MCURSOR_GAMMA_ENABLE;
11393
11394 if (crtc_state->csc_enable)
11395 cntl |= MCURSOR_PIPE_CSC_ENABLE;
11396
11397 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11398 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11399
11400 return cntl;
11401 }
11402
11403 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11404 const struct intel_plane_state *plane_state)
11405 {
11406 struct drm_i915_private *dev_priv =
11407 to_i915(plane_state->uapi.plane->dev);
11408 u32 cntl = 0;
11409
11410 if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11411 cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11412
11413 switch (drm_rect_width(&plane_state->uapi.dst)) {
11414 case 64:
11415 cntl |= MCURSOR_MODE_64_ARGB_AX;
11416 break;
11417 case 128:
11418 cntl |= MCURSOR_MODE_128_ARGB_AX;
11419 break;
11420 case 256:
11421 cntl |= MCURSOR_MODE_256_ARGB_AX;
11422 break;
11423 default:
11424 MISSING_CASE(drm_rect_width(&plane_state->uapi.dst));
11425 return 0;
11426 }
11427
11428 if (plane_state->hw.rotation & DRM_MODE_ROTATE_180)
11429 cntl |= MCURSOR_ROTATE_180;
11430
11431 return cntl;
11432 }
11433
11434 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11435 {
11436 struct drm_i915_private *dev_priv =
11437 to_i915(plane_state->uapi.plane->dev);
11438 int width = drm_rect_width(&plane_state->uapi.dst);
11439 int height = drm_rect_height(&plane_state->uapi.dst);
11440
11441 if (!intel_cursor_size_ok(plane_state))
11442 return false;
11443
11444 /* Cursor width is limited to a few power-of-two sizes */
11445 switch (width) {
11446 case 256:
11447 case 128:
11448 case 64:
11449 break;
11450 default:
11451 return false;
11452 }
11453
11454 /*
11455 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11456 * height from 8 lines up to the cursor width, when the
11457 * cursor is not rotated. Everything else requires square
11458 * cursors.
11459 */
11460 if (HAS_CUR_FBC(dev_priv) &&
11461 plane_state->hw.rotation & DRM_MODE_ROTATE_0) {
11462 if (height < 8 || height > width)
11463 return false;
11464 } else {
11465 if (height != width)
11466 return false;
11467 }
11468
11469 return true;
11470 }
11471
11472 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11473 struct intel_plane_state *plane_state)
11474 {
11475 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
11476 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11477 const struct drm_framebuffer *fb = plane_state->hw.fb;
11478 enum pipe pipe = plane->pipe;
11479 int ret;
11480
11481 ret = intel_check_cursor(crtc_state, plane_state);
11482 if (ret)
11483 return ret;
11484
11485 /* if we want to turn off the cursor ignore width and height */
11486 if (!fb)
11487 return 0;
11488
11489 /* Check for which cursor types we support */
11490 if (!i9xx_cursor_size_ok(plane_state)) {
11491 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
11492 drm_rect_width(&plane_state->uapi.dst),
11493 drm_rect_height(&plane_state->uapi.dst));
11494 return -EINVAL;
11495 }
11496
11497 WARN_ON(plane_state->uapi.visible &&
11498 plane_state->color_plane[0].stride != fb->pitches[0]);
11499
11500 if (fb->pitches[0] !=
11501 drm_rect_width(&plane_state->uapi.dst) * fb->format->cpp[0]) {
11502 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
11503 fb->pitches[0],
11504 drm_rect_width(&plane_state->uapi.dst));
11505 return -EINVAL;
11506 }
11507
11508 /*
11509 * There's something wrong with the cursor on CHV pipe C.
11510 * If it straddles the left edge of the screen then
11511 * moving it away from the edge or disabling it often
11512 * results in a pipe underrun, and often that can lead to
11513 * dead pipe (constant underrun reported, and it scans
11514 * out just a solid color). To recover from that, the
11515 * display power well must be turned off and on again.
11516 * Refuse the put the cursor into that compromised position.
11517 */
11518 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11519 plane_state->uapi.visible && plane_state->uapi.dst.x1 < 0) {
11520 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
11521 return -EINVAL;
11522 }
11523
11524 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11525
11526 return 0;
11527 }
11528
11529 static void i9xx_update_cursor(struct intel_plane *plane,
11530 const struct intel_crtc_state *crtc_state,
11531 const struct intel_plane_state *plane_state)
11532 {
11533 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11534 enum pipe pipe = plane->pipe;
11535 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11536 unsigned long irqflags;
11537
11538 if (plane_state && plane_state->uapi.visible) {
11539 unsigned width = drm_rect_width(&plane_state->uapi.dst);
11540 unsigned height = drm_rect_height(&plane_state->uapi.dst);
11541
11542 cntl = plane_state->ctl |
11543 i9xx_cursor_ctl_crtc(crtc_state);
11544
11545 if (width != height)
11546 fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11547
11548 base = intel_cursor_base(plane_state);
11549 pos = intel_cursor_position(plane_state);
11550 }
11551
11552 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11553
11554 /*
11555 * On some platforms writing CURCNTR first will also
11556 * cause CURPOS to be armed by the CURBASE write.
11557 * Without the CURCNTR write the CURPOS write would
11558 * arm itself. Thus we always update CURCNTR before
11559 * CURPOS.
11560 *
11561 * On other platforms CURPOS always requires the
11562 * CURBASE write to arm the update. Additonally
11563 * a write to any of the cursor register will cancel
11564 * an already armed cursor update. Thus leaving out
11565 * the CURBASE write after CURPOS could lead to a
11566 * cursor that doesn't appear to move, or even change
11567 * shape. Thus we always write CURBASE.
11568 *
11569 * The other registers are armed by by the CURBASE write
11570 * except when the plane is getting enabled at which time
11571 * the CURCNTR write arms the update.
11572 */
11573
11574 if (INTEL_GEN(dev_priv) >= 9)
11575 skl_write_cursor_wm(plane, crtc_state);
11576
11577 if (plane->cursor.base != base ||
11578 plane->cursor.size != fbc_ctl ||
11579 plane->cursor.cntl != cntl) {
11580 if (HAS_CUR_FBC(dev_priv))
11581 I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
11582 I915_WRITE_FW(CURCNTR(pipe), cntl);
11583 I915_WRITE_FW(CURPOS(pipe), pos);
11584 I915_WRITE_FW(CURBASE(pipe), base);
11585
11586 plane->cursor.base = base;
11587 plane->cursor.size = fbc_ctl;
11588 plane->cursor.cntl = cntl;
11589 } else {
11590 I915_WRITE_FW(CURPOS(pipe), pos);
11591 I915_WRITE_FW(CURBASE(pipe), base);
11592 }
11593
11594 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11595 }
11596
11597 static void i9xx_disable_cursor(struct intel_plane *plane,
11598 const struct intel_crtc_state *crtc_state)
11599 {
11600 i9xx_update_cursor(plane, crtc_state, NULL);
11601 }
11602
11603 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11604 enum pipe *pipe)
11605 {
11606 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11607 enum intel_display_power_domain power_domain;
11608 intel_wakeref_t wakeref;
11609 bool ret;
11610 u32 val;
11611
11612 /*
11613 * Not 100% correct for planes that can move between pipes,
11614 * but that's only the case for gen2-3 which don't have any
11615 * display power wells.
11616 */
11617 power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11618 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11619 if (!wakeref)
11620 return false;
11621
11622 val = I915_READ(CURCNTR(plane->pipe));
11623
11624 ret = val & MCURSOR_MODE;
11625
11626 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11627 *pipe = plane->pipe;
11628 else
11629 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11630 MCURSOR_PIPE_SELECT_SHIFT;
11631
11632 intel_display_power_put(dev_priv, power_domain, wakeref);
11633
11634 return ret;
11635 }
11636
11637 /* VESA 640x480x72Hz mode to set on the pipe */
11638 static const struct drm_display_mode load_detect_mode = {
11639 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11640 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11641 };
11642
11643 struct drm_framebuffer *
11644 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11645 struct drm_mode_fb_cmd2 *mode_cmd)
11646 {
11647 struct intel_framebuffer *intel_fb;
11648 int ret;
11649
11650 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11651 if (!intel_fb)
11652 return ERR_PTR(-ENOMEM);
11653
11654 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11655 if (ret)
11656 goto err;
11657
11658 return &intel_fb->base;
11659
11660 err:
11661 kfree(intel_fb);
11662 return ERR_PTR(ret);
11663 }
11664
11665 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11666 struct drm_crtc *crtc)
11667 {
11668 struct drm_plane *plane;
11669 struct drm_plane_state *plane_state;
11670 int ret, i;
11671
11672 ret = drm_atomic_add_affected_planes(state, crtc);
11673 if (ret)
11674 return ret;
11675
11676 for_each_new_plane_in_state(state, plane, plane_state, i) {
11677 if (plane_state->crtc != crtc)
11678 continue;
11679
11680 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11681 if (ret)
11682 return ret;
11683
11684 drm_atomic_set_fb_for_plane(plane_state, NULL);
11685 }
11686
11687 return 0;
11688 }
11689
11690 int intel_get_load_detect_pipe(struct drm_connector *connector,
11691 struct intel_load_detect_pipe *old,
11692 struct drm_modeset_acquire_ctx *ctx)
11693 {
11694 struct intel_crtc *intel_crtc;
11695 struct intel_encoder *intel_encoder =
11696 intel_attached_encoder(to_intel_connector(connector));
11697 struct drm_crtc *possible_crtc;
11698 struct drm_encoder *encoder = &intel_encoder->base;
11699 struct drm_crtc *crtc = NULL;
11700 struct drm_device *dev = encoder->dev;
11701 struct drm_i915_private *dev_priv = to_i915(dev);
11702 struct drm_mode_config *config = &dev->mode_config;
11703 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11704 struct drm_connector_state *connector_state;
11705 struct intel_crtc_state *crtc_state;
11706 int ret, i = -1;
11707
11708 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11709 connector->base.id, connector->name,
11710 encoder->base.id, encoder->name);
11711
11712 old->restore_state = NULL;
11713
11714 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
11715
11716 /*
11717 * Algorithm gets a little messy:
11718 *
11719 * - if the connector already has an assigned crtc, use it (but make
11720 * sure it's on first)
11721 *
11722 * - try to find the first unused crtc that can drive this connector,
11723 * and use that if we find one
11724 */
11725
11726 /* See if we already have a CRTC for this connector */
11727 if (connector->state->crtc) {
11728 crtc = connector->state->crtc;
11729
11730 ret = drm_modeset_lock(&crtc->mutex, ctx);
11731 if (ret)
11732 goto fail;
11733
11734 /* Make sure the crtc and connector are running */
11735 goto found;
11736 }
11737
11738 /* Find an unused one (if possible) */
11739 for_each_crtc(dev, possible_crtc) {
11740 i++;
11741 if (!(encoder->possible_crtcs & (1 << i)))
11742 continue;
11743
11744 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11745 if (ret)
11746 goto fail;
11747
11748 if (possible_crtc->state->enable) {
11749 drm_modeset_unlock(&possible_crtc->mutex);
11750 continue;
11751 }
11752
11753 crtc = possible_crtc;
11754 break;
11755 }
11756
11757 /*
11758 * If we didn't find an unused CRTC, don't use any.
11759 */
11760 if (!crtc) {
11761 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11762 ret = -ENODEV;
11763 goto fail;
11764 }
11765
11766 found:
11767 intel_crtc = to_intel_crtc(crtc);
11768
11769 state = drm_atomic_state_alloc(dev);
11770 restore_state = drm_atomic_state_alloc(dev);
11771 if (!state || !restore_state) {
11772 ret = -ENOMEM;
11773 goto fail;
11774 }
11775
11776 state->acquire_ctx = ctx;
11777 restore_state->acquire_ctx = ctx;
11778
11779 connector_state = drm_atomic_get_connector_state(state, connector);
11780 if (IS_ERR(connector_state)) {
11781 ret = PTR_ERR(connector_state);
11782 goto fail;
11783 }
11784
11785 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11786 if (ret)
11787 goto fail;
11788
11789 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11790 if (IS_ERR(crtc_state)) {
11791 ret = PTR_ERR(crtc_state);
11792 goto fail;
11793 }
11794
11795 crtc_state->uapi.active = true;
11796
11797 ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi,
11798 &load_detect_mode);
11799 if (ret)
11800 goto fail;
11801
11802 ret = intel_modeset_disable_planes(state, crtc);
11803 if (ret)
11804 goto fail;
11805
11806 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11807 if (!ret)
11808 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11809 if (!ret)
11810 ret = drm_atomic_add_affected_planes(restore_state, crtc);
11811 if (ret) {
11812 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11813 goto fail;
11814 }
11815
11816 ret = drm_atomic_commit(state);
11817 if (ret) {
11818 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11819 goto fail;
11820 }
11821
11822 old->restore_state = restore_state;
11823 drm_atomic_state_put(state);
11824
11825 /* let the connector get through one full cycle before testing */
11826 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11827 return true;
11828
11829 fail:
11830 if (state) {
11831 drm_atomic_state_put(state);
11832 state = NULL;
11833 }
11834 if (restore_state) {
11835 drm_atomic_state_put(restore_state);
11836 restore_state = NULL;
11837 }
11838
11839 if (ret == -EDEADLK)
11840 return ret;
11841
11842 return false;
11843 }
11844
11845 void intel_release_load_detect_pipe(struct drm_connector *connector,
11846 struct intel_load_detect_pipe *old,
11847 struct drm_modeset_acquire_ctx *ctx)
11848 {
11849 struct intel_encoder *intel_encoder =
11850 intel_attached_encoder(to_intel_connector(connector));
11851 struct drm_encoder *encoder = &intel_encoder->base;
11852 struct drm_atomic_state *state = old->restore_state;
11853 int ret;
11854
11855 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11856 connector->base.id, connector->name,
11857 encoder->base.id, encoder->name);
11858
11859 if (!state)
11860 return;
11861
11862 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
11863 if (ret)
11864 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11865 drm_atomic_state_put(state);
11866 }
11867
11868 static int i9xx_pll_refclk(struct drm_device *dev,
11869 const struct intel_crtc_state *pipe_config)
11870 {
11871 struct drm_i915_private *dev_priv = to_i915(dev);
11872 u32 dpll = pipe_config->dpll_hw_state.dpll;
11873
11874 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11875 return dev_priv->vbt.lvds_ssc_freq;
11876 else if (HAS_PCH_SPLIT(dev_priv))
11877 return 120000;
11878 else if (!IS_GEN(dev_priv, 2))
11879 return 96000;
11880 else
11881 return 48000;
11882 }
11883
11884 /* Returns the clock of the currently programmed mode of the given pipe. */
11885 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11886 struct intel_crtc_state *pipe_config)
11887 {
11888 struct drm_device *dev = crtc->base.dev;
11889 struct drm_i915_private *dev_priv = to_i915(dev);
11890 enum pipe pipe = crtc->pipe;
11891 u32 dpll = pipe_config->dpll_hw_state.dpll;
11892 u32 fp;
11893 struct dpll clock;
11894 int port_clock;
11895 int refclk = i9xx_pll_refclk(dev, pipe_config);
11896
11897 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11898 fp = pipe_config->dpll_hw_state.fp0;
11899 else
11900 fp = pipe_config->dpll_hw_state.fp1;
11901
11902 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11903 if (IS_PINEVIEW(dev_priv)) {
11904 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11905 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11906 } else {
11907 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11908 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11909 }
11910
11911 if (!IS_GEN(dev_priv, 2)) {
11912 if (IS_PINEVIEW(dev_priv))
11913 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11914 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11915 else
11916 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11917 DPLL_FPA01_P1_POST_DIV_SHIFT);
11918
11919 switch (dpll & DPLL_MODE_MASK) {
11920 case DPLLB_MODE_DAC_SERIAL:
11921 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11922 5 : 10;
11923 break;
11924 case DPLLB_MODE_LVDS:
11925 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11926 7 : 14;
11927 break;
11928 default:
11929 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11930 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11931 return;
11932 }
11933
11934 if (IS_PINEVIEW(dev_priv))
11935 port_clock = pnv_calc_dpll_params(refclk, &clock);
11936 else
11937 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11938 } else {
11939 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11940 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11941
11942 if (is_lvds) {
11943 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11944 DPLL_FPA01_P1_POST_DIV_SHIFT);
11945
11946 if (lvds & LVDS_CLKB_POWER_UP)
11947 clock.p2 = 7;
11948 else
11949 clock.p2 = 14;
11950 } else {
11951 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11952 clock.p1 = 2;
11953 else {
11954 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11955 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11956 }
11957 if (dpll & PLL_P2_DIVIDE_BY_4)
11958 clock.p2 = 4;
11959 else
11960 clock.p2 = 2;
11961 }
11962
11963 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11964 }
11965
11966 /*
11967 * This value includes pixel_multiplier. We will use
11968 * port_clock to compute adjusted_mode.crtc_clock in the
11969 * encoder's get_config() function.
11970 */
11971 pipe_config->port_clock = port_clock;
11972 }
11973
11974 int intel_dotclock_calculate(int link_freq,
11975 const struct intel_link_m_n *m_n)
11976 {
11977 /*
11978 * The calculation for the data clock is:
11979 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11980 * But we want to avoid losing precison if possible, so:
11981 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11982 *
11983 * and the link clock is simpler:
11984 * link_clock = (m * link_clock) / n
11985 */
11986
11987 if (!m_n->link_n)
11988 return 0;
11989
11990 return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
11991 }
11992
11993 static void ilk_pch_clock_get(struct intel_crtc *crtc,
11994 struct intel_crtc_state *pipe_config)
11995 {
11996 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11997
11998 /* read out port_clock from the DPLL */
11999 i9xx_crtc_clock_get(crtc, pipe_config);
12000
12001 /*
12002 * In case there is an active pipe without active ports,
12003 * we may need some idea for the dotclock anyway.
12004 * Calculate one based on the FDI configuration.
12005 */
12006 pipe_config->hw.adjusted_mode.crtc_clock =
12007 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12008 &pipe_config->fdi_m_n);
12009 }
12010
12011 static void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
12012 struct intel_crtc *crtc)
12013 {
12014 memset(crtc_state, 0, sizeof(*crtc_state));
12015
12016 __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
12017
12018 crtc_state->cpu_transcoder = INVALID_TRANSCODER;
12019 crtc_state->master_transcoder = INVALID_TRANSCODER;
12020 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
12021 crtc_state->output_format = INTEL_OUTPUT_FORMAT_INVALID;
12022 crtc_state->scaler_state.scaler_id = -1;
12023 crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
12024 }
12025
12026 static struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
12027 {
12028 struct intel_crtc_state *crtc_state;
12029
12030 crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
12031
12032 if (crtc_state)
12033 intel_crtc_state_reset(crtc_state, crtc);
12034
12035 return crtc_state;
12036 }
12037
12038 /* Returns the currently programmed mode of the given encoder. */
12039 struct drm_display_mode *
12040 intel_encoder_current_mode(struct intel_encoder *encoder)
12041 {
12042 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
12043 struct intel_crtc_state *crtc_state;
12044 struct drm_display_mode *mode;
12045 struct intel_crtc *crtc;
12046 enum pipe pipe;
12047
12048 if (!encoder->get_hw_state(encoder, &pipe))
12049 return NULL;
12050
12051 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12052
12053 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
12054 if (!mode)
12055 return NULL;
12056
12057 crtc_state = intel_crtc_state_alloc(crtc);
12058 if (!crtc_state) {
12059 kfree(mode);
12060 return NULL;
12061 }
12062
12063 if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
12064 kfree(crtc_state);
12065 kfree(mode);
12066 return NULL;
12067 }
12068
12069 encoder->get_config(encoder, crtc_state);
12070
12071 intel_mode_from_pipe_config(mode, crtc_state);
12072
12073 kfree(crtc_state);
12074
12075 return mode;
12076 }
12077
12078 static void intel_crtc_destroy(struct drm_crtc *crtc)
12079 {
12080 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12081
12082 drm_crtc_cleanup(crtc);
12083 kfree(intel_crtc);
12084 }
12085
12086 /**
12087 * intel_wm_need_update - Check whether watermarks need updating
12088 * @cur: current plane state
12089 * @new: new plane state
12090 *
12091 * Check current plane state versus the new one to determine whether
12092 * watermarks need to be recalculated.
12093 *
12094 * Returns true or false.
12095 */
12096 static bool intel_wm_need_update(const struct intel_plane_state *cur,
12097 struct intel_plane_state *new)
12098 {
12099 /* Update watermarks on tiling or size changes. */
12100 if (new->uapi.visible != cur->uapi.visible)
12101 return true;
12102
12103 if (!cur->hw.fb || !new->hw.fb)
12104 return false;
12105
12106 if (cur->hw.fb->modifier != new->hw.fb->modifier ||
12107 cur->hw.rotation != new->hw.rotation ||
12108 drm_rect_width(&new->uapi.src) != drm_rect_width(&cur->uapi.src) ||
12109 drm_rect_height(&new->uapi.src) != drm_rect_height(&cur->uapi.src) ||
12110 drm_rect_width(&new->uapi.dst) != drm_rect_width(&cur->uapi.dst) ||
12111 drm_rect_height(&new->uapi.dst) != drm_rect_height(&cur->uapi.dst))
12112 return true;
12113
12114 return false;
12115 }
12116
12117 static bool needs_scaling(const struct intel_plane_state *state)
12118 {
12119 int src_w = drm_rect_width(&state->uapi.src) >> 16;
12120 int src_h = drm_rect_height(&state->uapi.src) >> 16;
12121 int dst_w = drm_rect_width(&state->uapi.dst);
12122 int dst_h = drm_rect_height(&state->uapi.dst);
12123
12124 return (src_w != dst_w || src_h != dst_h);
12125 }
12126
12127 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
12128 struct intel_crtc_state *crtc_state,
12129 const struct intel_plane_state *old_plane_state,
12130 struct intel_plane_state *plane_state)
12131 {
12132 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12133 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12134 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12135 bool mode_changed = needs_modeset(crtc_state);
12136 bool was_crtc_enabled = old_crtc_state->hw.active;
12137 bool is_crtc_enabled = crtc_state->hw.active;
12138 bool turn_off, turn_on, visible, was_visible;
12139 int ret;
12140
12141 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
12142 ret = skl_update_scaler_plane(crtc_state, plane_state);
12143 if (ret)
12144 return ret;
12145 }
12146
12147 was_visible = old_plane_state->uapi.visible;
12148 visible = plane_state->uapi.visible;
12149
12150 if (!was_crtc_enabled && WARN_ON(was_visible))
12151 was_visible = false;
12152
12153 /*
12154 * Visibility is calculated as if the crtc was on, but
12155 * after scaler setup everything depends on it being off
12156 * when the crtc isn't active.
12157 *
12158 * FIXME this is wrong for watermarks. Watermarks should also
12159 * be computed as if the pipe would be active. Perhaps move
12160 * per-plane wm computation to the .check_plane() hook, and
12161 * only combine the results from all planes in the current place?
12162 */
12163 if (!is_crtc_enabled) {
12164 plane_state->uapi.visible = visible = false;
12165 crtc_state->active_planes &= ~BIT(plane->id);
12166 crtc_state->data_rate[plane->id] = 0;
12167 crtc_state->min_cdclk[plane->id] = 0;
12168 }
12169
12170 if (!was_visible && !visible)
12171 return 0;
12172
12173 turn_off = was_visible && (!visible || mode_changed);
12174 turn_on = visible && (!was_visible || mode_changed);
12175
12176 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12177 crtc->base.base.id, crtc->base.name,
12178 plane->base.base.id, plane->base.name,
12179 was_visible, visible,
12180 turn_off, turn_on, mode_changed);
12181
12182 if (turn_on) {
12183 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12184 crtc_state->update_wm_pre = true;
12185
12186 /* must disable cxsr around plane enable/disable */
12187 if (plane->id != PLANE_CURSOR)
12188 crtc_state->disable_cxsr = true;
12189 } else if (turn_off) {
12190 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
12191 crtc_state->update_wm_post = true;
12192
12193 /* must disable cxsr around plane enable/disable */
12194 if (plane->id != PLANE_CURSOR)
12195 crtc_state->disable_cxsr = true;
12196 } else if (intel_wm_need_update(old_plane_state, plane_state)) {
12197 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
12198 /* FIXME bollocks */
12199 crtc_state->update_wm_pre = true;
12200 crtc_state->update_wm_post = true;
12201 }
12202 }
12203
12204 if (visible || was_visible)
12205 crtc_state->fb_bits |= plane->frontbuffer_bit;
12206
12207 /*
12208 * ILK/SNB DVSACNTR/Sprite Enable
12209 * IVB SPR_CTL/Sprite Enable
12210 * "When in Self Refresh Big FIFO mode, a write to enable the
12211 * plane will be internally buffered and delayed while Big FIFO
12212 * mode is exiting."
12213 *
12214 * Which means that enabling the sprite can take an extra frame
12215 * when we start in big FIFO mode (LP1+). Thus we need to drop
12216 * down to LP0 and wait for vblank in order to make sure the
12217 * sprite gets enabled on the next vblank after the register write.
12218 * Doing otherwise would risk enabling the sprite one frame after
12219 * we've already signalled flip completion. We can resume LP1+
12220 * once the sprite has been enabled.
12221 *
12222 *
12223 * WaCxSRDisabledForSpriteScaling:ivb
12224 * IVB SPR_SCALE/Scaling Enable
12225 * "Low Power watermarks must be disabled for at least one
12226 * frame before enabling sprite scaling, and kept disabled
12227 * until sprite scaling is disabled."
12228 *
12229 * ILK/SNB DVSASCALE/Scaling Enable
12230 * "When in Self Refresh Big FIFO mode, scaling enable will be
12231 * masked off while Big FIFO mode is exiting."
12232 *
12233 * Despite the w/a only being listed for IVB we assume that
12234 * the ILK/SNB note has similar ramifications, hence we apply
12235 * the w/a on all three platforms.
12236 *
12237 * With experimental results seems this is needed also for primary
12238 * plane, not only sprite plane.
12239 */
12240 if (plane->id != PLANE_CURSOR &&
12241 (IS_GEN_RANGE(dev_priv, 5, 6) ||
12242 IS_IVYBRIDGE(dev_priv)) &&
12243 (turn_on || (!needs_scaling(old_plane_state) &&
12244 needs_scaling(plane_state))))
12245 crtc_state->disable_lp_wm = true;
12246
12247 return 0;
12248 }
12249
12250 static bool encoders_cloneable(const struct intel_encoder *a,
12251 const struct intel_encoder *b)
12252 {
12253 /* masks could be asymmetric, so check both ways */
12254 return a == b || (a->cloneable & (1 << b->type) &&
12255 b->cloneable & (1 << a->type));
12256 }
12257
12258 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12259 struct intel_crtc *crtc,
12260 struct intel_encoder *encoder)
12261 {
12262 struct intel_encoder *source_encoder;
12263 struct drm_connector *connector;
12264 struct drm_connector_state *connector_state;
12265 int i;
12266
12267 for_each_new_connector_in_state(state, connector, connector_state, i) {
12268 if (connector_state->crtc != &crtc->base)
12269 continue;
12270
12271 source_encoder =
12272 to_intel_encoder(connector_state->best_encoder);
12273 if (!encoders_cloneable(encoder, source_encoder))
12274 return false;
12275 }
12276
12277 return true;
12278 }
12279
12280 static int icl_add_linked_planes(struct intel_atomic_state *state)
12281 {
12282 struct intel_plane *plane, *linked;
12283 struct intel_plane_state *plane_state, *linked_plane_state;
12284 int i;
12285
12286 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12287 linked = plane_state->planar_linked_plane;
12288
12289 if (!linked)
12290 continue;
12291
12292 linked_plane_state = intel_atomic_get_plane_state(state, linked);
12293 if (IS_ERR(linked_plane_state))
12294 return PTR_ERR(linked_plane_state);
12295
12296 WARN_ON(linked_plane_state->planar_linked_plane != plane);
12297 WARN_ON(linked_plane_state->planar_slave == plane_state->planar_slave);
12298 }
12299
12300 return 0;
12301 }
12302
12303 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
12304 {
12305 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
12306 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12307 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12308 struct intel_plane *plane, *linked;
12309 struct intel_plane_state *plane_state;
12310 int i;
12311
12312 if (INTEL_GEN(dev_priv) < 11)
12313 return 0;
12314
12315 /*
12316 * Destroy all old plane links and make the slave plane invisible
12317 * in the crtc_state->active_planes mask.
