intel_dp.c revision 1.4 1 /* $NetBSD: intel_dp.c,v 1.4 2021/12/19 11:38:26 riastradh Exp $ */
2
3 /*
4 * Copyright 2008 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 * IN THE SOFTWARE.
24 *
25 * Authors:
26 * Keith Packard <keithp (at) keithp.com>
27 *
28 */
29
30 #include <sys/cdefs.h>
31 __KERNEL_RCSID(0, "$NetBSD: intel_dp.c,v 1.4 2021/12/19 11:38:26 riastradh Exp $");
32
33 #include <linux/export.h>
34 #include <linux/i2c.h>
35 #include <linux/notifier.h>
36 #include <linux/reboot.h>
37 #include <linux/slab.h>
38 #include <linux/types.h>
39
40 #include <asm/byteorder.h>
41
42 #include <drm/drm_atomic_helper.h>
43 #include <drm/drm_crtc.h>
44 #include <drm/drm_dp_helper.h>
45 #include <drm/drm_edid.h>
46 #include <drm/drm_hdcp.h>
47 #include <drm/drm_probe_helper.h>
48 #include <drm/i915_drm.h>
49
50 #include "i915_debugfs.h"
51 #include "i915_drv.h"
52 #include "i915_trace.h"
53 #include "intel_atomic.h"
54 #include "intel_audio.h"
55 #include "intel_connector.h"
56 #include "intel_ddi.h"
57 #include "intel_display_types.h"
58 #include "intel_dp.h"
59 #include "intel_dp_link_training.h"
60 #include "intel_dp_mst.h"
61 #include "intel_dpio_phy.h"
62 #include "intel_fifo_underrun.h"
63 #include "intel_hdcp.h"
64 #include "intel_hdmi.h"
65 #include "intel_hotplug.h"
66 #include "intel_lspcon.h"
67 #include "intel_lvds.h"
68 #include "intel_panel.h"
69 #include "intel_psr.h"
70 #include "intel_sideband.h"
71 #include "intel_tc.h"
72 #include "intel_vdsc.h"
73
74 #define DP_DPRX_ESI_LEN 14
75
76 /* DP DSC throughput values used for slice count calculations KPixels/s */
77 #define DP_DSC_PEAK_PIXEL_RATE 2720000
78 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
79 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
80
81 /* DP DSC FEC Overhead factor = 1/(0.972261) */
82 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261
83
84 /* Compliance test status bits */
85 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
86 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
87 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
88 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
89
90 struct dp_link_dpll {
91 int clock;
92 struct dpll dpll;
93 };
94
95 static const struct dp_link_dpll g4x_dpll[] = {
96 { 162000,
97 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
98 { 270000,
99 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
100 };
101
102 static const struct dp_link_dpll pch_dpll[] = {
103 { 162000,
104 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
105 { 270000,
106 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
107 };
108
109 static const struct dp_link_dpll vlv_dpll[] = {
110 { 162000,
111 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
112 { 270000,
113 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
114 };
115
116 /*
117 * CHV supports eDP 1.4 that have more link rates.
118 * Below only provides the fixed rate but exclude variable rate.
119 */
120 static const struct dp_link_dpll chv_dpll[] = {
121 /*
122 * CHV requires to program fractional division for m2.
123 * m2 is stored in fixed point format using formula below
124 * (m2_int << 22) | m2_fraction
125 */
126 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
127 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
128 { 270000, /* m2_int = 27, m2_fraction = 0 */
129 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
130 };
131
132 /* Constants for DP DSC configurations */
133 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
134
135 /* With Single pipe configuration, HW is capable of supporting maximum
136 * of 4 slices per line.
137 */
138 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
139
140 /**
141 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
142 * @intel_dp: DP struct
143 *
144 * If a CPU or PCH DP output is attached to an eDP panel, this function
145 * will return true, and false otherwise.
146 */
147 bool intel_dp_is_edp(struct intel_dp *intel_dp)
148 {
149 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
150
151 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
152 }
153
154 static struct intel_dp *intel_attached_dp(struct intel_connector *connector)
155 {
156 return enc_to_intel_dp(intel_attached_encoder(connector));
157 }
158
159 static void intel_dp_link_down(struct intel_encoder *encoder,
160 const struct intel_crtc_state *old_crtc_state);
161 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
162 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
163 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
164 const struct intel_crtc_state *crtc_state);
165 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
166 enum pipe pipe);
167 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
168
169 /* update sink rates from dpcd */
170 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
171 {
172 static const int dp_rates[] = {
173 162000, 270000, 540000, 810000
174 };
175 int i, max_rate;
176
177 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178
179 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
180 if (dp_rates[i] > max_rate)
181 break;
182 intel_dp->sink_rates[i] = dp_rates[i];
183 }
184
185 intel_dp->num_sink_rates = i;
186 }
187
188 /* Get length of rates array potentially limited by max_rate. */
189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
190 {
191 int i;
192
193 /* Limit results by potentially reduced max rate */
194 for (i = 0; i < len; i++) {
195 if (rates[len - i - 1] <= max_rate)
196 return len - i;
197 }
198
199 return 0;
200 }
201
202 /* Get length of common rates array potentially limited by max_rate. */
203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
204 int max_rate)
205 {
206 return intel_dp_rate_limit_len(intel_dp->common_rates,
207 intel_dp->num_common_rates, max_rate);
208 }
209
210 /* Theoretical max between source and sink */
211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212 {
213 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 }
215
216 /* Theoretical max between source and sink */
217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 {
219 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220 int source_max = intel_dig_port->max_lanes;
221 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222 int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223
224 return min3(source_max, sink_max, fia_max);
225 }
226
227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 {
229 return intel_dp->max_link_lane_count;
230 }
231
232 int
233 intel_dp_link_required(int pixel_clock, int bpp)
234 {
235 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
236 return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 }
238
239 int
240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
241 {
242 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
243 * link rate that is generally expressed in Gbps. Since, 8 bits of data
244 * is transmitted every LS_Clk per lane, there is no need to account for
245 * the channel encoding that is done in the PHY layer here.
246 */
247
248 return max_link_clock * max_lanes;
249 }
250
251 static int
252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
253 {
254 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
255 struct intel_encoder *encoder = &intel_dig_port->base;
256 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
257 int max_dotclk = dev_priv->max_dotclk_freq;
258 int ds_max_dotclk;
259
260 int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
261
262 if (type != DP_DS_PORT_TYPE_VGA)
263 return max_dotclk;
264
265 ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
266 intel_dp->downstream_ports);
267
268 if (ds_max_dotclk != 0)
269 max_dotclk = min(max_dotclk, ds_max_dotclk);
270
271 return max_dotclk;
272 }
273
274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 {
276 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
277 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
278 enum port port = dig_port->base.port;
279
280 u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281
282 /* Low voltage SKUs are limited to max of 5.4G */
283 if (voltage == VOLTAGE_INFO_0_85V)
284 return 540000;
285
286 /* For this SKU 8.1G is supported in all ports */
287 if (IS_CNL_WITH_PORT_F(dev_priv))
288 return 810000;
289
290 /* For other SKUs, max rate on ports A and D is 5.4G */
291 if (port == PORT_A || port == PORT_D)
292 return 540000;
293
294 return 810000;
295 }
296
297 static int icl_max_source_rate(struct intel_dp *intel_dp)
298 {
299 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302
303 if (intel_phy_is_combo(dev_priv, phy) &&
304 !IS_ELKHARTLAKE(dev_priv) &&
305 !intel_dp_is_edp(intel_dp))
306 return 540000;
307
308 return 810000;
309 }
310
311 static void
312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
313 {
314 /* The values must be in increasing order */
315 static const int cnl_rates[] = {
316 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
317 };
318 static const int bxt_rates[] = {
319 162000, 216000, 243000, 270000, 324000, 432000, 540000
320 };
321 static const int skl_rates[] = {
322 162000, 216000, 270000, 324000, 432000, 540000
323 };
324 static const int hsw_rates[] = {
325 162000, 270000, 540000
326 };
327 static const int g4x_rates[] = {
328 162000, 270000
329 };
330 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
332 const struct ddi_vbt_port_info *info =
333 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
334 const int *source_rates;
335 int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
336
337 /* This should only be done once */
338 WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
339
340 if (INTEL_GEN(dev_priv) >= 10) {
341 source_rates = cnl_rates;
342 size = ARRAY_SIZE(cnl_rates);
343 if (IS_GEN(dev_priv, 10))
344 max_rate = cnl_max_source_rate(intel_dp);
345 else
346 max_rate = icl_max_source_rate(intel_dp);
347 } else if (IS_GEN9_LP(dev_priv)) {
348 source_rates = bxt_rates;
349 size = ARRAY_SIZE(bxt_rates);
350 } else if (IS_GEN9_BC(dev_priv)) {
351 source_rates = skl_rates;
352 size = ARRAY_SIZE(skl_rates);
353 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
354 IS_BROADWELL(dev_priv)) {
355 source_rates = hsw_rates;
356 size = ARRAY_SIZE(hsw_rates);
357 } else {
358 source_rates = g4x_rates;
359 size = ARRAY_SIZE(g4x_rates);
360 }
361
362 if (max_rate && vbt_max_rate)
363 max_rate = min(max_rate, vbt_max_rate);
364 else if (vbt_max_rate)
365 max_rate = vbt_max_rate;
366
367 if (max_rate)
368 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
369
370 intel_dp->source_rates = source_rates;
371 intel_dp->num_source_rates = size;
372 }
373
374 static int intersect_rates(const int *source_rates, int source_len,
375 const int *sink_rates, int sink_len,
376 int *common_rates)
377 {
378 int i = 0, j = 0, k = 0;
379
380 while (i < source_len && j < sink_len) {
381 if (source_rates[i] == sink_rates[j]) {
382 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
383 return k;
384 common_rates[k] = source_rates[i];
385 ++k;
386 ++i;
387 ++j;
388 } else if (source_rates[i] < sink_rates[j]) {
389 ++i;
390 } else {
391 ++j;
392 }
393 }
394 return k;
395 }
396
397 /* return index of rate in rates array, or -1 if not found */
398 static int intel_dp_rate_index(const int *rates, int len, int rate)
399 {
400 int i;
401
402 for (i = 0; i < len; i++)
403 if (rate == rates[i])
404 return i;
405
406 return -1;
407 }
408
409 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
410 {
411 WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
412
413 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
414 intel_dp->num_source_rates,
415 intel_dp->sink_rates,
416 intel_dp->num_sink_rates,
417 intel_dp->common_rates);
418
419 /* Paranoia, there should always be something in common. */
420 if (WARN_ON(intel_dp->num_common_rates == 0)) {
421 intel_dp->common_rates[0] = 162000;
422 intel_dp->num_common_rates = 1;
423 }
424 }
425
426 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
427 u8 lane_count)
428 {
429 /*
430 * FIXME: we need to synchronize the current link parameters with
431 * hardware readout. Currently fast link training doesn't work on
432 * boot-up.
433 */
434 if (link_rate == 0 ||
435 link_rate > intel_dp->max_link_rate)
436 return false;
437
438 if (lane_count == 0 ||
439 lane_count > intel_dp_max_lane_count(intel_dp))
440 return false;
441
442 return true;
443 }
444
445 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
446 int link_rate,
447 u8 lane_count)
448 {
449 const struct drm_display_mode *fixed_mode =
450 intel_dp->attached_connector->panel.fixed_mode;
451 int mode_rate, max_rate;
452
453 mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
454 max_rate = intel_dp_max_data_rate(link_rate, lane_count);
455 if (mode_rate > max_rate)
456 return false;
457
458 return true;
459 }
460
461 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
462 int link_rate, u8 lane_count)
463 {
464 int index;
465
466 index = intel_dp_rate_index(intel_dp->common_rates,
467 intel_dp->num_common_rates,
468 link_rate);
469 if (index > 0) {
470 if (intel_dp_is_edp(intel_dp) &&
471 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
472 intel_dp->common_rates[index - 1],
473 lane_count)) {
474 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
475 return 0;
476 }
477 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
478 intel_dp->max_link_lane_count = lane_count;
479 } else if (lane_count > 1) {
480 if (intel_dp_is_edp(intel_dp) &&
481 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
482 intel_dp_max_common_rate(intel_dp),
483 lane_count >> 1)) {
484 DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
485 return 0;
486 }
487 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
488 intel_dp->max_link_lane_count = lane_count >> 1;
489 } else {
490 DRM_ERROR("Link Training Unsuccessful\n");
491 return -1;
492 }
493
494 return 0;
495 }
496
497 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
498 {
499 return div_u64(mul_u32_u32(mode_clock, 1000000U),
500 DP_DSC_FEC_OVERHEAD_FACTOR);
501 }
502
503 static int
504 small_joiner_ram_size_bits(struct drm_i915_private *i915)
505 {
506 if (INTEL_GEN(i915) >= 11)
507 return 7680 * 8;
508 else
509 return 6144 * 8;
510 }
511
512 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
513 u32 link_clock, u32 lane_count,
514 u32 mode_clock, u32 mode_hdisplay)
515 {
516 u32 bits_per_pixel, max_bpp_small_joiner_ram;
517 int i;
518
519 /*
520 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
521 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
522 * for SST -> TimeSlotsPerMTP is 1,
523 * for MST -> TimeSlotsPerMTP has to be calculated
524 */
525 bits_per_pixel = (link_clock * lane_count * 8) /
526 intel_dp_mode_to_fec_clock(mode_clock);
527 DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
528
529 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
530 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
531 mode_hdisplay;
532 DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
533
534 /*
535 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
536 * check, output bpp from small joiner RAM check)
537 */
538 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
539
540 /* Error out if the max bpp is less than smallest allowed valid bpp */
541 if (bits_per_pixel < valid_dsc_bpp[0]) {
542 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
543 bits_per_pixel, valid_dsc_bpp[0]);
544 return 0;
545 }
546
547 /* Find the nearest match in the array of known BPPs from VESA */
548 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
549 if (bits_per_pixel < valid_dsc_bpp[i + 1])
550 break;
551 }
552 bits_per_pixel = valid_dsc_bpp[i];
553
554 /*
555 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
556 * fractional part is 0
557 */
558 return bits_per_pixel << 4;
559 }
560
561 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
562 int mode_clock, int mode_hdisplay)
563 {
564 u8 min_slice_count, i;
565 int max_slice_width;
566
567 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
568 min_slice_count = DIV_ROUND_UP(mode_clock,
569 DP_DSC_MAX_ENC_THROUGHPUT_0);
570 else
571 min_slice_count = DIV_ROUND_UP(mode_clock,
572 DP_DSC_MAX_ENC_THROUGHPUT_1);
573
574 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
575 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
576 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
577 max_slice_width);
578 return 0;
579 }
580 /* Also take into account max slice width */
581 min_slice_count = min_t(u8, min_slice_count,
582 DIV_ROUND_UP(mode_hdisplay,
583 max_slice_width));
584
585 /* Find the closest match to the valid slice count values */
586 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
587 if (valid_dsc_slicecount[i] >
588 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
589 false))
590 break;
591 if (min_slice_count <= valid_dsc_slicecount[i])
592 return valid_dsc_slicecount[i];
593 }
594
595 DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
596 return 0;
597 }
598
599 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
600 int hdisplay)
601 {
602 /*
603 * Older platforms don't like hdisplay==4096 with DP.
604 *
605 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
606 * and frame counter increment), but we don't get vblank interrupts,
607 * and the pipe underruns immediately. The link also doesn't seem
608 * to get trained properly.
609 *
610 * On CHV the vblank interrupts don't seem to disappear but
611 * otherwise the symptoms are similar.
612 *
613 * TODO: confirm the behaviour on HSW+
614 */
615 return hdisplay == 4096 && !HAS_DDI(dev_priv);
616 }
617
618 static enum drm_mode_status
619 intel_dp_mode_valid(struct drm_connector *connector,
620 struct drm_display_mode *mode)
621 {
622 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
623 struct intel_connector *intel_connector = to_intel_connector(connector);
624 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
625 struct drm_i915_private *dev_priv = to_i915(connector->dev);
626 int target_clock = mode->clock;
627 int max_rate, mode_rate, max_lanes, max_link_clock;
628 int max_dotclk;
629 u16 dsc_max_output_bpp = 0;
630 u8 dsc_slice_count = 0;
631
632 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
633 return MODE_NO_DBLESCAN;
634
635 max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
636
637 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
638 if (mode->hdisplay > fixed_mode->hdisplay)
639 return MODE_PANEL;
640
641 if (mode->vdisplay > fixed_mode->vdisplay)
642 return MODE_PANEL;
643
644 target_clock = fixed_mode->clock;
645 }
646
647 max_link_clock = intel_dp_max_link_rate(intel_dp);
648 max_lanes = intel_dp_max_lane_count(intel_dp);
649
650 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
651 mode_rate = intel_dp_link_required(target_clock, 18);
652
653 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
654 return MODE_H_ILLEGAL;
655
656 /*
657 * Output bpp is stored in 6.4 format so right shift by 4 to get the
658 * integer value since we support only integer values of bpp.
659 */
660 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
661 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
662 if (intel_dp_is_edp(intel_dp)) {
663 dsc_max_output_bpp =
664 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
665 dsc_slice_count =
666 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
667 true);
668 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
669 dsc_max_output_bpp =
670 intel_dp_dsc_get_output_bpp(dev_priv,
671 max_link_clock,
672 max_lanes,
673 target_clock,
674 mode->hdisplay) >> 4;
675 dsc_slice_count =
676 intel_dp_dsc_get_slice_count(intel_dp,
677 target_clock,
678 mode->hdisplay);
679 }
680 }
681
682 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
683 target_clock > max_dotclk)
684 return MODE_CLOCK_HIGH;
685
686 if (mode->clock < 10000)
687 return MODE_CLOCK_LOW;
688
689 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
690 return MODE_H_ILLEGAL;
691
692 return intel_mode_valid_max_plane_size(dev_priv, mode);
693 }
694
695 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
696 {
697 int i;
698 u32 v = 0;
699
700 if (src_bytes > 4)
701 src_bytes = 4;
702 for (i = 0; i < src_bytes; i++)
703 v |= ((u32)src[i]) << ((3 - i) * 8);
704 return v;
705 }
706
707 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
708 {
709 int i;
710 if (dst_bytes > 4)
711 dst_bytes = 4;
712 for (i = 0; i < dst_bytes; i++)
713 dst[i] = src >> ((3-i) * 8);
714 }
715
716 static void
717 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
718 static void
719 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
720 bool force_disable_vdd);
721 static void
722 intel_dp_pps_init(struct intel_dp *intel_dp);
723
724 static intel_wakeref_t
725 pps_lock(struct intel_dp *intel_dp)
726 {
727 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
728 intel_wakeref_t wakeref;
729
730 /*
731 * See intel_power_sequencer_reset() why we need
732 * a power domain reference here.
733 */
734 wakeref = intel_display_power_get(dev_priv,
735 intel_aux_power_domain(dp_to_dig_port(intel_dp)));
736
737 mutex_lock(&dev_priv->pps_mutex);
738
739 return wakeref;
740 }
741
742 static intel_wakeref_t
743 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
744 {
745 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
746
747 mutex_unlock(&dev_priv->pps_mutex);
748 intel_display_power_put(dev_priv,
749 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
750 wakeref);
751 return 0;
752 }
753
754 #define with_pps_lock(dp, wf) \
755 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
756
757 static void
758 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
759 {
760 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
761 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
762 enum pipe pipe = intel_dp->pps_pipe;
763 bool pll_enabled, release_cl_override = false;
764 enum dpio_phy phy = DPIO_PHY(pipe);
765 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
766 u32 DP;
767
768 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
769 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
770 pipe_name(pipe), intel_dig_port->base.base.base.id,
771 intel_dig_port->base.base.name))
772 return;
773
774 DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
775 pipe_name(pipe), intel_dig_port->base.base.base.id,
776 intel_dig_port->base.base.name);
777
778 /* Preserve the BIOS-computed detected bit. This is
779 * supposed to be read-only.
780 */
781 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
782 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
783 DP |= DP_PORT_WIDTH(1);
784 DP |= DP_LINK_TRAIN_PAT_1;
785
786 if (IS_CHERRYVIEW(dev_priv))
787 DP |= DP_PIPE_SEL_CHV(pipe);
788 else
789 DP |= DP_PIPE_SEL(pipe);
790
791 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
792
793 /*
794 * The DPLL for the pipe must be enabled for this to work.
795 * So enable temporarily it if it's not already enabled.
796 */
797 if (!pll_enabled) {
798 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
799 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
800
801 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
802 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
803 DRM_ERROR("Failed to force on pll for pipe %c!\n",
804 pipe_name(pipe));
805 return;
806 }
807 }
808
809 /*
810 * Similar magic as in intel_dp_enable_port().
811 * We _must_ do this port enable + disable trick
812 * to make this power sequencer lock onto the port.
813 * Otherwise even VDD force bit won't work.
814 */
815 I915_WRITE(intel_dp->output_reg, DP);
816 POSTING_READ(intel_dp->output_reg);
817
818 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
819 POSTING_READ(intel_dp->output_reg);
820
821 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
822 POSTING_READ(intel_dp->output_reg);
823
824 if (!pll_enabled) {
825 vlv_force_pll_off(dev_priv, pipe);
826
827 if (release_cl_override)
828 chv_phy_powergate_ch(dev_priv, phy, ch, false);
829 }
830 }
831
832 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
833 {
834 struct intel_encoder *encoder;
835 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
836
837 /*
838 * We don't have power sequencer currently.
839 * Pick one that's not used by other ports.
840 */
841 for_each_intel_dp(&dev_priv->drm, encoder) {
842 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
843
844 if (encoder->type == INTEL_OUTPUT_EDP) {
845 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
846 intel_dp->active_pipe != intel_dp->pps_pipe);
847
848 if (intel_dp->pps_pipe != INVALID_PIPE)
849 pipes &= ~(1 << intel_dp->pps_pipe);
850 } else {
851 WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
852
853 if (intel_dp->active_pipe != INVALID_PIPE)
854 pipes &= ~(1 << intel_dp->active_pipe);
855 }
856 }
857
858 if (pipes == 0)
859 return INVALID_PIPE;
860
861 return ffs(pipes) - 1;
862 }
863
864 static enum pipe
865 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
866 {
867 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
868 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
869 enum pipe pipe;
870
871 lockdep_assert_held(&dev_priv->pps_mutex);
872
873 /* We should never land here with regular DP ports */
874 WARN_ON(!intel_dp_is_edp(intel_dp));
875
876 WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
877 intel_dp->active_pipe != intel_dp->pps_pipe);
878
879 if (intel_dp->pps_pipe != INVALID_PIPE)
880 return intel_dp->pps_pipe;
881
882 pipe = vlv_find_free_pps(dev_priv);
883
884 /*
885 * Didn't find one. This should not happen since there
886 * are two power sequencers and up to two eDP ports.
887 */
888 if (WARN_ON(pipe == INVALID_PIPE))
889 pipe = PIPE_A;
890
891 vlv_steal_power_sequencer(dev_priv, pipe);
892 intel_dp->pps_pipe = pipe;
893
894 DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
895 pipe_name(intel_dp->pps_pipe),
896 intel_dig_port->base.base.base.id,
897 intel_dig_port->base.base.name);
898
899 /* init power sequencer on this pipe and port */
900 intel_dp_init_panel_power_sequencer(intel_dp);
901 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
902
903 /*
904 * Even vdd force doesn't work until we've made
905 * the power sequencer lock in on the port.
906 */
907 vlv_power_sequencer_kick(intel_dp);
908
909 return intel_dp->pps_pipe;
910 }
911
912 static int
913 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
914 {
915 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
916 int backlight_controller = dev_priv->vbt.backlight.controller;
917
918 lockdep_assert_held(&dev_priv->pps_mutex);
919
920 /* We should never land here with regular DP ports */
921 WARN_ON(!intel_dp_is_edp(intel_dp));
922
923 if (!intel_dp->pps_reset)
924 return backlight_controller;
925
926 intel_dp->pps_reset = false;
927
928 /*
929 * Only the HW needs to be reprogrammed, the SW state is fixed and
930 * has been setup during connector init.
931 */
932 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
933
934 return backlight_controller;
935 }
936
937 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
938 enum pipe pipe);
939
940 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
941 enum pipe pipe)
942 {
943 return I915_READ(PP_STATUS(pipe)) & PP_ON;
944 }
945
946 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
947 enum pipe pipe)
948 {
949 return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
950 }
951
952 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
953 enum pipe pipe)
954 {
955 return true;
956 }
957
958 static enum pipe
959 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
960 enum port port,
961 vlv_pipe_check pipe_check)
962 {
963 enum pipe pipe;
964
965 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
966 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
967 PANEL_PORT_SELECT_MASK;
968
969 if (port_sel != PANEL_PORT_SELECT_VLV(port))
970 continue;
971
972 if (!pipe_check(dev_priv, pipe))
973 continue;
974
975 return pipe;
976 }
977
978 return INVALID_PIPE;
979 }
980
981 static void
982 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
983 {
984 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
985 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
986 enum port port = intel_dig_port->base.port;
987
988 lockdep_assert_held(&dev_priv->pps_mutex);
989
990 /* try to find a pipe with this port selected */
991 /* first pick one where the panel is on */
992 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
993 vlv_pipe_has_pp_on);
994 /* didn't find one? pick one where vdd is on */
995 if (intel_dp->pps_pipe == INVALID_PIPE)
996 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
997 vlv_pipe_has_vdd_on);
998 /* didn't find one? pick one with just the correct port */
999 if (intel_dp->pps_pipe == INVALID_PIPE)
1000 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1001 vlv_pipe_any);
1002
1003 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1004 if (intel_dp->pps_pipe == INVALID_PIPE) {
1005 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
1006 intel_dig_port->base.base.base.id,
1007 intel_dig_port->base.base.name);
1008 return;
1009 }
1010
1011 DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1012 intel_dig_port->base.base.base.id,
1013 intel_dig_port->base.base.name,
1014 pipe_name(intel_dp->pps_pipe));
1015
1016 intel_dp_init_panel_power_sequencer(intel_dp);
1017 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1018 }
1019
1020 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1021 {
1022 struct intel_encoder *encoder;
1023
1024 if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1025 !IS_GEN9_LP(dev_priv)))
1026 return;
1027
1028 /*
1029 * We can't grab pps_mutex here due to deadlock with power_domain
1030 * mutex when power_domain functions are called while holding pps_mutex.
1031 * That also means that in order to use pps_pipe the code needs to
1032 * hold both a power domain reference and pps_mutex, and the power domain
1033 * reference get/put must be done while _not_ holding pps_mutex.
1034 * pps_{lock,unlock}() do these steps in the correct order, so one
1035 * should use them always.
1036 */
1037
1038 for_each_intel_dp(&dev_priv->drm, encoder) {
1039 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1040
1041 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1042
1043 if (encoder->type != INTEL_OUTPUT_EDP)
1044 continue;
1045
1046 if (IS_GEN9_LP(dev_priv))
1047 intel_dp->pps_reset = true;
1048 else
1049 intel_dp->pps_pipe = INVALID_PIPE;
1050 }
1051 }
1052
1053 struct pps_registers {
1054 i915_reg_t pp_ctrl;
1055 i915_reg_t pp_stat;
1056 i915_reg_t pp_on;
1057 i915_reg_t pp_off;
1058 i915_reg_t pp_div;
1059 };
1060
1061 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1062 struct pps_registers *regs)
1063 {
1064 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1065 int pps_idx = 0;
1066
1067 memset(regs, 0, sizeof(*regs));
1068
1069 if (IS_GEN9_LP(dev_priv))
1070 pps_idx = bxt_power_sequencer_idx(intel_dp);
1071 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1072 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1073
1074 regs->pp_ctrl = PP_CONTROL(pps_idx);
1075 regs->pp_stat = PP_STATUS(pps_idx);
1076 regs->pp_on = PP_ON_DELAYS(pps_idx);
1077 regs->pp_off = PP_OFF_DELAYS(pps_idx);
1078
1079 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1080 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1081 regs->pp_div = INVALID_MMIO_REG;
1082 else
1083 regs->pp_div = PP_DIVISOR(pps_idx);
1084 }
1085
1086 static i915_reg_t
1087 _pp_ctrl_reg(struct intel_dp *intel_dp)
1088 {
1089 struct pps_registers regs;
1090
1091 intel_pps_get_registers(intel_dp, ®s);
1092
1093 return regs.pp_ctrl;
1094 }
1095
1096 static i915_reg_t
1097 _pp_stat_reg(struct intel_dp *intel_dp)
1098 {
1099 struct pps_registers regs;
1100
1101 intel_pps_get_registers(intel_dp, ®s);
1102
1103 return regs.pp_stat;
1104 }
1105
1106 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1107 This function only applicable when panel PM state is not to be tracked */
1108 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1109 void *unused)
1110 {
1111 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1112 edp_notifier);
1113 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1114 intel_wakeref_t wakeref;
1115
1116 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1117 return 0;
1118
1119 with_pps_lock(intel_dp, wakeref) {
1120 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1121 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1122 i915_reg_t pp_ctrl_reg, pp_div_reg;
1123 u32 pp_div;
1124
1125 pp_ctrl_reg = PP_CONTROL(pipe);
1126 pp_div_reg = PP_DIVISOR(pipe);
1127 pp_div = I915_READ(pp_div_reg);
1128 pp_div &= PP_REFERENCE_DIVIDER_MASK;
1129
1130 /* 0x1F write to PP_DIV_REG sets max cycle delay */
1131 I915_WRITE(pp_div_reg, pp_div | 0x1F);
1132 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1133 msleep(intel_dp->panel_power_cycle_delay);
1134 }
1135 }
1136
1137 return 0;
1138 }
1139
1140 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1141 {
1142 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1143
1144 lockdep_assert_held(&dev_priv->pps_mutex);
1145
1146 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1147 intel_dp->pps_pipe == INVALID_PIPE)
1148 return false;
1149
1150 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1151 }
1152
1153 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1154 {
1155 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1156
1157 lockdep_assert_held(&dev_priv->pps_mutex);
1158
1159 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1160 intel_dp->pps_pipe == INVALID_PIPE)
1161 return false;
1162
1163 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1164 }
1165
1166 static void
1167 intel_dp_check_edp(struct intel_dp *intel_dp)
1168 {
1169 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1170
1171 if (!intel_dp_is_edp(intel_dp))
1172 return;
1173
1174 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1175 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1176 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1177 I915_READ(_pp_stat_reg(intel_dp)),
1178 I915_READ(_pp_ctrl_reg(intel_dp)));
1179 }
1180 }
1181
1182 static u32
1183 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1184 {
1185 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1186 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1187 const unsigned int timeout_ms = 10;
1188 u32 status;
1189 bool done;
1190
1191 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1192 #ifdef __NetBSD__
1193 if (!cold) {
1194 int ret;
1195 spin_lock(&i915->gmbus_wait_lock);
1196 DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(ret,
1197 &i915->gmbus_wait_queue, &i915->gmbus_wait_lock,
1198 msecs_to_jiffies_timeout(timeout_ms),
1199 C);
1200 if (ret < 0) /* Failure: pretend same as done. */
1201 done = true;
1202 else if (ret == 0) /* Timed out: not done. */
1203 done = false;
1204 else /* Succeeded (ret > 0): done. */
1205 done = true;
1206 spin_unlock(&i915->gmbus_wait_lock);
1207 } else {
1208 done = wait_for_atomic(C, timeout_ms) == 0;
1209 }
1210 #else
1211 done = wait_event_timeout(i915->gmbus_wait_queue, C,
1212 msecs_to_jiffies_timeout(timeout_ms));
1213
1214 #endif
1215
1216 /* just trace the final value */
1217 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1218
1219 if (!done)
1220 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
1221 intel_dp->aux.name, timeout_ms, status);
1222 #undef C
1223
1224 return status;
1225 }
1226
1227 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1228 {
1229 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1230
1231 if (index)
1232 return 0;
1233
1234 /*
1235 * The clock divider is based off the hrawclk, and would like to run at
1236 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
1237 */
1238 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1239 }
1240
1241 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1242 {
1243 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1244 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1245
1246 if (index)
1247 return 0;
1248
1249 /*
1250 * The clock divider is based off the cdclk or PCH rawclk, and would
1251 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
1252 * divide by 2000 and use that
1253 */
1254 if (dig_port->aux_ch == AUX_CH_A)
1255 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1256 else
1257 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1258 }
1259
1260 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1261 {
1262 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1263 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1264
1265 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1266 /* Workaround for non-ULT HSW */
1267 switch (index) {
1268 case 0: return 63;
1269 case 1: return 72;
1270 default: return 0;
1271 }
1272 }
1273
1274 return ilk_get_aux_clock_divider(intel_dp, index);
1275 }
1276
1277 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1278 {
1279 /*
1280 * SKL doesn't need us to program the AUX clock divider (Hardware will
1281 * derive the clock from CDCLK automatically). We still implement the
1282 * get_aux_clock_divider vfunc to plug-in into the existing code.