12318 */
12319 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12320 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
12321 continue;
12322
12323 plane_state->planar_linked_plane = NULL;
12324 if (plane_state->planar_slave && !plane_state->uapi.visible) {
12325 crtc_state->active_planes &= ~BIT(plane->id);
12326 crtc_state->update_planes |= BIT(plane->id);
12327 }
12328
12329 plane_state->planar_slave = false;
12330 }
12331
12332 if (!crtc_state->nv12_planes)
12333 return 0;
12334
12335 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12336 struct intel_plane_state *linked_state = NULL;
12337
12338 if (plane->pipe != crtc->pipe ||
12339 !(crtc_state->nv12_planes & BIT(plane->id)))
12340 continue;
12341
12342 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
12343 if (!icl_is_nv12_y_plane(linked->id))
12344 continue;
12345
12346 if (crtc_state->active_planes & BIT(linked->id))
12347 continue;
12348
12349 linked_state = intel_atomic_get_plane_state(state, linked);
12350 if (IS_ERR(linked_state))
12351 return PTR_ERR(linked_state);
12352
12353 break;
12354 }
12355
12356 if (!linked_state) {
12357 DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n",
12358 hweight8(crtc_state->nv12_planes));
12359
12360 return -EINVAL;
12361 }
12362
12363 plane_state->planar_linked_plane = linked;
12364
12365 linked_state->planar_slave = true;
12366 linked_state->planar_linked_plane = plane;
12367 crtc_state->active_planes |= BIT(linked->id);
12368 crtc_state->update_planes |= BIT(linked->id);
12369 DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name);
12370
12371 /* Copy parameters to slave plane */
12372 linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE;
12373 linked_state->color_ctl = plane_state->color_ctl;
12374 linked_state->view = plane_state->view;
12375 memcpy(linked_state->color_plane, plane_state->color_plane,
12376 sizeof(linked_state->color_plane));
12377
12378 intel_plane_copy_uapi_to_hw_state(linked_state, plane_state);
12379 linked_state->uapi.src = plane_state->uapi.src;
12380 linked_state->uapi.dst = plane_state->uapi.dst;
12381
12382 if (icl_is_hdr_plane(dev_priv, plane->id)) {
12383 if (linked->id == PLANE_SPRITE5)
12384 plane_state->cus_ctl |= PLANE_CUS_PLANE_7;
12385 else if (linked->id == PLANE_SPRITE4)
12386 plane_state->cus_ctl |= PLANE_CUS_PLANE_6;
12387 else
12388 MISSING_CASE(linked->id);
12389 }
12390 }
12391
12392 return 0;
12393 }
12394
12395 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
12396 {
12397 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
12398 struct intel_atomic_state *state =
12399 to_intel_atomic_state(new_crtc_state->uapi.state);
12400 const struct intel_crtc_state *old_crtc_state =
12401 intel_atomic_get_old_crtc_state(state, crtc);
12402
12403 return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12404 }
12405
12406 static bool
12407 intel_atomic_is_master_connector(struct intel_crtc_state *crtc_state)
12408 {
12409 struct drm_crtc *crtc = crtc_state->uapi.crtc;
12410 struct drm_atomic_state *state = crtc_state->uapi.state;
12411 struct drm_connector *connector;
12412 struct drm_connector_state *connector_state;
12413 int i;
12414
12415 for_each_new_connector_in_state(state, connector, connector_state, i) {
12416 if (connector_state->crtc != crtc)
12417 continue;
12418 if (connector->has_tile &&
12419 connector->tile_h_loc == connector->num_h_tile - 1 &&
12420 connector->tile_v_loc == connector->num_v_tile - 1)
12421 return true;
12422 }
12423
12424 return false;
12425 }
12426
12427 static void reset_port_sync_mode_state(struct intel_crtc_state *crtc_state)
12428 {
12429 crtc_state->master_transcoder = INVALID_TRANSCODER;
12430 crtc_state->sync_mode_slaves_mask = 0;
12431 }
12432
12433 static int icl_compute_port_sync_crtc_state(struct drm_connector *connector,
12434 struct intel_crtc_state *crtc_state,
12435 int num_tiled_conns)
12436 {
12437 struct drm_crtc *crtc = crtc_state->uapi.crtc;
12438 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
12439 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
12440 struct drm_connector *master_connector;
12441 struct drm_connector_list_iter conn_iter;
12442 struct drm_crtc *master_crtc = NULL;
12443 struct drm_crtc_state *master_crtc_state;
12444 struct intel_crtc_state *master_pipe_config;
12445
12446 if (INTEL_GEN(dev_priv) < 11)
12447 return 0;
12448
12449 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DP))
12450 return 0;
12451
12452 /*
12453 * In case of tiled displays there could be one or more slaves but there is
12454 * only one master. Lets make the CRTC used by the connector corresponding
12455 * to the last horizonal and last vertical tile a master/genlock CRTC.
12456 * All the other CRTCs corresponding to other tiles of the same Tile group
12457 * are the slave CRTCs and hold a pointer to their genlock CRTC.
12458 * If all tiles not present do not make master slave assignments.
12459 */
12460 if (!connector->has_tile ||
12461 crtc_state->hw.mode.hdisplay != connector->tile_h_size ||
12462 crtc_state->hw.mode.vdisplay != connector->tile_v_size ||
12463 num_tiled_conns < connector->num_h_tile * connector->num_v_tile) {
12464 reset_port_sync_mode_state(crtc_state);
12465 return 0;
12466 }
12467 /* Last Horizontal and last vertical tile connector is a master
12468 * Master's crtc state is already populated in slave for port sync
12469 */
12470 if (connector->tile_h_loc == connector->num_h_tile - 1 &&
12471 connector->tile_v_loc == connector->num_v_tile - 1)
12472 return 0;
12473
12474 /* Loop through all connectors and configure the Slave crtc_state
12475 * to point to the correct master.
12476 */
12477 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
12478 drm_for_each_connector_iter(master_connector, &conn_iter) {
12479 struct drm_connector_state *master_conn_state = NULL;
12480
12481 if (!(master_connector->has_tile &&
12482 master_connector->tile_group->id == connector->tile_group->id))
12483 continue;
12484 if (master_connector->tile_h_loc != master_connector->num_h_tile - 1 ||
12485 master_connector->tile_v_loc != master_connector->num_v_tile - 1)
12486 continue;
12487
12488 master_conn_state = drm_atomic_get_connector_state(&state->base,
12489 master_connector);
12490 if (IS_ERR(master_conn_state)) {
12491 drm_connector_list_iter_end(&conn_iter);
12492 return PTR_ERR(master_conn_state);
12493 }
12494 if (master_conn_state->crtc) {
12495 master_crtc = master_conn_state->crtc;
12496 break;
12497 }
12498 }
12499 drm_connector_list_iter_end(&conn_iter);
12500
12501 if (!master_crtc) {
12502 DRM_DEBUG_KMS("Could not find Master CRTC for Slave CRTC %d\n",
12503 crtc->base.id);
12504 return -EINVAL;
12505 }
12506
12507 master_crtc_state = drm_atomic_get_crtc_state(&state->base,
12508 master_crtc);
12509 if (IS_ERR(master_crtc_state))
12510 return PTR_ERR(master_crtc_state);
12511
12512 master_pipe_config = to_intel_crtc_state(master_crtc_state);
12513 crtc_state->master_transcoder = master_pipe_config->cpu_transcoder;
12514 master_pipe_config->sync_mode_slaves_mask |=
12515 BIT(crtc_state->cpu_transcoder);
12516 DRM_DEBUG_KMS("Master Transcoder = %s added for Slave CRTC = %d, slave transcoder bitmask = %d\n",
12517 transcoder_name(crtc_state->master_transcoder),
12518 crtc->base.id,
12519 master_pipe_config->sync_mode_slaves_mask);
12520
12521 return 0;
12522 }
12523
12524 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12525 struct intel_crtc *crtc)
12526 {
12527 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12528 struct intel_crtc_state *crtc_state =
12529 intel_atomic_get_new_crtc_state(state, crtc);
12530 bool mode_changed = needs_modeset(crtc_state);
12531 int ret;
12532
12533 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12534 mode_changed && !crtc_state->hw.active)
12535 crtc_state->update_wm_post = true;
12536
12537 if (mode_changed && crtc_state->hw.enable &&
12538 dev_priv->display.crtc_compute_clock &&
12539 !WARN_ON(crtc_state->shared_dpll)) {
12540 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12541 if (ret)
12542 return ret;
12543 }
12544
12545 /*
12546 * May need to update pipe gamma enable bits
12547 * when C8 planes are getting enabled/disabled.
12548 */
12549 if (c8_planes_changed(crtc_state))
12550 crtc_state->uapi.color_mgmt_changed = true;
12551
12552 if (mode_changed || crtc_state->update_pipe ||
12553 crtc_state->uapi.color_mgmt_changed) {
12554 ret = intel_color_check(crtc_state);
12555 if (ret)
12556 return ret;
12557 }
12558
12559 ret = 0;
12560 if (dev_priv->display.compute_pipe_wm) {
12561 ret = dev_priv->display.compute_pipe_wm(crtc_state);
12562 if (ret) {
12563 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12564 return ret;
12565 }
12566 }
12567
12568 if (dev_priv->display.compute_intermediate_wm) {
12569 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12570 return 0;
12571
12572 /*
12573 * Calculate 'intermediate' watermarks that satisfy both the
12574 * old state and the new state. We can program these
12575 * immediately.
12576 */
12577 ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12578 if (ret) {
12579 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12580 return ret;
12581 }
12582 }
12583
12584 if (INTEL_GEN(dev_priv) >= 9) {
12585 if (mode_changed || crtc_state->update_pipe)
12586 ret = skl_update_scaler_crtc(crtc_state);
12587 if (!ret)
12588 ret = intel_atomic_setup_scalers(dev_priv, crtc,
12589 crtc_state);
12590 }
12591
12592 if (HAS_IPS(dev_priv))
12593 crtc_state->ips_enabled = hsw_compute_ips_config(crtc_state);
12594
12595 return ret;
12596 }
12597
12598 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12599 {
12600 struct intel_connector *connector;
12601 struct drm_connector_list_iter conn_iter;
12602
12603 drm_connector_list_iter_begin(dev, &conn_iter);
12604 for_each_intel_connector_iter(connector, &conn_iter) {
12605 if (connector->base.state->crtc)
12606 drm_connector_put(&connector->base);
12607
12608 if (connector->base.encoder) {
12609 connector->base.state->best_encoder =
12610 connector->base.encoder;
12611 connector->base.state->crtc =
12612 connector->base.encoder->crtc;
12613
12614 drm_connector_get(&connector->base);
12615 } else {
12616 connector->base.state->best_encoder = NULL;
12617 connector->base.state->crtc = NULL;
12618 }
12619 }
12620 drm_connector_list_iter_end(&conn_iter);
12621 }
12622
12623 static int
12624 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12625 struct intel_crtc_state *pipe_config)
12626 {
12627 struct drm_connector *connector = conn_state->connector;
12628 const struct drm_display_info *info = &connector->display_info;
12629 int bpp;
12630
12631 switch (conn_state->max_bpc) {
12632 case 6 ... 7:
12633 bpp = 6 * 3;
12634 break;
12635 case 8 ... 9:
12636 bpp = 8 * 3;
12637 break;
12638 case 10 ... 11:
12639 bpp = 10 * 3;
12640 break;
12641 case 12:
12642 bpp = 12 * 3;
12643 break;
12644 default:
12645 return -EINVAL;
12646 }
12647
12648 if (bpp < pipe_config->pipe_bpp) {
12649 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12650 "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12651 connector->base.id, connector->name,
12652 bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc,
12653 pipe_config->pipe_bpp);
12654
12655 pipe_config->pipe_bpp = bpp;
12656 }
12657
12658 return 0;
12659 }
12660
12661 static int
12662 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12663 struct intel_crtc_state *pipe_config)
12664 {
12665 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12666 struct drm_atomic_state *state = pipe_config->uapi.state;
12667 struct drm_connector *connector;
12668 struct drm_connector_state *connector_state;
12669 int bpp, i;
12670
12671 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12672 IS_CHERRYVIEW(dev_priv)))
12673 bpp = 10*3;
12674 else if (INTEL_GEN(dev_priv) >= 5)
12675 bpp = 12*3;
12676 else
12677 bpp = 8*3;
12678
12679 pipe_config->pipe_bpp = bpp;
12680
12681 /* Clamp display bpp to connector max bpp */
12682 for_each_new_connector_in_state(state, connector, connector_state, i) {
12683 int ret;
12684
12685 if (connector_state->crtc != &crtc->base)
12686 continue;
12687
12688 ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12689 if (ret)
12690 return ret;
12691 }
12692
12693 return 0;
12694 }
12695
12696 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12697 {
12698 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12699 "type: 0x%x flags: 0x%x\n",
12700 mode->crtc_clock,
12701 mode->crtc_hdisplay, mode->crtc_hsync_start,
12702 mode->crtc_hsync_end, mode->crtc_htotal,
12703 mode->crtc_vdisplay, mode->crtc_vsync_start,
12704 mode->crtc_vsync_end, mode->crtc_vtotal,
12705 mode->type, mode->flags);
12706 }
12707
12708 static inline void
12709 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12710 const char *id, unsigned int lane_count,
12711 const struct intel_link_m_n *m_n)
12712 {
12713 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12714 id, lane_count,
12715 m_n->gmch_m, m_n->gmch_n,
12716 m_n->link_m, m_n->link_n, m_n->tu);
12717 }
12718
12719 static void
12720 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12721 const union hdmi_infoframe *frame)
12722 {
12723 if (!drm_debug_enabled(DRM_UT_KMS))
12724 return;
12725
12726 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12727 }
12728
12729 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12730
12731 static const char * const output_type_str[] = {
12732 OUTPUT_TYPE(UNUSED),
12733 OUTPUT_TYPE(ANALOG),
12734 OUTPUT_TYPE(DVO),
12735 OUTPUT_TYPE(SDVO),
12736 OUTPUT_TYPE(LVDS),
12737 OUTPUT_TYPE(TVOUT),
12738 OUTPUT_TYPE(HDMI),
12739 OUTPUT_TYPE(DP),
12740 OUTPUT_TYPE(EDP),
12741 OUTPUT_TYPE(DSI),
12742 OUTPUT_TYPE(DDI),
12743 OUTPUT_TYPE(DP_MST),
12744 };
12745
12746 #undef OUTPUT_TYPE
12747
12748 static void snprintf_output_types(char *buf, size_t len,
12749 unsigned int output_types)
12750 {
12751 char *str = buf;
12752 int i;
12753
12754 str[0] = '\0';
12755
12756 for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
12757 int r;
12758
12759 if ((output_types & BIT(i)) == 0)
12760 continue;
12761
12762 r = snprintf(str, len, "%s%s",
12763 str != buf ? "," : "", output_type_str[i]);
12764 if (r >= len)
12765 break;
12766 str += r;
12767 len -= r;
12768
12769 output_types &= ~BIT(i);
12770 }
12771
12772 WARN_ON_ONCE(output_types != 0);
12773 }
12774
12775 static const char * const output_format_str[] = {
12776 [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
12777 [INTEL_OUTPUT_FORMAT_RGB] = "RGB",
12778 [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
12779 [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
12780 };
12781
12782 static const char *output_formats(enum intel_output_format format)
12783 {
12784 if (format >= ARRAY_SIZE(output_format_str))
12785 format = INTEL_OUTPUT_FORMAT_INVALID;
12786 return output_format_str[format];
12787 }
12788
12789 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
12790 {
12791 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
12792 const struct drm_framebuffer *fb = plane_state->hw.fb;
12793 struct drm_format_name_buf format_name;
12794
12795 if (!fb) {
12796 DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
12797 plane->base.base.id, plane->base.name,
12798 yesno(plane_state->uapi.visible));
12799 return;
12800 }
12801
12802 DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
12803 plane->base.base.id, plane->base.name,
12804 fb->base.id, fb->width, fb->height,
12805 drm_get_format_name(fb->format->format, &format_name),
12806 yesno(plane_state->uapi.visible));
12807 DRM_DEBUG_KMS("\trotation: 0x%x, scaler: %d\n",
12808 plane_state->hw.rotation, plane_state->scaler_id);
12809 if (plane_state->uapi.visible)
12810 DRM_DEBUG_KMS("\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
12811 DRM_RECT_FP_ARG(&plane_state->uapi.src),
12812 DRM_RECT_ARG(&plane_state->uapi.dst));
12813 }
12814
12815 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
12816 struct intel_atomic_state *state,
12817 const char *context)
12818 {
12819 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
12820 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12821 const struct intel_plane_state *plane_state;
12822 struct intel_plane *plane;
12823 char buf[64];
12824 int i;
12825
12826 DRM_DEBUG_KMS("[CRTC:%d:%s] enable: %s %s\n",
12827 crtc->base.base.id, crtc->base.name,
12828 yesno(pipe_config->hw.enable), context);
12829
12830 if (!pipe_config->hw.enable)
12831 goto dump_planes;
12832
12833 snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
12834 DRM_DEBUG_KMS("active: %s, output_types: %s (0x%x), output format: %s\n",
12835 yesno(pipe_config->hw.active),
12836 buf, pipe_config->output_types,
12837 output_formats(pipe_config->output_format));
12838
12839 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12840 transcoder_name(pipe_config->cpu_transcoder),
12841 pipe_config->pipe_bpp, pipe_config->dither);
12842
12843 if (pipe_config->has_pch_encoder)
12844 intel_dump_m_n_config(pipe_config, "fdi",
12845 pipe_config->fdi_lanes,
12846 &pipe_config->fdi_m_n);
12847
12848 if (intel_crtc_has_dp_encoder(pipe_config)) {
12849 intel_dump_m_n_config(pipe_config, "dp m_n",
12850 pipe_config->lane_count, &pipe_config->dp_m_n);
12851 if (pipe_config->has_drrs)
12852 intel_dump_m_n_config(pipe_config, "dp m2_n2",
12853 pipe_config->lane_count,
12854 &pipe_config->dp_m2_n2);
12855 }
12856
12857 DRM_DEBUG_KMS("audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
12858 pipe_config->has_audio, pipe_config->has_infoframe,
12859 pipe_config->infoframes.enable);
12860
12861 if (pipe_config->infoframes.enable &
12862 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
12863 DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp);
12864 if (pipe_config->infoframes.enable &
12865 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
12866 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
12867 if (pipe_config->infoframes.enable &
12868 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
12869 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
12870 if (pipe_config->infoframes.enable &
12871 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
12872 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
12873
12874 DRM_DEBUG_KMS("requested mode:\n");
12875 drm_mode_debug_printmodeline(&pipe_config->hw.mode);
12876 DRM_DEBUG_KMS("adjusted mode:\n");
12877 drm_mode_debug_printmodeline(&pipe_config->hw.adjusted_mode);
12878 intel_dump_crtc_timings(&pipe_config->hw.adjusted_mode);
12879 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
12880 pipe_config->port_clock,
12881 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
12882 pipe_config->pixel_rate);
12883
12884 if (INTEL_GEN(dev_priv) >= 9)
12885 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12886 crtc->num_scalers,
12887 pipe_config->scaler_state.scaler_users,
12888 pipe_config->scaler_state.scaler_id);
12889
12890 if (HAS_GMCH(dev_priv))
12891 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12892 pipe_config->gmch_pfit.control,
12893 pipe_config->gmch_pfit.pgm_ratios,
12894 pipe_config->gmch_pfit.lvds_border_bits);
12895 else
12896 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n",
12897 pipe_config->pch_pfit.pos,
12898 pipe_config->pch_pfit.size,
12899 enableddisabled(pipe_config->pch_pfit.enabled),
12900 yesno(pipe_config->pch_pfit.force_thru));
12901
12902 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12903 pipe_config->ips_enabled, pipe_config->double_wide);
12904
12905 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
12906
12907 if (IS_CHERRYVIEW(dev_priv))
12908 DRM_DEBUG_KMS("cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
12909 pipe_config->cgm_mode, pipe_config->gamma_mode,
12910 pipe_config->gamma_enable, pipe_config->csc_enable);
12911 else
12912 DRM_DEBUG_KMS("csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
12913 pipe_config->csc_mode, pipe_config->gamma_mode,
12914 pipe_config->gamma_enable, pipe_config->csc_enable);
12915
12916 DRM_DEBUG_KMS("MST master transcoder: %s\n",
12917 transcoder_name(pipe_config->mst_master_transcoder));
12918
12919 dump_planes:
12920 if (!state)
12921 return;
12922
12923 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12924 if (plane->pipe == crtc->pipe)
12925 intel_dump_plane_state(plane_state);
12926 }
12927 }
12928
12929 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
12930 {
12931 struct drm_device *dev = state->base.dev;
12932 struct drm_connector *connector;
12933 struct drm_connector_list_iter conn_iter;
12934 unsigned int used_ports = 0;
12935 unsigned int used_mst_ports = 0;
12936 bool ret = true;
12937
12938 /*
12939 * We're going to peek into connector->state,
12940 * hence connection_mutex must be held.
12941 */
12942 drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
12943
12944 /*
12945 * Walk the connector list instead of the encoder
12946 * list to detect the problem on ddi platforms
12947 * where there's just one encoder per digital port.
12948 */
12949 drm_connector_list_iter_begin(dev, &conn_iter);
12950 drm_for_each_connector_iter(connector, &conn_iter) {
12951 struct drm_connector_state *connector_state;
12952 struct intel_encoder *encoder;
12953
12954 connector_state =
12955 drm_atomic_get_new_connector_state(&state->base,
12956 connector);
12957 if (!connector_state)
12958 connector_state = connector->state;
12959
12960 if (!connector_state->best_encoder)
12961 continue;
12962
12963 encoder = to_intel_encoder(connector_state->best_encoder);
12964
12965 WARN_ON(!connector_state->crtc);
12966
12967 switch (encoder->type) {
12968 unsigned int port_mask;
12969 case INTEL_OUTPUT_DDI:
12970 if (WARN_ON(!HAS_DDI(to_i915(dev))))
12971 break;
12972 /* else, fall through */
12973 case INTEL_OUTPUT_DP:
12974 case INTEL_OUTPUT_HDMI:
12975 case INTEL_OUTPUT_EDP:
12976 port_mask = 1 << encoder->port;
12977
12978 /* the same port mustn't appear more than once */
12979 if (used_ports & port_mask)
12980 ret = false;
12981
12982 used_ports |= port_mask;
12983 break;
12984 case INTEL_OUTPUT_DP_MST:
12985 used_mst_ports |=
12986 1 << encoder->port;
12987 break;
12988 default:
12989 break;
12990 }
12991 }
12992 drm_connector_list_iter_end(&conn_iter);
12993
12994 /* can't mix MST and SST/HDMI on the same port */
12995 if (used_ports & used_mst_ports)
12996 return false;
12997
12998 return ret;
12999 }
13000
13001 static void
13002 intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_crtc_state *crtc_state)
13003 {
13004 intel_crtc_copy_color_blobs(crtc_state);
13005 }
13006
13007 static void
13008 intel_crtc_copy_uapi_to_hw_state(struct intel_crtc_state *crtc_state)
13009 {
13010 crtc_state->hw.enable = crtc_state->uapi.enable;
13011 crtc_state->hw.active = crtc_state->uapi.active;
13012 crtc_state->hw.mode = crtc_state->uapi.mode;
13013 crtc_state->hw.adjusted_mode = crtc_state->uapi.adjusted_mode;
13014 intel_crtc_copy_uapi_to_hw_state_nomodeset(crtc_state);
13015 }
13016
13017 static void intel_crtc_copy_hw_to_uapi_state(struct intel_crtc_state *crtc_state)
13018 {
13019 crtc_state->uapi.enable = crtc_state->hw.enable;
13020 crtc_state->uapi.active = crtc_state->hw.active;
13021 WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &crtc_state->hw.mode) < 0);
13022
13023 crtc_state->uapi.adjusted_mode = crtc_state->hw.adjusted_mode;
13024
13025 /* copy color blobs to uapi */
13026 drm_property_replace_blob(&crtc_state->uapi.degamma_lut,
13027 crtc_state->hw.degamma_lut);
13028 drm_property_replace_blob(&crtc_state->uapi.gamma_lut,
13029 crtc_state->hw.gamma_lut);
13030 drm_property_replace_blob(&crtc_state->uapi.ctm,
13031 crtc_state->hw.ctm);
13032 }
13033
13034 static int
13035 intel_crtc_prepare_cleared_state(struct intel_crtc_state *crtc_state)
13036 {
13037 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
13038 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13039 struct intel_crtc_state *saved_state;
13040
13041 saved_state = intel_crtc_state_alloc(crtc);
13042 if (!saved_state)
13043 return -ENOMEM;
13044
13045 /* free the old crtc_state->hw members */
13046 intel_crtc_free_hw_state(crtc_state);
13047
13048 /* FIXME: before the switch to atomic started, a new pipe_config was
13049 * kzalloc'd. Code that depends on any field being zero should be
13050 * fixed, so that the crtc_state can be safely duplicated. For now,
13051 * only fields that are know to not cause problems are preserved. */
13052
13053 saved_state->uapi = crtc_state->uapi;
13054 saved_state->scaler_state = crtc_state->scaler_state;
13055 saved_state->shared_dpll = crtc_state->shared_dpll;
13056 saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
13057 memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
13058 sizeof(saved_state->icl_port_dplls));
13059 saved_state->crc_enabled = crtc_state->crc_enabled;
13060 if (IS_G4X(dev_priv) ||
13061 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13062 saved_state->wm = crtc_state->wm;
13063 /*
13064 * Save the slave bitmask which gets filled for master crtc state during
13065 * slave atomic check call. For all other CRTCs reset the port sync variables
13066 * crtc_state->master_transcoder needs to be set to INVALID
13067 */
13068 reset_port_sync_mode_state(saved_state);
13069 if (intel_atomic_is_master_connector(crtc_state))
13070 saved_state->sync_mode_slaves_mask =
13071 crtc_state->sync_mode_slaves_mask;
13072
13073 memcpy(crtc_state, saved_state, sizeof(*crtc_state));
13074 kfree(saved_state);
13075
13076 intel_crtc_copy_uapi_to_hw_state(crtc_state);
13077
13078 return 0;
13079 }
13080
13081 static int
13082 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
13083 {
13084 struct drm_crtc *crtc = pipe_config->uapi.crtc;
13085 struct drm_atomic_state *state = pipe_config->uapi.state;
13086 struct intel_encoder *encoder;
13087 struct drm_connector *connector;
13088 struct drm_connector_state *connector_state;
13089 int base_bpp, ret;
13090 int i, tile_group_id = -1, num_tiled_conns = 0;
13091 bool retry = true;
13092
13093 pipe_config->cpu_transcoder =
13094 (enum transcoder) to_intel_crtc(crtc)->pipe;
13095
13096 /*
13097 * Sanitize sync polarity flags based on requested ones. If neither
13098 * positive or negative polarity is requested, treat this as meaning
13099 * negative polarity.
13100 */
13101 if (!(pipe_config->hw.adjusted_mode.flags &
13102 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13103 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13104
13105 if (!(pipe_config->hw.adjusted_mode.flags &
13106 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13107 pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13108
13109 ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13110 pipe_config);
13111 if (ret)
13112 return ret;
13113
13114 base_bpp = pipe_config->pipe_bpp;
13115
13116 /*
13117 * Determine the real pipe dimensions. Note that stereo modes can
13118 * increase the actual pipe size due to the frame doubling and
13119 * insertion of additional space for blanks between the frame. This
13120 * is stored in the crtc timings. We use the requested mode to do this
13121 * computation to clearly distinguish it from the adjusted mode, which
13122 * can be changed by the connectors in the below retry loop.
13123 */
13124 drm_mode_get_hv_timing(&pipe_config->hw.mode,
13125 &pipe_config->pipe_src_w,
13126 &pipe_config->pipe_src_h);
13127
13128 for_each_new_connector_in_state(state, connector, connector_state, i) {
13129 if (connector_state->crtc != crtc)
13130 continue;
13131
13132 encoder = to_intel_encoder(connector_state->best_encoder);
13133
13134 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13135 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13136 return -EINVAL;
13137 }
13138
13139 /*
13140 * Determine output_types before calling the .compute_config()
13141 * hooks so that the hooks can use this information safely.
13142 */
13143 if (encoder->compute_output_type)
13144 pipe_config->output_types |=
13145 BIT(encoder->compute_output_type(encoder, pipe_config,
13146 connector_state));
13147 else
13148 pipe_config->output_types |= BIT(encoder->type);
13149 }
13150
13151 encoder_retry:
13152 /* Ensure the port clock defaults are reset when retrying. */
13153 pipe_config->port_clock = 0;
13154 pipe_config->pixel_multiplier = 1;
13155
13156 /* Fill in default crtc timings, allow encoders to overwrite them. */
13157 drm_mode_set_crtcinfo(&pipe_config->hw.adjusted_mode,
13158 CRTC_STEREO_DOUBLE);
13159
13160 /* Get tile_group_id of tiled connector */
13161 for_each_new_connector_in_state(state, connector, connector_state, i) {
13162 if (connector_state->crtc == crtc &&
13163 connector->has_tile) {
13164 tile_group_id = connector->tile_group->id;
13165 break;
13166 }
13167 }
13168
13169 /* Get total number of tiled connectors in state that belong to
13170 * this tile group.
13171 */
13172 for_each_new_connector_in_state(state, connector, connector_state, i) {
13173 if (connector->has_tile &&
13174 connector->tile_group->id == tile_group_id)
13175 num_tiled_conns++;
13176 }
13177
13178 /* Pass our mode to the connectors and the CRTC to give them a chance to
13179 * adjust it according to limitations or connector properties, and also
13180 * a chance to reject the mode entirely.
13181 */
13182 for_each_new_connector_in_state(state, connector, connector_state, i) {
13183 if (connector_state->crtc != crtc)
13184 continue;
13185
13186 ret = icl_compute_port_sync_crtc_state(connector, pipe_config,
13187 num_tiled_conns);
13188 if (ret) {
13189 DRM_DEBUG_KMS("Cannot assign Sync Mode CRTCs: %d\n",
13190 ret);
13191 return ret;
13192 }
13193
13194 encoder = to_intel_encoder(connector_state->best_encoder);
13195 ret = encoder->compute_config(encoder, pipe_config,
13196 connector_state);
13197 if (ret < 0) {
13198 if (ret != -EDEADLK)
13199 DRM_DEBUG_KMS("Encoder config failure: %d\n",
13200 ret);
13201 return ret;
13202 }
13203 }
13204
13205 /* Set default port clock if not overwritten by the encoder. Needs to be
13206 * done afterwards in case the encoder adjusts the mode. */
13207 if (!pipe_config->port_clock)
13208 pipe_config->port_clock = pipe_config->hw.adjusted_mode.crtc_clock
13209 * pipe_config->pixel_multiplier;
13210
13211 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13212 if (ret == -EDEADLK)
13213 return ret;
13214 if (ret < 0) {
13215 DRM_DEBUG_KMS("CRTC fixup failed\n");
13216 return ret;
13217 }
13218
13219 if (ret == RETRY) {
13220 if (WARN(!retry, "loop in pipe configuration computation\n"))
13221 return -EINVAL;
13222
13223 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13224 retry = false;
13225 goto encoder_retry;
13226 }
13227
13228 /* Dithering seems to not pass-through bits correctly when it should, so
13229 * only enable it on 6bpc panels and when its not a compliance
13230 * test requesting 6bpc video pattern.