1283 */
1284 return index ? 0 : 1;
1285 }
1286
1287 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1288 int send_bytes,
1289 u32 aux_clock_divider)
1290 {
1291 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1292 struct drm_i915_private *dev_priv =
1293 to_i915(intel_dig_port->base.base.dev);
1294 u32 precharge, timeout;
1295
1296 if (IS_GEN(dev_priv, 6))
1297 precharge = 3;
1298 else
1299 precharge = 5;
1300
1301 if (IS_BROADWELL(dev_priv))
1302 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1303 else
1304 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1305
1306 return DP_AUX_CH_CTL_SEND_BUSY |
1307 DP_AUX_CH_CTL_DONE |
1308 DP_AUX_CH_CTL_INTERRUPT |
1309 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1310 timeout |
1311 DP_AUX_CH_CTL_RECEIVE_ERROR |
1312 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1313 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1314 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1315 }
1316
1317 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1318 int send_bytes,
1319 u32 unused)
1320 {
1321 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1322 struct drm_i915_private *i915 =
1323 to_i915(intel_dig_port->base.base.dev);
1324 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1325 u32 ret;
1326
1327 ret = DP_AUX_CH_CTL_SEND_BUSY |
1328 DP_AUX_CH_CTL_DONE |
1329 DP_AUX_CH_CTL_INTERRUPT |
1330 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1331 DP_AUX_CH_CTL_TIME_OUT_MAX |
1332 DP_AUX_CH_CTL_RECEIVE_ERROR |
1333 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1334 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1335 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1336
1337 if (intel_phy_is_tc(i915, phy) &&
1338 intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1339 ret |= DP_AUX_CH_CTL_TBT_IO;
1340
1341 return ret;
1342 }
1343
1344 static int
1345 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1346 const u8 *send, int send_bytes,
1347 u8 *recv, int recv_size,
1348 u32 aux_send_ctl_flags)
1349 {
1350 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1351 struct drm_i915_private *i915 =
1352 to_i915(intel_dig_port->base.base.dev);
1353 struct intel_uncore *uncore = &i915->uncore;
1354 enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1355 bool is_tc_port = intel_phy_is_tc(i915, phy);
1356 i915_reg_t ch_ctl, ch_data[5];
1357 u32 aux_clock_divider;
1358 enum intel_display_power_domain aux_domain =
1359 intel_aux_power_domain(intel_dig_port);
1360 intel_wakeref_t aux_wakeref;
1361 intel_wakeref_t pps_wakeref;
1362 int i, ret, recv_bytes;
1363 int try, clock = 0;
1364 u32 status;
1365 bool vdd;
1366
1367 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1368 for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1369 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1370
1371 if (is_tc_port)
1372 intel_tc_port_lock(intel_dig_port);
1373
1374 aux_wakeref = intel_display_power_get(i915, aux_domain);
1375 pps_wakeref = pps_lock(intel_dp);
1376
1377 /*
1378 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1379 * In such cases we want to leave VDD enabled and it's up to upper layers
1380 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1381 * ourselves.
1382 */
1383 vdd = edp_panel_vdd_on(intel_dp);
1384
1385 /* dp aux is extremely sensitive to irq latency, hence request the
1386 * lowest possible wakeup latency and so prevent the cpu from going into
1387 * deep sleep states.
1388 */
1389 pm_qos_update_request(&i915->pm_qos, 0);
1390
1391 intel_dp_check_edp(intel_dp);
1392
1393 /* Try to wait for any previous AUX channel activity */
1394 for (try = 0; try < 3; try++) {
1395 status = intel_uncore_read_notrace(uncore, ch_ctl);
1396 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1397 break;
1398 msleep(1);
1399 }
1400 /* just trace the final value */
1401 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1402
1403 if (try == 3) {
1404 const u32 status = intel_uncore_read(uncore, ch_ctl);
1405
1406 if (status != intel_dp->aux_busy_last_status) {
1407 WARN(1, "dp_aux_ch not started status 0x%08x\n",
1408 status);
1409 intel_dp->aux_busy_last_status = status;
1410 }
1411
1412 ret = -EBUSY;
1413 goto out;
1414 }
1415
1416 /* Only 5 data registers! */
1417 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1418 ret = -E2BIG;
1419 goto out;
1420 }
1421
1422 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1423 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1424 send_bytes,
1425 aux_clock_divider);
1426
1427 send_ctl |= aux_send_ctl_flags;
1428
1429 /* Must try at least 3 times according to DP spec */
1430 for (try = 0; try < 5; try++) {
1431 /* Load the send data into the aux channel data registers */
1432 for (i = 0; i < send_bytes; i += 4)
1433 intel_uncore_write(uncore,
1434 ch_data[i >> 2],
1435 intel_dp_pack_aux(send + i,
1436 send_bytes - i));
1437
1438 /* Send the command and wait for it to complete */
1439 intel_uncore_write(uncore, ch_ctl, send_ctl);
1440
1441 status = intel_dp_aux_wait_done(intel_dp);
1442
1443 /* Clear done status and any errors */
1444 intel_uncore_write(uncore,
1445 ch_ctl,
1446 status |
1447 DP_AUX_CH_CTL_DONE |
1448 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1449 DP_AUX_CH_CTL_RECEIVE_ERROR);
1450
1451 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1452 * 400us delay required for errors and timeouts
1453 * Timeout errors from the HW already meet this
1454 * requirement so skip to next iteration
1455 */
1456 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1457 continue;
1458
1459 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1460 usleep_range(400, 500);
1461 continue;
1462 }
1463 if (status & DP_AUX_CH_CTL_DONE)
1464 goto done;
1465 }
1466 }
1467
1468 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1469 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1470 ret = -EBUSY;
1471 goto out;
1472 }
1473
1474 done:
1475 /* Check for timeout or receive error.
1476 * Timeouts occur when the sink is not connected
1477 */
1478 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1479 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1480 ret = -EIO;
1481 goto out;
1482 }
1483
1484 /* Timeouts occur when the device isn't connected, so they're
1485 * "normal" -- don't fill the kernel log with these */
1486 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1487 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1488 ret = -ETIMEDOUT;
1489 goto out;
1490 }
1491
1492 /* Unload any bytes sent back from the other side */
1493 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1494 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1495
1496 /*
1497 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1498 * We have no idea of what happened so we return -EBUSY so
1499 * drm layer takes care for the necessary retries.
1500 */
1501 if (recv_bytes == 0 || recv_bytes > 20) {
1502 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1503 recv_bytes);
1504 ret = -EBUSY;
1505 goto out;
1506 }
1507
1508 if (recv_bytes > recv_size)
1509 recv_bytes = recv_size;
1510
1511 for (i = 0; i < recv_bytes; i += 4)
1512 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1513 recv + i, recv_bytes - i);
1514
1515 ret = recv_bytes;
1516 out:
1517 pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1518
1519 if (vdd)
1520 edp_panel_vdd_off(intel_dp, false);
1521
1522 pps_unlock(intel_dp, pps_wakeref);
1523 intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1524
1525 if (is_tc_port)
1526 intel_tc_port_unlock(intel_dig_port);
1527
1528 return ret;
1529 }
1530
1531 #define BARE_ADDRESS_SIZE 3
1532 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1533
1534 static void
1535 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1536 const struct drm_dp_aux_msg *msg)
1537 {
1538 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1539 txbuf[1] = (msg->address >> 8) & 0xff;
1540 txbuf[2] = msg->address & 0xff;
1541 txbuf[3] = msg->size - 1;
1542 }
1543
1544 static ssize_t
1545 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1546 {
1547 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1548 u8 txbuf[20], rxbuf[20];
1549 size_t txsize, rxsize;
1550 int ret;
1551
1552 intel_dp_aux_header(txbuf, msg);
1553
1554 switch (msg->request & ~DP_AUX_I2C_MOT) {
1555 case DP_AUX_NATIVE_WRITE:
1556 case DP_AUX_I2C_WRITE:
1557 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1558 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1559 rxsize = 2; /* 0 or 1 data bytes */
1560
1561 if (WARN_ON(txsize > 20))
1562 return -E2BIG;
1563
1564 WARN_ON(!msg->buffer != !msg->size);
1565
1566 if (msg->buffer)
1567 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1568
1569 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1570 rxbuf, rxsize, 0);
1571 if (ret > 0) {
1572 msg->reply = rxbuf[0] >> 4;
1573
1574 if (ret > 1) {
1575 /* Number of bytes written in a short write. */
1576 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1577 } else {
1578 /* Return payload size. */
1579 ret = msg->size;
1580 }
1581 }
1582 break;
1583
1584 case DP_AUX_NATIVE_READ:
1585 case DP_AUX_I2C_READ:
1586 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1587 rxsize = msg->size + 1;
1588
1589 if (WARN_ON(rxsize > 20))
1590 return -E2BIG;
1591
1592 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1593 rxbuf, rxsize, 0);
1594 if (ret > 0) {
1595 msg->reply = rxbuf[0] >> 4;
1596 /*
1597 * Assume happy day, and copy the data. The caller is
1598 * expected to check msg->reply before touching it.
1599 *
1600 * Return payload size.
1601 */
1602 ret--;
1603 memcpy(msg->buffer, rxbuf + 1, ret);
1604 }
1605 break;
1606
1607 default:
1608 ret = -EINVAL;
1609 break;
1610 }
1611
1612 return ret;
1613 }
1614
1615
1616 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1617 {
1618 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1619 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1620 enum aux_ch aux_ch = dig_port->aux_ch;
1621
1622 switch (aux_ch) {
1623 case AUX_CH_B:
1624 case AUX_CH_C:
1625 case AUX_CH_D:
1626 return DP_AUX_CH_CTL(aux_ch);
1627 default:
1628 MISSING_CASE(aux_ch);
1629 return DP_AUX_CH_CTL(AUX_CH_B);
1630 }
1631 }
1632
1633 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1634 {
1635 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1636 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1637 enum aux_ch aux_ch = dig_port->aux_ch;
1638
1639 switch (aux_ch) {
1640 case AUX_CH_B:
1641 case AUX_CH_C:
1642 case AUX_CH_D:
1643 return DP_AUX_CH_DATA(aux_ch, index);
1644 default:
1645 MISSING_CASE(aux_ch);
1646 return DP_AUX_CH_DATA(AUX_CH_B, index);
1647 }
1648 }
1649
1650 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1651 {
1652 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1653 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1654 enum aux_ch aux_ch = dig_port->aux_ch;
1655
1656 switch (aux_ch) {
1657 case AUX_CH_A:
1658 return DP_AUX_CH_CTL(aux_ch);
1659 case AUX_CH_B:
1660 case AUX_CH_C:
1661 case AUX_CH_D:
1662 return PCH_DP_AUX_CH_CTL(aux_ch);
1663 default:
1664 MISSING_CASE(aux_ch);
1665 return DP_AUX_CH_CTL(AUX_CH_A);
1666 }
1667 }
1668
1669 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1670 {
1671 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1672 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1673 enum aux_ch aux_ch = dig_port->aux_ch;
1674
1675 switch (aux_ch) {
1676 case AUX_CH_A:
1677 return DP_AUX_CH_DATA(aux_ch, index);
1678 case AUX_CH_B:
1679 case AUX_CH_C:
1680 case AUX_CH_D:
1681 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1682 default:
1683 MISSING_CASE(aux_ch);
1684 return DP_AUX_CH_DATA(AUX_CH_A, index);
1685 }
1686 }
1687
1688 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1689 {
1690 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1691 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1692 enum aux_ch aux_ch = dig_port->aux_ch;
1693
1694 switch (aux_ch) {
1695 case AUX_CH_A:
1696 case AUX_CH_B:
1697 case AUX_CH_C:
1698 case AUX_CH_D:
1699 case AUX_CH_E:
1700 case AUX_CH_F:
1701 case AUX_CH_G:
1702 return DP_AUX_CH_CTL(aux_ch);
1703 default:
1704 MISSING_CASE(aux_ch);
1705 return DP_AUX_CH_CTL(AUX_CH_A);
1706 }
1707 }
1708
1709 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1710 {
1711 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1712 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1713 enum aux_ch aux_ch = dig_port->aux_ch;
1714
1715 switch (aux_ch) {
1716 case AUX_CH_A:
1717 case AUX_CH_B:
1718 case AUX_CH_C:
1719 case AUX_CH_D:
1720 case AUX_CH_E:
1721 case AUX_CH_F:
1722 case AUX_CH_G:
1723 return DP_AUX_CH_DATA(aux_ch, index);
1724 default:
1725 MISSING_CASE(aux_ch);
1726 return DP_AUX_CH_DATA(AUX_CH_A, index);
1727 }
1728 }
1729
1730 static void
1731 intel_dp_aux_fini(struct intel_dp *intel_dp)
1732 {
1733 kfree(__UNCONST(intel_dp->aux.name));
1734 }
1735
1736 static void
1737 intel_dp_aux_init(struct intel_dp *intel_dp)
1738 {
1739 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1740 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1741 struct intel_encoder *encoder = &dig_port->base;
1742
1743 if (INTEL_GEN(dev_priv) >= 9) {
1744 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1745 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1746 } else if (HAS_PCH_SPLIT(dev_priv)) {
1747 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1748 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1749 } else {
1750 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1751 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1752 }
1753
1754 if (INTEL_GEN(dev_priv) >= 9)
1755 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1756 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1757 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1758 else if (HAS_PCH_SPLIT(dev_priv))
1759 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1760 else
1761 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1762
1763 if (INTEL_GEN(dev_priv) >= 9)
1764 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1765 else
1766 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1767
1768 drm_dp_aux_init(&intel_dp->aux);
1769
1770 /* Failure to allocate our preferred name is not critical */
1771 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1772 port_name(encoder->port));
1773 intel_dp->aux.transfer = intel_dp_aux_transfer;
1774 }
1775
1776 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1777 {
1778 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1779
1780 return max_rate >= 540000;
1781 }
1782
1783 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1784 {
1785 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1786
1787 return max_rate >= 810000;
1788 }
1789
1790 static void
1791 intel_dp_set_clock(struct intel_encoder *encoder,
1792 struct intel_crtc_state *pipe_config)
1793 {
1794 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1795 const struct dp_link_dpll *divisor = NULL;
1796 int i, count = 0;
1797
1798 if (IS_G4X(dev_priv)) {
1799 divisor = g4x_dpll;
1800 count = ARRAY_SIZE(g4x_dpll);
1801 } else if (HAS_PCH_SPLIT(dev_priv)) {
1802 divisor = pch_dpll;
1803 count = ARRAY_SIZE(pch_dpll);
1804 } else if (IS_CHERRYVIEW(dev_priv)) {
1805 divisor = chv_dpll;
1806 count = ARRAY_SIZE(chv_dpll);
1807 } else if (IS_VALLEYVIEW(dev_priv)) {
1808 divisor = vlv_dpll;
1809 count = ARRAY_SIZE(vlv_dpll);
1810 }
1811
1812 if (divisor && count) {
1813 for (i = 0; i < count; i++) {
1814 if (pipe_config->port_clock == divisor[i].clock) {
1815 pipe_config->dpll = divisor[i].dpll;
1816 pipe_config->clock_set = true;
1817 break;
1818 }
1819 }
1820 }
1821 }
1822
1823 static void snprintf_int_array(char *str, size_t len,
1824 const int *array, int nelem)
1825 {
1826 int i;
1827
1828 str[0] = '\0';
1829
1830 for (i = 0; i < nelem; i++) {
1831 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1832 if (r >= len)
1833 return;
1834 str += r;
1835 len -= r;
1836 }
1837 }
1838
1839 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1840 {
1841 char str[128]; /* FIXME: too big for stack? */
1842
1843 if (!drm_debug_enabled(DRM_UT_KMS))
1844 return;
1845
1846 snprintf_int_array(str, sizeof(str),
1847 intel_dp->source_rates, intel_dp->num_source_rates);
1848 DRM_DEBUG_KMS("source rates: %s\n", str);
1849
1850 snprintf_int_array(str, sizeof(str),
1851 intel_dp->sink_rates, intel_dp->num_sink_rates);
1852 DRM_DEBUG_KMS("sink rates: %s\n", str);
1853
1854 snprintf_int_array(str, sizeof(str),
1855 intel_dp->common_rates, intel_dp->num_common_rates);
1856 DRM_DEBUG_KMS("common rates: %s\n", str);
1857 }
1858
1859 int
1860 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1861 {
1862 int len;
1863
1864 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1865 if (WARN_ON(len <= 0))
1866 return 162000;
1867
1868 return intel_dp->common_rates[len - 1];
1869 }
1870
1871 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1872 {
1873 int i = intel_dp_rate_index(intel_dp->sink_rates,
1874 intel_dp->num_sink_rates, rate);
1875
1876 if (WARN_ON(i < 0))
1877 i = 0;
1878
1879 return i;
1880 }
1881
1882 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1883 u8 *link_bw, u8 *rate_select)
1884 {
1885 /* eDP 1.4 rate select method. */
1886 if (intel_dp->use_rate_select) {
1887 *link_bw = 0;
1888 *rate_select =
1889 intel_dp_rate_select(intel_dp, port_clock);
1890 } else {
1891 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1892 *rate_select = 0;
1893 }
1894 }
1895
1896 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1897 const struct intel_crtc_state *pipe_config)
1898 {
1899 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1900
1901 /* On TGL, FEC is supported on all Pipes */
1902 if (INTEL_GEN(dev_priv) >= 12)
1903 return true;
1904
1905 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1906 return true;
1907
1908 return false;
1909 }
1910
1911 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1912 const struct intel_crtc_state *pipe_config)
1913 {
1914 return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1915 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1916 }
1917
1918 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1919 const struct intel_crtc_state *crtc_state)
1920 {
1921 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1922
1923 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1924 return false;
1925
1926 return intel_dsc_source_support(encoder, crtc_state) &&
1927 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1928 }
1929
1930 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1931 struct intel_crtc_state *pipe_config)
1932 {
1933 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1934 struct intel_connector *intel_connector = intel_dp->attached_connector;
1935 int bpp, bpc;
1936
1937 bpp = pipe_config->pipe_bpp;
1938 bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1939
1940 if (bpc > 0)
1941 bpp = min(bpp, 3*bpc);
1942
1943 if (intel_dp_is_edp(intel_dp)) {
1944 /* Get bpp from vbt only for panels that dont have bpp in edid */
1945 if (intel_connector->base.display_info.bpc == 0 &&
1946 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1947 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1948 dev_priv->vbt.edp.bpp);
1949 bpp = dev_priv->vbt.edp.bpp;
1950 }
1951 }
1952
1953 return bpp;
1954 }
1955
1956 /* Adjust link config limits based on compliance test requests. */
1957 void
1958 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1959 struct intel_crtc_state *pipe_config,
1960 struct link_config_limits *limits)
1961 {
1962 /* For DP Compliance we override the computed bpp for the pipe */
1963 if (intel_dp->compliance.test_data.bpc != 0) {
1964 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1965
1966 limits->min_bpp = limits->max_bpp = bpp;
1967 pipe_config->dither_force_disable = bpp == 6 * 3;
1968
1969 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1970 }
1971
1972 /* Use values requested by Compliance Test Request */
1973 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1974 int index;
1975
1976 /* Validate the compliance test data since max values
1977 * might have changed due to link train fallback.
1978 */
1979 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1980 intel_dp->compliance.test_lane_count)) {
1981 index = intel_dp_rate_index(intel_dp->common_rates,
1982 intel_dp->num_common_rates,
1983 intel_dp->compliance.test_link_rate);
1984 if (index >= 0)
1985 limits->min_clock = limits->max_clock = index;
1986 limits->min_lane_count = limits->max_lane_count =
1987 intel_dp->compliance.test_lane_count;
1988 }
1989 }
1990 }
1991
1992 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1993 {
1994 /*
1995 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1996 * format of the number of bytes per pixel will be half the number
1997 * of bytes of RGB pixel.
1998 */
1999 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2000 bpp /= 2;
2001
2002 return bpp;
2003 }
2004
2005 /* Optimize link config in order: max bpp, min clock, min lanes */
2006 static int
2007 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2008 struct intel_crtc_state *pipe_config,
2009 const struct link_config_limits *limits)
2010 {
2011 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2012 int bpp, clock, lane_count;
2013 int mode_rate, link_clock, link_avail;
2014
2015 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2016 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2017
2018 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2019 output_bpp);
2020
2021 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2022 for (lane_count = limits->min_lane_count;
2023 lane_count <= limits->max_lane_count;
2024 lane_count <<= 1) {
2025 link_clock = intel_dp->common_rates[clock];
2026 link_avail = intel_dp_max_data_rate(link_clock,
2027 lane_count);
2028
2029 if (mode_rate <= link_avail) {
2030 pipe_config->lane_count = lane_count;
2031 pipe_config->pipe_bpp = bpp;
2032 pipe_config->port_clock = link_clock;
2033
2034 return 0;
2035 }
2036 }
2037 }
2038 }
2039
2040 return -EINVAL;
2041 }
2042
2043 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2044 {
2045 int i, num_bpc;
2046 u8 dsc_bpc[3] = {0};
2047
2048 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2049 dsc_bpc);
2050 for (i = 0; i < num_bpc; i++) {
2051 if (dsc_max_bpc >= dsc_bpc[i])
2052 return dsc_bpc[i] * 3;
2053 }
2054
2055 return 0;
2056 }
2057
2058 #define DSC_SUPPORTED_VERSION_MIN 1
2059
2060 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2061 struct intel_crtc_state *crtc_state)
2062 {
2063 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2064 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2065 u8 line_buf_depth;
2066 int ret;
2067
2068 ret = intel_dsc_compute_params(encoder, crtc_state);
2069 if (ret)
2070 return ret;
2071
2072 /*
2073 * Slice Height of 8 works for all currently available panels. So start
2074 * with that if pic_height is an integral multiple of 8. Eventually add
2075 * logic to try multiple slice heights.
2076 */
2077 if (vdsc_cfg->pic_height % 8 == 0)
2078 vdsc_cfg->slice_height = 8;
2079 else if (vdsc_cfg->pic_height % 4 == 0)
2080 vdsc_cfg->slice_height = 4;
2081 else
2082 vdsc_cfg->slice_height = 2;
2083
2084 vdsc_cfg->dsc_version_major =
2085 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2086 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2087 vdsc_cfg->dsc_version_minor =
2088 min(DSC_SUPPORTED_VERSION_MIN,
2089 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2090 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2091
2092 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2093 DP_DSC_RGB;
2094
2095 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2096 if (!line_buf_depth) {
2097 DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
2098 return -EINVAL;
2099 }
2100
2101 if (vdsc_cfg->dsc_version_minor == 2)
2102 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2103 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2104 else
2105 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2106 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2107
2108 vdsc_cfg->block_pred_enable =
2109 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2110 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2111
2112 return drm_dsc_compute_rc_parameters(vdsc_cfg);
2113 }
2114
2115 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2116 struct intel_crtc_state *pipe_config,
2117 struct drm_connector_state *conn_state,
2118 struct link_config_limits *limits)
2119 {
2120 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2121 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2122 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2123 u8 dsc_max_bpc;
2124 int pipe_bpp;
2125 int ret;
2126
2127 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2128 intel_dp_supports_fec(intel_dp, pipe_config);
2129
2130 if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2131 return -EINVAL;
2132
2133 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2134 if (INTEL_GEN(dev_priv) >= 12)
2135 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2136 else
2137 dsc_max_bpc = min_t(u8, 10,
2138 conn_state->max_requested_bpc);
2139
2140 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2141
2142 /* Min Input BPC for ICL+ is 8 */
2143 if (pipe_bpp < 8 * 3) {
2144 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2145 return -EINVAL;
2146 }
2147
2148 /*
2149 * For now enable DSC for max bpp, max link rate, max lane count.
2150 * Optimize this later for the minimum possible link rate/lane count
2151 * with DSC enabled for the requested mode.
2152 */
2153 pipe_config->pipe_bpp = pipe_bpp;
2154 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2155 pipe_config->lane_count = limits->max_lane_count;
2156
2157 if (intel_dp_is_edp(intel_dp)) {
2158 pipe_config->dsc.compressed_bpp =
2159 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2160 pipe_config->pipe_bpp);
2161 pipe_config->dsc.slice_count =
2162 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2163 true);
2164 } else {
2165 u16 dsc_max_output_bpp;
2166 u8 dsc_dp_slice_count;
2167
2168 dsc_max_output_bpp =
2169 intel_dp_dsc_get_output_bpp(dev_priv,
2170 pipe_config->port_clock,
2171 pipe_config->lane_count,
2172 adjusted_mode->crtc_clock,
2173 adjusted_mode->crtc_hdisplay);
2174 dsc_dp_slice_count =
2175 intel_dp_dsc_get_slice_count(intel_dp,
2176 adjusted_mode->crtc_clock,
2177 adjusted_mode->crtc_hdisplay);
2178 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2179 DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2180 return -EINVAL;
2181 }
2182 pipe_config->dsc.compressed_bpp = min_t(u16,
2183 dsc_max_output_bpp >> 4,
2184 pipe_config->pipe_bpp);
2185 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2186 }
2187 /*
2188 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2189 * is greater than the maximum Cdclock and if slice count is even
2190 * then we need to use 2 VDSC instances.
2191 */
2192 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2193 if (pipe_config->dsc.slice_count > 1) {
2194 pipe_config->dsc.dsc_split = true;
2195 } else {
2196 DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2197 return -EINVAL;
2198 }
2199 }
2200
2201 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2202 if (ret < 0) {
2203 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2204 "Compressed BPP = %d\n",
2205 pipe_config->pipe_bpp,
2206 pipe_config->dsc.compressed_bpp);
2207 return ret;
2208 }
2209
2210 pipe_config->dsc.compression_enable = true;
2211 DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2212 "Compressed Bpp = %d Slice Count = %d\n",
2213 pipe_config->pipe_bpp,
2214 pipe_config->dsc.compressed_bpp,
2215 pipe_config->dsc.slice_count);
2216
2217 return 0;
2218 }
2219
2220 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2221 {
2222 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2223 return 6 * 3;
2224 else
2225 return 8 * 3;
2226 }
2227
2228 static int
2229 intel_dp_compute_link_config(struct intel_encoder *encoder,
2230 struct intel_crtc_state *pipe_config,
2231 struct drm_connector_state *conn_state)
2232 {
2233 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2234 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2235 struct link_config_limits limits;
2236 int common_len;
2237 int ret;
2238
2239 common_len = intel_dp_common_len_rate_limit(intel_dp,
2240 intel_dp->max_link_rate);
2241
2242 /* No common link rates between source and sink */
2243 WARN_ON(common_len <= 0);
2244
2245 limits.min_clock = 0;
2246 limits.max_clock = common_len - 1;
2247
2248 limits.min_lane_count = 1;
2249 limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2250
2251 limits.min_bpp = intel_dp_min_bpp(pipe_config);
2252 limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2253
2254 if (intel_dp_is_edp(intel_dp)) {
2255 /*
2256 * Use the maximum clock and number of lanes the eDP panel
2257 * advertizes being capable of. The panels are generally
2258 * designed to support only a single clock and lane
2259 * configuration, and typically these values correspond to the
2260 * native resolution of the panel.
2261 */
2262 limits.min_lane_count = limits.max_lane_count;
2263 limits.min_clock = limits.max_clock;
2264 }
2265
2266 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2267
2268 DRM_DEBUG_KMS("DP link computation with max lane count %i "
2269 "max rate %d max bpp %d pixel clock %iKHz\n",
2270 limits.max_lane_count,
2271 intel_dp->common_rates[limits.max_clock],
2272 limits.max_bpp, adjusted_mode->crtc_clock);
2273
2274 /*
2275 * Optimize for slow and wide. This is the place to add alternative
2276 * optimization policy.
2277 */
2278 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2279
2280 /* enable compression if the mode doesn't fit available BW */
2281 DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2282 if (ret || intel_dp->force_dsc_en) {
2283 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2284 conn_state, &limits);
2285 if (ret < 0)
2286 return ret;
2287 }
2288
2289 if (pipe_config->dsc.compression_enable) {
2290 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2291 pipe_config->lane_count, pipe_config->port_clock,
2292 pipe_config->pipe_bpp,
2293 pipe_config->dsc.compressed_bpp);
2294
2295 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2296 intel_dp_link_required(adjusted_mode->crtc_clock,
2297 pipe_config->dsc.compressed_bpp),
2298 intel_dp_max_data_rate(pipe_config->port_clock,
2299 pipe_config->lane_count));
2300 } else {
2301 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2302 pipe_config->lane_count, pipe_config->port_clock,
2303 pipe_config->pipe_bpp);
2304
2305 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2306 intel_dp_link_required(adjusted_mode->crtc_clock,
2307 pipe_config->pipe_bpp),
2308 intel_dp_max_data_rate(pipe_config->port_clock,
2309 pipe_config->lane_count));
2310 }
2311 return 0;
2312 }
2313
2314 static int
2315 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2316 struct drm_connector *connector,
2317 struct intel_crtc_state *crtc_state)
2318 {
2319 const struct drm_display_info *info = &connector->display_info;
2320 const struct drm_display_mode *adjusted_mode =
2321 &crtc_state->hw.adjusted_mode;
2322 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2323 int ret;
2324
2325 if (!drm_mode_is_420_only(info, adjusted_mode) ||
2326 !intel_dp_get_colorimetry_status(intel_dp) ||
2327 !connector->ycbcr_420_allowed)
2328 return 0;
2329
2330 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2331
2332 /* YCBCR 420 output conversion needs a scaler */
2333 ret = skl_update_scaler_crtc(crtc_state);
2334 if (ret) {
2335 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2336 return ret;
2337 }
2338
2339 intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2340
2341 return 0;
2342 }
2343
2344 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2345 const struct drm_connector_state *conn_state)
2346 {
2347 const struct intel_digital_connector_state *intel_conn_state =
2348 const_container_of(conn_state, struct intel_digital_connector_state, base);
2349 const struct drm_display_mode *adjusted_mode =
2350 &crtc_state->hw.adjusted_mode;
2351
2352 /*
2353 * Our YCbCr output is always limited range.
2354 * crtc_state->limited_color_range only applies to RGB,
2355 * and it must never be set for YCbCr or we risk setting
2356 * some conflicting bits in PIPECONF which will mess up
2357 * the colors on the monitor.
2358 */
2359 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2360 return false;
2361
2362 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2363 /*
2364 * See:
2365 * CEA-861-E - 5.1 Default Encoding Parameters
2366 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2367 */
2368 return crtc_state->pipe_bpp != 18 &&
2369 drm_default_rgb_quant_range(adjusted_mode) ==
2370 HDMI_QUANTIZATION_RANGE_LIMITED;
2371 } else {
2372 return intel_conn_state->broadcast_rgb ==
2373 INTEL_BROADCAST_RGB_LIMITED;
2374 }
2375 }
2376
2377 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2378 enum port port)
2379 {
2380 if (IS_G4X(dev_priv))
2381 return false;
2382 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2383 return false;
2384
2385 return true;
2386 }
2387
2388 int
2389 intel_dp_compute_config(struct intel_encoder *encoder,
2390 struct intel_crtc_state *pipe_config,
2391 struct drm_connector_state *conn_state)
2392 {
2393 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2394 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2395 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2396 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2397 enum port port = encoder->port;
2398 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2399 struct intel_connector *intel_connector = intel_dp->attached_connector;
2400 struct intel_digital_connector_state *intel_conn_state =
2401 to_intel_digital_connector_state(conn_state);
2402 bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2403 DP_DPCD_QUIRK_CONSTANT_N);
2404 int ret = 0, output_bpp;
2405
2406 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2407 pipe_config->has_pch_encoder = true;
2408
2409 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2410
2411 if (lspcon->active)
2412 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2413 else
2414 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2415 pipe_config);
2416
2417 if (ret)
2418 return ret;
2419
2420 pipe_config->has_drrs = false;
2421 if (!intel_dp_port_has_audio(dev_priv, port))
2422 pipe_config->has_audio = false;
2423 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2424 pipe_config->has_audio = intel_dp->has_audio;
2425 else
2426 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2427
2428 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2429 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2430 adjusted_mode);
2431
2432 if (INTEL_GEN(dev_priv) >= 9) {
2433 ret = skl_update_scaler_crtc(pipe_config);
2434 if (ret)
2435 return ret;
2436 }
2437
2438 if (HAS_GMCH(dev_priv))
2439 intel_gmch_panel_fitting(intel_crtc, pipe_config,
2440 conn_state->scaling_mode);
2441 else
2442 intel_pch_panel_fitting(intel_crtc, pipe_config,
2443 conn_state->scaling_mode);
2444 }
2445
2446 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2447 return -EINVAL;
2448
2449 if (HAS_GMCH(dev_priv) &&
2450 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2451 return -EINVAL;
2452
2453 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2454 return -EINVAL;
2455
2456 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2457 return -EINVAL;
2458
2459 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2460 if (ret < 0)
2461 return ret;
2462
2463 pipe_config->limited_color_range =
2464 intel_dp_limited_color_range(pipe_config, conn_state);
2465
2466 if (pipe_config->dsc.compression_enable)
2467 output_bpp = pipe_config->dsc.compressed_bpp;
2468 else
2469 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2470
2471 intel_link_compute_m_n(output_bpp,
2472 pipe_config->lane_count,
2473 adjusted_mode->crtc_clock,
2474 pipe_config->port_clock,
2475 &pipe_config->dp_m_n,
2476 constant_n, pipe_config->fec_enable);
2477
2478 if (intel_connector->panel.downclock_mode != NULL &&
2479 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2480 pipe_config->has_drrs = true;
2481 intel_link_compute_m_n(output_bpp,
2482 pipe_config->lane_count,
2483 intel_connector->panel.downclock_mode->clock,
2484 pipe_config->port_clock,
2485 &pipe_config->dp_m2_n2,
2486 constant_n, pipe_config->fec_enable);
2487 }
2488
2489 if (!HAS_DDI(dev_priv))
2490 intel_dp_set_clock(encoder, pipe_config);
2491
2492 intel_psr_compute_config(intel_dp, pipe_config);
2493
2494 return 0;
2495 }
2496
2497 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2498 int link_rate, u8 lane_count,
2499 bool link_mst)
2500 {
2501 intel_dp->link_trained = false;
2502 intel_dp->link_rate = link_rate;
2503 intel_dp->lane_count = lane_count;
2504 intel_dp->link_mst = link_mst;
2505 }
2506
2507 static void intel_dp_prepare(struct intel_encoder *encoder,
2508 const struct intel_crtc_state *pipe_config)
2509 {
2510 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2511 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2512 enum port port = encoder->port;
2513 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2514 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2515
2516 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2517 pipe_config->lane_count,
2518 intel_crtc_has_type(pipe_config,
2519 INTEL_OUTPUT_DP_MST));
2520
2521 intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2522 intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2523
2524 /*
2525 * There are four kinds of DP registers:
2526 *
2527 * IBX PCH
2528 * SNB CPU
2529 * IVB CPU
2530 * CPT PCH
2531 *
2532 * IBX PCH and CPU are the same for almost everything,
2533 * except that the CPU DP PLL is configured in this
2534 * register
2535 *
2536 * CPT PCH is quite different, having many bits moved
2537 * to the TRANS_DP_CTL register instead. That
2538 * configuration happens (oddly) in ilk_pch_enable
2539 */
2540
2541 /* Preserve the BIOS-computed detected bit. This is
2542 * supposed to be read-only.