13231 */
13232 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
13233 !pipe_config->dither_force_disable;
13234 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13235 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13236
13237 /*
13238 * Make drm_calc_timestamping_constants in
13239 * drm_atomic_helper_update_legacy_modeset_state() happy
13240 */
13241 pipe_config->uapi.adjusted_mode = pipe_config->hw.adjusted_mode;
13242
13243 return 0;
13244 }
13245
13246 bool intel_fuzzy_clock_check(int clock1, int clock2)
13247 {
13248 int diff;
13249
13250 if (clock1 == clock2)
13251 return true;
13252
13253 if (!clock1 || !clock2)
13254 return false;
13255
13256 diff = abs(clock1 - clock2);
13257
13258 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13259 return true;
13260
13261 return false;
13262 }
13263
13264 static bool
13265 intel_compare_m_n(unsigned int m, unsigned int n,
13266 unsigned int m2, unsigned int n2,
13267 bool exact)
13268 {
13269 if (m == m2 && n == n2)
13270 return true;
13271
13272 if (exact || !m || !n || !m2 || !n2)
13273 return false;
13274
13275 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13276
13277 if (n > n2) {
13278 while (n > n2) {
13279 m2 <<= 1;
13280 n2 <<= 1;
13281 }
13282 } else if (n < n2) {
13283 while (n < n2) {
13284 m <<= 1;
13285 n <<= 1;
13286 }
13287 }
13288
13289 if (n != n2)
13290 return false;
13291
13292 return intel_fuzzy_clock_check(m, m2);
13293 }
13294
13295 static bool
13296 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13297 const struct intel_link_m_n *m2_n2,
13298 bool exact)
13299 {
13300 return m_n->tu == m2_n2->tu &&
13301 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13302 m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
13303 intel_compare_m_n(m_n->link_m, m_n->link_n,
13304 m2_n2->link_m, m2_n2->link_n, exact);
13305 }
13306
13307 static bool
13308 intel_compare_infoframe(const union hdmi_infoframe *a,
13309 const union hdmi_infoframe *b)
13310 {
13311 return memcmp(a, b, sizeof(*a)) == 0;
13312 }
13313
13314 static void
13315 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
13316 bool fastset, const char *name,
13317 const union hdmi_infoframe *a,
13318 const union hdmi_infoframe *b)
13319 {
13320 if (fastset) {
13321 if (!drm_debug_enabled(DRM_UT_KMS))
13322 return;
13323
13324 DRM_DEBUG_KMS("fastset mismatch in %s infoframe\n", name);
13325 DRM_DEBUG_KMS("expected:\n");
13326 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
13327 DRM_DEBUG_KMS("found:\n");
13328 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
13329 } else {
13330 DRM_ERROR("mismatch in %s infoframe\n", name);
13331 DRM_ERROR("expected:\n");
13332 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
13333 DRM_ERROR("found:\n");
13334 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
13335 }
13336 }
13337
13338 static void __printf(4, 5)
13339 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
13340 const char *name, const char *format, ...)
13341 {
13342 struct va_format vaf;
13343 va_list args;
13344
13345 va_start(args, format);
13346 vaf.fmt = format;
13347 vaf.va = &args;
13348
13349 if (fastset)
13350 DRM_DEBUG_KMS("[CRTC:%d:%s] fastset mismatch in %s %pV\n",
13351 crtc->base.base.id, crtc->base.name, name, &vaf);
13352 else
13353 DRM_ERROR("[CRTC:%d:%s] mismatch in %s %pV\n",
13354 crtc->base.base.id, crtc->base.name, name, &vaf);
13355
13356 va_end(args);
13357 }
13358
13359 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
13360 {
13361 if (i915_modparams.fastboot != -1)
13362 return i915_modparams.fastboot;
13363
13364 /* Enable fastboot by default on Skylake and newer */
13365 if (INTEL_GEN(dev_priv) >= 9)
13366 return true;
13367
13368 /* Enable fastboot by default on VLV and CHV */
13369 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13370 return true;
13371
13372 /* Disabled by default on all others */
13373 return false;
13374 }
13375
13376 static bool
13377 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
13378 const struct intel_crtc_state *pipe_config,
13379 bool fastset)
13380 {
13381 struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev);
13382 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
13383 bool ret = true;
13384 u32 bp_gamma = 0;
13385 bool fixup_inherited = fastset &&
13386 (current_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED) &&
13387 !(pipe_config->hw.mode.private_flags & I915_MODE_FLAG_INHERITED);
13388
13389 if (fixup_inherited && !fastboot_enabled(dev_priv)) {
13390 DRM_DEBUG_KMS("initial modeset and fastboot not set\n");
13391 ret = false;
13392 }
13393
13394 #define PIPE_CONF_CHECK_X(name) do { \
13395 if (current_config->name != pipe_config->name) { \
13396 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13397 "(expected 0x%08x, found 0x%08x)", \
13398 current_config->name, \
13399 pipe_config->name); \
13400 ret = false; \
13401 } \
13402 } while (0)
13403
13404 #define PIPE_CONF_CHECK_I(name) do { \
13405 if (current_config->name != pipe_config->name) { \
13406 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13407 "(expected %i, found %i)", \
13408 current_config->name, \
13409 pipe_config->name); \
13410 ret = false; \
13411 } \
13412 } while (0)
13413
13414 #define PIPE_CONF_CHECK_BOOL(name) do { \
13415 if (current_config->name != pipe_config->name) { \
13416 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13417 "(expected %s, found %s)", \
13418 yesno(current_config->name), \
13419 yesno(pipe_config->name)); \
13420 ret = false; \
13421 } \
13422 } while (0)
13423
13424 /*
13425 * Checks state where we only read out the enabling, but not the entire
13426 * state itself (like full infoframes or ELD for audio). These states
13427 * require a full modeset on bootup to fix up.
13428 */
13429 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
13430 if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
13431 PIPE_CONF_CHECK_BOOL(name); \
13432 } else { \
13433 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13434 "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
13435 yesno(current_config->name), \
13436 yesno(pipe_config->name)); \
13437 ret = false; \
13438 } \
13439 } while (0)
13440
13441 #define PIPE_CONF_CHECK_P(name) do { \
13442 if (current_config->name != pipe_config->name) { \
13443 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13444 "(expected %p, found %p)", \
13445 current_config->name, \
13446 pipe_config->name); \
13447 ret = false; \
13448 } \
13449 } while (0)
13450
13451 #define PIPE_CONF_CHECK_M_N(name) do { \
13452 if (!intel_compare_link_m_n(¤t_config->name, \
13453 &pipe_config->name,\
13454 !fastset)) { \
13455 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13456 "(expected tu %i gmch %i/%i link %i/%i, " \
13457 "found tu %i, gmch %i/%i link %i/%i)", \
13458 current_config->name.tu, \
13459 current_config->name.gmch_m, \
13460 current_config->name.gmch_n, \
13461 current_config->name.link_m, \
13462 current_config->name.link_n, \
13463 pipe_config->name.tu, \
13464 pipe_config->name.gmch_m, \
13465 pipe_config->name.gmch_n, \
13466 pipe_config->name.link_m, \
13467 pipe_config->name.link_n); \
13468 ret = false; \
13469 } \
13470 } while (0)
13471
13472 /* This is required for BDW+ where there is only one set of registers for
13473 * switching between high and low RR.
13474 * This macro can be used whenever a comparison has to be made between one
13475 * hw state and multiple sw state variables.
13476 */
13477 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
13478 if (!intel_compare_link_m_n(¤t_config->name, \
13479 &pipe_config->name, !fastset) && \
13480 !intel_compare_link_m_n(¤t_config->alt_name, \
13481 &pipe_config->name, !fastset)) { \
13482 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13483 "(expected tu %i gmch %i/%i link %i/%i, " \
13484 "or tu %i gmch %i/%i link %i/%i, " \
13485 "found tu %i, gmch %i/%i link %i/%i)", \
13486 current_config->name.tu, \
13487 current_config->name.gmch_m, \
13488 current_config->name.gmch_n, \
13489 current_config->name.link_m, \
13490 current_config->name.link_n, \
13491 current_config->alt_name.tu, \
13492 current_config->alt_name.gmch_m, \
13493 current_config->alt_name.gmch_n, \
13494 current_config->alt_name.link_m, \
13495 current_config->alt_name.link_n, \
13496 pipe_config->name.tu, \
13497 pipe_config->name.gmch_m, \
13498 pipe_config->name.gmch_n, \
13499 pipe_config->name.link_m, \
13500 pipe_config->name.link_n); \
13501 ret = false; \
13502 } \
13503 } while (0)
13504
13505 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13506 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13507 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13508 "(%x) (expected %i, found %i)", \
13509 (mask), \
13510 current_config->name & (mask), \
13511 pipe_config->name & (mask)); \
13512 ret = false; \
13513 } \
13514 } while (0)
13515
13516 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13517 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13518 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13519 "(expected %i, found %i)", \
13520 current_config->name, \
13521 pipe_config->name); \
13522 ret = false; \
13523 } \
13524 } while (0)
13525
13526 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13527 if (!intel_compare_infoframe(¤t_config->infoframes.name, \
13528 &pipe_config->infoframes.name)) { \
13529 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13530 ¤t_config->infoframes.name, \
13531 &pipe_config->infoframes.name); \
13532 ret = false; \
13533 } \
13534 } while (0)
13535
13536 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13537 if (current_config->name1 != pipe_config->name1) { \
13538 pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13539 "(expected %i, found %i, won't compare lut values)", \
13540 current_config->name1, \
13541 pipe_config->name1); \
13542 ret = false;\
13543 } else { \
13544 if (!intel_color_lut_equal(current_config->name2, \
13545 pipe_config->name2, pipe_config->name1, \
13546 bit_precision)) { \
13547 pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13548 "hw_state doesn't match sw_state"); \
13549 ret = false; \
13550 } \
13551 } \
13552 } while (0)
13553
13554 #define PIPE_CONF_QUIRK(quirk) \
13555 ((current_config->quirks | pipe_config->quirks) & (quirk))
13556
13557 PIPE_CONF_CHECK_I(cpu_transcoder);
13558
13559 PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13560 PIPE_CONF_CHECK_I(fdi_lanes);
13561 PIPE_CONF_CHECK_M_N(fdi_m_n);
13562
13563 PIPE_CONF_CHECK_I(lane_count);
13564 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13565
13566 if (INTEL_GEN(dev_priv) < 8) {
13567 PIPE_CONF_CHECK_M_N(dp_m_n);
13568
13569 if (current_config->has_drrs)
13570 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13571 } else
13572 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13573
13574 PIPE_CONF_CHECK_X(output_types);
13575
13576 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hdisplay);
13577 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_htotal);
13578 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_start);
13579 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hblank_end);
13580 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_start);
13581 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_hsync_end);
13582
13583 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vdisplay);
13584 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vtotal);
13585 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_start);
13586 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vblank_end);
13587 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_start);
13588 PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_vsync_end);
13589
13590 PIPE_CONF_CHECK_I(pixel_multiplier);
13591 PIPE_CONF_CHECK_I(output_format);
13592 PIPE_CONF_CHECK_I(dc3co_exitline);
13593 PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13594 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13595 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13596 PIPE_CONF_CHECK_BOOL(limited_color_range);
13597
13598 PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13599 PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13600 PIPE_CONF_CHECK_BOOL(has_infoframe);
13601 PIPE_CONF_CHECK_BOOL(fec_enable);
13602
13603 PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13604
13605 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13606 DRM_MODE_FLAG_INTERLACE);
13607
13608 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13609 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13610 DRM_MODE_FLAG_PHSYNC);
13611 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13612 DRM_MODE_FLAG_NHSYNC);
13613 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13614 DRM_MODE_FLAG_PVSYNC);
13615 PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags,
13616 DRM_MODE_FLAG_NVSYNC);
13617 }
13618
13619 PIPE_CONF_CHECK_X(gmch_pfit.control);
13620 /* pfit ratios are autocomputed by the hw on gen4+ */
13621 if (INTEL_GEN(dev_priv) < 4)
13622 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13623 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13624
13625 /*
13626 * Changing the EDP transcoder input mux
13627 * (A_ONOFF vs. A_ON) requires a full modeset.
13628 */
13629 PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13630
13631 if (!fastset) {
13632 PIPE_CONF_CHECK_I(pipe_src_w);
13633 PIPE_CONF_CHECK_I(pipe_src_h);
13634
13635 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13636 if (current_config->pch_pfit.enabled) {
13637 PIPE_CONF_CHECK_X(pch_pfit.pos);
13638 PIPE_CONF_CHECK_X(pch_pfit.size);
13639 }
13640
13641 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13642 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13643
13644 PIPE_CONF_CHECK_X(gamma_mode);
13645 if (IS_CHERRYVIEW(dev_priv))
13646 PIPE_CONF_CHECK_X(cgm_mode);
13647 else
13648 PIPE_CONF_CHECK_X(csc_mode);
13649 PIPE_CONF_CHECK_BOOL(gamma_enable);
13650 PIPE_CONF_CHECK_BOOL(csc_enable);
13651
13652 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13653 if (bp_gamma)
13654 PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma);
13655
13656 }
13657
13658 PIPE_CONF_CHECK_BOOL(double_wide);
13659
13660 PIPE_CONF_CHECK_P(shared_dpll);
13661 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13662 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13663 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13664 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13665 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13666 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13667 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13668 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13669 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13670 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13671 PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
13672 PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
13673 PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
13674 PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
13675 PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
13676 PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
13677 PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
13678 PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
13679 PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
13680 PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
13681 PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
13682 PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
13683 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
13684 PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
13685 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
13686 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
13687 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
13688 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
13689 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
13690 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
13691 PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
13692
13693 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13694 PIPE_CONF_CHECK_X(dsi_pll.div);
13695
13696 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13697 PIPE_CONF_CHECK_I(pipe_bpp);
13698
13699 PIPE_CONF_CHECK_CLOCK_FUZZY(hw.adjusted_mode.crtc_clock);
13700 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13701
13702 PIPE_CONF_CHECK_I(min_voltage_level);
13703
13704 PIPE_CONF_CHECK_X(infoframes.enable);
13705 PIPE_CONF_CHECK_X(infoframes.gcp);
13706 PIPE_CONF_CHECK_INFOFRAME(avi);
13707 PIPE_CONF_CHECK_INFOFRAME(spd);
13708 PIPE_CONF_CHECK_INFOFRAME(hdmi);
13709 PIPE_CONF_CHECK_INFOFRAME(drm);
13710
13711 PIPE_CONF_CHECK_I(sync_mode_slaves_mask);
13712 PIPE_CONF_CHECK_I(master_transcoder);
13713
13714 PIPE_CONF_CHECK_I(dsc.compression_enable);
13715 PIPE_CONF_CHECK_I(dsc.dsc_split);
13716 PIPE_CONF_CHECK_I(dsc.compressed_bpp);
13717
13718 PIPE_CONF_CHECK_I(mst_master_transcoder);
13719
13720 #undef PIPE_CONF_CHECK_X
13721 #undef PIPE_CONF_CHECK_I
13722 #undef PIPE_CONF_CHECK_BOOL
13723 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
13724 #undef PIPE_CONF_CHECK_P
13725 #undef PIPE_CONF_CHECK_FLAGS
13726 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13727 #undef PIPE_CONF_CHECK_COLOR_LUT
13728 #undef PIPE_CONF_QUIRK
13729
13730 return ret;
13731 }
13732
13733 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13734 const struct intel_crtc_state *pipe_config)
13735 {
13736 if (pipe_config->has_pch_encoder) {
13737 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13738 &pipe_config->fdi_m_n);
13739 int dotclock = pipe_config->hw.adjusted_mode.crtc_clock;
13740
13741 /*
13742 * FDI already provided one idea for the dotclock.
13743 * Yell if the encoder disagrees.
13744 */
13745 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13746 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13747 fdi_dotclock, dotclock);
13748 }
13749 }
13750
13751 static void verify_wm_state(struct intel_crtc *crtc,
13752 struct intel_crtc_state *new_crtc_state)
13753 {
13754 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13755 struct skl_hw_state {
13756 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
13757 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
13758 struct skl_ddb_allocation ddb;
13759 struct skl_pipe_wm wm;
13760 } *hw;
13761 struct skl_ddb_allocation *sw_ddb;
13762 struct skl_pipe_wm *sw_wm;
13763 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13764 const enum pipe pipe = crtc->pipe;
13765 int plane, level, max_level = ilk_wm_max_level(dev_priv);
13766
13767 if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->hw.active)
13768 return;
13769
13770 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
13771 if (!hw)
13772 return;
13773
13774 skl_pipe_wm_get_hw_state(crtc, &hw->wm);
13775 sw_wm = &new_crtc_state->wm.skl.optimal;
13776
13777 skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
13778
13779 skl_ddb_get_hw_state(dev_priv, &hw->ddb);
13780 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13781
13782 if (INTEL_GEN(dev_priv) >= 11 &&
13783 hw->ddb.enabled_slices != sw_ddb->enabled_slices)
13784 DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n",
13785 sw_ddb->enabled_slices,
13786 hw->ddb.enabled_slices);
13787
13788 /* planes */
13789 for_each_universal_plane(dev_priv, pipe, plane) {
13790 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13791
13792 hw_plane_wm = &hw->wm.planes[plane];
13793 sw_plane_wm = &sw_wm->planes[plane];
13794
13795 /* Watermarks */
13796 for (level = 0; level <= max_level; level++) {
13797 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13798 &sw_plane_wm->wm[level]))
13799 continue;
13800
13801 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13802 pipe_name(pipe), plane + 1, level,
13803 sw_plane_wm->wm[level].plane_en,
13804 sw_plane_wm->wm[level].plane_res_b,
13805 sw_plane_wm->wm[level].plane_res_l,
13806 hw_plane_wm->wm[level].plane_en,
13807 hw_plane_wm->wm[level].plane_res_b,
13808 hw_plane_wm->wm[level].plane_res_l);
13809 }
13810
13811 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13812 &sw_plane_wm->trans_wm)) {
13813 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13814 pipe_name(pipe), plane + 1,
13815 sw_plane_wm->trans_wm.plane_en,
13816 sw_plane_wm->trans_wm.plane_res_b,
13817 sw_plane_wm->trans_wm.plane_res_l,
13818 hw_plane_wm->trans_wm.plane_en,
13819 hw_plane_wm->trans_wm.plane_res_b,
13820 hw_plane_wm->trans_wm.plane_res_l);
13821 }
13822
13823 /* DDB */
13824 hw_ddb_entry = &hw->ddb_y[plane];
13825 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
13826
13827 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13828 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13829 pipe_name(pipe), plane + 1,
13830 sw_ddb_entry->start, sw_ddb_entry->end,
13831 hw_ddb_entry->start, hw_ddb_entry->end);
13832 }
13833 }
13834
13835 /*
13836 * cursor
13837 * If the cursor plane isn't active, we may not have updated it's ddb
13838 * allocation. In that case since the ddb allocation will be updated
13839 * once the plane becomes visible, we can skip this check
13840 */
13841 if (1) {
13842 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13843
13844 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
13845 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13846
13847 /* Watermarks */
13848 for (level = 0; level <= max_level; level++) {
13849 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13850 &sw_plane_wm->wm[level]))
13851 continue;
13852
13853 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13854 pipe_name(pipe), level,
13855 sw_plane_wm->wm[level].plane_en,
13856 sw_plane_wm->wm[level].plane_res_b,
13857 sw_plane_wm->wm[level].plane_res_l,
13858 hw_plane_wm->wm[level].plane_en,
13859 hw_plane_wm->wm[level].plane_res_b,
13860 hw_plane_wm->wm[level].plane_res_l);
13861 }
13862
13863 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13864 &sw_plane_wm->trans_wm)) {
13865 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13866 pipe_name(pipe),
13867 sw_plane_wm->trans_wm.plane_en,
13868 sw_plane_wm->trans_wm.plane_res_b,
13869 sw_plane_wm->trans_wm.plane_res_l,
13870 hw_plane_wm->trans_wm.plane_en,
13871 hw_plane_wm->trans_wm.plane_res_b,
13872 hw_plane_wm->trans_wm.plane_res_l);
13873 }
13874
13875 /* DDB */
13876 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
13877 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
13878
13879 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13880 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13881 pipe_name(pipe),
13882 sw_ddb_entry->start, sw_ddb_entry->end,
13883 hw_ddb_entry->start, hw_ddb_entry->end);
13884 }
13885 }
13886
13887 kfree(hw);
13888 }
13889
13890 static void
13891 verify_connector_state(struct intel_atomic_state *state,
13892 struct intel_crtc *crtc)
13893 {
13894 struct drm_connector *connector;
13895 struct drm_connector_state *new_conn_state;
13896 int i;
13897
13898 for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
13899 struct drm_encoder *encoder = connector->encoder;
13900 struct intel_crtc_state *crtc_state = NULL;
13901
13902 if (new_conn_state->crtc != &crtc->base)
13903 continue;
13904
13905 if (crtc)
13906 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
13907
13908 intel_connector_verify_state(crtc_state, new_conn_state);
13909
13910 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
13911 "connector's atomic encoder doesn't match legacy encoder\n");
13912 }
13913 }
13914
13915 static void
13916 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
13917 {
13918 struct intel_encoder *encoder;
13919 struct drm_connector *connector;
13920 struct drm_connector_state *old_conn_state, *new_conn_state;
13921 int i;
13922
13923 for_each_intel_encoder(&dev_priv->drm, encoder) {
13924 bool enabled = false, found = false;
13925 enum pipe pipe;
13926
13927 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13928 encoder->base.base.id,
13929 encoder->base.name);
13930
13931 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
13932 new_conn_state, i) {
13933 if (old_conn_state->best_encoder == &encoder->base)
13934 found = true;
13935
13936 if (new_conn_state->best_encoder != &encoder->base)
13937 continue;
13938 found = enabled = true;
13939
13940 I915_STATE_WARN(new_conn_state->crtc !=
13941 encoder->base.crtc,
13942 "connector's crtc doesn't match encoder crtc\n");
13943 }
13944
13945 if (!found)
13946 continue;
13947
13948 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13949 "encoder's enabled state mismatch "
13950 "(expected %i, found %i)\n",
13951 !!encoder->base.crtc, enabled);
13952
13953 if (!encoder->base.crtc) {
13954 bool active;
13955
13956 active = encoder->get_hw_state(encoder, &pipe);
13957 I915_STATE_WARN(active,
13958 "encoder detached but still enabled on pipe %c.\n",
13959 pipe_name(pipe));
13960 }
13961 }
13962 }
13963
13964 static void
13965 verify_crtc_state(struct intel_crtc *crtc,
13966 struct intel_crtc_state *old_crtc_state,
13967 struct intel_crtc_state *new_crtc_state)
13968 {
13969 struct drm_device *dev = crtc->base.dev;
13970 struct drm_i915_private *dev_priv = to_i915(dev);
13971 struct intel_encoder *encoder;
13972 struct intel_crtc_state *pipe_config = old_crtc_state;
13973 struct drm_atomic_state *state = old_crtc_state->uapi.state;
13974 bool active;
13975
13976 __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->uapi);
13977 intel_crtc_free_hw_state(old_crtc_state);
13978 intel_crtc_state_reset(old_crtc_state, crtc);
13979 old_crtc_state->uapi.state = state;
13980
13981 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name);
13982
13983 active = dev_priv->display.get_pipe_config(crtc, pipe_config);
13984
13985 /* we keep both pipes enabled on 830 */
13986 if (IS_I830(dev_priv))
13987 active = new_crtc_state->hw.active;
13988
13989 I915_STATE_WARN(new_crtc_state->hw.active != active,
13990 "crtc active state doesn't match with hw state "
13991 "(expected %i, found %i)\n",
13992 new_crtc_state->hw.active, active);
13993
13994 I915_STATE_WARN(crtc->active != new_crtc_state->hw.active,
13995 "transitional active state does not match atomic hw state "
13996 "(expected %i, found %i)\n",
13997 new_crtc_state->hw.active, crtc->active);
13998
13999 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14000 enum pipe pipe;
14001
14002 active = encoder->get_hw_state(encoder, &pipe);
14003 I915_STATE_WARN(active != new_crtc_state->hw.active,
14004 "[ENCODER:%i] active %i with crtc active %i\n",
14005 encoder->base.base.id, active,
14006 new_crtc_state->hw.active);
14007
14008 I915_STATE_WARN(active && crtc->pipe != pipe,
14009 "Encoder connected to wrong pipe %c\n",
14010 pipe_name(pipe));
14011
14012 if (active)
14013 encoder->get_config(encoder, pipe_config);
14014 }
14015
14016 intel_crtc_compute_pixel_rate(pipe_config);
14017
14018 if (!new_crtc_state->hw.active)
14019 return;
14020
14021 intel_pipe_config_sanity_check(dev_priv, pipe_config);
14022
14023 if (!intel_pipe_config_compare(new_crtc_state,
14024 pipe_config, false)) {
14025 I915_STATE_WARN(1, "pipe state doesn't match!\n");
14026 intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
14027 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
14028 }
14029 }
14030
14031 static void
14032 intel_verify_planes(struct intel_atomic_state *state)
14033 {
14034 struct intel_plane *plane;
14035 const struct intel_plane_state *plane_state;
14036 int i;
14037
14038 for_each_new_intel_plane_in_state(state, plane,
14039 plane_state, i)
14040 assert_plane(plane, plane_state->planar_slave ||
14041 plane_state->uapi.visible);
14042 }
14043
14044 static void
14045 verify_single_dpll_state(struct drm_i915_private *dev_priv,
14046 struct intel_shared_dpll *pll,
14047 struct intel_crtc *crtc,
14048 struct intel_crtc_state *new_crtc_state)
14049 {
14050 struct intel_dpll_hw_state dpll_hw_state;
14051 unsigned int crtc_mask;
14052 bool active;
14053
14054 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
14055
14056 DRM_DEBUG_KMS("%s\n", pll->info->name);
14057
14058 active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
14059
14060 if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
14061 I915_STATE_WARN(!pll->on && pll->active_mask,
14062 "pll in active use but not on in sw tracking\n");
14063 I915_STATE_WARN(pll->on && !pll->active_mask,
14064 "pll is on but not used by any active crtc\n");
14065 I915_STATE_WARN(pll->on != active,
14066 "pll on state mismatch (expected %i, found %i)\n",
14067 pll->on, active);
14068 }
14069
14070 if (!crtc) {
14071 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
14072 "more active pll users than references: %x vs %x\n",
14073 pll->active_mask, pll->state.crtc_mask);
14074
14075 return;
14076 }
14077
14078 crtc_mask = drm_crtc_mask(&crtc->base);
14079
14080 if (new_crtc_state->hw.active)
14081 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
14082 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
14083 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
14084 else
14085 I915_STATE_WARN(pll->active_mask & crtc_mask,
14086 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
14087 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
14088
14089 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
14090 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
14091 crtc_mask, pll->state.crtc_mask);
14092
14093 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
14094 &dpll_hw_state,
14095 sizeof(dpll_hw_state)),
14096 "pll hw state mismatch\n");
14097 }
14098
14099 static void
14100 verify_shared_dpll_state(struct intel_crtc *crtc,
14101 struct intel_crtc_state *old_crtc_state,
14102 struct intel_crtc_state *new_crtc_state)
14103 {
14104 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14105
14106 if (new_crtc_state->shared_dpll)
14107 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
14108
14109 if (old_crtc_state->shared_dpll &&
14110 old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
14111 unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
14112 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
14113
14114 I915_STATE_WARN(pll->active_mask & crtc_mask,
14115 "pll active mismatch (didn't expect pipe %c in active mask)\n",
14116 pipe_name(drm_crtc_index(&crtc->base)));
14117 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
14118 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
14119 pipe_name(drm_crtc_index(&crtc->base)));
14120 }
14121 }
14122
14123 static void
14124 intel_modeset_verify_crtc(struct intel_crtc *crtc,
14125 struct intel_atomic_state *state,
14126 struct intel_crtc_state *old_crtc_state,
14127 struct intel_crtc_state *new_crtc_state)
14128 {
14129 if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
14130 return;
14131
14132 verify_wm_state(crtc, new_crtc_state);
14133 verify_connector_state(state, crtc);
14134 verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
14135 verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
14136 }
14137
14138 static void
14139 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
14140 {
14141 int i;
14142
14143 for (i = 0; i < dev_priv->num_shared_dpll; i++)
14144 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
14145 }
14146
14147 static void
14148 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
14149 struct intel_atomic_state *state)
14150 {
14151 verify_encoder_state(dev_priv, state);
14152 verify_connector_state(state, NULL);
14153 verify_disabled_dpll_state(dev_priv);
14154 }
14155
14156 static void
14157 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
14158 {
14159 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
14160 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14161 const struct drm_display_mode *adjusted_mode =
14162 &crtc_state->hw.adjusted_mode;
14163
14164 drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
14165
14166 /*
14167 * The scanline counter increments at the leading edge of hsync.
14168 *
14169 * On most platforms it starts counting from vtotal-1 on the
14170 * first active line. That means the scanline counter value is
14171 * always one less than what we would expect. Ie. just after
14172 * start of vblank, which also occurs at start of hsync (on the
14173 * last active line), the scanline counter will read vblank_start-1.
14174 *
14175 * On gen2 the scanline counter starts counting from 1 instead
14176 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
14177 * to keep the value positive), instead of adding one.
14178 *
14179 * On HSW+ the behaviour of the scanline counter depends on the output
14180 * type. For DP ports it behaves like most other platforms, but on HDMI
14181 * there's an extra 1 line difference. So we need to add two instead of
14182 * one to the value.
14183 *
14184 * On VLV/CHV DSI the scanline counter would appear to increment
14185 * approx. 1/3 of a scanline before start of vblank. Unfortunately
14186 * that means we can't tell whether we're in vblank or not while
14187 * we're on that particular line. We must still set scanline_offset
14188 * to 1 so that the vblank timestamps come out correct when we query
14189 * the scanline counter from within the vblank interrupt handler.