2543 */
2544 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2545
2546 /* Handle DP bits in common between all three register formats */
2547 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2548 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2549
2550 /* Split out the IBX/CPU vs CPT settings */
2551
2552 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2553 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2554 intel_dp->DP |= DP_SYNC_HS_HIGH;
2555 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2556 intel_dp->DP |= DP_SYNC_VS_HIGH;
2557 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2558
2559 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2560 intel_dp->DP |= DP_ENHANCED_FRAMING;
2561
2562 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2563 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2564 u32 trans_dp;
2565
2566 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2567
2568 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2569 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2570 trans_dp |= TRANS_DP_ENH_FRAMING;
2571 else
2572 trans_dp &= ~TRANS_DP_ENH_FRAMING;
2573 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2574 } else {
2575 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2576 intel_dp->DP |= DP_COLOR_RANGE_16_235;
2577
2578 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2579 intel_dp->DP |= DP_SYNC_HS_HIGH;
2580 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2581 intel_dp->DP |= DP_SYNC_VS_HIGH;
2582 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2583
2584 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2585 intel_dp->DP |= DP_ENHANCED_FRAMING;
2586
2587 if (IS_CHERRYVIEW(dev_priv))
2588 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2589 else
2590 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2591 }
2592 }
2593
2594 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2595 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2596
2597 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2598 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2599
2600 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2601 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2602
2603 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2604
2605 static void wait_panel_status(struct intel_dp *intel_dp,
2606 u32 mask,
2607 u32 value)
2608 {
2609 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2610 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2611
2612 lockdep_assert_held(&dev_priv->pps_mutex);
2613
2614 intel_pps_verify_state(intel_dp);
2615
2616 pp_stat_reg = _pp_stat_reg(intel_dp);
2617 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2618
2619 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2620 mask, value,
2621 I915_READ(pp_stat_reg),
2622 I915_READ(pp_ctrl_reg));
2623
2624 if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2625 mask, value, 5000))
2626 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2627 I915_READ(pp_stat_reg),
2628 I915_READ(pp_ctrl_reg));
2629
2630 DRM_DEBUG_KMS("Wait complete\n");
2631 }
2632
2633 static void wait_panel_on(struct intel_dp *intel_dp)
2634 {
2635 DRM_DEBUG_KMS("Wait for panel power on\n");
2636 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2637 }
2638
2639 static void wait_panel_off(struct intel_dp *intel_dp)
2640 {
2641 DRM_DEBUG_KMS("Wait for panel power off time\n");
2642 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2643 }
2644
2645 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2646 {
2647 ktime_t panel_power_on_time;
2648 s64 panel_power_off_duration;
2649
2650 DRM_DEBUG_KMS("Wait for panel power cycle\n");
2651
2652 /* take the difference of currrent time and panel power off time
2653 * and then make panel wait for t11_t12 if needed. */
2654 panel_power_on_time = ktime_get_boottime();
2655 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2656
2657 /* When we disable the VDD override bit last we have to do the manual
2658 * wait. */
2659 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2660 wait_remaining_ms_from_jiffies(jiffies,
2661 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2662
2663 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2664 }
2665
2666 static void wait_backlight_on(struct intel_dp *intel_dp)
2667 {
2668 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2669 intel_dp->backlight_on_delay);
2670 }
2671
2672 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2673 {
2674 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2675 intel_dp->backlight_off_delay);
2676 }
2677
2678 /* Read the current pp_control value, unlocking the register if it
2679 * is locked
2680 */
2681
2682 static u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2683 {
2684 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2685 u32 control;
2686
2687 lockdep_assert_held(&dev_priv->pps_mutex);
2688
2689 control = I915_READ(_pp_ctrl_reg(intel_dp));
2690 if (WARN_ON(!HAS_DDI(dev_priv) &&
2691 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2692 control &= ~PANEL_UNLOCK_MASK;
2693 control |= PANEL_UNLOCK_REGS;
2694 }
2695 return control;
2696 }
2697
2698 /*
2699 * Must be paired with edp_panel_vdd_off().
2700 * Must hold pps_mutex around the whole on/off sequence.
2701 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2702 */
2703 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2704 {
2705 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2706 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2707 u32 pp;
2708 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2709 bool need_to_disable = !intel_dp->want_panel_vdd;
2710
2711 lockdep_assert_held(&dev_priv->pps_mutex);
2712
2713 if (!intel_dp_is_edp(intel_dp))
2714 return false;
2715
2716 cancel_delayed_work(&intel_dp->panel_vdd_work);
2717 intel_dp->want_panel_vdd = true;
2718
2719 if (edp_have_panel_vdd(intel_dp))
2720 return need_to_disable;
2721
2722 intel_display_power_get(dev_priv,
2723 intel_aux_power_domain(intel_dig_port));
2724
2725 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2726 intel_dig_port->base.base.base.id,
2727 intel_dig_port->base.base.name);
2728
2729 if (!edp_have_panel_power(intel_dp))
2730 wait_panel_power_cycle(intel_dp);
2731
2732 pp = ilk_get_pp_control(intel_dp);
2733 pp |= EDP_FORCE_VDD;
2734
2735 pp_stat_reg = _pp_stat_reg(intel_dp);
2736 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2737
2738 I915_WRITE(pp_ctrl_reg, pp);
2739 POSTING_READ(pp_ctrl_reg);
2740 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2741 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2742 /*
2743 * If the panel wasn't on, delay before accessing aux channel
2744 */
2745 if (!edp_have_panel_power(intel_dp)) {
2746 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2747 intel_dig_port->base.base.base.id,
2748 intel_dig_port->base.base.name);
2749 msleep(intel_dp->panel_power_up_delay);
2750 }
2751
2752 return need_to_disable;
2753 }
2754
2755 /*
2756 * Must be paired with intel_edp_panel_vdd_off() or
2757 * intel_edp_panel_off().
2758 * Nested calls to these functions are not allowed since
2759 * we drop the lock. Caller must use some higher level
2760 * locking to prevent nested calls from other threads.
2761 */
2762 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2763 {
2764 intel_wakeref_t wakeref;
2765 bool vdd;
2766
2767 if (!intel_dp_is_edp(intel_dp))
2768 return;
2769
2770 vdd = false;
2771 with_pps_lock(intel_dp, wakeref)
2772 vdd = edp_panel_vdd_on(intel_dp);
2773 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2774 dp_to_dig_port(intel_dp)->base.base.base.id,
2775 dp_to_dig_port(intel_dp)->base.base.name);
2776 }
2777
2778 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2779 {
2780 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2781 struct intel_digital_port *intel_dig_port =
2782 dp_to_dig_port(intel_dp);
2783 u32 pp;
2784 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2785
2786 lockdep_assert_held(&dev_priv->pps_mutex);
2787
2788 WARN_ON(intel_dp->want_panel_vdd);
2789
2790 if (!edp_have_panel_vdd(intel_dp))
2791 return;
2792
2793 DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2794 intel_dig_port->base.base.base.id,
2795 intel_dig_port->base.base.name);
2796
2797 pp = ilk_get_pp_control(intel_dp);
2798 pp &= ~EDP_FORCE_VDD;
2799
2800 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2801 pp_stat_reg = _pp_stat_reg(intel_dp);
2802
2803 I915_WRITE(pp_ctrl_reg, pp);
2804 POSTING_READ(pp_ctrl_reg);
2805
2806 /* Make sure sequencer is idle before allowing subsequent activity */
2807 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2808 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2809
2810 if ((pp & PANEL_POWER_ON) == 0)
2811 intel_dp->panel_power_off_time = ktime_get_boottime();
2812
2813 intel_display_power_put_unchecked(dev_priv,
2814 intel_aux_power_domain(intel_dig_port));
2815 }
2816
2817 static void edp_panel_vdd_work(struct work_struct *__work)
2818 {
2819 struct intel_dp *intel_dp =
2820 container_of(to_delayed_work(__work),
2821 struct intel_dp, panel_vdd_work);
2822 intel_wakeref_t wakeref;
2823
2824 with_pps_lock(intel_dp, wakeref) {
2825 if (!intel_dp->want_panel_vdd)
2826 edp_panel_vdd_off_sync(intel_dp);
2827 }
2828 }
2829
2830 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2831 {
2832 unsigned long delay;
2833
2834 /*
2835 * Queue the timer to fire a long time from now (relative to the power
2836 * down delay) to keep the panel power up across a sequence of
2837 * operations.
2838 */
2839 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2840 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2841 }
2842
2843 /*
2844 * Must be paired with edp_panel_vdd_on().
2845 * Must hold pps_mutex around the whole on/off sequence.
2846 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2847 */
2848 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2849 {
2850 struct drm_i915_private *dev_priv __lockdep_used = dp_to_i915(intel_dp);
2851
2852 lockdep_assert_held(&dev_priv->pps_mutex);
2853
2854 if (!intel_dp_is_edp(intel_dp))
2855 return;
2856
2857 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2858 dp_to_dig_port(intel_dp)->base.base.base.id,
2859 dp_to_dig_port(intel_dp)->base.base.name);
2860
2861 intel_dp->want_panel_vdd = false;
2862
2863 if (sync)
2864 edp_panel_vdd_off_sync(intel_dp);
2865 else
2866 edp_panel_vdd_schedule_off(intel_dp);
2867 }
2868
2869 static void edp_panel_on(struct intel_dp *intel_dp)
2870 {
2871 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2872 u32 pp;
2873 i915_reg_t pp_ctrl_reg;
2874
2875 lockdep_assert_held(&dev_priv->pps_mutex);
2876
2877 if (!intel_dp_is_edp(intel_dp))
2878 return;
2879
2880 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2881 dp_to_dig_port(intel_dp)->base.base.base.id,
2882 dp_to_dig_port(intel_dp)->base.base.name);
2883
2884 if (WARN(edp_have_panel_power(intel_dp),
2885 "[ENCODER:%d:%s] panel power already on\n",
2886 dp_to_dig_port(intel_dp)->base.base.base.id,
2887 dp_to_dig_port(intel_dp)->base.base.name))
2888 return;
2889
2890 wait_panel_power_cycle(intel_dp);
2891
2892 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2893 pp = ilk_get_pp_control(intel_dp);
2894 if (IS_GEN(dev_priv, 5)) {
2895 /* ILK workaround: disable reset around power sequence */
2896 pp &= ~PANEL_POWER_RESET;
2897 I915_WRITE(pp_ctrl_reg, pp);
2898 POSTING_READ(pp_ctrl_reg);
2899 }
2900
2901 pp |= PANEL_POWER_ON;
2902 if (!IS_GEN(dev_priv, 5))
2903 pp |= PANEL_POWER_RESET;
2904
2905 I915_WRITE(pp_ctrl_reg, pp);
2906 POSTING_READ(pp_ctrl_reg);
2907
2908 wait_panel_on(intel_dp);
2909 intel_dp->last_power_on = jiffies;
2910
2911 if (IS_GEN(dev_priv, 5)) {
2912 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2913 I915_WRITE(pp_ctrl_reg, pp);
2914 POSTING_READ(pp_ctrl_reg);
2915 }
2916 }
2917
2918 void intel_edp_panel_on(struct intel_dp *intel_dp)
2919 {
2920 intel_wakeref_t wakeref;
2921
2922 if (!intel_dp_is_edp(intel_dp))
2923 return;
2924
2925 with_pps_lock(intel_dp, wakeref)
2926 edp_panel_on(intel_dp);
2927 }
2928
2929
2930 static void edp_panel_off(struct intel_dp *intel_dp)
2931 {
2932 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2933 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2934 u32 pp;
2935 i915_reg_t pp_ctrl_reg;
2936
2937 lockdep_assert_held(&dev_priv->pps_mutex);
2938
2939 if (!intel_dp_is_edp(intel_dp))
2940 return;
2941
2942 DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2943 dig_port->base.base.base.id, dig_port->base.base.name);
2944
2945 WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2946 dig_port->base.base.base.id, dig_port->base.base.name);
2947
2948 pp = ilk_get_pp_control(intel_dp);
2949 /* We need to switch off panel power _and_ force vdd, for otherwise some
2950 * panels get very unhappy and cease to work. */
2951 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2952 EDP_BLC_ENABLE);
2953
2954 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2955
2956 intel_dp->want_panel_vdd = false;
2957
2958 I915_WRITE(pp_ctrl_reg, pp);
2959 POSTING_READ(pp_ctrl_reg);
2960
2961 wait_panel_off(intel_dp);
2962 intel_dp->panel_power_off_time = ktime_get_boottime();
2963
2964 /* We got a reference when we enabled the VDD. */
2965 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2966 }
2967
2968 void intel_edp_panel_off(struct intel_dp *intel_dp)
2969 {
2970 intel_wakeref_t wakeref;
2971
2972 if (!intel_dp_is_edp(intel_dp))
2973 return;
2974
2975 with_pps_lock(intel_dp, wakeref)
2976 edp_panel_off(intel_dp);
2977 }
2978
2979 /* Enable backlight in the panel power control. */
2980 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2981 {
2982 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2983 intel_wakeref_t wakeref;
2984
2985 /*
2986 * If we enable the backlight right away following a panel power
2987 * on, we may see slight flicker as the panel syncs with the eDP
2988 * link. So delay a bit to make sure the image is solid before
2989 * allowing it to appear.
2990 */
2991 wait_backlight_on(intel_dp);
2992
2993 with_pps_lock(intel_dp, wakeref) {
2994 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2995 u32 pp;
2996
2997 pp = ilk_get_pp_control(intel_dp);
2998 pp |= EDP_BLC_ENABLE;
2999
3000 I915_WRITE(pp_ctrl_reg, pp);
3001 POSTING_READ(pp_ctrl_reg);
3002 }
3003 }
3004
3005 /* Enable backlight PWM and backlight PP control. */
3006 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3007 const struct drm_connector_state *conn_state)
3008 {
3009 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3010
3011 if (!intel_dp_is_edp(intel_dp))
3012 return;
3013
3014 DRM_DEBUG_KMS("\n");
3015
3016 intel_panel_enable_backlight(crtc_state, conn_state);
3017 _intel_edp_backlight_on(intel_dp);
3018 }
3019
3020 /* Disable backlight in the panel power control. */
3021 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3022 {
3023 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3024 intel_wakeref_t wakeref;
3025
3026 if (!intel_dp_is_edp(intel_dp))
3027 return;
3028
3029 with_pps_lock(intel_dp, wakeref) {
3030 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3031 u32 pp;
3032
3033 pp = ilk_get_pp_control(intel_dp);
3034 pp &= ~EDP_BLC_ENABLE;
3035
3036 I915_WRITE(pp_ctrl_reg, pp);
3037 POSTING_READ(pp_ctrl_reg);
3038 }
3039
3040 intel_dp->last_backlight_off = jiffies;
3041 edp_wait_backlight_off(intel_dp);
3042 }
3043
3044 /* Disable backlight PP control and backlight PWM. */
3045 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3046 {
3047 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3048
3049 if (!intel_dp_is_edp(intel_dp))
3050 return;
3051
3052 DRM_DEBUG_KMS("\n");
3053
3054 _intel_edp_backlight_off(intel_dp);
3055 intel_panel_disable_backlight(old_conn_state);
3056 }
3057
3058 /*
3059 * Hook for controlling the panel power control backlight through the bl_power
3060 * sysfs attribute. Take care to handle multiple calls.
3061 */
3062 static void intel_edp_backlight_power(struct intel_connector *connector,
3063 bool enable)
3064 {
3065 struct intel_dp *intel_dp = intel_attached_dp(connector);
3066 intel_wakeref_t wakeref;
3067 bool is_enabled;
3068
3069 is_enabled = false;
3070 with_pps_lock(intel_dp, wakeref)
3071 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3072 if (is_enabled == enable)
3073 return;
3074
3075 DRM_DEBUG_KMS("panel power control backlight %s\n",
3076 enable ? "enable" : "disable");
3077
3078 if (enable)
3079 _intel_edp_backlight_on(intel_dp);
3080 else
3081 _intel_edp_backlight_off(intel_dp);
3082 }
3083
3084 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3085 {
3086 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3087 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3088 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
3089
3090 I915_STATE_WARN(cur_state != state,
3091 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3092 dig_port->base.base.base.id, dig_port->base.base.name,
3093 onoff(state), onoff(cur_state));
3094 }
3095 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3096
3097 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3098 {
3099 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
3100
3101 I915_STATE_WARN(cur_state != state,
3102 "eDP PLL state assertion failure (expected %s, current %s)\n",
3103 onoff(state), onoff(cur_state));
3104 }
3105 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3106 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3107
3108 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3109 const struct intel_crtc_state *pipe_config)
3110 {
3111 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3112 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3113
3114 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3115 assert_dp_port_disabled(intel_dp);
3116 assert_edp_pll_disabled(dev_priv);
3117
3118 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3119 pipe_config->port_clock);
3120
3121 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3122
3123 if (pipe_config->port_clock == 162000)
3124 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3125 else
3126 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3127
3128 I915_WRITE(DP_A, intel_dp->DP);
3129 POSTING_READ(DP_A);
3130 udelay(500);
3131
3132 /*
3133 * [DevILK] Work around required when enabling DP PLL
3134 * while a pipe is enabled going to FDI:
3135 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3136 * 2. Program DP PLL enable
3137 */
3138 if (IS_GEN(dev_priv, 5))
3139 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3140
3141 intel_dp->DP |= DP_PLL_ENABLE;
3142
3143 I915_WRITE(DP_A, intel_dp->DP);
3144 POSTING_READ(DP_A);
3145 udelay(200);
3146 }
3147
3148 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3149 const struct intel_crtc_state *old_crtc_state)
3150 {
3151 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3152 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3153
3154 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3155 assert_dp_port_disabled(intel_dp);
3156 assert_edp_pll_enabled(dev_priv);
3157
3158 DRM_DEBUG_KMS("disabling eDP PLL\n");
3159
3160 intel_dp->DP &= ~DP_PLL_ENABLE;
3161
3162 I915_WRITE(DP_A, intel_dp->DP);
3163 POSTING_READ(DP_A);
3164 udelay(200);
3165 }
3166
3167 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3168 {
3169 /*
3170 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3171 * be capable of signalling downstream hpd with a long pulse.
3172 * Whether or not that means D3 is safe to use is not clear,
3173 * but let's assume so until proven otherwise.
3174 *
3175 * FIXME should really check all downstream ports...
3176 */
3177 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3178 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3179 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3180 }
3181
3182 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3183 const struct intel_crtc_state *crtc_state,
3184 bool enable)
3185 {
3186 int ret;
3187
3188 if (!crtc_state->dsc.compression_enable)
3189 return;
3190
3191 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3192 enable ? DP_DECOMPRESSION_EN : 0);
3193 if (ret < 0)
3194 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3195 enable ? "enable" : "disable");
3196 }
3197
3198 /* If the sink supports it, try to set the power state appropriately */
3199 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3200 {
3201 int ret, i;
3202
3203 /* Should have a valid DPCD by this point */
3204 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3205 return;
3206
3207 if (mode != DRM_MODE_DPMS_ON) {
3208 if (downstream_hpd_needs_d0(intel_dp))
3209 return;
3210
3211 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3212 DP_SET_POWER_D3);
3213 } else {
3214 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3215
3216 /*
3217 * When turning on, we need to retry for 1ms to give the sink
3218 * time to wake up.
3219 */
3220 for (i = 0; i < 3; i++) {
3221 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3222 DP_SET_POWER_D0);
3223 if (ret == 1)
3224 break;
3225 msleep(1);
3226 }
3227
3228 if (ret == 1 && lspcon->active)
3229 lspcon_wait_pcon_mode(lspcon);
3230 }
3231
3232 if (ret != 1)
3233 DRM_DEBUG_KMS("failed to %s sink power state\n",
3234 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3235 }
3236
3237 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3238 enum port port, enum pipe *pipe)
3239 {
3240 enum pipe p;
3241
3242 for_each_pipe(dev_priv, p) {
3243 u32 val = I915_READ(TRANS_DP_CTL(p));
3244
3245 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3246 *pipe = p;
3247 return true;
3248 }
3249 }
3250
3251 DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3252
3253 /* must initialize pipe to something for the asserts */
3254 *pipe = PIPE_A;
3255
3256 return false;
3257 }
3258
3259 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3260 i915_reg_t dp_reg, enum port port,
3261 enum pipe *pipe)
3262 {
3263 bool ret;
3264 u32 val;
3265
3266 val = I915_READ(dp_reg);
3267
3268 ret = val & DP_PORT_EN;
3269
3270 /* asserts want to know the pipe even if the port is disabled */
3271 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3272 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3273 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3274 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3275 else if (IS_CHERRYVIEW(dev_priv))
3276 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3277 else
3278 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3279
3280 return ret;
3281 }
3282
3283 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3284 enum pipe *pipe)
3285 {
3286 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3287 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3288 intel_wakeref_t wakeref;
3289 bool ret;
3290
3291 wakeref = intel_display_power_get_if_enabled(dev_priv,
3292 encoder->power_domain);
3293 if (!wakeref)
3294 return false;
3295
3296 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3297 encoder->port, pipe);
3298
3299 intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3300
3301 return ret;
3302 }
3303
3304 static void intel_dp_get_config(struct intel_encoder *encoder,
3305 struct intel_crtc_state *pipe_config)
3306 {
3307 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3308 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3309 u32 tmp, flags = 0;
3310 enum port port = encoder->port;
3311 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3312
3313 if (encoder->type == INTEL_OUTPUT_EDP)
3314 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3315 else
3316 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3317
3318 tmp = I915_READ(intel_dp->output_reg);
3319
3320 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3321
3322 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3323 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3324
3325 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3326 flags |= DRM_MODE_FLAG_PHSYNC;
3327 else
3328 flags |= DRM_MODE_FLAG_NHSYNC;
3329
3330 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3331 flags |= DRM_MODE_FLAG_PVSYNC;
3332 else
3333 flags |= DRM_MODE_FLAG_NVSYNC;
3334 } else {
3335 if (tmp & DP_SYNC_HS_HIGH)
3336 flags |= DRM_MODE_FLAG_PHSYNC;
3337 else
3338 flags |= DRM_MODE_FLAG_NHSYNC;
3339
3340 if (tmp & DP_SYNC_VS_HIGH)
3341 flags |= DRM_MODE_FLAG_PVSYNC;
3342 else
3343 flags |= DRM_MODE_FLAG_NVSYNC;
3344 }
3345
3346 pipe_config->hw.adjusted_mode.flags |= flags;
3347
3348 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3349 pipe_config->limited_color_range = true;
3350
3351 pipe_config->lane_count =
3352 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3353
3354 intel_dp_get_m_n(crtc, pipe_config);
3355
3356 if (port == PORT_A) {
3357 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3358 pipe_config->port_clock = 162000;
3359 else
3360 pipe_config->port_clock = 270000;
3361 }
3362
3363 pipe_config->hw.adjusted_mode.crtc_clock =
3364 intel_dotclock_calculate(pipe_config->port_clock,
3365 &pipe_config->dp_m_n);
3366
3367 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3368 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3369 /*
3370 * This is a big fat ugly hack.
3371 *
3372 * Some machines in UEFI boot mode provide us a VBT that has 18
3373 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3374 * unknown we fail to light up. Yet the same BIOS boots up with
3375 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3376 * max, not what it tells us to use.
3377 *
3378 * Note: This will still be broken if the eDP panel is not lit
3379 * up by the BIOS, and thus we can't get the mode at module
3380 * load.
3381 */
3382 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3383 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3384 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3385 }
3386 }
3387
3388 static void intel_disable_dp(struct intel_encoder *encoder,
3389 const struct intel_crtc_state *old_crtc_state,
3390 const struct drm_connector_state *old_conn_state)
3391 {
3392 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3393
3394 intel_dp->link_trained = false;
3395
3396 if (old_crtc_state->has_audio)
3397 intel_audio_codec_disable(encoder,
3398 old_crtc_state, old_conn_state);
3399
3400 /* Make sure the panel is off before trying to change the mode. But also
3401 * ensure that we have vdd while we switch off the panel. */
3402 intel_edp_panel_vdd_on(intel_dp);
3403 intel_edp_backlight_off(old_conn_state);
3404 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3405 intel_edp_panel_off(intel_dp);
3406 }
3407
3408 static void g4x_disable_dp(struct intel_encoder *encoder,
3409 const struct intel_crtc_state *old_crtc_state,
3410 const struct drm_connector_state *old_conn_state)
3411 {
3412 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3413 }
3414
3415 static void vlv_disable_dp(struct intel_encoder *encoder,
3416 const struct intel_crtc_state *old_crtc_state,
3417 const struct drm_connector_state *old_conn_state)
3418 {
3419 intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3420 }
3421
3422 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3423 const struct intel_crtc_state *old_crtc_state,
3424 const struct drm_connector_state *old_conn_state)
3425 {
3426 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3427 enum port port = encoder->port;
3428
3429 /*
3430 * Bspec does not list a specific disable sequence for g4x DP.
3431 * Follow the ilk+ sequence (disable pipe before the port) for
3432 * g4x DP as it does not suffer from underruns like the normal
3433 * g4x modeset sequence (disable pipe after the port).
3434 */
3435 intel_dp_link_down(encoder, old_crtc_state);
3436
3437 /* Only ilk+ has port A */
3438 if (port == PORT_A)
3439 ilk_edp_pll_off(intel_dp, old_crtc_state);
3440 }
3441
3442 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3443 const struct intel_crtc_state *old_crtc_state,
3444 const struct drm_connector_state *old_conn_state)
3445 {
3446 intel_dp_link_down(encoder, old_crtc_state);
3447 }
3448
3449 static void chv_post_disable_dp(struct intel_encoder *encoder,
3450 const struct intel_crtc_state *old_crtc_state,
3451 const struct drm_connector_state *old_conn_state)
3452 {
3453 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3454
3455 intel_dp_link_down(encoder, old_crtc_state);
3456
3457 vlv_dpio_get(dev_priv);
3458
3459 /* Assert data lane reset */
3460 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3461
3462 vlv_dpio_put(dev_priv);
3463 }
3464
3465 static void
3466 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3467 u32 *DP,
3468 u8 dp_train_pat)
3469 {
3470 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3471 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3472 enum port port = intel_dig_port->base.port;
3473 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3474
3475 if (dp_train_pat & train_pat_mask)
3476 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3477 dp_train_pat & train_pat_mask);
3478
3479 if (HAS_DDI(dev_priv)) {
3480 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3481
3482 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3483 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3484 else
3485 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3486
3487 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3488 switch (dp_train_pat & train_pat_mask) {
3489 case DP_TRAINING_PATTERN_DISABLE:
3490 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3491
3492 break;
3493 case DP_TRAINING_PATTERN_1:
3494 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3495 break;
3496 case DP_TRAINING_PATTERN_2:
3497 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3498 break;
3499 case DP_TRAINING_PATTERN_3:
3500 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3501 break;
3502 case DP_TRAINING_PATTERN_4:
3503 temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3504 break;
3505 }
3506 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3507
3508 } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3509 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3510 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3511
3512 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3513 case DP_TRAINING_PATTERN_DISABLE:
3514 *DP |= DP_LINK_TRAIN_OFF_CPT;
3515 break;
3516 case DP_TRAINING_PATTERN_1:
3517 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3518 break;
3519 case DP_TRAINING_PATTERN_2:
3520 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3521 break;
3522 case DP_TRAINING_PATTERN_3:
3523 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3524 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3525 break;
3526 }
3527
3528 } else {
3529 *DP &= ~DP_LINK_TRAIN_MASK;
3530
3531 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3532 case DP_TRAINING_PATTERN_DISABLE:
3533 *DP |= DP_LINK_TRAIN_OFF;
3534 break;
3535 case DP_TRAINING_PATTERN_1:
3536 *DP |= DP_LINK_TRAIN_PAT_1;
3537 break;
3538 case DP_TRAINING_PATTERN_2:
3539 *DP |= DP_LINK_TRAIN_PAT_2;
3540 break;
3541 case DP_TRAINING_PATTERN_3:
3542 DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3543 *DP |= DP_LINK_TRAIN_PAT_2;
3544 break;
3545 }
3546 }
3547 }
3548
3549 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3550 const struct intel_crtc_state *old_crtc_state)
3551 {
3552 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3553
3554 /* enable with pattern 1 (as per spec) */
3555
3556 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3557
3558 /*
3559 * Magic for VLV/CHV. We _must_ first set up the register
3560 * without actually enabling the port, and then do another
3561 * write to enable the port. Otherwise link training will
3562 * fail when the power sequencer is freshly used for this port.
3563 */
3564 intel_dp->DP |= DP_PORT_EN;
3565 if (old_crtc_state->has_audio)
3566 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3567
3568 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3569 POSTING_READ(intel_dp->output_reg);
3570 }
3571
3572 static void intel_enable_dp(struct intel_encoder *encoder,
3573 const struct intel_crtc_state *pipe_config,
3574 const struct drm_connector_state *conn_state)
3575 {
3576 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3577 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3578 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3579 u32 dp_reg = I915_READ(intel_dp->output_reg);
3580 enum pipe pipe = crtc->pipe;
3581 intel_wakeref_t wakeref;
3582
3583 if (WARN_ON(dp_reg & DP_PORT_EN))
3584 return;
3585
3586 with_pps_lock(intel_dp, wakeref) {
3587 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3588 vlv_init_panel_power_sequencer(encoder, pipe_config);
3589
3590 intel_dp_enable_port(intel_dp, pipe_config);
3591
3592 edp_panel_vdd_on(intel_dp);
3593 edp_panel_on(intel_dp);
3594 edp_panel_vdd_off(intel_dp, true);
3595 }
3596
3597 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3598 unsigned int lane_mask = 0x0;
3599
3600 if (IS_CHERRYVIEW(dev_priv))
3601 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3602
3603 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3604 lane_mask);
3605 }
3606
3607 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3608 intel_dp_start_link_train(intel_dp);
3609 intel_dp_stop_link_train(intel_dp);
3610
3611 if (pipe_config->has_audio) {
3612 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3613 pipe_name(pipe));
3614 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3615 }
3616 }
3617
3618 static void g4x_enable_dp(struct intel_encoder *encoder,
3619 const struct intel_crtc_state *pipe_config,
3620 const struct drm_connector_state *conn_state)
3621 {
3622 intel_enable_dp(encoder, pipe_config, conn_state);
3623 intel_edp_backlight_on(pipe_config, conn_state);
3624 }
3625
3626 static void vlv_enable_dp(struct intel_encoder *encoder,
3627 const struct intel_crtc_state *pipe_config,
3628 const struct drm_connector_state *conn_state)
3629 {
3630 intel_edp_backlight_on(pipe_config, conn_state);
3631 }
3632
3633 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3634 const struct intel_crtc_state *pipe_config,
3635 const struct drm_connector_state *conn_state)
3636 {
3637 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3638 enum port port = encoder->port;
3639
3640 intel_dp_prepare(encoder, pipe_config);
3641
3642 /* Only ilk+ has port A */
3643 if (port == PORT_A)
3644 ilk_edp_pll_on(intel_dp, pipe_config);
3645 }
3646
3647 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3648 {
3649 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3650 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3651 enum pipe pipe = intel_dp->pps_pipe;
3652 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3653
3654 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3655
3656 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3657 return;
3658
3659 edp_panel_vdd_off_sync(intel_dp);
3660
3661 /*
3662 * VLV seems to get confused when multiple power sequencers
3663 * have the same port selected (even if only one has power/vdd
3664 * enabled). The failure manifests as vlv_wait_port_ready() failing
3665 * CHV on the other hand doesn't seem to mind having the same port
3666 * selected in multiple power sequencers, but let's clear the
3667 * port select always when logically disconnecting a power sequencer
3668 * from a port.
3669 */
3670 DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3671 pipe_name(pipe), intel_dig_port->base.base.base.id,
3672 intel_dig_port->base.base.name);
3673 I915_WRITE(pp_on_reg, 0);
3674 POSTING_READ(pp_on_reg);
3675
3676 intel_dp->pps_pipe = INVALID_PIPE;
3677 }
3678
3679 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3680 enum pipe pipe)
3681 {
3682 struct intel_encoder *encoder;
3683
3684 lockdep_assert_held(&dev_priv->pps_mutex);
3685
3686 for_each_intel_dp(&dev_priv->drm, encoder) {
3687 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3688
3689 WARN(intel_dp->active_pipe == pipe,
3690 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3691 pipe_name(pipe), encoder->base.base.id,
3692 encoder->base.name);
3693
3694 if (intel_dp->pps_pipe != pipe)
3695 continue;
3696
3697 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3698 pipe_name(pipe), encoder->base.base.id,
3699 encoder->base.name);
3700
3701 /* make sure vdd is off before we steal it */
3702 vlv_detach_power_sequencer(intel_dp);
3703 }
3704 }
3705
3706 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3707 const struct intel_crtc_state *crtc_state)
3708 {
3709 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3710 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3711 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3712
3713 lockdep_assert_held(&dev_priv->pps_mutex);
3714
3715 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3716
3717 if (intel_dp->pps_pipe != INVALID_PIPE &&
3718 intel_dp->pps_pipe != crtc->pipe) {
3719 /*
3720 * If another power sequencer was being used on this
3721 * port previously make sure to turn off vdd there while
3722 * we still have control of it.
3723 */
3724 vlv_detach_power_sequencer(intel_dp);
3725 }
3726
3727 /*
3728 * We may be stealing the power
3729 * sequencer from another port.