14190 * However if queried just before the start of vblank we'll get an
14191 * answer that's slightly in the future.
14192 */
14193 if (IS_GEN(dev_priv, 2)) {
14194 int vtotal;
14195
14196 vtotal = adjusted_mode->crtc_vtotal;
14197 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
14198 vtotal /= 2;
14199
14200 crtc->scanline_offset = vtotal - 1;
14201 } else if (HAS_DDI(dev_priv) &&
14202 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
14203 crtc->scanline_offset = 2;
14204 } else {
14205 crtc->scanline_offset = 1;
14206 }
14207 }
14208
14209 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
14210 {
14211 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14212 struct intel_crtc_state *new_crtc_state;
14213 struct intel_crtc *crtc;
14214 int i;
14215
14216 if (!dev_priv->display.crtc_compute_clock)
14217 return;
14218
14219 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14220 if (!needs_modeset(new_crtc_state))
14221 continue;
14222
14223 intel_release_shared_dplls(state, crtc);
14224 }
14225 }
14226
14227 /*
14228 * This implements the workaround described in the "notes" section of the mode
14229 * set sequence documentation. When going from no pipes or single pipe to
14230 * multiple pipes, and planes are enabled after the pipe, we need to wait at
14231 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
14232 */
14233 static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state)
14234 {
14235 struct intel_crtc_state *crtc_state;
14236 struct intel_crtc *crtc;
14237 struct intel_crtc_state *first_crtc_state = NULL;
14238 struct intel_crtc_state *other_crtc_state = NULL;
14239 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
14240 int i;
14241
14242 /* look at all crtc's that are going to be enabled in during modeset */
14243 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14244 if (!crtc_state->hw.active ||
14245 !needs_modeset(crtc_state))
14246 continue;
14247
14248 if (first_crtc_state) {
14249 other_crtc_state = crtc_state;
14250 break;
14251 } else {
14252 first_crtc_state = crtc_state;
14253 first_pipe = crtc->pipe;
14254 }
14255 }
14256
14257 /* No workaround needed? */
14258 if (!first_crtc_state)
14259 return 0;
14260
14261 /* w/a possibly needed, check how many crtc's are already enabled. */
14262 for_each_intel_crtc(state->base.dev, crtc) {
14263 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
14264 if (IS_ERR(crtc_state))
14265 return PTR_ERR(crtc_state);
14266
14267 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
14268
14269 if (!crtc_state->hw.active ||
14270 needs_modeset(crtc_state))
14271 continue;
14272
14273 /* 2 or more enabled crtcs means no need for w/a */
14274 if (enabled_pipe != INVALID_PIPE)
14275 return 0;
14276
14277 enabled_pipe = crtc->pipe;
14278 }
14279
14280 if (enabled_pipe != INVALID_PIPE)
14281 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
14282 else if (other_crtc_state)
14283 other_crtc_state->hsw_workaround_pipe = first_pipe;
14284
14285 return 0;
14286 }
14287
14288 static int intel_modeset_checks(struct intel_atomic_state *state)
14289 {
14290 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14291 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14292 struct intel_crtc *crtc;
14293 int ret, i;
14294
14295 /* keep the current setting */
14296 if (!state->cdclk.force_min_cdclk_changed)
14297 state->cdclk.force_min_cdclk = dev_priv->cdclk.force_min_cdclk;
14298
14299 state->modeset = true;
14300 state->active_pipes = dev_priv->active_pipes;
14301 state->cdclk.logical = dev_priv->cdclk.logical;
14302 state->cdclk.actual = dev_priv->cdclk.actual;
14303
14304 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14305 new_crtc_state, i) {
14306 if (new_crtc_state->hw.active)
14307 state->active_pipes |= BIT(crtc->pipe);
14308 else
14309 state->active_pipes &= ~BIT(crtc->pipe);
14310
14311 if (old_crtc_state->hw.active != new_crtc_state->hw.active)
14312 state->active_pipe_changes |= BIT(crtc->pipe);
14313 }
14314
14315 if (state->active_pipe_changes) {
14316 ret = intel_atomic_lock_global_state(state);
14317 if (ret)
14318 return ret;
14319 }
14320
14321 ret = intel_modeset_calc_cdclk(state);
14322 if (ret)
14323 return ret;
14324
14325 intel_modeset_clear_plls(state);
14326
14327 if (IS_HASWELL(dev_priv))
14328 return hsw_mode_set_planes_workaround(state);
14329
14330 return 0;
14331 }
14332
14333 /*
14334 * Handle calculation of various watermark data at the end of the atomic check
14335 * phase. The code here should be run after the per-crtc and per-plane 'check'
14336 * handlers to ensure that all derived state has been updated.
14337 */
14338 static int calc_watermark_data(struct intel_atomic_state *state)
14339 {
14340 struct drm_device *dev = state->base.dev;
14341 struct drm_i915_private *dev_priv = to_i915(dev);
14342
14343 /* Is there platform-specific watermark information to calculate? */
14344 if (dev_priv->display.compute_global_watermarks)
14345 return dev_priv->display.compute_global_watermarks(state);
14346
14347 return 0;
14348 }
14349
14350 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
14351 struct intel_crtc_state *new_crtc_state)
14352 {
14353 if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
14354 return;
14355
14356 new_crtc_state->uapi.mode_changed = false;
14357 new_crtc_state->update_pipe = true;
14358 }
14359
14360 static void intel_crtc_copy_fastset(const struct intel_crtc_state *old_crtc_state,
14361 struct intel_crtc_state *new_crtc_state)
14362 {
14363 /*
14364 * If we're not doing the full modeset we want to
14365 * keep the current M/N values as they may be
14366 * sufficiently different to the computed values
14367 * to cause problems.
14368 *
14369 * FIXME: should really copy more fuzzy state here
14370 */
14371 new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
14372 new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
14373 new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
14374 new_crtc_state->has_drrs = old_crtc_state->has_drrs;
14375 }
14376
14377 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
14378 struct intel_crtc *crtc,
14379 u8 plane_ids_mask)
14380 {
14381 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14382 struct intel_plane *plane;
14383
14384 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14385 struct intel_plane_state *plane_state;
14386
14387 if ((plane_ids_mask & BIT(plane->id)) == 0)
14388 continue;
14389
14390 plane_state = intel_atomic_get_plane_state(state, plane);
14391 if (IS_ERR(plane_state))
14392 return PTR_ERR(plane_state);
14393 }
14394
14395 return 0;
14396 }
14397
14398 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
14399 {
14400 /* See {hsw,vlv,ivb}_plane_ratio() */
14401 return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
14402 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
14403 IS_IVYBRIDGE(dev_priv);
14404 }
14405
14406 static int intel_atomic_check_planes(struct intel_atomic_state *state,
14407 bool *need_modeset)
14408 {
14409 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14410 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14411 struct intel_plane_state *plane_state;
14412 struct intel_plane *plane;
14413 struct intel_crtc *crtc;
14414 int i, ret;
14415
14416 ret = icl_add_linked_planes(state);
14417 if (ret)
14418 return ret;
14419
14420 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
14421 ret = intel_plane_atomic_check(state, plane);
14422 if (ret) {
14423 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] atomic driver check failed\n",
14424 plane->base.base.id, plane->base.name);
14425 return ret;
14426 }
14427 }
14428
14429 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14430 new_crtc_state, i) {
14431 u8 old_active_planes, new_active_planes;
14432
14433 ret = icl_check_nv12_planes(new_crtc_state);
14434 if (ret)
14435 return ret;
14436
14437 /*
14438 * On some platforms the number of active planes affects
14439 * the planes' minimum cdclk calculation. Add such planes
14440 * to the state before we compute the minimum cdclk.
14441 */
14442 if (!active_planes_affects_min_cdclk(dev_priv))
14443 continue;
14444
14445 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14446 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
14447
14448 if (hweight8(old_active_planes) == hweight8(new_active_planes))
14449 continue;
14450
14451 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
14452 if (ret)
14453 return ret;
14454 }
14455
14456 /*
14457 * active_planes bitmask has been updated, and potentially
14458 * affected planes are part of the state. We can now
14459 * compute the minimum cdclk for each plane.
14460 */
14461 for_each_new_intel_plane_in_state(state, plane, plane_state, i)
14462 *need_modeset |= intel_plane_calc_min_cdclk(state, plane);
14463
14464 return 0;
14465 }
14466
14467 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
14468 {
14469 struct intel_crtc_state *crtc_state;
14470 struct intel_crtc *crtc;
14471 int i;
14472
14473 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
14474 int ret = intel_crtc_atomic_check(state, crtc);
14475 if (ret) {
14476 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] atomic driver check failed\n",
14477 crtc->base.base.id, crtc->base.name);
14478 return ret;
14479 }
14480 }
14481
14482 return 0;
14483 }
14484
14485 static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state,
14486 u8 transcoders)
14487 {
14488 const struct intel_crtc_state *new_crtc_state;
14489 struct intel_crtc *crtc;
14490 int i;
14491
14492 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14493 if (new_crtc_state->hw.enable &&
14494 transcoders & BIT(new_crtc_state->cpu_transcoder) &&
14495 needs_modeset(new_crtc_state))
14496 return true;
14497 }
14498
14499 return false;
14500 }
14501
14502 static int
14503 intel_modeset_all_tiles(struct intel_atomic_state *state, int tile_grp_id)
14504 {
14505 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14506 struct drm_connector *connector;
14507 struct drm_connector_list_iter conn_iter;
14508 int ret = 0;
14509
14510 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
14511 drm_for_each_connector_iter(connector, &conn_iter) {
14512 struct drm_connector_state *conn_state;
14513 struct drm_crtc_state *crtc_state;
14514
14515 if (!connector->has_tile ||
14516 connector->tile_group->id != tile_grp_id)
14517 continue;
14518 conn_state = drm_atomic_get_connector_state(&state->base,
14519 connector);
14520 if (IS_ERR(conn_state)) {
14521 ret = PTR_ERR(conn_state);
14522 break;
14523 }
14524
14525 if (!conn_state->crtc)
14526 continue;
14527
14528 crtc_state = drm_atomic_get_crtc_state(&state->base,
14529 conn_state->crtc);
14530 if (IS_ERR(crtc_state)) {
14531 ret = PTR_ERR(crtc_state);
14532 break;
14533 }
14534 crtc_state->mode_changed = true;
14535 ret = drm_atomic_add_affected_connectors(&state->base,
14536 conn_state->crtc);
14537 if (ret)
14538 break;
14539 }
14540 drm_connector_list_iter_end(&conn_iter);
14541
14542 return ret;
14543 }
14544
14545 static int
14546 intel_atomic_check_tiled_conns(struct intel_atomic_state *state)
14547 {
14548 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14549 struct drm_connector *connector;
14550 struct drm_connector_state *old_conn_state, *new_conn_state;
14551 int i, ret;
14552
14553 if (INTEL_GEN(dev_priv) < 11)
14554 return 0;
14555
14556 /* Is tiled, mark all other tiled CRTCs as needing a modeset */
14557 for_each_oldnew_connector_in_state(&state->base, connector,
14558 old_conn_state, new_conn_state, i) {
14559 if (!connector->has_tile)
14560 continue;
14561 if (!intel_connector_needs_modeset(state, connector))
14562 continue;
14563
14564 ret = intel_modeset_all_tiles(state, connector->tile_group->id);
14565 if (ret)
14566 return ret;
14567 }
14568
14569 return 0;
14570 }
14571
14572 /**
14573 * intel_atomic_check - validate state object
14574 * @dev: drm device
14575 * @_state: state to validate
14576 */
14577 static int intel_atomic_check(struct drm_device *dev,
14578 struct drm_atomic_state *_state)
14579 {
14580 struct drm_i915_private *dev_priv = to_i915(dev);
14581 struct intel_atomic_state *state = to_intel_atomic_state(_state);
14582 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14583 struct intel_crtc *crtc;
14584 int ret, i;
14585 bool any_ms = false;
14586
14587 /* Catch I915_MODE_FLAG_INHERITED */
14588 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14589 new_crtc_state, i) {
14590 if (new_crtc_state->hw.mode.private_flags !=
14591 old_crtc_state->hw.mode.private_flags)
14592 new_crtc_state->uapi.mode_changed = true;
14593 }
14594
14595 ret = drm_atomic_helper_check_modeset(dev, &state->base);
14596 if (ret)
14597 goto fail;
14598
14599 /**
14600 * This check adds all the connectors in current state that belong to
14601 * the same tile group to a full modeset.
14602 * This function directly sets the mode_changed to true and we also call
14603 * drm_atomic_add_affected_connectors(). Hence we are not explicitly
14604 * calling drm_atomic_helper_check_modeset() after this.
14605 *
14606 * Fixme: Handle some corner cases where one of the
14607 * tiled connectors gets disconnected and tile info is lost but since it
14608 * was previously synced to other conn, we need to add that to the modeset.
14609 */
14610 ret = intel_atomic_check_tiled_conns(state);
14611 if (ret)
14612 goto fail;
14613
14614 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14615 new_crtc_state, i) {
14616 if (!needs_modeset(new_crtc_state)) {
14617 /* Light copy */
14618 intel_crtc_copy_uapi_to_hw_state_nomodeset(new_crtc_state);
14619
14620 continue;
14621 }
14622
14623 if (!new_crtc_state->uapi.enable) {
14624 intel_crtc_copy_uapi_to_hw_state(new_crtc_state);
14625 continue;
14626 }
14627
14628 ret = intel_crtc_prepare_cleared_state(new_crtc_state);
14629 if (ret)
14630 goto fail;
14631
14632 ret = intel_modeset_pipe_config(new_crtc_state);
14633 if (ret)
14634 goto fail;
14635
14636 intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14637 }
14638
14639 /**
14640 * Check if fastset is allowed by external dependencies like other
14641 * pipes and transcoders.
14642 *
14643 * Right now it only forces a fullmodeset when the MST master
14644 * transcoder did not changed but the pipe of the master transcoder
14645 * needs a fullmodeset so all slaves also needs to do a fullmodeset or
14646 * in case of port synced crtcs, if one of the synced crtcs
14647 * needs a full modeset, all other synced crtcs should be
14648 * forced a full modeset.
14649 */
14650 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14651 if (!new_crtc_state->hw.enable || needs_modeset(new_crtc_state))
14652 continue;
14653
14654 if (intel_dp_mst_is_slave_trans(new_crtc_state)) {
14655 enum transcoder master = new_crtc_state->mst_master_transcoder;
14656
14657 if (intel_cpu_transcoders_need_modeset(state, BIT(master))) {
14658 new_crtc_state->uapi.mode_changed = true;
14659 new_crtc_state->update_pipe = false;
14660 }
14661 }
14662
14663 if (is_trans_port_sync_mode(new_crtc_state)) {
14664 u8 trans = new_crtc_state->sync_mode_slaves_mask |
14665 BIT(new_crtc_state->master_transcoder);
14666
14667 if (intel_cpu_transcoders_need_modeset(state, trans)) {
14668 new_crtc_state->uapi.mode_changed = true;
14669 new_crtc_state->update_pipe = false;
14670 }
14671 }
14672 }
14673
14674 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14675 new_crtc_state, i) {
14676 if (needs_modeset(new_crtc_state)) {
14677 any_ms = true;
14678 continue;
14679 }
14680
14681 if (!new_crtc_state->update_pipe)
14682 continue;
14683
14684 intel_crtc_copy_fastset(old_crtc_state, new_crtc_state);
14685 }
14686
14687 if (any_ms && !check_digital_port_conflicts(state)) {
14688 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
14689 ret = EINVAL;
14690 goto fail;
14691 }
14692
14693 ret = drm_dp_mst_atomic_check(&state->base);
14694 if (ret)
14695 goto fail;
14696
14697 any_ms |= state->cdclk.force_min_cdclk_changed;
14698
14699 ret = intel_atomic_check_planes(state, &any_ms);
14700 if (ret)
14701 goto fail;
14702
14703 if (any_ms) {
14704 ret = intel_modeset_checks(state);
14705 if (ret)
14706 goto fail;
14707 } else {
14708 state->cdclk.logical = dev_priv->cdclk.logical;
14709 }
14710
14711 ret = intel_atomic_check_crtcs(state);
14712 if (ret)
14713 goto fail;
14714
14715 intel_fbc_choose_crtc(dev_priv, state);
14716 ret = calc_watermark_data(state);
14717 if (ret)
14718 goto fail;
14719
14720 ret = intel_bw_atomic_check(state);
14721 if (ret)
14722 goto fail;
14723
14724 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14725 new_crtc_state, i) {
14726 if (!needs_modeset(new_crtc_state) &&
14727 !new_crtc_state->update_pipe)
14728 continue;
14729
14730 intel_dump_pipe_config(new_crtc_state, state,
14731 needs_modeset(new_crtc_state) ?
14732 "[modeset]" : "[fastset]");
14733 }
14734
14735 return 0;
14736
14737 fail:
14738 if (ret == -EDEADLK)
14739 return ret;
14740
14741 /*
14742 * FIXME would probably be nice to know which crtc specifically
14743 * caused the failure, in cases where we can pinpoint it.
14744 */
14745 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14746 new_crtc_state, i)
14747 intel_dump_pipe_config(new_crtc_state, state, "[failed]");
14748
14749 return ret;
14750 }
14751
14752 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
14753 {
14754 return drm_atomic_helper_prepare_planes(state->base.dev,
14755 &state->base);
14756 }
14757
14758 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14759 {
14760 struct drm_device *dev = crtc->base.dev;
14761 struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
14762
14763 if (!vblank->max_vblank_count)
14764 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
14765
14766 return crtc->base.funcs->get_vblank_counter(&crtc->base);
14767 }
14768
14769 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
14770 struct intel_crtc_state *crtc_state)
14771 {
14772 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14773
14774 if (!IS_GEN(dev_priv, 2) || crtc_state->active_planes)
14775 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
14776
14777 if (crtc_state->has_pch_encoder) {
14778 enum pipe pch_transcoder =
14779 intel_crtc_pch_transcoder(crtc);
14780
14781 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
14782 }
14783 }
14784
14785 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
14786 const struct intel_crtc_state *new_crtc_state)
14787 {
14788 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
14789 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14790
14791 /*
14792 * Update pipe size and adjust fitter if needed: the reason for this is
14793 * that in compute_mode_changes we check the native mode (not the pfit
14794 * mode) to see if we can flip rather than do a full mode set. In the
14795 * fastboot case, we'll flip, but if we don't update the pipesrc and
14796 * pfit state, we'll end up with a big fb scanned out into the wrong
14797 * sized surface.
14798 */
14799 intel_set_pipe_src_size(new_crtc_state);
14800
14801 /* on skylake this is done by detaching scalers */
14802 if (INTEL_GEN(dev_priv) >= 9) {
14803 skl_detach_scalers(new_crtc_state);
14804
14805 if (new_crtc_state->pch_pfit.enabled)
14806 skl_pfit_enable(new_crtc_state);
14807 } else if (HAS_PCH_SPLIT(dev_priv)) {
14808 if (new_crtc_state->pch_pfit.enabled)
14809 ilk_pfit_enable(new_crtc_state);
14810 else if (old_crtc_state->pch_pfit.enabled)
14811 ilk_pfit_disable(old_crtc_state);
14812 }
14813
14814 if (INTEL_GEN(dev_priv) >= 11)
14815 icl_set_pipe_chicken(crtc);
14816 }
14817
14818 static void commit_pipe_config(struct intel_atomic_state *state,
14819 struct intel_crtc_state *old_crtc_state,
14820 struct intel_crtc_state *new_crtc_state)
14821 {
14822 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
14823 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14824 bool modeset = needs_modeset(new_crtc_state);
14825
14826 /*
14827 * During modesets pipe configuration was programmed as the
14828 * CRTC was enabled.
14829 */
14830 if (!modeset) {
14831 if (new_crtc_state->uapi.color_mgmt_changed ||
14832 new_crtc_state->update_pipe)
14833 intel_color_commit(new_crtc_state);
14834
14835 if (INTEL_GEN(dev_priv) >= 9)
14836 skl_detach_scalers(new_crtc_state);
14837
14838 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
14839 bdw_set_pipemisc(new_crtc_state);
14840
14841 if (new_crtc_state->update_pipe)
14842 intel_pipe_fastset(old_crtc_state, new_crtc_state);
14843 }
14844
14845 if (dev_priv->display.atomic_update_watermarks)
14846 dev_priv->display.atomic_update_watermarks(state, crtc);
14847 }
14848
14849 static void intel_update_crtc(struct intel_crtc *crtc,
14850 struct intel_atomic_state *state,
14851 struct intel_crtc_state *old_crtc_state,
14852 struct intel_crtc_state *new_crtc_state)
14853 {
14854 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14855 bool modeset = needs_modeset(new_crtc_state);
14856 struct intel_plane_state *new_plane_state =
14857 intel_atomic_get_new_plane_state(state,
14858 to_intel_plane(crtc->base.primary));
14859
14860 if (modeset) {
14861 intel_crtc_update_active_timings(new_crtc_state);
14862
14863 dev_priv->display.crtc_enable(state, crtc);
14864
14865 /* vblanks work again, re-enable pipe CRC. */
14866 intel_crtc_enable_pipe_crc(crtc);
14867 } else {
14868 if (new_crtc_state->preload_luts &&
14869 (new_crtc_state->uapi.color_mgmt_changed ||
14870 new_crtc_state->update_pipe))
14871 intel_color_load_luts(new_crtc_state);
14872
14873 intel_pre_plane_update(state, crtc);
14874
14875 if (new_crtc_state->update_pipe)
14876 intel_encoders_update_pipe(state, crtc);
14877 }
14878
14879 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
14880 intel_fbc_disable(crtc);
14881 else if (new_plane_state)
14882 intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
14883
14884 /* Perform vblank evasion around commit operation */
14885 intel_pipe_update_start(new_crtc_state);
14886
14887 commit_pipe_config(state, old_crtc_state, new_crtc_state);
14888
14889 if (INTEL_GEN(dev_priv) >= 9)
14890 skl_update_planes_on_crtc(state, crtc);
14891 else
14892 i9xx_update_planes_on_crtc(state, crtc);
14893
14894 intel_pipe_update_end(new_crtc_state);
14895
14896 /*
14897 * We usually enable FIFO underrun interrupts as part of the
14898 * CRTC enable sequence during modesets. But when we inherit a
14899 * valid pipe configuration from the BIOS we need to take care
14900 * of enabling them on the CRTC's first fastset.
14901 */
14902 if (new_crtc_state->update_pipe && !modeset &&
14903 old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED)
14904 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
14905 }
14906
14907 static struct intel_crtc *intel_get_slave_crtc(const struct intel_crtc_state *new_crtc_state)
14908 {
14909 struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev);
14910 enum transcoder slave_transcoder;
14911
14912 WARN_ON(!is_power_of_2(new_crtc_state->sync_mode_slaves_mask));
14913
14914 slave_transcoder = ffs(new_crtc_state->sync_mode_slaves_mask) - 1;
14915 return intel_get_crtc_for_pipe(dev_priv,
14916 (enum pipe)slave_transcoder);
14917 }
14918
14919 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
14920 struct intel_crtc_state *old_crtc_state,
14921 struct intel_crtc_state *new_crtc_state,
14922 struct intel_crtc *crtc)
14923 {
14924 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14925
14926 intel_crtc_disable_planes(state, crtc);
14927
14928 /*
14929 * We need to disable pipe CRC before disabling the pipe,
14930 * or we race against vblank off.
14931 */
14932 intel_crtc_disable_pipe_crc(crtc);
14933
14934 dev_priv->display.crtc_disable(state, crtc);
14935 crtc->active = false;
14936 intel_fbc_disable(crtc);
14937 intel_disable_shared_dpll(old_crtc_state);
14938
14939 /* FIXME unify this for all platforms */
14940 if (!new_crtc_state->hw.active &&
14941 !HAS_GMCH(dev_priv) &&
14942 dev_priv->display.initial_watermarks)
14943 dev_priv->display.initial_watermarks(state, crtc);
14944 }
14945
14946 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
14947 {
14948 struct intel_crtc_state *new_crtc_state, *old_crtc_state;
14949 struct intel_crtc *crtc;
14950 u32 handled = 0;
14951 int i;
14952
14953 /* Only disable port sync and MST slaves */
14954 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14955 new_crtc_state, i) {
14956 if (!needs_modeset(new_crtc_state))
14957 continue;
14958
14959 if (!old_crtc_state->hw.active)
14960 continue;
14961
14962 /* In case of Transcoder port Sync master slave CRTCs can be
14963 * assigned in any order and we need to make sure that
14964 * slave CRTCs are disabled first and then master CRTC since
14965 * Slave vblanks are masked till Master Vblanks.
14966 */
14967 if (!is_trans_port_sync_slave(old_crtc_state) &&
14968 !intel_dp_mst_is_slave_trans(old_crtc_state))
14969 continue;
14970
14971 intel_pre_plane_update(state, crtc);
14972 intel_old_crtc_state_disables(state, old_crtc_state,
14973 new_crtc_state, crtc);
14974 handled |= BIT(crtc->pipe);
14975 }
14976
14977 /* Disable everything else left on */
14978 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14979 new_crtc_state, i) {
14980 if (!needs_modeset(new_crtc_state) ||
14981 (handled & BIT(crtc->pipe)))
14982 continue;
14983
14984 intel_pre_plane_update(state, crtc);
14985 if (old_crtc_state->hw.active)
14986 intel_old_crtc_state_disables(state, old_crtc_state,
14987 new_crtc_state, crtc);
14988 }
14989 }
14990
14991 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
14992 {
14993 struct intel_crtc *crtc;
14994 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14995 int i;
14996
14997 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
14998 if (!new_crtc_state->hw.active)
14999 continue;
15000
15001 intel_update_crtc(crtc, state, old_crtc_state,
15002 new_crtc_state);
15003 }
15004 }
15005
15006 static void intel_crtc_enable_trans_port_sync(struct intel_crtc *crtc,
15007 struct intel_atomic_state *state,
15008 struct intel_crtc_state *new_crtc_state)
15009 {
15010 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15011
15012 intel_crtc_update_active_timings(new_crtc_state);
15013 dev_priv->display.crtc_enable(state, crtc);
15014 intel_crtc_enable_pipe_crc(crtc);
15015 }
15016
15017 static void intel_set_dp_tp_ctl_normal(struct intel_crtc *crtc,
15018 struct intel_atomic_state *state)
15019 {
15020 struct drm_connector *uninitialized_var(conn);
15021 struct drm_connector_state *conn_state;
15022 struct intel_dp *intel_dp;
15023 int i;
15024
15025 for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
15026 if (conn_state->crtc == &crtc->base)
15027 break;
15028 }
15029 intel_dp = enc_to_intel_dp(intel_attached_encoder(to_intel_connector(conn)));
15030 intel_dp_stop_link_train(intel_dp);
15031 }
15032
15033 /*
15034 * TODO: This is only called from port sync and it is identical to what will be
15035 * executed again in intel_update_crtc() over port sync pipes
15036 */
15037 static void intel_post_crtc_enable_updates(struct intel_crtc *crtc,
15038 struct intel_atomic_state *state)
15039 {
15040 struct intel_crtc_state *new_crtc_state =
15041 intel_atomic_get_new_crtc_state(state, crtc);
15042 struct intel_crtc_state *old_crtc_state =
15043 intel_atomic_get_old_crtc_state(state, crtc);
15044 struct intel_plane_state *new_plane_state =
15045 intel_atomic_get_new_plane_state(state,
15046 to_intel_plane(crtc->base.primary));
15047 bool modeset = needs_modeset(new_crtc_state);
15048
15049 if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
15050 intel_fbc_disable(crtc);
15051 else if (new_plane_state)
15052 intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
15053
15054 /* Perform vblank evasion around commit operation */
15055 intel_pipe_update_start(new_crtc_state);
15056 commit_pipe_config(state, old_crtc_state, new_crtc_state);
15057 skl_update_planes_on_crtc(state, crtc);
15058 intel_pipe_update_end(new_crtc_state);
15059
15060 /*
15061 * We usually enable FIFO underrun interrupts as part of the
15062 * CRTC enable sequence during modesets. But when we inherit a
15063 * valid pipe configuration from the BIOS we need to take care
15064 * of enabling them on the CRTC's first fastset.
15065 */
15066 if (new_crtc_state->update_pipe && !modeset &&
15067 old_crtc_state->hw.mode.private_flags & I915_MODE_FLAG_INHERITED)
15068 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
15069 }
15070
15071 static void intel_update_trans_port_sync_crtcs(struct intel_crtc *crtc,
15072 struct intel_atomic_state *state,
15073 struct intel_crtc_state *old_crtc_state,
15074 struct intel_crtc_state *new_crtc_state)
15075 {
15076 struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state);
15077 struct intel_crtc_state *new_slave_crtc_state =
15078 intel_atomic_get_new_crtc_state(state, slave_crtc);
15079 struct intel_crtc_state *old_slave_crtc_state =
15080 intel_atomic_get_old_crtc_state(state, slave_crtc);
15081
15082 WARN_ON(!slave_crtc || !new_slave_crtc_state ||
15083 !old_slave_crtc_state);
15084
15085 DRM_DEBUG_KMS("Updating Transcoder Port Sync Master CRTC = %d %s and Slave CRTC %d %s\n",
15086 crtc->base.base.id, crtc->base.name, slave_crtc->base.base.id,
15087 slave_crtc->base.name);
15088
15089 /* Enable seq for slave with with DP_TP_CTL left Idle until the
15090 * master is ready
15091 */
15092 intel_crtc_enable_trans_port_sync(slave_crtc,
15093 state,
15094 new_slave_crtc_state);
15095
15096 /* Enable seq for master with with DP_TP_CTL left Idle */
15097 intel_crtc_enable_trans_port_sync(crtc,
15098 state,
15099 new_crtc_state);
15100
15101 /* Set Slave's DP_TP_CTL to Normal */
15102 intel_set_dp_tp_ctl_normal(slave_crtc,
15103 state);
15104
15105 /* Set Master's DP_TP_CTL To Normal */
15106 usleep_range(200, 400);
15107 intel_set_dp_tp_ctl_normal(crtc,
15108 state);
15109
15110 /* Now do the post crtc enable for all master and slaves */
15111 intel_post_crtc_enable_updates(slave_crtc,
15112 state);
15113 intel_post_crtc_enable_updates(crtc,
15114 state);
15115 }
15116
15117 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
15118 {
15119 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
15120 struct intel_crtc *crtc;
15121 struct intel_crtc_state *old_crtc_state, *new_crtc_state;
15122 u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices;
15123 u8 required_slices = state->wm_results.ddb.enabled_slices;
15124 struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
15125 const u8 num_pipes = INTEL_NUM_PIPES(dev_priv);
15126 u8 update_pipes = 0, modeset_pipes = 0;
15127 int i;
15128
15129 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15130 if (!new_crtc_state->hw.active)
15131 continue;
15132
15133 /* ignore allocations for crtc's that have been turned off. */
15134 if (!needs_modeset(new_crtc_state)) {
15135 entries[i] = old_crtc_state->wm.skl.ddb;
15136 update_pipes |= BIT(crtc->pipe);
15137 } else {
15138 modeset_pipes |= BIT(crtc->pipe);
15139 }
15140 }
15141
15142 /* If 2nd DBuf slice required, enable it here */
15143 if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices)
15144 icl_dbuf_slices_update(dev_priv, required_slices);
15145
15146 /*
15147 * Whenever the number of active pipes changes, we need to make sure we
15148 * update the pipes in the right order so that their ddb allocations
15149 * never overlap with each other between CRTC updates. Otherwise we'll
15150 * cause pipe underruns and other bad stuff.