3730 */
3731 vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3732
3733 intel_dp->active_pipe = crtc->pipe;
3734
3735 if (!intel_dp_is_edp(intel_dp))
3736 return;
3737
3738 /* now it's all ours */
3739 intel_dp->pps_pipe = crtc->pipe;
3740
3741 DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3742 pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3743 encoder->base.name);
3744
3745 /* init power sequencer on this pipe and port */
3746 intel_dp_init_panel_power_sequencer(intel_dp);
3747 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3748 }
3749
3750 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3751 const struct intel_crtc_state *pipe_config,
3752 const struct drm_connector_state *conn_state)
3753 {
3754 vlv_phy_pre_encoder_enable(encoder, pipe_config);
3755
3756 intel_enable_dp(encoder, pipe_config, conn_state);
3757 }
3758
3759 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3760 const struct intel_crtc_state *pipe_config,
3761 const struct drm_connector_state *conn_state)
3762 {
3763 intel_dp_prepare(encoder, pipe_config);
3764
3765 vlv_phy_pre_pll_enable(encoder, pipe_config);
3766 }
3767
3768 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3769 const struct intel_crtc_state *pipe_config,
3770 const struct drm_connector_state *conn_state)
3771 {
3772 chv_phy_pre_encoder_enable(encoder, pipe_config);
3773
3774 intel_enable_dp(encoder, pipe_config, conn_state);
3775
3776 /* Second common lane will stay alive on its own now */
3777 chv_phy_release_cl2_override(encoder);
3778 }
3779
3780 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3781 const struct intel_crtc_state *pipe_config,
3782 const struct drm_connector_state *conn_state)
3783 {
3784 intel_dp_prepare(encoder, pipe_config);
3785
3786 chv_phy_pre_pll_enable(encoder, pipe_config);
3787 }
3788
3789 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3790 const struct intel_crtc_state *old_crtc_state,
3791 const struct drm_connector_state *old_conn_state)
3792 {
3793 chv_phy_post_pll_disable(encoder, old_crtc_state);
3794 }
3795
3796 /*
3797 * Fetch AUX CH registers 0x202 - 0x207 which contain
3798 * link status information
3799 */
3800 bool
3801 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3802 {
3803 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3804 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3805 }
3806
3807 /* These are source-specific values. */
3808 u8
3809 intel_dp_voltage_max(struct intel_dp *intel_dp)
3810 {
3811 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3812 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3813 enum port port = encoder->port;
3814
3815 if (HAS_DDI(dev_priv))
3816 return intel_ddi_dp_voltage_max(encoder);
3817 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3818 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3819 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3820 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3821 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3822 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3823 else
3824 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3825 }
3826
3827 u8
3828 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3829 {
3830 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3831 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3832 enum port port = encoder->port;
3833
3834 if (HAS_DDI(dev_priv)) {
3835 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3836 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3837 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3838 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3839 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3840 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3841 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3842 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3843 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3844 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3845 default:
3846 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3847 }
3848 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3849 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3850 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3851 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3852 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3853 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3854 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3855 default:
3856 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3857 }
3858 } else {
3859 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3860 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3861 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3862 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3863 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3864 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3865 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3866 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3867 default:
3868 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3869 }
3870 }
3871 }
3872
3873 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3874 {
3875 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3876 unsigned long demph_reg_value, preemph_reg_value,
3877 uniqtranscale_reg_value;
3878 u8 train_set = intel_dp->train_set[0];
3879
3880 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3881 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3882 preemph_reg_value = 0x0004000;
3883 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3884 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3885 demph_reg_value = 0x2B405555;
3886 uniqtranscale_reg_value = 0x552AB83A;
3887 break;
3888 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3889 demph_reg_value = 0x2B404040;
3890 uniqtranscale_reg_value = 0x5548B83A;
3891 break;
3892 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3893 demph_reg_value = 0x2B245555;
3894 uniqtranscale_reg_value = 0x5560B83A;
3895 break;
3896 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3897 demph_reg_value = 0x2B405555;
3898 uniqtranscale_reg_value = 0x5598DA3A;
3899 break;
3900 default:
3901 return 0;
3902 }
3903 break;
3904 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3905 preemph_reg_value = 0x0002000;
3906 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3907 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3908 demph_reg_value = 0x2B404040;
3909 uniqtranscale_reg_value = 0x5552B83A;
3910 break;
3911 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3912 demph_reg_value = 0x2B404848;
3913 uniqtranscale_reg_value = 0x5580B83A;
3914 break;
3915 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3916 demph_reg_value = 0x2B404040;
3917 uniqtranscale_reg_value = 0x55ADDA3A;
3918 break;
3919 default:
3920 return 0;
3921 }
3922 break;
3923 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3924 preemph_reg_value = 0x0000000;
3925 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3926 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3927 demph_reg_value = 0x2B305555;
3928 uniqtranscale_reg_value = 0x5570B83A;
3929 break;
3930 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3931 demph_reg_value = 0x2B2B4040;
3932 uniqtranscale_reg_value = 0x55ADDA3A;
3933 break;
3934 default:
3935 return 0;
3936 }
3937 break;
3938 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3939 preemph_reg_value = 0x0006000;
3940 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3941 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3942 demph_reg_value = 0x1B405555;
3943 uniqtranscale_reg_value = 0x55ADDA3A;
3944 break;
3945 default:
3946 return 0;
3947 }
3948 break;
3949 default:
3950 return 0;
3951 }
3952
3953 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3954 uniqtranscale_reg_value, 0);
3955
3956 return 0;
3957 }
3958
3959 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3960 {
3961 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3962 u32 deemph_reg_value, margin_reg_value;
3963 bool uniq_trans_scale = false;
3964 u8 train_set = intel_dp->train_set[0];
3965
3966 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3967 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3968 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3969 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3970 deemph_reg_value = 128;
3971 margin_reg_value = 52;
3972 break;
3973 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3974 deemph_reg_value = 128;
3975 margin_reg_value = 77;
3976 break;
3977 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3978 deemph_reg_value = 128;
3979 margin_reg_value = 102;
3980 break;
3981 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3982 deemph_reg_value = 128;
3983 margin_reg_value = 154;
3984 uniq_trans_scale = true;
3985 break;
3986 default:
3987 return 0;
3988 }
3989 break;
3990 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3991 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3992 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3993 deemph_reg_value = 85;
3994 margin_reg_value = 78;
3995 break;
3996 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3997 deemph_reg_value = 85;
3998 margin_reg_value = 116;
3999 break;
4000 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4001 deemph_reg_value = 85;
4002 margin_reg_value = 154;
4003 break;
4004 default:
4005 return 0;
4006 }
4007 break;
4008 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4009 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4010 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4011 deemph_reg_value = 64;
4012 margin_reg_value = 104;
4013 break;
4014 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4015 deemph_reg_value = 64;
4016 margin_reg_value = 154;
4017 break;
4018 default:
4019 return 0;
4020 }
4021 break;
4022 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4023 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4024 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4025 deemph_reg_value = 43;
4026 margin_reg_value = 154;
4027 break;
4028 default:
4029 return 0;
4030 }
4031 break;
4032 default:
4033 return 0;
4034 }
4035
4036 chv_set_phy_signal_level(encoder, deemph_reg_value,
4037 margin_reg_value, uniq_trans_scale);
4038
4039 return 0;
4040 }
4041
4042 static u32
4043 g4x_signal_levels(u8 train_set)
4044 {
4045 u32 signal_levels = 0;
4046
4047 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4048 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4049 default:
4050 signal_levels |= DP_VOLTAGE_0_4;
4051 break;
4052 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4053 signal_levels |= DP_VOLTAGE_0_6;
4054 break;
4055 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4056 signal_levels |= DP_VOLTAGE_0_8;
4057 break;
4058 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4059 signal_levels |= DP_VOLTAGE_1_2;
4060 break;
4061 }
4062 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4063 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4064 default:
4065 signal_levels |= DP_PRE_EMPHASIS_0;
4066 break;
4067 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4068 signal_levels |= DP_PRE_EMPHASIS_3_5;
4069 break;
4070 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4071 signal_levels |= DP_PRE_EMPHASIS_6;
4072 break;
4073 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4074 signal_levels |= DP_PRE_EMPHASIS_9_5;
4075 break;
4076 }
4077 return signal_levels;
4078 }
4079
4080 /* SNB CPU eDP voltage swing and pre-emphasis control */
4081 static u32
4082 snb_cpu_edp_signal_levels(u8 train_set)
4083 {
4084 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4085 DP_TRAIN_PRE_EMPHASIS_MASK);
4086 switch (signal_levels) {
4087 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4088 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4089 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4090 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4091 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4092 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4094 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4095 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4096 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4097 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4098 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4099 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4100 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4101 default:
4102 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4103 "0x%x\n", signal_levels);
4104 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4105 }
4106 }
4107
4108 /* IVB CPU eDP voltage swing and pre-emphasis control */
4109 static u32
4110 ivb_cpu_edp_signal_levels(u8 train_set)
4111 {
4112 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4113 DP_TRAIN_PRE_EMPHASIS_MASK);
4114 switch (signal_levels) {
4115 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4116 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4117 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4118 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4119 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4120 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4121
4122 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4123 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4124 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4125 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4126
4127 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4128 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4129 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4130 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4131
4132 default:
4133 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4134 "0x%x\n", signal_levels);
4135 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4136 }
4137 }
4138
4139 void
4140 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4141 {
4142 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4143 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4144 enum port port = intel_dig_port->base.port;
4145 u32 signal_levels, mask = 0;
4146 u8 train_set = intel_dp->train_set[0];
4147
4148 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4149 signal_levels = bxt_signal_levels(intel_dp);
4150 } else if (HAS_DDI(dev_priv)) {
4151 signal_levels = ddi_signal_levels(intel_dp);
4152 mask = DDI_BUF_EMP_MASK;
4153 } else if (IS_CHERRYVIEW(dev_priv)) {
4154 signal_levels = chv_signal_levels(intel_dp);
4155 } else if (IS_VALLEYVIEW(dev_priv)) {
4156 signal_levels = vlv_signal_levels(intel_dp);
4157 } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4158 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4159 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4160 } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4161 signal_levels = snb_cpu_edp_signal_levels(train_set);
4162 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4163 } else {
4164 signal_levels = g4x_signal_levels(train_set);
4165 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4166 }
4167
4168 if (mask)
4169 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4170
4171 DRM_DEBUG_KMS("Using vswing level %d\n",
4172 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4173 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4174 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4175 DP_TRAIN_PRE_EMPHASIS_SHIFT);
4176
4177 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4178
4179 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4180 POSTING_READ(intel_dp->output_reg);
4181 }
4182
4183 void
4184 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4185 u8 dp_train_pat)
4186 {
4187 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4188 struct drm_i915_private *dev_priv =
4189 to_i915(intel_dig_port->base.base.dev);
4190
4191 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4192
4193 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4194 POSTING_READ(intel_dp->output_reg);
4195 }
4196
4197 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4198 {
4199 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4200 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4201 enum port port = intel_dig_port->base.port;
4202 u32 val;
4203
4204 if (!HAS_DDI(dev_priv))
4205 return;
4206
4207 val = I915_READ(intel_dp->regs.dp_tp_ctl);
4208 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4209 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4210 I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4211
4212 /*
4213 * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4214 * reason we need to set idle transmission mode is to work around a HW
4215 * issue where we enable the pipe while not in idle link-training mode.
4216 * In this case there is requirement to wait for a minimum number of
4217 * idle patterns to be sent.
4218 */
4219 if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4220 return;
4221
4222 if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4223 DP_TP_STATUS_IDLE_DONE, 1))
4224 DRM_ERROR("Timed out waiting for DP idle patterns\n");
4225 }
4226
4227 static void
4228 intel_dp_link_down(struct intel_encoder *encoder,
4229 const struct intel_crtc_state *old_crtc_state)
4230 {
4231 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4232 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4233 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4234 enum port port = encoder->port;
4235 u32 DP = intel_dp->DP;
4236
4237 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4238 return;
4239
4240 DRM_DEBUG_KMS("\n");
4241
4242 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4243 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4244 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4245 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4246 } else {
4247 DP &= ~DP_LINK_TRAIN_MASK;
4248 DP |= DP_LINK_TRAIN_PAT_IDLE;
4249 }
4250 I915_WRITE(intel_dp->output_reg, DP);
4251 POSTING_READ(intel_dp->output_reg);
4252
4253 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4254 I915_WRITE(intel_dp->output_reg, DP);
4255 POSTING_READ(intel_dp->output_reg);
4256
4257 /*
4258 * HW workaround for IBX, we need to move the port
4259 * to transcoder A after disabling it to allow the
4260 * matching HDMI port to be enabled on transcoder A.
4261 */
4262 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4263 /*
4264 * We get CPU/PCH FIFO underruns on the other pipe when
4265 * doing the workaround. Sweep them under the rug.
4266 */
4267 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4268 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4269
4270 /* always enable with pattern 1 (as per spec) */
4271 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4272 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4273 DP_LINK_TRAIN_PAT_1;
4274 I915_WRITE(intel_dp->output_reg, DP);
4275 POSTING_READ(intel_dp->output_reg);
4276
4277 DP &= ~DP_PORT_EN;
4278 I915_WRITE(intel_dp->output_reg, DP);
4279 POSTING_READ(intel_dp->output_reg);
4280
4281 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4282 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4283 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4284 }
4285
4286 msleep(intel_dp->panel_power_down_delay);
4287
4288 intel_dp->DP = DP;
4289
4290 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4291 intel_wakeref_t wakeref;
4292
4293 with_pps_lock(intel_dp, wakeref)
4294 intel_dp->active_pipe = INVALID_PIPE;
4295 }
4296 }
4297
4298 static void
4299 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4300 {
4301 u8 dpcd_ext[6];
4302
4303 /*
4304 * Prior to DP1.3 the bit represented by
4305 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4306 * if it is set DP_DPCD_REV at 0000h could be at a value less than
4307 * the true capability of the panel. The only way to check is to
4308 * then compare 0000h and 2200h.
4309 */
4310 if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4311 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4312 return;
4313
4314 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4315 &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4316 DRM_ERROR("DPCD failed read at extended capabilities\n");
4317 return;
4318 }
4319
4320 if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4321 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4322 return;
4323 }
4324
4325 if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4326 return;
4327
4328 DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4329 (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4330
4331 memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4332 }
4333
4334 bool
4335 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4336 {
4337 if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4338 sizeof(intel_dp->dpcd)) < 0)
4339 return false; /* aux transfer failed */
4340
4341 intel_dp_extended_receiver_capabilities(intel_dp);
4342
4343 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4344
4345 return intel_dp->dpcd[DP_DPCD_REV] != 0;
4346 }
4347
4348 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4349 {
4350 u8 dprx = 0;
4351
4352 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4353 &dprx) != 1)
4354 return false;
4355 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4356 }
4357
4358 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4359 {
4360 /*
4361 * Clear the cached register set to avoid using stale values
4362 * for the sinks that do not support DSC.
4363 */
4364 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4365
4366 /* Clear fec_capable to avoid using stale values */
4367 intel_dp->fec_capable = 0;
4368
4369 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4370 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4371 intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4372 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4373 intel_dp->dsc_dpcd,
4374 sizeof(intel_dp->dsc_dpcd)) < 0)
4375 DRM_ERROR("Failed to read DPCD register 0x%x\n",
4376 DP_DSC_SUPPORT);
4377
4378 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4379 (int)sizeof(intel_dp->dsc_dpcd),
4380 intel_dp->dsc_dpcd);
4381
4382 /* FEC is supported only on DP 1.4 */
4383 if (!intel_dp_is_edp(intel_dp) &&
4384 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4385 &intel_dp->fec_capable) < 0)
4386 DRM_ERROR("Failed to read FEC DPCD register\n");
4387
4388 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4389 }
4390 }
4391
4392 static bool
4393 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4394 {
4395 struct drm_i915_private *dev_priv =
4396 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4397
4398 /* this function is meant to be called only once */
4399 WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4400
4401 if (!intel_dp_read_dpcd(intel_dp))
4402 return false;
4403
4404 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4405 drm_dp_is_branch(intel_dp->dpcd));
4406
4407 /*
4408 * Read the eDP display control registers.
4409 *
4410 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4411 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4412 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4413 * method). The display control registers should read zero if they're
4414 * not supported anyway.
4415 */
4416 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4417 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4418 sizeof(intel_dp->edp_dpcd))
4419 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4420 intel_dp->edp_dpcd);
4421
4422 /*
4423 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4424 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4425 */
4426 intel_psr_init_dpcd(intel_dp);
4427
4428 /* Read the eDP 1.4+ supported link rates. */
4429 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4430 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4431 int i;
4432
4433 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4434 sink_rates, sizeof(sink_rates));
4435
4436 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4437 int val = le16_to_cpu(sink_rates[i]);
4438
4439 if (val == 0)
4440 break;
4441
4442 /* Value read multiplied by 200kHz gives the per-lane
4443 * link rate in kHz. The source rates are, however,
4444 * stored in terms of LS_Clk kHz. The full conversion
4445 * back to symbols is
4446 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4447 */
4448 intel_dp->sink_rates[i] = (val * 200) / 10;
4449 }
4450 intel_dp->num_sink_rates = i;
4451 }
4452
4453 /*
4454 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4455 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4456 */
4457 if (intel_dp->num_sink_rates)
4458 intel_dp->use_rate_select = true;
4459 else
4460 intel_dp_set_sink_rates(intel_dp);
4461
4462 intel_dp_set_common_rates(intel_dp);
4463
4464 /* Read the eDP DSC DPCD registers */
4465 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4466 intel_dp_get_dsc_sink_cap(intel_dp);
4467
4468 return true;
4469 }
4470
4471
4472 static bool
4473 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4474 {
4475 if (!intel_dp_read_dpcd(intel_dp))
4476 return false;
4477
4478 /*
4479 * Don't clobber cached eDP rates. Also skip re-reading
4480 * the OUI/ID since we know it won't change.