15151 *
15152 * So first lets enable all pipes that do not need a fullmodeset as
15153 * those don't have any external dependency.
15154 */
15155 while (update_pipes) {
15156 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15157 new_crtc_state, i) {
15158 enum pipe pipe = crtc->pipe;
15159
15160 if ((update_pipes & BIT(pipe)) == 0)
15161 continue;
15162
15163 if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15164 entries, num_pipes, i))
15165 continue;
15166
15167 entries[i] = new_crtc_state->wm.skl.ddb;
15168 update_pipes &= ~BIT(pipe);
15169
15170 intel_update_crtc(crtc, state, old_crtc_state,
15171 new_crtc_state);
15172
15173 /*
15174 * If this is an already active pipe, it's DDB changed,
15175 * and this isn't the last pipe that needs updating
15176 * then we need to wait for a vblank to pass for the
15177 * new ddb allocation to take effect.
15178 */
15179 if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
15180 &old_crtc_state->wm.skl.ddb) &&
15181 (update_pipes | modeset_pipes))
15182 intel_wait_for_vblank(dev_priv, pipe);
15183 }
15184 }
15185
15186 /*
15187 * Enable all pipes that needs a modeset and do not depends on other
15188 * pipes
15189 */
15190 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15191 new_crtc_state, i) {
15192 enum pipe pipe = crtc->pipe;
15193
15194 if ((modeset_pipes & BIT(pipe)) == 0)
15195 continue;
15196
15197 if (intel_dp_mst_is_slave_trans(new_crtc_state) ||
15198 is_trans_port_sync_slave(new_crtc_state))
15199 continue;
15200
15201 WARN_ON(skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15202 entries, num_pipes, i));
15203
15204 entries[i] = new_crtc_state->wm.skl.ddb;
15205 modeset_pipes &= ~BIT(pipe);
15206
15207 if (is_trans_port_sync_mode(new_crtc_state)) {
15208 struct intel_crtc *slave_crtc;
15209
15210 intel_update_trans_port_sync_crtcs(crtc, state,
15211 old_crtc_state,
15212 new_crtc_state);
15213
15214 slave_crtc = intel_get_slave_crtc(new_crtc_state);
15215 /* TODO: update entries[] of slave */
15216 modeset_pipes &= ~BIT(slave_crtc->pipe);
15217
15218 } else {
15219 intel_update_crtc(crtc, state, old_crtc_state,
15220 new_crtc_state);
15221 }
15222 }
15223
15224 /*
15225 * Finally enable all pipes that needs a modeset and depends on
15226 * other pipes, right now it is only MST slaves as both port sync slave
15227 * and master are enabled together
15228 */
15229 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15230 new_crtc_state, i) {
15231 enum pipe pipe = crtc->pipe;
15232
15233 if ((modeset_pipes & BIT(pipe)) == 0)
15234 continue;
15235
15236 WARN_ON(skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
15237 entries, num_pipes, i));
15238
15239 entries[i] = new_crtc_state->wm.skl.ddb;
15240 modeset_pipes &= ~BIT(pipe);
15241
15242 intel_update_crtc(crtc, state, old_crtc_state, new_crtc_state);
15243 }
15244
15245 WARN_ON(modeset_pipes);
15246
15247 /* If 2nd DBuf slice is no more required disable it */
15248 if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices)
15249 icl_dbuf_slices_update(dev_priv, required_slices);
15250 }
15251
15252 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
15253 {
15254 struct intel_atomic_state *state, *next;
15255 struct llist_node *freed;
15256
15257 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
15258 llist_for_each_entry_safe(state, next, freed, freed)
15259 drm_atomic_state_put(&state->base);
15260 }
15261
15262 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
15263 {
15264 struct drm_i915_private *dev_priv =
15265 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
15266
15267 intel_atomic_helper_free_state(dev_priv);
15268 }
15269
15270 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
15271 {
15272 struct wait_queue_entry wait_fence, wait_reset;
15273 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
15274
15275 init_wait_entry(&wait_fence, 0);
15276 init_wait_entry(&wait_reset, 0);
15277 for (;;) {
15278 prepare_to_wait(&intel_state->commit_ready.wait,
15279 &wait_fence, TASK_UNINTERRUPTIBLE);
15280 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15281 I915_RESET_MODESET),
15282 &wait_reset, TASK_UNINTERRUPTIBLE);
15283
15284
15285 if (i915_sw_fence_done(&intel_state->commit_ready) ||
15286 test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
15287 break;
15288
15289 schedule();
15290 }
15291 finish_wait(&intel_state->commit_ready.wait, &wait_fence);
15292 finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
15293 I915_RESET_MODESET),
15294 &wait_reset);
15295 }
15296
15297 static void intel_atomic_cleanup_work(struct work_struct *work)
15298 {
15299 struct drm_atomic_state *state =
15300 container_of(work, struct drm_atomic_state, commit_work);
15301 struct drm_i915_private *i915 = to_i915(state->dev);
15302
15303 drm_atomic_helper_cleanup_planes(&i915->drm, state);
15304 drm_atomic_helper_commit_cleanup_done(state);
15305 drm_atomic_state_put(state);
15306
15307 intel_atomic_helper_free_state(i915);
15308 }
15309
15310 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
15311 {
15312 struct drm_device *dev = state->base.dev;
15313 struct drm_i915_private *dev_priv = to_i915(dev);
15314 struct intel_crtc_state *new_crtc_state, *old_crtc_state;
15315 struct intel_crtc *crtc;
15316 u64 put_domains[I915_MAX_PIPES] = {};
15317 intel_wakeref_t wakeref = 0;
15318 int i;
15319
15320 intel_atomic_commit_fence_wait(state);
15321
15322 drm_atomic_helper_wait_for_dependencies(&state->base);
15323
15324 if (state->modeset)
15325 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
15326
15327 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15328 new_crtc_state, i) {
15329 if (needs_modeset(new_crtc_state) ||
15330 new_crtc_state->update_pipe) {
15331
15332 put_domains[crtc->pipe] =
15333 modeset_get_crtc_power_domains(new_crtc_state);
15334 }
15335 }
15336
15337 intel_commit_modeset_disables(state);
15338
15339 /* FIXME: Eventually get rid of our crtc->config pointer */
15340 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15341 crtc->config = new_crtc_state;
15342
15343 if (state->modeset) {
15344 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
15345
15346 intel_set_cdclk_pre_plane_update(dev_priv,
15347 &state->cdclk.actual,
15348 &dev_priv->cdclk.actual,
15349 state->cdclk.pipe);
15350
15351 /*
15352 * SKL workaround: bspec recommends we disable the SAGV when we
15353 * have more then one pipe enabled
15354 */
15355 if (!intel_can_enable_sagv(state))
15356 intel_disable_sagv(dev_priv);
15357
15358 intel_modeset_verify_disabled(dev_priv, state);
15359 }
15360
15361 /* Complete the events for pipes that have now been disabled */
15362 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15363 bool modeset = needs_modeset(new_crtc_state);
15364
15365 /* Complete events for now disable pipes here. */
15366 if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) {
15367 spin_lock_irq(&dev->event_lock);
15368 drm_crtc_send_vblank_event(&crtc->base,
15369 new_crtc_state->uapi.event);
15370 spin_unlock_irq(&dev->event_lock);
15371
15372 new_crtc_state->uapi.event = NULL;
15373 }
15374 }
15375
15376 if (state->modeset)
15377 intel_encoders_update_prepare(state);
15378
15379 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
15380 dev_priv->display.commit_modeset_enables(state);
15381
15382 if (state->modeset) {
15383 intel_encoders_update_complete(state);
15384
15385 intel_set_cdclk_post_plane_update(dev_priv,
15386 &state->cdclk.actual,
15387 &dev_priv->cdclk.actual,
15388 state->cdclk.pipe);
15389 }
15390
15391 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
15392 * already, but still need the state for the delayed optimization. To
15393 * fix this:
15394 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
15395 * - schedule that vblank worker _before_ calling hw_done
15396 * - at the start of commit_tail, cancel it _synchrously
15397 * - switch over to the vblank wait helper in the core after that since
15398 * we don't need out special handling any more.
15399 */
15400 drm_atomic_helper_wait_for_flip_done(dev, &state->base);
15401
15402 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
15403 if (new_crtc_state->hw.active &&
15404 !needs_modeset(new_crtc_state) &&
15405 !new_crtc_state->preload_luts &&
15406 (new_crtc_state->uapi.color_mgmt_changed ||
15407 new_crtc_state->update_pipe))
15408 intel_color_load_luts(new_crtc_state);
15409 }
15410
15411 /*
15412 * Now that the vblank has passed, we can go ahead and program the
15413 * optimal watermarks on platforms that need two-step watermark
15414 * programming.
15415 *
15416 * TODO: Move this (and other cleanup) to an async worker eventually.
15417 */
15418 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
15419 new_crtc_state, i) {
15420 /*
15421 * Gen2 reports pipe underruns whenever all planes are disabled.
15422 * So re-enable underrun reporting after some planes get enabled.
15423 *
15424 * We do this before .optimize_watermarks() so that we have a
15425 * chance of catching underruns with the intermediate watermarks
15426 * vs. the new plane configuration.
15427 */
15428 if (IS_GEN(dev_priv, 2) && planes_enabling(old_crtc_state, new_crtc_state))
15429 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
15430
15431 if (dev_priv->display.optimize_watermarks)
15432 dev_priv->display.optimize_watermarks(state, crtc);
15433 }
15434
15435 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
15436 intel_post_plane_update(state, crtc);
15437
15438 if (put_domains[i])
15439 modeset_put_power_domains(dev_priv, put_domains[i]);
15440
15441 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
15442 }
15443
15444 /* Underruns don't always raise interrupts, so check manually */
15445 intel_check_cpu_fifo_underruns(dev_priv);
15446 intel_check_pch_fifo_underruns(dev_priv);
15447
15448 if (state->modeset)
15449 intel_verify_planes(state);
15450
15451 if (state->modeset && intel_can_enable_sagv(state))
15452 intel_enable_sagv(dev_priv);
15453
15454 drm_atomic_helper_commit_hw_done(&state->base);
15455
15456 if (state->modeset) {
15457 /* As one of the primary mmio accessors, KMS has a high
15458 * likelihood of triggering bugs in unclaimed access. After we
15459 * finish modesetting, see if an error has been flagged, and if
15460 * so enable debugging for the next modeset - and hope we catch
15461 * the culprit.
15462 */
15463 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
15464 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
15465 }
15466 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15467
15468 /*
15469 * Defer the cleanup of the old state to a separate worker to not
15470 * impede the current task (userspace for blocking modesets) that
15471 * are executed inline. For out-of-line asynchronous modesets/flips,
15472 * deferring to a new worker seems overkill, but we would place a
15473 * schedule point (cond_resched()) here anyway to keep latencies
15474 * down.
15475 */
15476 INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
15477 queue_work(system_highpri_wq, &state->base.commit_work);
15478 }
15479
15480 static void intel_atomic_commit_work(struct work_struct *work)
15481 {
15482 struct intel_atomic_state *state =
15483 container_of(work, struct intel_atomic_state, base.commit_work);
15484
15485 intel_atomic_commit_tail(state);
15486 }
15487
15488 static int __i915_sw_fence_call
15489 intel_atomic_commit_ready(struct i915_sw_fence *fence,
15490 enum i915_sw_fence_notify notify)
15491 {
15492 struct intel_atomic_state *state =
15493 container_of(fence, struct intel_atomic_state, commit_ready);
15494
15495 switch (notify) {
15496 case FENCE_COMPLETE:
15497 /* we do blocking waits in the worker, nothing to do here */
15498 break;
15499 case FENCE_FREE:
15500 {
15501 struct intel_atomic_helper *helper =
15502 &to_i915(state->base.dev)->atomic_helper;
15503
15504 if (llist_add(&state->freed, &helper->free_list))
15505 schedule_work(&helper->free_work);
15506 break;
15507 }
15508 }
15509
15510 return NOTIFY_DONE;
15511 }
15512
15513 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
15514 {
15515 struct intel_plane_state *old_plane_state, *new_plane_state;
15516 struct intel_plane *plane;
15517 int i;
15518
15519 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
15520 new_plane_state, i)
15521 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
15522 to_intel_frontbuffer(new_plane_state->hw.fb),
15523 plane->frontbuffer_bit);
15524 }
15525
15526 static void assert_global_state_locked(struct drm_i915_private *dev_priv)
15527 {
15528 struct intel_crtc *crtc;
15529
15530 for_each_intel_crtc(&dev_priv->drm, crtc)
15531 drm_modeset_lock_assert_held(&crtc->base.mutex);
15532 }
15533
15534 static int intel_atomic_commit(struct drm_device *dev,
15535 struct drm_atomic_state *_state,
15536 bool nonblock)
15537 {
15538 struct intel_atomic_state *state = to_intel_atomic_state(_state);
15539 struct drm_i915_private *dev_priv = to_i915(dev);
15540 int ret = 0;
15541
15542 state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
15543
15544 drm_atomic_state_get(&state->base);
15545 i915_sw_fence_init(&state->commit_ready,
15546 intel_atomic_commit_ready);
15547
15548 /*
15549 * The intel_legacy_cursor_update() fast path takes care
15550 * of avoiding the vblank waits for simple cursor
15551 * movement and flips. For cursor on/off and size changes,
15552 * we want to perform the vblank waits so that watermark
15553 * updates happen during the correct frames. Gen9+ have
15554 * double buffered watermarks and so shouldn't need this.
15555 *
15556 * Unset state->legacy_cursor_update before the call to
15557 * drm_atomic_helper_setup_commit() because otherwise
15558 * drm_atomic_helper_wait_for_flip_done() is a noop and
15559 * we get FIFO underruns because we didn't wait
15560 * for vblank.
15561 *
15562 * FIXME doing watermarks and fb cleanup from a vblank worker
15563 * (assuming we had any) would solve these problems.
15564 */
15565 if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
15566 struct intel_crtc_state *new_crtc_state;
15567 struct intel_crtc *crtc;
15568 int i;
15569
15570 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
15571 if (new_crtc_state->wm.need_postvbl_update ||
15572 new_crtc_state->update_wm_post)
15573 state->base.legacy_cursor_update = false;
15574 }
15575
15576 ret = intel_atomic_prepare_commit(state);
15577 if (ret) {
15578 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
15579 i915_sw_fence_commit(&state->commit_ready);
15580 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15581 return ret;
15582 }
15583
15584 ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
15585 if (!ret)
15586 ret = drm_atomic_helper_swap_state(&state->base, true);
15587
15588 if (ret) {
15589 i915_sw_fence_commit(&state->commit_ready);
15590
15591 drm_atomic_helper_cleanup_planes(dev, &state->base);
15592 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
15593 return ret;
15594 }
15595 dev_priv->wm.distrust_bios_wm = false;
15596 intel_shared_dpll_swap_state(state);
15597 intel_atomic_track_fbs(state);
15598
15599 if (state->global_state_changed) {
15600 assert_global_state_locked(dev_priv);
15601
15602 memcpy(dev_priv->min_cdclk, state->min_cdclk,
15603 sizeof(state->min_cdclk));
15604 memcpy(dev_priv->min_voltage_level, state->min_voltage_level,
15605 sizeof(state->min_voltage_level));
15606 dev_priv->active_pipes = state->active_pipes;
15607 dev_priv->cdclk.force_min_cdclk = state->cdclk.force_min_cdclk;
15608
15609 intel_cdclk_swap_state(state);
15610 }
15611
15612 drm_atomic_state_get(&state->base);
15613 INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
15614
15615 i915_sw_fence_commit(&state->commit_ready);
15616 if (nonblock && state->modeset) {
15617 queue_work(dev_priv->modeset_wq, &state->base.commit_work);
15618 } else if (nonblock) {
15619 queue_work(dev_priv->flip_wq, &state->base.commit_work);
15620 } else {
15621 if (state->modeset)
15622 flush_workqueue(dev_priv->modeset_wq);
15623 intel_atomic_commit_tail(state);
15624 }
15625
15626 return 0;
15627 }
15628
15629 struct wait_rps_boost {
15630 struct wait_queue_entry wait;
15631
15632 struct drm_crtc *crtc;
15633 struct i915_request *request;
15634 };
15635
15636 static int do_rps_boost(struct wait_queue_entry *_wait,
15637 unsigned mode, int sync, void *key)
15638 {
15639 struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
15640 struct i915_request *rq = wait->request;
15641
15642 /*
15643 * If we missed the vblank, but the request is already running it
15644 * is reasonable to assume that it will complete before the next
15645 * vblank without our intervention, so leave RPS alone.
15646 */
15647 if (!i915_request_started(rq))
15648 intel_rps_boost(rq);
15649 i915_request_put(rq);
15650
15651 drm_crtc_vblank_put(wait->crtc);
15652
15653 list_del(&wait->wait.entry);
15654 kfree(wait);
15655 return 1;
15656 }
15657
15658 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
15659 struct dma_fence *fence)
15660 {
15661 struct wait_rps_boost *wait;
15662
15663 if (!dma_fence_is_i915(fence))
15664 return;
15665
15666 if (INTEL_GEN(to_i915(crtc->dev)) < 6)
15667 return;
15668
15669 if (drm_crtc_vblank_get(crtc))
15670 return;
15671
15672 wait = kmalloc(sizeof(*wait), GFP_KERNEL);
15673 if (!wait) {
15674 drm_crtc_vblank_put(crtc);
15675 return;
15676 }
15677
15678 wait->request = to_request(dma_fence_get(fence));
15679 wait->crtc = crtc;
15680
15681 wait->wait.func = do_rps_boost;
15682 wait->wait.flags = 0;
15683
15684 add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
15685 }
15686
15687 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
15688 {
15689 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
15690 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15691 struct drm_framebuffer *fb = plane_state->hw.fb;
15692 struct i915_vma *vma;
15693
15694 if (plane->id == PLANE_CURSOR &&
15695 INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15696 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15697 const int align = intel_cursor_alignment(dev_priv);
15698 int err;
15699
15700 err = i915_gem_object_attach_phys(obj, align);
15701 if (err)
15702 return err;
15703 }
15704
15705 vma = intel_pin_and_fence_fb_obj(fb,
15706 &plane_state->view,
15707 intel_plane_uses_fence(plane_state),
15708 &plane_state->flags);
15709 if (IS_ERR(vma))
15710 return PTR_ERR(vma);
15711
15712 plane_state->vma = vma;
15713
15714 return 0;
15715 }
15716
15717 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15718 {
15719 struct i915_vma *vma;
15720
15721 vma = fetch_and_zero(&old_plane_state->vma);
15722 if (vma)
15723 intel_unpin_fb_vma(vma, old_plane_state->flags);
15724 }
15725
15726 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15727 {
15728 struct i915_sched_attr attr = {
15729 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15730 };
15731
15732 i915_gem_object_wait_priority(obj, 0, &attr);
15733 }
15734
15735 /**
15736 * intel_prepare_plane_fb - Prepare fb for usage on plane
15737 * @plane: drm plane to prepare for
15738 * @_new_plane_state: the plane state being prepared
15739 *
15740 * Prepares a framebuffer for usage on a display plane. Generally this
15741 * involves pinning the underlying object and updating the frontbuffer tracking
15742 * bits. Some older platforms need special physical address handling for
15743 * cursor planes.
15744 *
15745 * Returns 0 on success, negative error code on failure.
15746 */
15747 int
15748 intel_prepare_plane_fb(struct drm_plane *plane,
15749 struct drm_plane_state *_new_plane_state)
15750 {
15751 struct intel_plane_state *new_plane_state =
15752 to_intel_plane_state(_new_plane_state);
15753 struct intel_atomic_state *intel_state =
15754 to_intel_atomic_state(new_plane_state->uapi.state);
15755 struct drm_i915_private *dev_priv = to_i915(plane->dev);
15756 struct drm_framebuffer *fb = new_plane_state->hw.fb;
15757 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15758 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
15759 int ret;
15760
15761 if (old_obj) {
15762 struct intel_crtc_state *crtc_state =
15763 intel_atomic_get_new_crtc_state(intel_state,
15764 to_intel_crtc(plane->state->crtc));
15765
15766 /* Big Hammer, we also need to ensure that any pending
15767 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
15768 * current scanout is retired before unpinning the old
15769 * framebuffer. Note that we rely on userspace rendering
15770 * into the buffer attached to the pipe they are waiting
15771 * on. If not, userspace generates a GPU hang with IPEHR
15772 * point to the MI_WAIT_FOR_EVENT.
15773 *
15774 * This should only fail upon a hung GPU, in which case we
15775 * can safely continue.
15776 */
15777 if (needs_modeset(crtc_state)) {
15778 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
15779 old_obj->base.resv, NULL,
15780 false, 0,
15781 GFP_KERNEL);
15782 if (ret < 0)
15783 return ret;
15784 }
15785 }
15786
15787 if (new_plane_state->uapi.fence) { /* explicit fencing */
15788 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
15789 new_plane_state->uapi.fence,
15790 I915_FENCE_TIMEOUT,
15791 GFP_KERNEL);
15792 if (ret < 0)
15793 return ret;
15794 }
15795
15796 if (!obj)
15797 return 0;
15798
15799 ret = i915_gem_object_pin_pages(obj);
15800 if (ret)
15801 return ret;
15802
15803 ret = intel_plane_pin_fb(new_plane_state);
15804
15805 i915_gem_object_unpin_pages(obj);
15806 if (ret)
15807 return ret;
15808
15809 fb_obj_bump_render_priority(obj);
15810 i915_gem_object_flush_frontbuffer(obj, ORIGIN_DIRTYFB);
15811
15812 if (!new_plane_state->uapi.fence) { /* implicit fencing */
15813 struct dma_fence *fence;
15814
15815 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
15816 obj->base.resv, NULL,
15817 false, I915_FENCE_TIMEOUT,
15818 GFP_KERNEL);
15819 if (ret < 0)
15820 return ret;
15821
15822 fence = dma_resv_get_excl_rcu(obj->base.resv);
15823 if (fence) {
15824 add_rps_boost_after_vblank(new_plane_state->hw.crtc,
15825 fence);
15826 dma_fence_put(fence);
15827 }
15828 } else {
15829 add_rps_boost_after_vblank(new_plane_state->hw.crtc,
15830 new_plane_state->uapi.fence);
15831 }
15832
15833 /*
15834 * We declare pageflips to be interactive and so merit a small bias
15835 * towards upclocking to deliver the frame on time. By only changing
15836 * the RPS thresholds to sample more regularly and aim for higher
15837 * clocks we can hopefully deliver low power workloads (like kodi)
15838 * that are not quite steady state without resorting to forcing
15839 * maximum clocks following a vblank miss (see do_rps_boost()).
15840 */
15841 if (!intel_state->rps_interactive) {
15842 intel_rps_mark_interactive(&dev_priv->gt.rps, true);
15843 intel_state->rps_interactive = true;
15844 }
15845
15846 return 0;
15847 }
15848
15849 /**
15850 * intel_cleanup_plane_fb - Cleans up an fb after plane use
15851 * @plane: drm plane to clean up for
15852 * @_old_plane_state: the state from the previous modeset
15853 *
15854 * Cleans up a framebuffer that has just been removed from a plane.
15855 */
15856 void
15857 intel_cleanup_plane_fb(struct drm_plane *plane,
15858 struct drm_plane_state *_old_plane_state)
15859 {
15860 struct intel_plane_state *old_plane_state =
15861 to_intel_plane_state(_old_plane_state);
15862 struct intel_atomic_state *intel_state =
15863 to_intel_atomic_state(old_plane_state->uapi.state);
15864 struct drm_i915_private *dev_priv = to_i915(plane->dev);
15865
15866 if (intel_state->rps_interactive) {
15867 intel_rps_mark_interactive(&dev_priv->gt.rps, false);
15868 intel_state->rps_interactive = false;
15869 }
15870
15871 /* Should only be called after a successful intel_prepare_plane_fb()! */
15872 intel_plane_unpin_fb(old_plane_state);
15873 }
15874
15875 /**
15876 * intel_plane_destroy - destroy a plane
15877 * @plane: plane to destroy
15878 *
15879 * Common destruction function for all types of planes (primary, cursor,
15880 * sprite).
15881 */
15882 void intel_plane_destroy(struct drm_plane *plane)
15883 {
15884 drm_plane_cleanup(plane);
15885 kfree(to_intel_plane(plane));
15886 }
15887
15888 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
15889 u32 format, u64 modifier)
15890 {
15891 switch (modifier) {
15892 case DRM_FORMAT_MOD_LINEAR:
15893 case I915_FORMAT_MOD_X_TILED:
15894 break;
15895 default:
15896 return false;
15897 }
15898
15899 switch (format) {
15900 case DRM_FORMAT_C8:
15901 case DRM_FORMAT_RGB565:
15902 case DRM_FORMAT_XRGB1555:
15903 case DRM_FORMAT_XRGB8888:
15904 return modifier == DRM_FORMAT_MOD_LINEAR ||
15905 modifier == I915_FORMAT_MOD_X_TILED;
15906 default:
15907 return false;
15908 }
15909 }
15910
15911 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
15912 u32 format, u64 modifier)
15913 {
15914 switch (modifier) {
15915 case DRM_FORMAT_MOD_LINEAR:
15916 case I915_FORMAT_MOD_X_TILED:
15917 break;
15918 default:
15919 return false;
15920 }
15921
15922 switch (format) {
15923 case DRM_FORMAT_C8:
15924 case DRM_FORMAT_RGB565:
15925 case DRM_FORMAT_XRGB8888:
15926 case DRM_FORMAT_XBGR8888:
15927 case DRM_FORMAT_ARGB8888:
15928 case DRM_FORMAT_ABGR8888:
15929 case DRM_FORMAT_XRGB2101010:
15930 case DRM_FORMAT_XBGR2101010:
15931 case DRM_FORMAT_ARGB2101010:
15932 case DRM_FORMAT_ABGR2101010:
15933 case DRM_FORMAT_XBGR16161616F:
15934 return modifier == DRM_FORMAT_MOD_LINEAR ||
15935 modifier == I915_FORMAT_MOD_X_TILED;
15936 default:
15937 return false;
15938 }
15939 }
15940
15941 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
15942 u32 format, u64 modifier)
15943 {
15944 return modifier == DRM_FORMAT_MOD_LINEAR &&
15945 format == DRM_FORMAT_ARGB8888;
15946 }
15947
15948 static const struct drm_plane_funcs i965_plane_funcs = {
15949 .update_plane = drm_atomic_helper_update_plane,
15950 .disable_plane = drm_atomic_helper_disable_plane,
15951 .destroy = intel_plane_destroy,
15952 .atomic_duplicate_state = intel_plane_duplicate_state,
15953 .atomic_destroy_state = intel_plane_destroy_state,
15954 .format_mod_supported = i965_plane_format_mod_supported,
15955 };
15956
15957 static const struct drm_plane_funcs i8xx_plane_funcs = {
15958 .update_plane = drm_atomic_helper_update_plane,
15959 .disable_plane = drm_atomic_helper_disable_plane,
15960 .destroy = intel_plane_destroy,
15961 .atomic_duplicate_state = intel_plane_duplicate_state,
15962 .atomic_destroy_state = intel_plane_destroy_state,
15963 .format_mod_supported = i8xx_plane_format_mod_supported,
15964 };
15965
15966 static int
15967 intel_legacy_cursor_update(struct drm_plane *_plane,
15968 struct drm_crtc *_crtc,
15969 struct drm_framebuffer *fb,
15970 int crtc_x, int crtc_y,
15971 unsigned int crtc_w, unsigned int crtc_h,
15972 u32 src_x, u32 src_y,
15973 u32 src_w, u32 src_h,
15974 struct drm_modeset_acquire_ctx *ctx)
15975 {
15976 struct intel_plane *plane = to_intel_plane(_plane);
15977 struct intel_crtc *crtc = to_intel_crtc(_crtc);
15978 struct intel_plane_state *old_plane_state =
15979 to_intel_plane_state(plane->base.state);
15980 struct intel_plane_state *new_plane_state;
15981 struct intel_crtc_state *crtc_state =
15982 to_intel_crtc_state(crtc->base.state);
15983 struct intel_crtc_state *new_crtc_state;
15984 int ret;
15985
15986 /*
15987 * When crtc is inactive or there is a modeset pending,
15988 * wait for it to complete in the slowpath
15989 */
15990 if (!crtc_state->hw.active || needs_modeset(crtc_state) ||
15991 crtc_state->update_pipe)
15992 goto slow;
15993
15994 /*
15995 * Don't do an async update if there is an outstanding commit modifying
15996 * the plane. This prevents our async update's changes from getting
15997 * overridden by a previous synchronous update's state.
15998 */
15999 if (old_plane_state->uapi.commit &&
16000 !try_wait_for_completion(&old_plane_state->uapi.commit->hw_done))
16001 goto slow;
16002
16003 /*
16004 * If any parameters change that may affect watermarks,
16005 * take the slowpath. Only changing fb or position should be
16006 * in the fastpath.
16007 */
16008 if (old_plane_state->uapi.crtc != &crtc->base ||
16009 old_plane_state->uapi.src_w != src_w ||
16010 old_plane_state->uapi.src_h != src_h ||
16011 old_plane_state->uapi.crtc_w != crtc_w ||
16012 old_plane_state->uapi.crtc_h != crtc_h ||
16013 !old_plane_state->uapi.fb != !fb)
16014 goto slow;
16015
16016 new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
16017 if (!new_plane_state)
16018 return -ENOMEM;
16019
16020 new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
16021 if (!new_crtc_state) {
16022 ret = -ENOMEM;
16023 goto out_free;
16024 }
16025
16026 drm_atomic_set_fb_for_plane(&new_plane_state->uapi, fb);
16027
16028 new_plane_state->uapi.src_x = src_x;
16029 new_plane_state->uapi.src_y = src_y;
16030 new_plane_state->uapi.src_w = src_w;
16031 new_plane_state->uapi.src_h = src_h;
16032 new_plane_state->uapi.crtc_x = crtc_x;
16033 new_plane_state->uapi.crtc_y = crtc_y;
16034 new_plane_state->uapi.crtc_w = crtc_w;
16035 new_plane_state->uapi.crtc_h = crtc_h;
16036
16037 ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
16038 old_plane_state, new_plane_state);
16039 if (ret)
16040 goto out_free;
16041
16042 ret = intel_plane_pin_fb(new_plane_state);
16043 if (ret)
16044 goto out_free;
16045
16046 intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->hw.fb),
16047 ORIGIN_FLIP);
16048 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb),
16049 to_intel_frontbuffer(new_plane_state->hw.fb),
16050 plane->frontbuffer_bit);
16051
16052 /* Swap plane state */
16053 plane->base.state = &new_plane_state->uapi;
16054
16055 /*
16056 * We cannot swap crtc_state as it may be in use by an atomic commit or
16057 * page flip that's running simultaneously. If we swap crtc_state and
16058 * destroy the old state, we will cause a use-after-free there.
16059 *
16060 * Only update active_planes, which is needed for our internal
16061 * bookkeeping. Either value will do the right thing when updating
16062 * planes atomically. If the cursor was part of the atomic update then
16063 * we would have taken the slowpath.
16064 */
16065 crtc_state->active_planes = new_crtc_state->active_planes;
16066
16067 if (new_plane_state->uapi.visible)
16068 intel_update_plane(plane, crtc_state, new_plane_state);
16069 else
16070 intel_disable_plane(plane, crtc_state);
16071
16072 intel_plane_unpin_fb(old_plane_state);
16073
16074 out_free:
16075 if (new_crtc_state)
16076 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->uapi);
16077 if (ret)
16078 intel_plane_destroy_state(&plane->base, &new_plane_state->uapi);
16079 else
16080 intel_plane_destroy_state(&plane->base, &old_plane_state->uapi);
16081 return ret;
16082
16083 slow:
16084 return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
16085 crtc_x, crtc_y, crtc_w, crtc_h,
16086 src_x, src_y, src_w, src_h, ctx);
16087 }
16088
16089 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
16090 .update_plane = intel_legacy_cursor_update,
16091 .disable_plane = drm_atomic_helper_disable_plane,
16092 .destroy = intel_plane_destroy,
16093 .atomic_duplicate_state = intel_plane_duplicate_state,
16094 .atomic_destroy_state = intel_plane_destroy_state,
16095 .format_mod_supported = intel_cursor_format_mod_supported,
16096 };
16097
16098 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
16099 enum i9xx_plane_id i9xx_plane)
16100 {
16101 if (!HAS_FBC(dev_priv))
16102 return false;
16103
16104 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16105 return i9xx_plane == PLANE_A; /* tied to pipe A */
16106 else if (IS_IVYBRIDGE(dev_priv))
16107 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
16108 i9xx_plane == PLANE_C;
16109 else if (INTEL_GEN(dev_priv) >= 4)
16110 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
16111 else
16112 return i9xx_plane == PLANE_A;
16113 }
16114
16115 static struct intel_plane *
16116 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
16117 {
16118 struct intel_plane *plane;
16119 const struct drm_plane_funcs *plane_funcs;
16120 unsigned int supported_rotations;
16121 unsigned int possible_crtcs;
16122 const u32 *formats;
16123 int num_formats;
16124 int ret, zpos;
16125
16126 if (INTEL_GEN(dev_priv) >= 9)
16127 return skl_universal_plane_create(dev_priv, pipe,
16128 PLANE_PRIMARY);
16129
16130 plane = intel_plane_alloc();
16131 if (IS_ERR(plane))
16132 return plane;
16133
16134 plane->pipe = pipe;
16135 /*
16136 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
16137 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
16138 */
16139 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
16140 plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
16141 else
16142 plane->i9xx_plane = (enum i9xx_plane_id) pipe;
16143 plane->id = PLANE_PRIMARY;
16144 plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
16145
16146 plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
16147 if (plane->has_fbc) {
16148 struct intel_fbc *fbc = &dev_priv->fbc;
16149
16150 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
16151 }
16152
16153 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16154 formats = vlv_primary_formats;
16155 num_formats = ARRAY_SIZE(vlv_primary_formats);
16156 } else if (INTEL_GEN(dev_priv) >= 4) {
16157 /*
16158 * WaFP16GammaEnabling:ivb
16159 * "Workaround : When using the 64-bit format, the plane
16160 * output on each color channel has one quarter amplitude.
16161 * It can be brought up to full amplitude by using pipe
16162 * gamma correction or pipe color space conversion to
16163 * multiply the plane output by four."
16164 *
16165 * There is no dedicated plane gamma for the primary plane,
16166 * and using the pipe gamma/csc could conflict with other
16167 * planes, so we choose not to expose fp16 on IVB primary
16168 * planes. HSW primary planes no longer have this problem.
16169 */
16170 if (IS_IVYBRIDGE(dev_priv)) {
16171 formats = ivb_primary_formats;
16172 num_formats = ARRAY_SIZE(ivb_primary_formats);
16173 } else {
16174 formats = i965_primary_formats;
16175 num_formats = ARRAY_SIZE(i965_primary_formats);
16176 }
16177 } else {
16178 formats = i8xx_primary_formats;
16179 num_formats = ARRAY_SIZE(i8xx_primary_formats);
16180 }
16181
16182 if (INTEL_GEN(dev_priv) >= 4)
16183 plane_funcs = &i965_plane_funcs;
16184 else
16185 plane_funcs = &i8xx_plane_funcs;
16186
16187 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16188 plane->min_cdclk = vlv_plane_min_cdclk;
16189 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
16190 plane->min_cdclk = hsw_plane_min_cdclk;
16191 else if (IS_IVYBRIDGE(dev_priv))
16192 plane->min_cdclk = ivb_plane_min_cdclk;
16193 else
16194 plane->min_cdclk = i9xx_plane_min_cdclk;
16195
16196 plane->max_stride = i9xx_plane_max_stride;
16197 plane->update_plane = i9xx_update_plane;
16198 plane->disable_plane = i9xx_disable_plane;
16199 plane->get_hw_state = i9xx_plane_get_hw_state;
16200 plane->check_plane = i9xx_plane_check;
16201
16202 possible_crtcs = BIT(pipe);
16203
16204 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
16205 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16206 possible_crtcs, plane_funcs,
16207 formats, num_formats,
16208 i9xx_format_modifiers,
16209 DRM_PLANE_TYPE_PRIMARY,
16210 "primary %c", pipe_name(pipe));
16211 else
16212 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
16213 possible_crtcs, plane_funcs,
16214 formats, num_formats,
16215 i9xx_format_modifiers,
16216 DRM_PLANE_TYPE_PRIMARY,
16217 "plane %c",
16218 plane_name(plane->i9xx_plane));
16219 if (ret)
16220 goto fail;
16221
16222 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
16223 supported_rotations =
16224 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
16225 DRM_MODE_REFLECT_X;
16226 } else if (INTEL_GEN(dev_priv) >= 4) {
16227 supported_rotations =
16228 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
16229 } else {
16230 supported_rotations = DRM_MODE_ROTATE_0;
16231 }
16232
16233 if (INTEL_GEN(dev_priv) >= 4)
16234 drm_plane_create_rotation_property(&plane->base,
16235 DRM_MODE_ROTATE_0,
16236 supported_rotations);
16237
16238 zpos = 0;
16239 drm_plane_create_zpos_immutable_property(&plane->base, zpos);
16240
16241 drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
16242
16243 return plane;
16244
16245 fail:
16246 intel_plane_free(plane);
16247
16248 return ERR_PTR(ret);
16249 }
16250
16251 static struct intel_plane *
16252 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
16253 enum pipe pipe)
16254 {
16255 unsigned int possible_crtcs;
16256 struct intel_plane *cursor;
16257 int ret, zpos;
16258
16259 cursor = intel_plane_alloc();
16260 if (IS_ERR(cursor))
16261 return cursor;
16262
16263 cursor->pipe = pipe;
16264 cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
16265 cursor->id = PLANE_CURSOR;
16266 cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
16267
16268 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
16269 cursor->max_stride = i845_cursor_max_stride;
16270 cursor->update_plane = i845_update_cursor;
16271 cursor->disable_plane = i845_disable_cursor;
16272 cursor->get_hw_state = i845_cursor_get_hw_state;
16273 cursor->check_plane = i845_check_cursor;
16274 } else {
16275 cursor->max_stride = i9xx_cursor_max_stride;
16276 cursor->update_plane = i9xx_update_cursor;
16277 cursor->disable_plane = i9xx_disable_cursor;
16278 cursor->get_hw_state = i9xx_cursor_get_hw_state;
16279 cursor->check_plane = i9xx_check_cursor;
16280 }
16281
16282 cursor->cursor.base = ~0;
16283 cursor->cursor.cntl = ~0;
16284
16285 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
16286 cursor->cursor.size = ~0;
16287
16288 possible_crtcs = BIT(pipe);
16289
16290 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
16291 possible_crtcs, &intel_cursor_plane_funcs,
16292 intel_cursor_formats,
16293 ARRAY_SIZE(intel_cursor_formats),
16294 cursor_format_modifiers,
16295 DRM_PLANE_TYPE_CURSOR,
16296 "cursor %c", pipe_name(pipe));
16297 if (ret)
16298 goto fail;
16299
16300 if (INTEL_GEN(dev_priv) >= 4)
16301 drm_plane_create_rotation_property(&cursor->base,
16302 DRM_MODE_ROTATE_0,
16303 DRM_MODE_ROTATE_0 |
16304 DRM_MODE_ROTATE_180);
16305
16306 zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
16307 drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
16308
16309 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
16310
16311 return cursor;
16312
16313 fail:
16314 intel_plane_free(cursor);
16315
16316 return ERR_PTR(ret);
16317 }
16318
16319 #define INTEL_CRTC_FUNCS \
16320 .gamma_set = drm_atomic_helper_legacy_gamma_set, \
16321 .set_config = drm_atomic_helper_set_config, \
16322 .destroy = intel_crtc_destroy, \
16323 .page_flip = drm_atomic_helper_page_flip, \
16324 .atomic_duplicate_state = intel_crtc_duplicate_state, \
16325 .atomic_destroy_state = intel_crtc_destroy_state, \
16326 .set_crc_source = intel_crtc_set_crc_source, \
16327 .verify_crc_source = intel_crtc_verify_crc_source, \
16328 .get_crc_sources = intel_crtc_get_crc_sources
16329
16330 static const struct drm_crtc_funcs bdw_crtc_funcs = {
16331 INTEL_CRTC_FUNCS,
16332
16333 .get_vblank_counter = g4x_get_vblank_counter,
16334 .enable_vblank = bdw_enable_vblank,
16335 .disable_vblank = bdw_disable_vblank,
16336 };
16337
16338 static const struct drm_crtc_funcs ilk_crtc_funcs = {
16339 INTEL_CRTC_FUNCS,
16340
16341 .get_vblank_counter = g4x_get_vblank_counter,
16342 .enable_vblank = ilk_enable_vblank,
16343 .disable_vblank = ilk_disable_vblank,
16344 };
16345
16346 static const struct drm_crtc_funcs g4x_crtc_funcs = {
16347 INTEL_CRTC_FUNCS,
16348
16349 .get_vblank_counter = g4x_get_vblank_counter,
16350 .enable_vblank = i965_enable_vblank,
16351 .disable_vblank = i965_disable_vblank,
16352 };
16353
16354 static const struct drm_crtc_funcs i965_crtc_funcs = {
16355 INTEL_CRTC_FUNCS,
16356
16357 .get_vblank_counter = i915_get_vblank_counter,
16358 .enable_vblank = i965_enable_vblank,
16359 .disable_vblank = i965_disable_vblank,
16360 };
16361
16362 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
16363 INTEL_CRTC_FUNCS,
16364
16365 .get_vblank_counter = i915_get_vblank_counter,
16366 .enable_vblank = i915gm_enable_vblank,
16367 .disable_vblank = i915gm_disable_vblank,
16368 };
16369
16370 static const struct drm_crtc_funcs i915_crtc_funcs = {
16371 INTEL_CRTC_FUNCS,
16372
16373 .get_vblank_counter = i915_get_vblank_counter,
16374 .enable_vblank = i8xx_enable_vblank,
16375 .disable_vblank = i8xx_disable_vblank,
16376 };
16377
16378 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
16379 INTEL_CRTC_FUNCS,
16380
16381 /* no hw vblank counter */
16382 .enable_vblank = i8xx_enable_vblank,
16383 .disable_vblank = i8xx_disable_vblank,
16384 };
16385
16386 static struct intel_crtc *intel_crtc_alloc(void)
16387 {
16388 struct intel_crtc_state *crtc_state;
16389 struct intel_crtc *crtc;
16390
16391 crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
16392 if (!crtc)
16393 return ERR_PTR(-ENOMEM);
16394
16395 crtc_state = intel_crtc_state_alloc(crtc);
16396 if (!crtc_state) {
16397 kfree(crtc);
16398 return ERR_PTR(-ENOMEM);
16399 }
16400
16401 crtc->base.state = &crtc_state->uapi;
16402 crtc->config = crtc_state;
16403
16404 return crtc;
16405 }
16406
16407 static void intel_crtc_free(struct intel_crtc *crtc)
16408 {
16409 intel_crtc_destroy_state(&crtc->base, crtc->base.state);
16410 kfree(crtc);
16411 }
16412
16413 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
16414 {
16415 struct intel_plane *primary, *cursor;
16416 const struct drm_crtc_funcs *funcs;
16417 struct intel_crtc *crtc;
16418 int sprite, ret;
16419
16420 crtc = intel_crtc_alloc();
16421 if (IS_ERR(crtc))
16422 return PTR_ERR(crtc);
16423
16424 crtc->pipe = pipe;
16425 crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[pipe];
16426
16427 primary = intel_primary_plane_create(dev_priv, pipe);
16428 if (IS_ERR(primary)) {
16429 ret = PTR_ERR(primary);
16430 goto fail;
16431 }
16432 crtc->plane_ids_mask |= BIT(primary->id);
16433
16434 for_each_sprite(dev_priv, pipe, sprite) {
16435 struct intel_plane *plane;
16436
16437 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
16438 if (IS_ERR(plane)) {
16439 ret = PTR_ERR(plane);
16440 goto fail;
16441 }
16442 crtc->plane_ids_mask |= BIT(plane->id);
16443 }
16444
16445 cursor = intel_cursor_plane_create(dev_priv, pipe);
16446 if (IS_ERR(cursor)) {
16447 ret = PTR_ERR(cursor);
16448 goto fail;
16449 }
16450 crtc->plane_ids_mask |= BIT(cursor->id);
16451
16452 if (HAS_GMCH(dev_priv)) {
16453 if (IS_CHERRYVIEW(dev_priv) ||
16454 IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
16455 funcs = &g4x_crtc_funcs;
16456 else if (IS_GEN(dev_priv, 4))
16457 funcs = &i965_crtc_funcs;
16458 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
16459 funcs = &i915gm_crtc_funcs;
16460 else if (IS_GEN(dev_priv, 3))
16461 funcs = &i915_crtc_funcs;
16462 else
16463 funcs = &i8xx_crtc_funcs;
16464 } else {
16465 if (INTEL_GEN(dev_priv) >= 8)
16466 funcs = &bdw_crtc_funcs;
16467 else
16468 funcs = &ilk_crtc_funcs;
16469 }
16470
16471 ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
16472 &primary->base, &cursor->base,
16473 funcs, "pipe %c", pipe_name(pipe));
16474 if (ret)
16475 goto fail;
16476
16477 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
16478 dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
16479 dev_priv->pipe_to_crtc_mapping[pipe] = crtc;
16480
16481 if (INTEL_GEN(dev_priv) < 9) {
16482 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
16483
16484 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
16485 dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
16486 dev_priv->plane_to_crtc_mapping[i9xx_plane] = crtc;
16487 }
16488
16489 intel_color_init(crtc);
16490
16491 WARN_ON(drm_crtc_index(&crtc->base) != crtc->pipe);
16492
16493 return 0;
16494
16495 fail:
16496 intel_crtc_free(crtc);
16497
16498 return ret;
16499 }
16500
16501 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
16502 struct drm_file *file)
16503 {
16504 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
16505 struct drm_crtc *drmmode_crtc;
16506 struct intel_crtc *crtc;
16507
16508 drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
16509 if (!drmmode_crtc)
16510 return -ENOENT;
16511
16512 crtc = to_intel_crtc(drmmode_crtc);
16513 pipe_from_crtc_id->pipe = crtc->pipe;
16514
16515 return 0;
16516 }
16517
16518 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
16519 {
16520 struct drm_device *dev = encoder->base.dev;
16521 struct intel_encoder *source_encoder;
16522 u32 possible_clones = 0;
16523
16524 for_each_intel_encoder(dev, source_encoder) {
16525 if (encoders_cloneable(encoder, source_encoder))
16526 possible_clones |= drm_encoder_mask(&source_encoder->base);
16527 }
16528
16529 return possible_clones;
16530 }
16531
16532 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
16533 {
16534 struct drm_device *dev = encoder->base.dev;
16535 struct intel_crtc *crtc;
16536 u32 possible_crtcs = 0;
16537
16538 for_each_intel_crtc(dev, crtc) {
16539 if (encoder->pipe_mask & BIT(crtc->pipe))
16540 possible_crtcs |= drm_crtc_mask(&crtc->base);
16541 }
16542
16543 return possible_crtcs;
16544 }
16545
16546 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
16547 {
16548 if (!IS_MOBILE(dev_priv))
16549 return false;
16550
16551 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
16552 return false;
16553
16554 if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
16555 return false;
16556
16557 return true;
16558 }
16559
16560 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
16561 {
16562 if (INTEL_GEN(dev_priv) >= 9)
16563 return false;
16564
16565 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
16566 return false;
16567
16568 if (HAS_PCH_LPT_H(dev_priv) &&
16569 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
16570 return false;
16571
16572 /* DDI E can't be used if DDI A requires 4 lanes */
16573 if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
16574 return false;
16575
16576 if (!dev_priv->vbt.int_crt_support)
16577 return false;
16578
16579 return true;
16580 }
16581
16582 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
16583 {
16584 int pps_num;
16585 int pps_idx;
16586
16587 if (HAS_DDI(dev_priv))
16588 return;
16589 /*
16590 * This w/a is needed at least on CPT/PPT, but to be sure apply it
16591 * everywhere where registers can be write protected.
16592 */
16593 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16594 pps_num = 2;
16595 else
16596 pps_num = 1;
16597
16598 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
16599 u32 val = I915_READ(PP_CONTROL(pps_idx));
16600
16601 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
16602 I915_WRITE(PP_CONTROL(pps_idx), val);
16603 }
16604 }
16605
16606 static void intel_pps_init(struct drm_i915_private *dev_priv)
16607 {
16608 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
16609 dev_priv->pps_mmio_base = PCH_PPS_BASE;
16610 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16611 dev_priv->pps_mmio_base = VLV_PPS_BASE;
16612 else
16613 dev_priv->pps_mmio_base = PPS_BASE;
16614
16615 intel_pps_unlock_regs_wa(dev_priv);
16616 }
16617
16618 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
16619 {
16620 struct intel_encoder *encoder;
16621 bool dpd_is_edp = false;
16622
16623 intel_pps_init(dev_priv);
16624
16625 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
16626 return;
16627
16628 if (INTEL_GEN(dev_priv) >= 12) {
16629 intel_ddi_init(dev_priv, PORT_A);
16630 intel_ddi_init(dev_priv, PORT_B);
16631 intel_ddi_init(dev_priv, PORT_D);
16632 intel_ddi_init(dev_priv, PORT_E);
16633 intel_ddi_init(dev_priv, PORT_F);
16634 intel_ddi_init(dev_priv, PORT_G);
16635 intel_ddi_init(dev_priv, PORT_H);
16636 intel_ddi_init(dev_priv, PORT_I);
16637 icl_dsi_init(dev_priv);
16638 } else if (IS_ELKHARTLAKE(dev_priv)) {
16639 intel_ddi_init(dev_priv, PORT_A);
16640 intel_ddi_init(dev_priv, PORT_B);
16641 intel_ddi_init(dev_priv, PORT_C);
16642 intel_ddi_init(dev_priv, PORT_D);
16643 icl_dsi_init(dev_priv);
16644 } else if (IS_GEN(dev_priv, 11)) {
16645 intel_ddi_init(dev_priv, PORT_A);
16646 intel_ddi_init(dev_priv, PORT_B);
16647 intel_ddi_init(dev_priv, PORT_C);
16648 intel_ddi_init(dev_priv, PORT_D);
16649 intel_ddi_init(dev_priv, PORT_E);
16650 /*
16651 * On some ICL SKUs port F is not present. No strap bits for
16652 * this, so rely on VBT.
16653 * Work around broken VBTs on SKUs known to have no port F.
16654 */
16655 if (IS_ICL_WITH_PORT_F(dev_priv) &&
16656 intel_bios_is_port_present(dev_priv, PORT_F))
16657 intel_ddi_init(dev_priv, PORT_F);
16658
16659 icl_dsi_init(dev_priv);
16660 } else if (IS_GEN9_LP(dev_priv)) {
16661 /*
16662 * FIXME: Broxton doesn't support port detection via the
16663 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
16664 * detect the ports.
16665 */
16666 intel_ddi_init(dev_priv, PORT_A);
16667 intel_ddi_init(dev_priv, PORT_B);
16668 intel_ddi_init(dev_priv, PORT_C);
16669
16670 vlv_dsi_init(dev_priv);
16671 } else if (HAS_DDI(dev_priv)) {
16672 int found;
16673
16674 if (intel_ddi_crt_present(dev_priv))
16675 intel_crt_init(dev_priv);
16676
16677 /*
16678 * Haswell uses DDI functions to detect digital outputs.
16679 * On SKL pre-D0 the strap isn't connected, so we assume
16680 * it's there.
16681 */
16682 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
16683 /* WaIgnoreDDIAStrap: skl */
16684 if (found || IS_GEN9_BC(dev_priv))
16685 intel_ddi_init(dev_priv, PORT_A);
16686
16687 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16688 * register */
16689 found = I915_READ(SFUSE_STRAP);
16690
16691 if (found & SFUSE_STRAP_DDIB_DETECTED)
16692 intel_ddi_init(dev_priv, PORT_B);
16693 if (found & SFUSE_STRAP_DDIC_DETECTED)
16694 intel_ddi_init(dev_priv, PORT_C);
16695 if (found & SFUSE_STRAP_DDID_DETECTED)
16696 intel_ddi_init(dev_priv, PORT_D);
16697 if (found & SFUSE_STRAP_DDIF_DETECTED)
16698 intel_ddi_init(dev_priv, PORT_F);
16699 /*
16700 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16701 */
16702 if (IS_GEN9_BC(dev_priv) &&
16703 intel_bios_is_port_present(dev_priv, PORT_E))
16704 intel_ddi_init(dev_priv, PORT_E);
16705
16706 } else if (HAS_PCH_SPLIT(dev_priv)) {
16707 int found;
16708
16709 /*
16710 * intel_edp_init_connector() depends on this completing first,
16711 * to prevent the registration of both eDP and LVDS and the
16712 * incorrect sharing of the PPS.
16713 */
16714 intel_lvds_init(dev_priv);
16715 intel_crt_init(dev_priv);
16716
16717 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16718
16719 if (ilk_has_edp_a(dev_priv))
16720 intel_dp_init(dev_priv, DP_A, PORT_A);
16721
16722 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
16723 /* PCH SDVOB multiplex with HDMIB */
16724 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16725 if (!found)
16726 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16727 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
16728 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
16729 }
16730
16731 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
16732 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
16733
16734 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
16735 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
16736
16737 if (I915_READ(PCH_DP_C) & DP_DETECTED)
16738 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
16739
16740 if (I915_READ(PCH_DP_D) & DP_DETECTED)
16741 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
16742 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16743 bool has_edp, has_port;
16744
16745 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
16746 intel_crt_init(dev_priv);
16747
16748 /*
16749 * The DP_DETECTED bit is the latched state of the DDC
16750 * SDA pin at boot. However since eDP doesn't require DDC
16751 * (no way to plug in a DP->HDMI dongle) the DDC pins for
16752 * eDP ports may have been muxed to an alternate function.
16753 * Thus we can't rely on the DP_DETECTED bit alone to detect
16754 * eDP ports. Consult the VBT as well as DP_DETECTED to
16755 * detect eDP ports.
16756 *
16757 * Sadly the straps seem to be missing sometimes even for HDMI
16758 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
16759 * and VBT for the presence of the port. Additionally we can't
16760 * trust the port type the VBT declares as we've seen at least
16761 * HDMI ports that the VBT claim are DP or eDP.
16762 */
16763 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
16764 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
16765 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
16766 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
16767 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
16768 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
16769
16770 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
16771 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
16772 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
16773 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
16774 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
16775 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
16776
16777 if (IS_CHERRYVIEW(dev_priv)) {
16778 /*
16779 * eDP not supported on port D,
16780 * so no need to worry about it
16781 */
16782 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
16783 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
16784 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
16785 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
16786 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
16787 }
16788
16789 vlv_dsi_init(dev_priv);
16790 } else if (IS_PINEVIEW(dev_priv)) {
16791 intel_lvds_init(dev_priv);
16792 intel_crt_init(dev_priv);
16793 } else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
16794 bool found = false;
16795
16796 if (IS_MOBILE(dev_priv))
16797 intel_lvds_init(dev_priv);
16798
16799 intel_crt_init(dev_priv);
16800
16801 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
16802 DRM_DEBUG_KMS("probing SDVOB\n");
16803 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
16804 if (!found && IS_G4X(dev_priv)) {
16805 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
16806 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
16807 }
16808
16809 if (!found && IS_G4X(dev_priv))
16810 intel_dp_init(dev_priv, DP_B, PORT_B);
16811 }
16812
16813 /* Before G4X SDVOC doesn't have its own detect register */
16814
16815 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
16816 DRM_DEBUG_KMS("probing SDVOC\n");
16817 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
16818 }
16819
16820 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
16821
16822 if (IS_G4X(dev_priv)) {
16823 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
16824 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
16825 }
16826 if (IS_G4X(dev_priv))
16827 intel_dp_init(dev_priv, DP_C, PORT_C);
16828 }
16829
16830 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
16831 intel_dp_init(dev_priv, DP_D, PORT_D);
16832
16833 if (SUPPORTS_TV(dev_priv))
16834 intel_tv_init(dev_priv);
16835 } else if (IS_GEN(dev_priv, 2)) {
16836 if (IS_I85X(dev_priv))
16837 intel_lvds_init(dev_priv);
16838
16839 intel_crt_init(dev_priv);
16840 intel_dvo_init(dev_priv);
16841 }
16842
16843 intel_psr_init(dev_priv);
16844
16845 for_each_intel_encoder(&dev_priv->drm, encoder) {
16846 encoder->base.possible_crtcs =
16847 intel_encoder_possible_crtcs(encoder);
16848 encoder->base.possible_clones =
16849 intel_encoder_possible_clones(encoder);
16850 }
16851
16852 intel_init_pch_refclk(dev_priv);
16853
16854 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
16855 }
16856
16857 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
16858 {
16859 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
16860
16861 drm_framebuffer_cleanup(fb);
16862 intel_frontbuffer_put(intel_fb->frontbuffer);
16863
16864 kfree(intel_fb);
16865 }
16866
16867 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
16868 struct drm_file *file,
16869 unsigned int *handle)
16870 {
16871 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16872
16873 if (obj->userptr.mm) {
16874 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
16875 return -EINVAL;
16876 }
16877
16878 return drm_gem_handle_create(file, &obj->base, handle);
16879 }
16880
16881 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
16882 struct drm_file *file,
16883 unsigned flags, unsigned color,
16884 struct drm_clip_rect *clips,
16885 unsigned num_clips)
16886 {
16887 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16888
16889 i915_gem_object_flush_if_display(obj);
16890 intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
16891
16892 return 0;
16893 }
16894
16895 static const struct drm_framebuffer_funcs intel_fb_funcs = {
16896 .destroy = intel_user_framebuffer_destroy,
16897 .create_handle = intel_user_framebuffer_create_handle,
16898 .dirty = intel_user_framebuffer_dirty,
16899 };
16900
16901 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
16902 struct drm_i915_gem_object *obj,
16903 struct drm_mode_fb_cmd2 *mode_cmd)
16904 {
16905 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
16906 struct drm_framebuffer *fb = &intel_fb->base;
16907 u32 max_stride;
16908 unsigned int tiling, stride;
16909 int ret = -EINVAL;
16910 int i;
16911
16912 intel_fb->frontbuffer = intel_frontbuffer_get(obj);
16913 if (!intel_fb->frontbuffer)
16914 return -ENOMEM;
16915
16916 i915_gem_object_lock(obj);
16917 tiling = i915_gem_object_get_tiling(obj);
16918 stride = i915_gem_object_get_stride(obj);
16919 i915_gem_object_unlock(obj);
16920
16921 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
16922 /*
16923 * If there's a fence, enforce that
16924 * the fb modifier and tiling mode match.
16925 */
16926 if (tiling != I915_TILING_NONE &&
16927 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
16928 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
16929 goto err;
16930 }
16931 } else {
16932 if (tiling == I915_TILING_X) {
16933 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
16934 } else if (tiling == I915_TILING_Y) {
16935 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
16936 goto err;
16937 }
16938 }
16939
16940 if (!drm_any_plane_has_format(&dev_priv->drm,
16941 mode_cmd->pixel_format,
16942 mode_cmd->modifier[0])) {
16943 struct drm_format_name_buf format_name;
16944
16945 DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n",
16946 drm_get_format_name(mode_cmd->pixel_format,
16947 &format_name),
16948 mode_cmd->modifier[0]);
16949 goto err;
16950 }
16951
16952 /*
16953 * gen2/3 display engine uses the fence if present,
16954 * so the tiling mode must match the fb modifier exactly.
16955 */
16956 if (INTEL_GEN(dev_priv) < 4 &&
16957 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
16958 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
16959 goto err;
16960 }
16961
16962 max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
16963 mode_cmd->modifier[0]);
16964 if (mode_cmd->pitches[0] > max_stride) {
16965 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
16966 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
16967 "tiled" : "linear",
16968 mode_cmd->pitches[0], max_stride);
16969 goto err;
16970 }
16971
16972 /*
16973 * If there's a fence, enforce that
16974 * the fb pitch and fence stride match.
16975 */
16976 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
16977 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
16978 mode_cmd->pitches[0], stride);
16979 goto err;
16980 }
16981
16982 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
16983 if (mode_cmd->offsets[0] != 0) {
16984 DRM_DEBUG_KMS("plane 0 offset (0x%08x) must be 0\n",
16985 mode_cmd->offsets[0]);
16986 goto err;
16987 }
16988
16989 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
16990
16991 for (i = 0; i < fb->format->num_planes; i++) {
16992 u32 stride_alignment;
16993
16994 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
16995 DRM_DEBUG_KMS("bad plane %d handle\n", i);
16996 goto err;
16997 }
16998
16999 stride_alignment = intel_fb_stride_alignment(fb, i);
17000 if (fb->pitches[i] & (stride_alignment - 1)) {
17001 DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
17002 i, fb->pitches[i], stride_alignment);
17003 goto err;
17004 }
17005
17006 if (is_gen12_ccs_plane(fb, i)) {
17007 int ccs_aux_stride = gen12_ccs_aux_stride(fb, i);
17008
17009 if (fb->pitches[i] != ccs_aux_stride) {
17010 DRM_DEBUG_KMS("ccs aux plane %d pitch (%d) must be %d\n",
17011 i,
17012 fb->pitches[i], ccs_aux_stride);
17013 goto err;
17014 }
17015 }
17016
17017 fb->obj[i] = &obj->base;
17018 }
17019
17020 ret = intel_fill_fb_info(dev_priv, fb);
17021 if (ret)
17022 goto err;
17023
17024 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
17025 if (ret) {
17026 DRM_ERROR("framebuffer init failed %d\n", ret);
17027 goto err;
17028 }
17029
17030 return 0;
17031
17032 err:
17033 intel_frontbuffer_put(intel_fb->frontbuffer);
17034 return ret;
17035 }
17036
17037 static struct drm_framebuffer *
17038 intel_user_framebuffer_create(struct drm_device *dev,
17039 struct drm_file *filp,
17040 const struct drm_mode_fb_cmd2 *user_mode_cmd)
17041 {
17042 struct drm_framebuffer *fb;
17043 struct drm_i915_gem_object *obj;
17044 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
17045
17046 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
17047 if (!obj)
17048 return ERR_PTR(-ENOENT);
17049
17050 fb = intel_framebuffer_create(obj, &mode_cmd);
17051 i915_gem_object_put(obj);
17052
17053 return fb;
17054 }
17055
17056 static void intel_atomic_state_free(struct drm_atomic_state *state)
17057 {
17058 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
17059
17060 drm_atomic_state_default_release(state);
17061
17062 i915_sw_fence_fini(&intel_state->commit_ready);
17063
17064 kfree(state);
17065 }
17066
17067 static enum drm_mode_status
17068 intel_mode_valid(struct drm_device *dev,
17069 const struct drm_display_mode *mode)
17070 {
17071 struct drm_i915_private *dev_priv = to_i915(dev);
17072 int hdisplay_max, htotal_max;
17073 int vdisplay_max, vtotal_max;
17074
17075 /*
17076 * Can't reject DBLSCAN here because Xorg ddxen can add piles
17077 * of DBLSCAN modes to the output's mode list when they detect
17078 * the scaling mode property on the connector. And they don't
17079 * ask the kernel to validate those modes in any way until
17080 * modeset time at which point the client gets a protocol error.
17081 * So in order to not upset those clients we silently ignore the
17082 * DBLSCAN flag on such connectors. For other connectors we will
17083 * reject modes with the DBLSCAN flag in encoder->compute_config().
17084 * And we always reject DBLSCAN modes in connector->mode_valid()
17085 * as we never want such modes on the connector's mode list.
17086 */
17087
17088 if (mode->vscan > 1)
17089 return MODE_NO_VSCAN;
17090
17091 if (mode->flags & DRM_MODE_FLAG_HSKEW)
17092 return MODE_H_ILLEGAL;
17093
17094 if (mode->flags & (DRM_MODE_FLAG_CSYNC |
17095 DRM_MODE_FLAG_NCSYNC |
17096 DRM_MODE_FLAG_PCSYNC))
17097 return MODE_HSYNC;
17098
17099 if (mode->flags & (DRM_MODE_FLAG_BCAST |
17100 DRM_MODE_FLAG_PIXMUX |
17101 DRM_MODE_FLAG_CLKDIV2))
17102 return MODE_BAD;
17103
17104 /* Transcoder timing limits */
17105 if (INTEL_GEN(dev_priv) >= 11) {
17106 hdisplay_max = 16384;
17107 vdisplay_max = 8192;
17108 htotal_max = 16384;
17109 vtotal_max = 8192;
17110 } else if (INTEL_GEN(dev_priv) >= 9 ||
17111 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17112 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
17113 vdisplay_max = 4096;
17114 htotal_max = 8192;
17115 vtotal_max = 8192;
17116 } else if (INTEL_GEN(dev_priv) >= 3) {
17117 hdisplay_max = 4096;
17118 vdisplay_max = 4096;
17119 htotal_max = 8192;
17120 vtotal_max = 8192;
17121 } else {
17122 hdisplay_max = 2048;
17123 vdisplay_max = 2048;
17124 htotal_max = 4096;
17125 vtotal_max = 4096;
17126 }
17127
17128 if (mode->hdisplay > hdisplay_max ||
17129 mode->hsync_start > htotal_max ||
17130 mode->hsync_end > htotal_max ||
17131 mode->htotal > htotal_max)
17132 return MODE_H_ILLEGAL;
17133
17134 if (mode->vdisplay > vdisplay_max ||
17135 mode->vsync_start > vtotal_max ||
17136 mode->vsync_end > vtotal_max ||
17137 mode->vtotal > vtotal_max)
17138 return MODE_V_ILLEGAL;
17139
17140 if (INTEL_GEN(dev_priv) >= 5) {
17141 if (mode->hdisplay < 64 ||
17142 mode->htotal - mode->hdisplay < 32)
17143 return MODE_H_ILLEGAL;
17144
17145 if (mode->vtotal - mode->vdisplay < 5)
17146 return MODE_V_ILLEGAL;
17147 } else {
17148 if (mode->htotal - mode->hdisplay < 32)
17149 return MODE_H_ILLEGAL;
17150
17151 if (mode->vtotal - mode->vdisplay < 3)
17152 return MODE_V_ILLEGAL;
17153 }
17154
17155 return MODE_OK;
17156 }
17157
17158 enum drm_mode_status
17159 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
17160 const struct drm_display_mode *mode)
17161 {
17162 int plane_width_max, plane_height_max;
17163
17164 /*
17165 * intel_mode_valid() should be
17166 * sufficient on older platforms.
17167 */
17168 if (INTEL_GEN(dev_priv) < 9)
17169 return MODE_OK;
17170
17171 /*
17172 * Most people will probably want a fullscreen
17173 * plane so let's not advertize modes that are
17174 * too big for that.
17175 */
17176 if (INTEL_GEN(dev_priv) >= 11) {
17177 plane_width_max = 5120;
17178 plane_height_max = 4320;
17179 } else {
17180 plane_width_max = 5120;
17181 plane_height_max = 4096;
17182 }
17183
17184 if (mode->hdisplay > plane_width_max)
17185 return MODE_H_ILLEGAL;
17186
17187 if (mode->vdisplay > plane_height_max)
17188 return MODE_V_ILLEGAL;
17189
17190 return MODE_OK;
17191 }
17192
17193 static const struct drm_mode_config_funcs intel_mode_funcs = {
17194 .fb_create = intel_user_framebuffer_create,
17195 .get_format_info = intel_get_format_info,
17196 .output_poll_changed = intel_fbdev_output_poll_changed,
17197 .mode_valid = intel_mode_valid,
17198 .atomic_check = intel_atomic_check,
17199 .atomic_commit = intel_atomic_commit,
17200 .atomic_state_alloc = intel_atomic_state_alloc,
17201 .atomic_state_clear = intel_atomic_state_clear,
17202 .atomic_state_free = intel_atomic_state_free,
17203 };
17204
17205 /**
17206 * intel_init_display_hooks - initialize the display modesetting hooks
17207 * @dev_priv: device private
17208 */
17209 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
17210 {
17211 intel_init_cdclk_hooks(dev_priv);
17212
17213 if (INTEL_GEN(dev_priv) >= 9) {
17214 dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17215 dev_priv->display.get_initial_plane_config =
17216 skl_get_initial_plane_config;
17217 dev_priv->display.crtc_compute_clock = hsw_crtc_compute_clock;
17218 dev_priv->display.crtc_enable = hsw_crtc_enable;
17219 dev_priv->display.crtc_disable = hsw_crtc_disable;
17220 } else if (HAS_DDI(dev_priv)) {
17221 dev_priv->display.get_pipe_config = hsw_get_pipe_config;
17222 dev_priv->display.get_initial_plane_config =
17223 i9xx_get_initial_plane_config;
17224 dev_priv->display.crtc_compute_clock =
17225 hsw_crtc_compute_clock;
17226 dev_priv->display.crtc_enable = hsw_crtc_enable;
17227 dev_priv->display.crtc_disable = hsw_crtc_disable;
17228 } else if (HAS_PCH_SPLIT(dev_priv)) {
17229 dev_priv->display.get_pipe_config = ilk_get_pipe_config;
17230 dev_priv->display.get_initial_plane_config =
17231 i9xx_get_initial_plane_config;
17232 dev_priv->display.crtc_compute_clock =
17233 ilk_crtc_compute_clock;
17234 dev_priv->display.crtc_enable = ilk_crtc_enable;
17235 dev_priv->display.crtc_disable = ilk_crtc_disable;
17236 } else if (IS_CHERRYVIEW(dev_priv)) {
17237 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17238 dev_priv->display.get_initial_plane_config =
17239 i9xx_get_initial_plane_config;
17240 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
17241 dev_priv->display.crtc_enable = valleyview_crtc_enable;
17242 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17243 } else if (IS_VALLEYVIEW(dev_priv)) {
17244 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17245 dev_priv->display.get_initial_plane_config =
17246 i9xx_get_initial_plane_config;
17247 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
17248 dev_priv->display.crtc_enable = valleyview_crtc_enable;
17249 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17250 } else if (IS_G4X(dev_priv)) {
17251 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17252 dev_priv->display.get_initial_plane_config =
17253 i9xx_get_initial_plane_config;
17254 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
17255 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17256 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17257 } else if (IS_PINEVIEW(dev_priv)) {
17258 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17259 dev_priv->display.get_initial_plane_config =
17260 i9xx_get_initial_plane_config;
17261 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
17262 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17263 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17264 } else if (!IS_GEN(dev_priv, 2)) {
17265 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17266 dev_priv->display.get_initial_plane_config =
17267 i9xx_get_initial_plane_config;
17268 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
17269 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17270 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17271 } else {
17272 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
17273 dev_priv->display.get_initial_plane_config =
17274 i9xx_get_initial_plane_config;
17275 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
17276 dev_priv->display.crtc_enable = i9xx_crtc_enable;
17277 dev_priv->display.crtc_disable = i9xx_crtc_disable;
17278 }
17279
17280 if (IS_GEN(dev_priv, 5)) {
17281 dev_priv->display.fdi_link_train = ilk_fdi_link_train;
17282 } else if (IS_GEN(dev_priv, 6)) {
17283 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
17284 } else if (IS_IVYBRIDGE(dev_priv)) {
17285 /* FIXME: detect B0+ stepping and use auto training */
17286 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
17287 }
17288
17289 if (INTEL_GEN(dev_priv) >= 9)
17290 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
17291 else
17292 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
17293
17294 }
17295
17296 void intel_modeset_init_hw(struct drm_i915_private *i915)
17297 {
17298 intel_update_cdclk(i915);
17299 intel_dump_cdclk_state(&i915->cdclk.hw, "Current CDCLK");
17300 i915->cdclk.logical = i915->cdclk.actual = i915->cdclk.hw;
17301 }
17302
17303 /*
17304 * Calculate what we think the watermarks should be for the state we've read
17305 * out of the hardware and then immediately program those watermarks so that
17306 * we ensure the hardware settings match our internal state.
17307 *
17308 * We can calculate what we think WM's should be by creating a duplicate of the
17309 * current state (which was constructed during hardware readout) and running it
17310 * through the atomic check code to calculate new watermark values in the
17311 * state object.
17312 */
17313 static void sanitize_watermarks(struct drm_device *dev)
17314 {
17315 struct drm_i915_private *dev_priv = to_i915(dev);
17316 struct drm_atomic_state *state;
17317 struct intel_atomic_state *intel_state;
17318 struct intel_crtc *crtc;
17319 struct intel_crtc_state *crtc_state;
17320 struct drm_modeset_acquire_ctx ctx;
17321 int ret;
17322 int i;
17323
17324 /* Only supported on platforms that use atomic watermark design */
17325 if (!dev_priv->display.optimize_watermarks)
17326 return;
17327
17328 /*
17329 * We need to hold connection_mutex before calling duplicate_state so
17330 * that the connector loop is protected.
17331 */
17332 drm_modeset_acquire_init(&ctx, 0);
17333 retry:
17334 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17335 if (ret == -EDEADLK) {
17336 drm_modeset_backoff(&ctx);
17337 goto retry;
17338 } else if (WARN_ON(ret)) {
17339 goto fail;
17340 }
17341
17342 state = drm_atomic_helper_duplicate_state(dev, &ctx);
17343 if (WARN_ON(IS_ERR(state)))
17344 goto fail;
17345
17346 intel_state = to_intel_atomic_state(state);
17347
17348 /*
17349 * Hardware readout is the only time we don't want to calculate
17350 * intermediate watermarks (since we don't trust the current
17351 * watermarks).
17352 */
17353 if (!HAS_GMCH(dev_priv))
17354 intel_state->skip_intermediate_wm = true;
17355
17356 ret = intel_atomic_check(dev, state);
17357 if (ret) {
17358 /*
17359 * If we fail here, it means that the hardware appears to be
17360 * programmed in a way that shouldn't be possible, given our
17361 * understanding of watermark requirements. This might mean a
17362 * mistake in the hardware readout code or a mistake in the
17363 * watermark calculations for a given platform. Raise a WARN
17364 * so that this is noticeable.
17365 *
17366 * If this actually happens, we'll have to just leave the
17367 * BIOS-programmed watermarks untouched and hope for the best.
17368 */
17369 WARN(true, "Could not determine valid watermarks for inherited state\n");
17370 goto put_state;
17371 }
17372
17373 /* Write calculated watermark values back */
17374 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
17375 crtc_state->wm.need_postvbl_update = true;
17376 dev_priv->display.optimize_watermarks(intel_state, crtc);
17377
17378 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
17379 }
17380
17381 put_state:
17382 drm_atomic_state_put(state);
17383 fail:
17384 drm_modeset_drop_locks(&ctx);
17385 drm_modeset_acquire_fini(&ctx);
17386 }
17387
17388 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
17389 {
17390 if (IS_GEN(dev_priv, 5)) {
17391 u32 fdi_pll_clk =
17392 I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
17393
17394 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
17395 } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
17396 dev_priv->fdi_pll_freq = 270000;
17397 } else {
17398 return;
17399 }
17400
17401 DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
17402 }
17403
17404 static int intel_initial_commit(struct drm_device *dev)
17405 {
17406 struct drm_atomic_state *state = NULL;
17407 struct drm_modeset_acquire_ctx ctx;
17408 struct intel_crtc *crtc;
17409 int ret = 0;
17410
17411 state = drm_atomic_state_alloc(dev);
17412 if (!state)
17413 return -ENOMEM;
17414
17415 drm_modeset_acquire_init(&ctx, 0);
17416
17417 retry:
17418 state->acquire_ctx = &ctx;
17419
17420 for_each_intel_crtc(dev, crtc) {
17421 struct intel_crtc_state *crtc_state =
17422 intel_atomic_get_crtc_state(state, crtc);
17423
17424 if (IS_ERR(crtc_state)) {
17425 ret = PTR_ERR(crtc_state);
17426 goto out;
17427 }
17428
17429 if (crtc_state->hw.active) {
17430 ret = drm_atomic_add_affected_planes(state, &crtc->base);
17431 if (ret)
17432 goto out;
17433
17434 /*
17435 * FIXME hack to force a LUT update to avoid the
17436 * plane update forcing the pipe gamma on without
17437 * having a proper LUT loaded. Remove once we
17438 * have readout for pipe gamma enable.
17439 */
17440 crtc_state->uapi.color_mgmt_changed = true;
17441
17442 /*
17443 * FIXME hack to force full modeset when DSC is being
17444 * used.
17445 *
17446 * As long as we do not have full state readout and
17447 * config comparison of crtc_state->dsc, we have no way
17448 * to ensure reliable fastset. Remove once we have
17449 * readout for DSC.
17450 */
17451 if (crtc_state->dsc.compression_enable) {
17452 ret = drm_atomic_add_affected_connectors(state,
17453 &crtc->base);
17454 if (ret)
17455 goto out;
17456 crtc_state->uapi.mode_changed = true;
17457 drm_dbg_kms(dev, "Force full modeset for DSC\n");
17458 }
17459 }
17460 }
17461
17462 ret = drm_atomic_commit(state);
17463
17464 out:
17465 if (ret == -EDEADLK) {
17466 drm_atomic_state_clear(state);
17467 drm_modeset_backoff(&ctx);
17468 goto retry;
17469 }
17470
17471 drm_atomic_state_put(state);
17472
17473 drm_modeset_drop_locks(&ctx);
17474 drm_modeset_acquire_fini(&ctx);
17475
17476 return ret;
17477 }
17478
17479 static void intel_mode_config_init(struct drm_i915_private *i915)
17480 {
17481 struct drm_mode_config *mode_config = &i915->drm.mode_config;
17482
17483 drm_mode_config_init(&i915->drm);
17484
17485 mode_config->min_width = 0;
17486 mode_config->min_height = 0;
17487
17488 mode_config->preferred_depth = 24;
17489 mode_config->prefer_shadow = 1;
17490
17491 mode_config->allow_fb_modifiers = true;
17492
17493 mode_config->funcs = &intel_mode_funcs;
17494
17495 /*
17496 * Maximum framebuffer dimensions, chosen to match
17497 * the maximum render engine surface size on gen4+.
17498 */
17499 if (INTEL_GEN(i915) >= 7) {
17500 mode_config->max_width = 16384;
17501 mode_config->max_height = 16384;
17502 } else if (INTEL_GEN(i915) >= 4) {
17503 mode_config->max_width = 8192;
17504 mode_config->max_height = 8192;
17505 } else if (IS_GEN(i915, 3)) {
17506 mode_config->max_width = 4096;
17507 mode_config->max_height = 4096;
17508 } else {
17509 mode_config->max_width = 2048;
17510 mode_config->max_height = 2048;
17511 }
17512
17513 if (IS_I845G(i915) || IS_I865G(i915)) {
17514 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
17515 mode_config->cursor_height = 1023;
17516 } else if (IS_GEN(i915, 2)) {
17517 mode_config->cursor_width = 64;
17518 mode_config->cursor_height = 64;
17519 } else {
17520 mode_config->cursor_width = 256;
17521 mode_config->cursor_height = 256;
17522 }
17523 }
17524
17525 int intel_modeset_init(struct drm_i915_private *i915)
17526 {
17527 struct drm_device *dev = &i915->drm;
17528 enum pipe pipe;
17529 struct intel_crtc *crtc;
17530 int ret;
17531
17532 i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
17533 i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
17534 WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
17535
17536 intel_mode_config_init(i915);
17537
17538 ret = intel_bw_init(i915);
17539 if (ret)
17540 return ret;
17541
17542 init_llist_head(&i915->atomic_helper.free_list);
17543 INIT_WORK(&i915->atomic_helper.free_work,
17544 intel_atomic_helper_free_state_worker);
17545
17546 intel_init_quirks(i915);
17547
17548 intel_fbc_init(i915);
17549
17550 intel_init_pm(i915);
17551
17552 intel_panel_sanitize_ssc(i915);
17553
17554 intel_gmbus_setup(i915);
17555
17556 DRM_DEBUG_KMS("%d display pipe%s available.\n",
17557 INTEL_NUM_PIPES(i915),
17558 INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
17559
17560 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
17561 for_each_pipe(i915, pipe) {
17562 ret = intel_crtc_init(i915, pipe);
17563 if (ret) {
17564 drm_mode_config_cleanup(dev);
17565 return ret;
17566 }
17567 }
17568 }
17569
17570 intel_shared_dpll_init(dev);
17571 intel_update_fdi_pll_freq(i915);
17572
17573 intel_update_czclk(i915);
17574 intel_modeset_init_hw(i915);
17575
17576 intel_hdcp_component_init(i915);
17577
17578 if (i915->max_cdclk_freq == 0)
17579 intel_update_max_cdclk(i915);
17580
17581 /* Just disable it once at startup */
17582 intel_vga_disable(i915);
17583 intel_setup_outputs(i915);
17584
17585 drm_modeset_lock_all(dev);
17586 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
17587 drm_modeset_unlock_all(dev);
17588
17589 for_each_intel_crtc(dev, crtc) {
17590 struct intel_initial_plane_config plane_config = {};
17591
17592 if (!crtc->active)
17593 continue;
17594
17595 /*
17596 * Note that reserving the BIOS fb up front prevents us
17597 * from stuffing other stolen allocations like the ring
17598 * on top. This prevents some ugliness at boot time, and
17599 * can even allow for smooth boot transitions if the BIOS
17600 * fb is large enough for the active pipe configuration.
17601 */
17602 i915->display.get_initial_plane_config(crtc, &plane_config);
17603
17604 /*
17605 * If the fb is shared between multiple heads, we'll
17606 * just get the first one.
17607 */
17608 intel_find_initial_plane_obj(crtc, &plane_config);
17609 }
17610
17611 /*
17612 * Make sure hardware watermarks really match the state we read out.
17613 * Note that we need to do this after reconstructing the BIOS fb's
17614 * since the watermark calculation done here will use pstate->fb.
17615 */
17616 if (!HAS_GMCH(i915))
17617 sanitize_watermarks(dev);
17618
17619 /*
17620 * Force all active planes to recompute their states. So that on
17621 * mode_setcrtc after probe, all the intel_plane_state variables
17622 * are already calculated and there is no assert_plane warnings
17623 * during bootup.
17624 */
17625 ret = intel_initial_commit(dev);
17626 if (ret)
17627 DRM_DEBUG_KMS("Initial commit in probe failed.\n");
17628
17629 return 0;
17630 }
17631
17632 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
17633 {
17634 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17635 /* 640x480@60Hz, ~25175 kHz */
17636 struct dpll clock = {
17637 .m1 = 18,
17638 .m2 = 7,
17639 .p1 = 13,
17640 .p2 = 4,
17641 .n = 2,
17642 };
17643 u32 dpll, fp;
17644 int i;
17645
17646 WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
17647
17648 DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
17649 pipe_name(pipe), clock.vco, clock.dot);
17650
17651 fp = i9xx_dpll_compute_fp(&clock);
17652 dpll = DPLL_DVO_2X_MODE |
17653 DPLL_VGA_MODE_DIS |
17654 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
17655 PLL_P2_DIVIDE_BY_4 |
17656 PLL_REF_INPUT_DREFCLK |
17657 DPLL_VCO_ENABLE;
17658
17659 I915_WRITE(FP0(pipe), fp);
17660 I915_WRITE(FP1(pipe), fp);
17661
17662 I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
17663 I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
17664 I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
17665 I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
17666 I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
17667 I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
17668 I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
17669
17670 /*
17671 * Apparently we need to have VGA mode enabled prior to changing
17672 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
17673 * dividers, even though the register value does change.
17674 */
17675 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
17676 I915_WRITE(DPLL(pipe), dpll);
17677
17678 /* Wait for the clocks to stabilize. */
17679 POSTING_READ(DPLL(pipe));
17680 udelay(150);
17681
17682 /* The pixel multiplier can only be updated once the
17683 * DPLL is enabled and the clocks are stable.
17684 *
17685 * So write it again.
17686 */
17687 I915_WRITE(DPLL(pipe), dpll);
17688
17689 /* We do this three times for luck */
17690 for (i = 0; i < 3 ; i++) {
17691 I915_WRITE(DPLL(pipe), dpll);
17692 POSTING_READ(DPLL(pipe));
17693 udelay(150); /* wait for warmup */
17694 }
17695
17696 I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
17697 POSTING_READ(PIPECONF(pipe));
17698
17699 intel_wait_for_pipe_scanline_moving(crtc);
17700 }
17701
17702 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
17703 {
17704 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17705
17706 DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
17707 pipe_name(pipe));
17708
17709 WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
17710 WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
17711 WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
17712 WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE);
17713 WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE);
17714
17715 I915_WRITE(PIPECONF(pipe), 0);
17716 POSTING_READ(PIPECONF(pipe));
17717
17718 intel_wait_for_pipe_scanline_stopped(crtc);
17719
17720 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
17721 POSTING_READ(DPLL(pipe));
17722 }
17723
17724 static void
17725 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
17726 {
17727 struct intel_crtc *crtc;
17728
17729 if (INTEL_GEN(dev_priv) >= 4)
17730 return;
17731
17732 for_each_intel_crtc(&dev_priv->drm, crtc) {
17733 struct intel_plane *plane =
17734 to_intel_plane(crtc->base.primary);
17735 struct intel_crtc *plane_crtc;
17736 enum pipe pipe;
17737
17738 if (!plane->get_hw_state(plane, &pipe))
17739 continue;
17740
17741 if (pipe == crtc->pipe)
17742 continue;
17743
17744 DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
17745 plane->base.base.id, plane->base.name);
17746
17747 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17748 intel_plane_disable_noatomic(plane_crtc, plane);
17749 }
17750 }
17751
17752 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
17753 {
17754 struct drm_device *dev = crtc->base.dev;
17755 struct intel_encoder *encoder;
17756
17757 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
17758 return true;
17759
17760 return false;
17761 }
17762
17763 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
17764 {
17765 struct drm_device *dev = encoder->base.dev;
17766 struct intel_connector *connector;
17767
17768 for_each_connector_on_encoder(dev, &encoder->base, connector)
17769 return connector;
17770
17771 return NULL;
17772 }
17773
17774 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
17775 enum pipe pch_transcoder)
17776 {
17777 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
17778 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
17779 }
17780
17781 static void intel_sanitize_frame_start_delay(const struct intel_crtc_state *crtc_state)
17782 {
17783 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
17784 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
17785 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
17786
17787 if (INTEL_GEN(dev_priv) >= 9 ||
17788 IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
17789 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
17790 u32 val;
17791
17792 if (transcoder_is_dsi(cpu_transcoder))
17793 return;
17794
17795 val = I915_READ(reg);
17796 val &= ~HSW_FRAME_START_DELAY_MASK;
17797 val |= HSW_FRAME_START_DELAY(0);
17798 I915_WRITE(reg, val);
17799 } else {
17800 i915_reg_t reg = PIPECONF(cpu_transcoder);
17801 u32 val;
17802
17803 val = I915_READ(reg);
17804 val &= ~PIPECONF_FRAME_START_DELAY_MASK;
17805 val |= PIPECONF_FRAME_START_DELAY(0);
17806 I915_WRITE(reg, val);
17807 }
17808
17809 if (!crtc_state->has_pch_encoder)
17810 return;
17811
17812 if (HAS_PCH_IBX(dev_priv)) {
17813 i915_reg_t reg = PCH_TRANSCONF(crtc->pipe);
17814 u32 val;
17815
17816 val = I915_READ(reg);
17817 val &= ~TRANS_FRAME_START_DELAY_MASK;
17818 val |= TRANS_FRAME_START_DELAY(0);
17819 I915_WRITE(reg, val);
17820 } else {
17821 enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc);
17822 i915_reg_t reg = TRANS_CHICKEN2(pch_transcoder);
17823 u32 val;
17824
17825 val = I915_READ(reg);
17826 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
17827 val |= TRANS_CHICKEN2_FRAME_START_DELAY(0);
17828 I915_WRITE(reg, val);
17829 }
17830 }
17831
17832 static void intel_sanitize_crtc(struct intel_crtc *crtc,
17833 struct drm_modeset_acquire_ctx *ctx)
17834 {
17835 struct drm_device *dev = crtc->base.dev;
17836 struct drm_i915_private *dev_priv = to_i915(dev);
17837 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
17838
17839 if (crtc_state->hw.active) {
17840 struct intel_plane *plane;
17841
17842 /* Clear any frame start delays used for debugging left by the BIOS */
17843 intel_sanitize_frame_start_delay(crtc_state);
17844
17845 /* Disable everything but the primary plane */
17846 for_each_intel_plane_on_crtc(dev, crtc, plane) {
17847 const struct intel_plane_state *plane_state =
17848 to_intel_plane_state(plane->base.state);
17849
17850 if (plane_state->uapi.visible &&
17851 plane->base.type != DRM_PLANE_TYPE_PRIMARY)
17852 intel_plane_disable_noatomic(crtc, plane);
17853 }
17854
17855 /*
17856 * Disable any background color set by the BIOS, but enable the
17857 * gamma and CSC to match how we program our planes.
17858 */
17859 if (INTEL_GEN(dev_priv) >= 9)
17860 I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe),
17861 SKL_BOTTOM_COLOR_GAMMA_ENABLE |
17862 SKL_BOTTOM_COLOR_CSC_ENABLE);
17863 }
17864
17865 /* Adjust the state of the output pipe according to whether we
17866 * have active connectors/encoders. */
17867 if (crtc_state->hw.active && !intel_crtc_has_encoders(crtc))
17868 intel_crtc_disable_noatomic(crtc, ctx);
17869
17870 if (crtc_state->hw.active || HAS_GMCH(dev_priv)) {
17871 /*
17872 * We start out with underrun reporting disabled to avoid races.
17873 * For correct bookkeeping mark this on active crtcs.
17874 *
17875 * Also on gmch platforms we dont have any hardware bits to
17876 * disable the underrun reporting. Which means we need to start
17877 * out with underrun reporting disabled also on inactive pipes,
17878 * since otherwise we'll complain about the garbage we read when
17879 * e.g. coming up after runtime pm.
17880 *
17881 * No protection against concurrent access is required - at
17882 * worst a fifo underrun happens which also sets this to false.
17883 */
17884 crtc->cpu_fifo_underrun_disabled = true;
17885 /*
17886 * We track the PCH trancoder underrun reporting state
17887 * within the crtc. With crtc for pipe A housing the underrun
17888 * reporting state for PCH transcoder A, crtc for pipe B housing
17889 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
17890 * and marking underrun reporting as disabled for the non-existing
17891 * PCH transcoders B and C would prevent enabling the south
17892 * error interrupt (see cpt_can_enable_serr_int()).
17893 */
17894 if (has_pch_trancoder(dev_priv, crtc->pipe))
17895 crtc->pch_fifo_underrun_disabled = true;
17896 }
17897 }
17898
17899 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
17900 {
17901 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
17902
17903 /*
17904 * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
17905 * the hardware when a high res displays plugged in. DPLL P
17906 * divider is zero, and the pipe timings are bonkers. We'll
17907 * try to disable everything in that case.
17908 *
17909 * FIXME would be nice to be able to sanitize this state
17910 * without several WARNs, but for now let's take the easy
17911 * road.
17912 */
17913 return IS_GEN(dev_priv, 6) &&
17914 crtc_state->hw.active &&
17915 crtc_state->shared_dpll &&
17916 crtc_state->port_clock == 0;
17917 }
17918
17919 static void intel_sanitize_encoder(struct intel_encoder *encoder)
17920 {
17921 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
17922 struct intel_connector *connector;
17923 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
17924 struct intel_crtc_state *crtc_state = crtc ?
17925 to_intel_crtc_state(crtc->base.state) : NULL;
17926
17927 /* We need to check both for a crtc link (meaning that the
17928 * encoder is active and trying to read from a pipe) and the
17929 * pipe itself being active. */
17930 bool has_active_crtc = crtc_state &&
17931 crtc_state->hw.active;
17932
17933 if (crtc_state && has_bogus_dpll_config(crtc_state)) {
17934 DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n",
17935 pipe_name(crtc->pipe));
17936 has_active_crtc = false;
17937 }
17938
17939 connector = intel_encoder_find_connector(encoder);
17940 if (connector && !has_active_crtc) {
17941 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
17942 encoder->base.base.id,
17943 encoder->base.name);
17944
17945 /* Connector is active, but has no active pipe. This is
17946 * fallout from our resume register restoring. Disable
17947 * the encoder manually again. */
17948 if (crtc_state) {
17949 struct drm_encoder *best_encoder;
17950
17951 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
17952 encoder->base.base.id,
17953 encoder->base.name);
17954
17955 /* avoid oopsing in case the hooks consult best_encoder */
17956 best_encoder = connector->base.state->best_encoder;
17957 connector->base.state->best_encoder = &encoder->base;
17958
17959 if (encoder->disable)
17960 encoder->disable(encoder, crtc_state,
17961 connector->base.state);
17962 if (encoder->post_disable)
17963 encoder->post_disable(encoder, crtc_state,
17964 connector->base.state);
17965
17966 connector->base.state->best_encoder = best_encoder;
17967 }
17968 encoder->base.crtc = NULL;
17969
17970 /* Inconsistent output/port/pipe state happens presumably due to
17971 * a bug in one of the get_hw_state functions. Or someplace else
17972 * in our code, like the register restore mess on resume. Clamp
17973 * things to off as a safer default. */
17974
17975 connector->base.dpms = DRM_MODE_DPMS_OFF;
17976 connector->base.encoder = NULL;
17977 }
17978
17979 /* notify opregion of the sanitized encoder state */
17980 intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
17981
17982 if (INTEL_GEN(dev_priv) >= 11)
17983 icl_sanitize_encoder_pll_mapping(encoder);
17984 }
17985
17986 /* FIXME read out full plane state for all planes */
17987 static void readout_plane_state(struct drm_i915_private *dev_priv)
17988 {
17989 struct intel_plane *plane;
17990 struct intel_crtc *crtc;
17991
17992 for_each_intel_plane(&dev_priv->drm, plane) {
17993 struct intel_plane_state *plane_state =
17994 to_intel_plane_state(plane->base.state);
17995 struct intel_crtc_state *crtc_state;
17996 enum pipe pipe = PIPE_A;
17997 bool visible;
17998
17999 visible = plane->get_hw_state(plane, &pipe);
18000
18001 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18002 crtc_state = to_intel_crtc_state(crtc->base.state);
18003
18004 intel_set_plane_visible(crtc_state, plane_state, visible);
18005
18006 DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
18007 plane->base.base.id, plane->base.name,
18008 enableddisabled(visible), pipe_name(pipe));
18009 }
18010
18011 for_each_intel_crtc(&dev_priv->drm, crtc) {
18012 struct intel_crtc_state *crtc_state =
18013 to_intel_crtc_state(crtc->base.state);
18014
18015 fixup_active_planes(crtc_state);
18016 }
18017 }
18018
18019 static void intel_modeset_readout_hw_state(struct drm_device *dev)
18020 {
18021 struct drm_i915_private *dev_priv = to_i915(dev);
18022 enum pipe pipe;
18023 struct intel_crtc *crtc;
18024 struct intel_encoder *encoder;
18025 struct intel_connector *connector;
18026 struct drm_connector_list_iter conn_iter;
18027 int i;
18028
18029 dev_priv->active_pipes = 0;
18030
18031 for_each_intel_crtc(dev, crtc) {
18032 struct intel_crtc_state *crtc_state =
18033 to_intel_crtc_state(crtc->base.state);
18034
18035 __drm_atomic_helper_crtc_destroy_state(&crtc_state->uapi);
18036 intel_crtc_free_hw_state(crtc_state);
18037 intel_crtc_state_reset(crtc_state, crtc);
18038
18039 crtc_state->hw.active = crtc_state->hw.enable =
18040 dev_priv->display.get_pipe_config(crtc, crtc_state);
18041
18042 crtc->base.enabled = crtc_state->hw.enable;
18043 crtc->active = crtc_state->hw.active;
18044
18045 if (crtc_state->hw.active)
18046 dev_priv->active_pipes |= BIT(crtc->pipe);
18047
18048 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
18049 crtc->base.base.id, crtc->base.name,
18050 enableddisabled(crtc_state->hw.active));
18051 }
18052
18053 readout_plane_state(dev_priv);
18054
18055 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
18056 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
18057
18058 pll->on = pll->info->funcs->get_hw_state(dev_priv, pll,
18059 &pll->state.hw_state);
18060
18061 if (IS_ELKHARTLAKE(dev_priv) && pll->on &&
18062 pll->info->id == DPLL_ID_EHL_DPLL4) {
18063 pll->wakeref = intel_display_power_get(dev_priv,
18064 POWER_DOMAIN_DPLL_DC_OFF);
18065 }
18066
18067 pll->state.crtc_mask = 0;
18068 for_each_intel_crtc(dev, crtc) {
18069 struct intel_crtc_state *crtc_state =
18070 to_intel_crtc_state(crtc->base.state);
18071
18072 if (crtc_state->hw.active &&
18073 crtc_state->shared_dpll == pll)
18074 pll->state.crtc_mask |= 1 << crtc->pipe;
18075 }
18076 pll->active_mask = pll->state.crtc_mask;
18077
18078 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
18079 pll->info->name, pll->state.crtc_mask, pll->on);
18080 }
18081
18082 for_each_intel_encoder(dev, encoder) {
18083 pipe = 0;
18084
18085 if (encoder->get_hw_state(encoder, &pipe)) {
18086 struct intel_crtc_state *crtc_state;
18087
18088 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
18089 crtc_state = to_intel_crtc_state(crtc->base.state);
18090
18091 encoder->base.crtc = &crtc->base;
18092 encoder->get_config(encoder, crtc_state);
18093 } else {
18094 encoder->base.crtc = NULL;
18095 }
18096
18097 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
18098 encoder->base.base.id, encoder->base.name,
18099 enableddisabled(encoder->base.crtc),
18100 pipe_name(pipe));
18101 }
18102
18103 drm_connector_list_iter_begin(dev, &conn_iter);
18104 for_each_intel_connector_iter(connector, &conn_iter) {
18105 if (connector->get_hw_state(connector)) {
18106 struct intel_crtc_state *crtc_state;
18107 struct intel_crtc *crtc;
18108
18109 connector->base.dpms = DRM_MODE_DPMS_ON;
18110
18111 encoder = connector->encoder;
18112 connector->base.encoder = &encoder->base;
18113
18114 crtc = to_intel_crtc(encoder->base.crtc);
18115 crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
18116
18117 if (crtc_state && crtc_state->hw.active) {
18118 /*
18119 * This has to be done during hardware readout
18120 * because anything calling .crtc_disable may
18121 * rely on the connector_mask being accurate.
18122 */
18123 crtc_state->uapi.connector_mask |=
18124 drm_connector_mask(&connector->base);
18125 crtc_state->uapi.encoder_mask |=
18126 drm_encoder_mask(&encoder->base);
18127 }
18128 } else {
18129 connector->base.dpms = DRM_MODE_DPMS_OFF;
18130 connector->base.encoder = NULL;
18131 }
18132 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
18133 connector->base.base.id, connector->base.name,
18134 enableddisabled(connector->base.encoder));
18135 }
18136 drm_connector_list_iter_end(&conn_iter);
18137
18138 for_each_intel_crtc(dev, crtc) {
18139 struct intel_bw_state *bw_state =
18140 to_intel_bw_state(dev_priv->bw_obj.state);
18141 struct intel_crtc_state *crtc_state =
18142 to_intel_crtc_state(crtc->base.state);
18143 struct intel_plane *plane;
18144 int min_cdclk = 0;
18145
18146 if (crtc_state->hw.active) {
18147 struct drm_display_mode *mode = &crtc_state->hw.mode;
18148
18149 intel_mode_from_pipe_config(&crtc_state->hw.adjusted_mode,
18150 crtc_state);
18151
18152 *mode = crtc_state->hw.adjusted_mode;
18153 mode->hdisplay = crtc_state->pipe_src_w;
18154 mode->vdisplay = crtc_state->pipe_src_h;
18155
18156 /*
18157 * The initial mode needs to be set in order to keep
18158 * the atomic core happy. It wants a valid mode if the
18159 * crtc's enabled, so we do the above call.
18160 *
18161 * But we don't set all the derived state fully, hence
18162 * set a flag to indicate that a full recalculation is
18163 * needed on the next commit.
18164 */
18165 mode->private_flags = I915_MODE_FLAG_INHERITED;
18166
18167 intel_crtc_compute_pixel_rate(crtc_state);
18168
18169 intel_crtc_update_active_timings(crtc_state);
18170
18171 intel_crtc_copy_hw_to_uapi_state(crtc_state);
18172 }
18173
18174 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
18175 const struct intel_plane_state *plane_state =
18176 to_intel_plane_state(plane->base.state);
18177
18178 /*
18179 * FIXME don't have the fb yet, so can't
18180 * use intel_plane_data_rate() :(
18181 */
18182 if (plane_state->uapi.visible)
18183 crtc_state->data_rate[plane->id] =
18184 4 * crtc_state->pixel_rate;
18185 /*
18186 * FIXME don't have the fb yet, so can't
18187 * use plane->min_cdclk() :(
18188 */
18189 if (plane_state->uapi.visible && plane->min_cdclk) {
18190 if (crtc_state->double_wide ||
18191 INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
18192 crtc_state->min_cdclk[plane->id] =
18193 DIV_ROUND_UP(crtc_state->pixel_rate, 2);
18194 else
18195 crtc_state->min_cdclk[plane->id] =
18196 crtc_state->pixel_rate;
18197 }
18198 DRM_DEBUG_KMS("[PLANE:%d:%s] min_cdclk %d kHz\n",
18199 plane->base.base.id, plane->base.name,
18200 crtc_state->min_cdclk[plane->id]);
18201 }
18202
18203 if (crtc_state->hw.active) {
18204 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
18205 if (WARN_ON(min_cdclk < 0))
18206 min_cdclk = 0;
18207 }
18208
18209 dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
18210 dev_priv->min_voltage_level[crtc->pipe] =
18211 crtc_state->min_voltage_level;
18212
18213 intel_bw_crtc_update(bw_state, crtc_state);
18214
18215 intel_pipe_config_sanity_check(dev_priv, crtc_state);
18216 }
18217 }
18218
18219 static void
18220 get_encoder_power_domains(struct drm_i915_private *dev_priv)
18221 {
18222 struct intel_encoder *encoder;
18223
18224 for_each_intel_encoder(&dev_priv->drm, encoder) {
18225 struct intel_crtc_state *crtc_state;
18226
18227 if (!encoder->get_power_domains)
18228 continue;
18229
18230 /*
18231 * MST-primary and inactive encoders don't have a crtc state
18232 * and neither of these require any power domain references.
18233 */
18234 if (!encoder->base.crtc)
18235 continue;
18236
18237 crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
18238 encoder->get_power_domains(encoder, crtc_state);
18239 }
18240 }
18241
18242 static void intel_early_display_was(struct drm_i915_private *dev_priv)
18243 {
18244 /*
18245 * Display WA #1185 WaDisableDARBFClkGating:cnl,glk,icl,ehl,tgl
18246 * Also known as Wa_14010480278.
18247 */
18248 if (IS_GEN_RANGE(dev_priv, 10, 12) || IS_GEMINILAKE(dev_priv))
18249 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
18250 DARBF_GATING_DIS);
18251
18252 if (IS_HASWELL(dev_priv)) {
18253 /*
18254 * WaRsPkgCStateDisplayPMReq:hsw
18255 * System hang if this isn't done before disabling all planes!
18256 */
18257 I915_WRITE(CHICKEN_PAR1_1,
18258 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
18259 }
18260 }
18261
18262 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
18263 enum port port, i915_reg_t hdmi_reg)
18264 {
18265 u32 val = I915_READ(hdmi_reg);
18266
18267 if (val & SDVO_ENABLE ||
18268 (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
18269 return;
18270
18271 DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n",
18272 port_name(port));
18273
18274 val &= ~SDVO_PIPE_SEL_MASK;
18275 val |= SDVO_PIPE_SEL(PIPE_A);
18276
18277 I915_WRITE(hdmi_reg, val);
18278 }
18279
18280 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
18281 enum port port, i915_reg_t dp_reg)
18282 {
18283 u32 val = I915_READ(dp_reg);
18284
18285 if (val & DP_PORT_EN ||
18286 (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
18287 return;
18288
18289 DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n",
18290 port_name(port));
18291
18292 val &= ~DP_PIPE_SEL_MASK;
18293 val |= DP_PIPE_SEL(PIPE_A);
18294
18295 I915_WRITE(dp_reg, val);
18296 }
18297
18298 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
18299 {
18300 /*
18301 * The BIOS may select transcoder B on some of the PCH
18302 * ports even it doesn't enable the port. This would trip
18303 * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
18304 * Sanitize the transcoder select bits to prevent that. We
18305 * assume that the BIOS never actually enabled the port,
18306 * because if it did we'd actually have to toggle the port
18307 * on and back off to make the transcoder A select stick
18308 * (see. intel_dp_link_down(), intel_disable_hdmi(),
18309 * intel_disable_sdvo()).
18310 */
18311 ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
18312 ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
18313 ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
18314
18315 /* PCH SDVOB multiplex with HDMIB */
18316 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
18317 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
18318 ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
18319 }
18320
18321 /* Scan out the current hw modeset state,
18322 * and sanitizes it to the current state
18323 */
18324 static void
18325 intel_modeset_setup_hw_state(struct drm_device *dev,
18326 struct drm_modeset_acquire_ctx *ctx)
18327 {
18328 struct drm_i915_private *dev_priv = to_i915(dev);
18329 struct intel_encoder *encoder;
18330 struct intel_crtc *crtc;
18331 intel_wakeref_t wakeref;
18332 int i;
18333
18334 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
18335
18336 intel_early_display_was(dev_priv);
18337 intel_modeset_readout_hw_state(dev);
18338
18339 /* HW state is read out, now we need to sanitize this mess. */
18340
18341 /* Sanitize the TypeC port mode upfront, encoders depend on this */
18342 for_each_intel_encoder(dev, encoder) {
18343 enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
18344
18345 /* We need to sanitize only the MST primary port. */
18346 if (encoder->type != INTEL_OUTPUT_DP_MST &&
18347 intel_phy_is_tc(dev_priv, phy))
18348 intel_tc_port_sanitize(enc_to_dig_port(encoder));
18349 }
18350
18351 get_encoder_power_domains(dev_priv);
18352
18353 if (HAS_PCH_IBX(dev_priv))
18354 ibx_sanitize_pch_ports(dev_priv);
18355
18356 /*
18357 * intel_sanitize_plane_mapping() may need to do vblank
18358 * waits, so we need vblank interrupts restored beforehand.
18359 */
18360 for_each_intel_crtc(&dev_priv->drm, crtc) {
18361 struct intel_crtc_state *crtc_state =
18362 to_intel_crtc_state(crtc->base.state);
18363
18364 drm_crtc_vblank_reset(&crtc->base);
18365
18366 if (crtc_state->hw.active)
18367 intel_crtc_vblank_on(crtc_state);
18368 }
18369
18370 intel_sanitize_plane_mapping(dev_priv);
18371
18372 for_each_intel_encoder(dev, encoder)
18373 intel_sanitize_encoder(encoder);
18374
18375 for_each_intel_crtc(&dev_priv->drm, crtc) {
18376 struct intel_crtc_state *crtc_state =
18377 to_intel_crtc_state(crtc->base.state);
18378
18379 intel_sanitize_crtc(crtc, ctx);
18380 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
18381 }
18382
18383 intel_modeset_update_connector_atomic_state(dev);
18384
18385 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
18386 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
18387
18388 if (!pll->on || pll->active_mask)
18389 continue;
18390
18391 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n",
18392 pll->info->name);
18393
18394 pll->info->funcs->disable(dev_priv, pll);
18395 pll->on = false;
18396 }
18397
18398 if (IS_G4X(dev_priv)) {
18399 g4x_wm_get_hw_state(dev_priv);
18400 g4x_wm_sanitize(dev_priv);
18401 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
18402 vlv_wm_get_hw_state(dev_priv);
18403 vlv_wm_sanitize(dev_priv);
18404 } else if (INTEL_GEN(dev_priv) >= 9) {
18405 skl_wm_get_hw_state(dev_priv);
18406 } else if (HAS_PCH_SPLIT(dev_priv)) {
18407 ilk_wm_get_hw_state(dev_priv);
18408 }
18409
18410 for_each_intel_crtc(dev, crtc) {
18411 struct intel_crtc_state *crtc_state =
18412 to_intel_crtc_state(crtc->base.state);
18413 u64 put_domains;
18414
18415 put_domains = modeset_get_crtc_power_domains(crtc_state);
18416 if (WARN_ON(put_domains))
18417 modeset_put_power_domains(dev_priv, put_domains);
18418 }
18419
18420 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
18421 }
18422
18423 void intel_display_resume(struct drm_device *dev)
18424 {
18425 struct drm_i915_private *dev_priv = to_i915(dev);
18426 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
18427 struct drm_modeset_acquire_ctx ctx;
18428 int ret;
18429
18430 dev_priv->modeset_restore_state = NULL;
18431 if (state)
18432 state->acquire_ctx = &ctx;
18433
18434 drm_modeset_acquire_init(&ctx, 0);
18435
18436 while (1) {
18437 ret = drm_modeset_lock_all_ctx(dev, &ctx);
18438 if (ret != -EDEADLK)
18439 break;
18440
18441 drm_modeset_backoff(&ctx);
18442 }
18443
18444 if (!ret)
18445 ret = __intel_display_resume(dev, state, &ctx);
18446
18447 intel_enable_ipc(dev_priv);
18448 drm_modeset_drop_locks(&ctx);
18449 drm_modeset_acquire_fini(&ctx);
18450
18451 if (ret)
18452 DRM_ERROR("Restoring old state failed with %i\n", ret);
18453 if (state)
18454 drm_atomic_state_put(state);
18455 }
18456
18457 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
18458 {
18459 struct intel_connector *connector;
18460 struct drm_connector_list_iter conn_iter;
18461
18462 /* Kill all the work that may have been queued by hpd. */
18463 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
18464 for_each_intel_connector_iter(connector, &conn_iter) {
18465 if (connector->modeset_retry_work.func)
18466 cancel_work_sync(&connector->modeset_retry_work);
18467 if (connector->hdcp.shim) {
18468 cancel_delayed_work_sync(&connector->hdcp.check_work);
18469 cancel_work_sync(&connector->hdcp.prop_work);
18470 }
18471 }
18472 drm_connector_list_iter_end(&conn_iter);
18473 }
18474
18475 void intel_modeset_driver_remove(struct drm_i915_private *i915)
18476 {
18477 flush_workqueue(i915->flip_wq);
18478 flush_workqueue(i915->modeset_wq);
18479
18480 flush_work(&i915->atomic_helper.free_work);
18481 WARN_ON(!llist_empty(&i915->atomic_helper.free_list));
18482
18483 /*
18484 * Interrupts and polling as the first thing to avoid creating havoc.
18485 * Too much stuff here (turning of connectors, ...) would
18486 * experience fancy races otherwise.
18487 */
18488 intel_irq_uninstall(i915);
18489
18490 /*
18491 * Due to the hpd irq storm handling the hotplug work can re-arm the
18492 * poll handlers. Hence disable polling after hpd handling is shut down.
18493 */
18494 intel_hpd_poll_fini(i915);
18495
18496 /*
18497 * MST topology needs to be suspended so we don't have any calls to
18498 * fbdev after it's finalized. MST will be destroyed later as part of
18499 * drm_mode_config_cleanup()
18500 */
18501 intel_dp_mst_suspend(i915);
18502
18503 /* poll work can call into fbdev, hence clean that up afterwards */
18504 intel_fbdev_fini(i915);
18505
18506 intel_unregister_dsm_handler();
18507
18508 intel_fbc_global_disable(i915);
18509
18510 /* flush any delayed tasks or pending work */
18511 flush_scheduled_work();
18512
18513 intel_hdcp_component_fini(i915);
18514
18515 drm_mode_config_cleanup(&i915->drm);
18516
18517 intel_overlay_cleanup(i915);
18518
18519 intel_gmbus_teardown(i915);
18520
18521 intel_bw_cleanup(i915);
18522
18523 destroy_workqueue(i915->flip_wq);
18524 destroy_workqueue(i915->modeset_wq);
18525
18526 intel_fbc_cleanup_cfb(i915);
18527 }
18528
18529 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
18530
18531 struct intel_display_error_state {
18532
18533 u32 power_well_driver;
18534
18535 struct intel_cursor_error_state {
18536 u32 control;
18537 u32 position;
18538 u32 base;
18539 u32 size;
18540 } cursor[I915_MAX_PIPES];
18541
18542 struct intel_pipe_error_state {
18543 bool power_domain_on;
18544 u32 source;
18545 u32 stat;
18546 } pipe[I915_MAX_PIPES];
18547
18548 struct intel_plane_error_state {
18549 u32 control;
18550 u32 stride;
18551 u32 size;
18552 u32 pos;
18553 u32 addr;
18554 u32 surface;
18555 u32 tile_offset;
18556 } plane[I915_MAX_PIPES];
18557
18558 struct intel_transcoder_error_state {
18559 bool available;
18560 bool power_domain_on;
18561 enum transcoder cpu_transcoder;
18562
18563 u32 conf;
18564
18565 u32 htotal;
18566 u32 hblank;
18567 u32 hsync;
18568 u32 vtotal;
18569 u32 vblank;
18570 u32 vsync;
18571 } transcoder[5];
18572 };
18573
18574 struct intel_display_error_state *
18575 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
18576 {
18577 struct intel_display_error_state *error;
18578 int transcoders[] = {
18579 TRANSCODER_A,
18580 TRANSCODER_B,
18581 TRANSCODER_C,
18582 TRANSCODER_D,
18583 TRANSCODER_EDP,
18584 };
18585 int i;
18586
18587 BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
18588
18589 if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
18590 return NULL;
18591
18592 error = kzalloc(sizeof(*error), GFP_ATOMIC);
18593 if (error == NULL)
18594 return NULL;
18595
18596 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
18597 error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2);
18598
18599 for_each_pipe(dev_priv, i) {
18600 error->pipe[i].power_domain_on =
18601 __intel_display_power_is_enabled(dev_priv,
18602 POWER_DOMAIN_PIPE(i));
18603 if (!error->pipe[i].power_domain_on)
18604 continue;
18605
18606 error->cursor[i].control = I915_READ(CURCNTR(i));
18607 error->cursor[i].position = I915_READ(CURPOS(i));
18608 error->cursor[i].base = I915_READ(CURBASE(i));
18609
18610 error->plane[i].control = I915_READ(DSPCNTR(i));
18611 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
18612 if (INTEL_GEN(dev_priv) <= 3) {
18613 error->plane[i].size = I915_READ(DSPSIZE(i));
18614 error->plane[i].pos = I915_READ(DSPPOS(i));
18615 }
18616 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
18617 error->plane[i].addr = I915_READ(DSPADDR(i));
18618 if (INTEL_GEN(dev_priv) >= 4) {
18619 error->plane[i].surface = I915_READ(DSPSURF(i));
18620 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
18621 }
18622
18623 error->pipe[i].source = I915_READ(PIPESRC(i));
18624
18625 if (HAS_GMCH(dev_priv))
18626 error->pipe[i].stat = I915_READ(PIPESTAT(i));
18627 }
18628
18629 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
18630 enum transcoder cpu_transcoder = transcoders[i];
18631
18632 if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder])
18633 continue;
18634
18635 error->transcoder[i].available = true;
18636 error->transcoder[i].power_domain_on =
18637 __intel_display_power_is_enabled(dev_priv,
18638 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
18639 if (!error->transcoder[i].power_domain_on)
18640 continue;
18641
18642 error->transcoder[i].cpu_transcoder = cpu_transcoder;
18643
18644 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
18645 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
18646 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
18647 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
18648 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
18649 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
18650 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
18651 }
18652
18653 return error;
18654 }
18655
18656 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
18657
18658 void
18659 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
18660 struct intel_display_error_state *error)
18661 {
18662 struct drm_i915_private *dev_priv = m->i915;
18663 int i;
18664
18665 if (!error)
18666 return;
18667
18668 err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
18669 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
18670 err_printf(m, "PWR_WELL_CTL2: %08x\n",
18671 error->power_well_driver);
18672 for_each_pipe(dev_priv, i) {
18673 err_printf(m, "Pipe [%d]:\n", i);
18674 err_printf(m, " Power: %s\n",
18675 onoff(error->pipe[i].power_domain_on));
18676 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
18677 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
18678
18679 err_printf(m, "Plane [%d]:\n", i);
18680 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
18681 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
18682 if (INTEL_GEN(dev_priv) <= 3) {
18683 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
18684 err_printf(m, " POS: %08x\n", error->plane[i].pos);
18685 }
18686 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
18687 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
18688 if (INTEL_GEN(dev_priv) >= 4) {
18689 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
18690 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
18691 }
18692
18693 err_printf(m, "Cursor [%d]:\n", i);
18694 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
18695 err_printf(m, " POS: %08x\n", error->cursor[i].position);
18696 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
18697 }
18698
18699 for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
18700 if (!error->transcoder[i].available)
18701 continue;
18702
18703 err_printf(m, "CPU transcoder: %s\n",
18704 transcoder_name(error->transcoder[i].cpu_transcoder));
18705 err_printf(m, " Power: %s\n",
18706 onoff(error->transcoder[i].power_domain_on));
18707 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
18708 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
18709 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
18710 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
18711 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
18712 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
18713 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
18714 }
18715 }
18716
18717 #endif
18718