4481 */
4482 if (!intel_dp_is_edp(intel_dp)) {
4483 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4484 drm_dp_is_branch(intel_dp->dpcd));
4485
4486 intel_dp_set_sink_rates(intel_dp);
4487 intel_dp_set_common_rates(intel_dp);
4488 }
4489
4490 /*
4491 * Some eDP panels do not set a valid value for sink count, that is why
4492 * it don't care about read it here and in intel_edp_init_dpcd().
4493 */
4494 if (!intel_dp_is_edp(intel_dp) &&
4495 !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4496 u8 count;
4497 ssize_t r;
4498
4499 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4500 if (r < 1)
4501 return false;
4502
4503 /*
4504 * Sink count can change between short pulse hpd hence
4505 * a member variable in intel_dp will track any changes
4506 * between short pulse interrupts.
4507 */
4508 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4509
4510 /*
4511 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4512 * a dongle is present but no display. Unless we require to know
4513 * if a dongle is present or not, we don't need to update
4514 * downstream port information. So, an early return here saves
4515 * time from performing other operations which are not required.
4516 */
4517 if (!intel_dp->sink_count)
4518 return false;
4519 }
4520
4521 if (!drm_dp_is_branch(intel_dp->dpcd))
4522 return true; /* native DP sink */
4523
4524 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4525 return true; /* no per-port downstream info */
4526
4527 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4528 intel_dp->downstream_ports,
4529 DP_MAX_DOWNSTREAM_PORTS) < 0)
4530 return false; /* downstream port status fetch failed */
4531
4532 return true;
4533 }
4534
4535 static bool
4536 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4537 {
4538 u8 mstm_cap;
4539
4540 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4541 return false;
4542
4543 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4544 return false;
4545
4546 return mstm_cap & DP_MST_CAP;
4547 }
4548
4549 static bool
4550 intel_dp_can_mst(struct intel_dp *intel_dp)
4551 {
4552 return i915_modparams.enable_dp_mst &&
4553 intel_dp->can_mst &&
4554 intel_dp_sink_can_mst(intel_dp);
4555 }
4556
4557 static void
4558 intel_dp_configure_mst(struct intel_dp *intel_dp)
4559 {
4560 struct intel_encoder *encoder =
4561 &dp_to_dig_port(intel_dp)->base;
4562 bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4563
4564 DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4565 encoder->base.base.id, encoder->base.name,
4566 yesno(intel_dp->can_mst), yesno(sink_can_mst),
4567 yesno(i915_modparams.enable_dp_mst));
4568
4569 if (!intel_dp->can_mst)
4570 return;
4571
4572 intel_dp->is_mst = sink_can_mst &&
4573 i915_modparams.enable_dp_mst;
4574
4575 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4576 intel_dp->is_mst);
4577 }
4578
4579 static bool
4580 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4581 {
4582 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4583 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4584 DP_DPRX_ESI_LEN;
4585 }
4586
4587 bool
4588 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4589 const struct drm_connector_state *conn_state)
4590 {
4591 /*
4592 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4593 * of Color Encoding Format and Content Color Gamut], in order to
4594 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4595 */
4596 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4597 return true;
4598
4599 switch (conn_state->colorspace) {
4600 case DRM_MODE_COLORIMETRY_SYCC_601:
4601 case DRM_MODE_COLORIMETRY_OPYCC_601:
4602 case DRM_MODE_COLORIMETRY_BT2020_YCC:
4603 case DRM_MODE_COLORIMETRY_BT2020_RGB:
4604 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4605 return true;
4606 default:
4607 break;
4608 }
4609
4610 return false;
4611 }
4612
4613 static void
4614 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4615 const struct intel_crtc_state *crtc_state,
4616 const struct drm_connector_state *conn_state)
4617 {
4618 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4619 struct dp_sdp vsc_sdp = {};
4620
4621 /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4622 vsc_sdp.sdp_header.HB0 = 0;
4623 vsc_sdp.sdp_header.HB1 = 0x7;
4624
4625 /*
4626 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4627 * Colorimetry Format indication.
4628 */
4629 vsc_sdp.sdp_header.HB2 = 0x5;
4630
4631 /*
4632 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4633 * Colorimetry Format indication (HB2 = 05h).
4634 */
4635 vsc_sdp.sdp_header.HB3 = 0x13;
4636
4637 /* DP 1.4a spec, Table 2-120 */
4638 switch (crtc_state->output_format) {
4639 case INTEL_OUTPUT_FORMAT_YCBCR444:
4640 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4641 break;
4642 case INTEL_OUTPUT_FORMAT_YCBCR420:
4643 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4644 break;
4645 case INTEL_OUTPUT_FORMAT_RGB:
4646 default:
4647 /* RGB: DB16[7:4] = 0h */
4648 break;
4649 }
4650
4651 switch (conn_state->colorspace) {
4652 case DRM_MODE_COLORIMETRY_BT709_YCC:
4653 vsc_sdp.db[16] |= 0x1;
4654 break;
4655 case DRM_MODE_COLORIMETRY_XVYCC_601:
4656 vsc_sdp.db[16] |= 0x2;
4657 break;
4658 case DRM_MODE_COLORIMETRY_XVYCC_709:
4659 vsc_sdp.db[16] |= 0x3;
4660 break;
4661 case DRM_MODE_COLORIMETRY_SYCC_601:
4662 vsc_sdp.db[16] |= 0x4;
4663 break;
4664 case DRM_MODE_COLORIMETRY_OPYCC_601:
4665 vsc_sdp.db[16] |= 0x5;
4666 break;
4667 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4668 case DRM_MODE_COLORIMETRY_BT2020_RGB:
4669 vsc_sdp.db[16] |= 0x6;
4670 break;
4671 case DRM_MODE_COLORIMETRY_BT2020_YCC:
4672 vsc_sdp.db[16] |= 0x7;
4673 break;
4674 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4675 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4676 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4677 break;
4678 default:
4679 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4680
4681 /* RGB->YCBCR color conversion uses the BT.709 color space. */
4682 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4683 vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4684 break;
4685 }
4686
4687 /*
4688 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4689 * the following Component Bit Depth values are defined:
4690 * 001b = 8bpc.
4691 * 010b = 10bpc.
4692 * 011b = 12bpc.
4693 * 100b = 16bpc.
4694 */
4695 switch (crtc_state->pipe_bpp) {
4696 case 24: /* 8bpc */
4697 vsc_sdp.db[17] = 0x1;
4698 break;
4699 case 30: /* 10bpc */
4700 vsc_sdp.db[17] = 0x2;
4701 break;
4702 case 36: /* 12bpc */
4703 vsc_sdp.db[17] = 0x3;
4704 break;
4705 case 48: /* 16bpc */
4706 vsc_sdp.db[17] = 0x4;
4707 break;
4708 default:
4709 MISSING_CASE(crtc_state->pipe_bpp);
4710 break;
4711 }
4712
4713 /*
4714 * Dynamic Range (Bit 7)
4715 * 0 = VESA range, 1 = CTA range.
4716 * all YCbCr are always limited range
4717 */
4718 vsc_sdp.db[17] |= 0x80;
4719
4720 /*
4721 * Content Type (Bits 2:0)
4722 * 000b = Not defined.
4723 * 001b = Graphics.
4724 * 010b = Photo.
4725 * 011b = Video.
4726 * 100b = Game
4727 * All other values are RESERVED.
4728 * Note: See CTA-861-G for the definition and expected
4729 * processing by a stream sink for the above contect types.
4730 */
4731 vsc_sdp.db[18] = 0;
4732
4733 intel_dig_port->write_infoframe(&intel_dig_port->base,
4734 crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4735 }
4736
4737 static void
4738 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4739 const struct intel_crtc_state *crtc_state,
4740 const struct drm_connector_state *conn_state)
4741 {
4742 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4743 struct dp_sdp infoframe_sdp = {};
4744 struct hdmi_drm_infoframe drm_infoframe = {};
4745 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4746 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4747 ssize_t len;
4748 int ret;
4749
4750 ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4751 if (ret) {
4752 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4753 return;
4754 }
4755
4756 len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4757 if (len < 0) {
4758 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4759 return;
4760 }
4761
4762 if (len != infoframe_size) {
4763 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4764 return;
4765 }
4766
4767 /*
4768 * Set up the infoframe sdp packet for HDR static metadata.
4769 * Prepare VSC Header for SU as per DP 1.4a spec,
4770 * Table 2-100 and Table 2-101
4771 */
4772
4773 /* Packet ID, 00h for non-Audio INFOFRAME */
4774 infoframe_sdp.sdp_header.HB0 = 0;
4775 /*
4776 * Packet Type 80h + Non-audio INFOFRAME Type value
4777 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4778 */
4779 infoframe_sdp.sdp_header.HB1 = drm_infoframe.header.type;
4780 /*
4781 * Least Significant Eight Bits of (Data Byte Count 1)
4782 * infoframe_size - 1,
4783 */
4784 infoframe_sdp.sdp_header.HB2 = 0x1D;
4785 /* INFOFRAME SDP Version Number */
4786 infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4787 /* CTA Header Byte 2 (INFOFRAME Version Number) */
4788 infoframe_sdp.db[0] = drm_infoframe.header.version;
4789 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4790 infoframe_sdp.db[1] = drm_infoframe.header.length;
4791 /*
4792 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4793 * HDMI_INFOFRAME_HEADER_SIZE
4794 */
4795 BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4796 memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4797 HDMI_DRM_INFOFRAME_SIZE);
4798
4799 /*
4800 * Size of DP infoframe sdp packet for HDR static metadata is consist of
4801 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4802 * - Two Data Blocks: 2 bytes
4803 * CTA Header Byte2 (INFOFRAME Version Number)
4804 * CTA Header Byte3 (Length of INFOFRAME)
4805 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4806 *
4807 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4808 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4809 * will pad rest of the size.
4810 */
4811 intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4812 HDMI_PACKET_TYPE_GAMUT_METADATA,
4813 &infoframe_sdp,
4814 sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4815 }
4816
4817 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4818 const struct intel_crtc_state *crtc_state,
4819 const struct drm_connector_state *conn_state)
4820 {
4821 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4822 return;
4823
4824 intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4825 }
4826
4827 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4828 const struct intel_crtc_state *crtc_state,
4829 const struct drm_connector_state *conn_state)
4830 {
4831 if (!conn_state->hdr_output_metadata)
4832 return;
4833
4834 intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4835 crtc_state,
4836 conn_state);
4837 }
4838
4839 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4840 {
4841 int status = 0;
4842 int test_link_rate;
4843 u8 test_lane_count, test_link_bw;
4844 /* (DP CTS 1.2)
4845 * 4.3.1.11
4846 */
4847 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4848 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4849 &test_lane_count);
4850
4851 if (status <= 0) {
4852 DRM_DEBUG_KMS("Lane count read failed\n");
4853 return DP_TEST_NAK;
4854 }
4855 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4856
4857 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4858 &test_link_bw);
4859 if (status <= 0) {
4860 DRM_DEBUG_KMS("Link Rate read failed\n");
4861 return DP_TEST_NAK;
4862 }
4863 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4864
4865 /* Validate the requested link rate and lane count */
4866 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4867 test_lane_count))
4868 return DP_TEST_NAK;
4869
4870 intel_dp->compliance.test_lane_count = test_lane_count;
4871 intel_dp->compliance.test_link_rate = test_link_rate;
4872
4873 return DP_TEST_ACK;
4874 }
4875
4876 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4877 {
4878 u8 test_pattern;
4879 u8 test_misc;
4880 __be16 h_width, v_height;
4881 int status = 0;
4882
4883 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4884 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4885 &test_pattern);
4886 if (status <= 0) {
4887 DRM_DEBUG_KMS("Test pattern read failed\n");
4888 return DP_TEST_NAK;
4889 }
4890 if (test_pattern != DP_COLOR_RAMP)
4891 return DP_TEST_NAK;
4892
4893 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4894 &h_width, 2);
4895 if (status <= 0) {
4896 DRM_DEBUG_KMS("H Width read failed\n");
4897 return DP_TEST_NAK;
4898 }
4899
4900 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4901 &v_height, 2);
4902 if (status <= 0) {
4903 DRM_DEBUG_KMS("V Height read failed\n");
4904 return DP_TEST_NAK;
4905 }
4906
4907 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4908 &test_misc);
4909 if (status <= 0) {
4910 DRM_DEBUG_KMS("TEST MISC read failed\n");
4911 return DP_TEST_NAK;
4912 }
4913 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4914 return DP_TEST_NAK;
4915 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4916 return DP_TEST_NAK;
4917 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4918 case DP_TEST_BIT_DEPTH_6:
4919 intel_dp->compliance.test_data.bpc = 6;
4920 break;
4921 case DP_TEST_BIT_DEPTH_8:
4922 intel_dp->compliance.test_data.bpc = 8;
4923 break;
4924 default:
4925 return DP_TEST_NAK;
4926 }
4927
4928 intel_dp->compliance.test_data.video_pattern = test_pattern;
4929 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4930 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4931 /* Set test active flag here so userspace doesn't interrupt things */
4932 intel_dp->compliance.test_active = true;
4933
4934 return DP_TEST_ACK;
4935 }
4936
4937 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4938 {
4939 u8 test_result = DP_TEST_ACK;
4940 struct intel_connector *intel_connector = intel_dp->attached_connector;
4941 struct drm_connector *connector = &intel_connector->base;
4942
4943 if (intel_connector->detect_edid == NULL ||
4944 connector->edid_corrupt ||
4945 intel_dp->aux.i2c_defer_count > 6) {
4946 /* Check EDID read for NACKs, DEFERs and corruption
4947 * (DP CTS 1.2 Core r1.1)
4948 * 4.2.2.4 : Failed EDID read, I2C_NAK
4949 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4950 * 4.2.2.6 : EDID corruption detected
4951 * Use failsafe mode for all cases
4952 */
4953 if (intel_dp->aux.i2c_nack_count > 0 ||
4954 intel_dp->aux.i2c_defer_count > 0)
4955 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4956 intel_dp->aux.i2c_nack_count,
4957 intel_dp->aux.i2c_defer_count);
4958 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4959 } else {
4960 struct edid *block = intel_connector->detect_edid;
4961
4962 /* We have to write the checksum
4963 * of the last block read
4964 */
4965 block += intel_connector->detect_edid->extensions;
4966
4967 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4968 block->checksum) <= 0)
4969 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4970
4971 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4972 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4973 }
4974
4975 /* Set test active flag here so userspace doesn't interrupt things */
4976 intel_dp->compliance.test_active = true;
4977
4978 return test_result;
4979 }
4980
4981 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4982 {
4983 u8 test_result = DP_TEST_NAK;
4984 return test_result;
4985 }
4986
4987 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4988 {
4989 u8 response = DP_TEST_NAK;
4990 u8 request = 0;
4991 int status;
4992
4993 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4994 if (status <= 0) {
4995 DRM_DEBUG_KMS("Could not read test request from sink\n");
4996 goto update_status;
4997 }
4998
4999 switch (request) {
5000 case DP_TEST_LINK_TRAINING:
5001 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
5002 response = intel_dp_autotest_link_training(intel_dp);
5003 break;
5004 case DP_TEST_LINK_VIDEO_PATTERN:
5005 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
5006 response = intel_dp_autotest_video_pattern(intel_dp);
5007 break;
5008 case DP_TEST_LINK_EDID_READ:
5009 DRM_DEBUG_KMS("EDID test requested\n");
5010 response = intel_dp_autotest_edid(intel_dp);
5011 break;
5012 case DP_TEST_LINK_PHY_TEST_PATTERN:
5013 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
5014 response = intel_dp_autotest_phy_pattern(intel_dp);
5015 break;
5016 default:
5017 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
5018 break;
5019 }
5020
5021 if (response & DP_TEST_ACK)
5022 intel_dp->compliance.test_type = request;
5023
5024 update_status:
5025 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5026 if (status <= 0)
5027 DRM_DEBUG_KMS("Could not write test response to sink\n");
5028 }
5029
5030 static int
5031 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5032 {
5033 bool bret;
5034
5035 if (intel_dp->is_mst) {
5036 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5037 int ret = 0;
5038 int retry;
5039 bool handled;
5040
5041 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5042 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5043 go_again:
5044 if (bret == true) {
5045
5046 /* check link status - esi[10] = 0x200c */
5047 if (intel_dp->active_mst_links > 0 &&
5048 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5049 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
5050 intel_dp_start_link_train(intel_dp);
5051 intel_dp_stop_link_train(intel_dp);
5052 }
5053
5054 DRM_DEBUG_KMS("got esi %3ph\n", esi);
5055 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5056
5057 if (handled) {
5058 for (retry = 0; retry < 3; retry++) {
5059 int wret;
5060 wret = drm_dp_dpcd_write(&intel_dp->aux,
5061 DP_SINK_COUNT_ESI+1,
5062 &esi[1], 3);
5063 if (wret == 3) {
5064 break;
5065 }
5066 }
5067
5068 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5069 if (bret == true) {
5070 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5071 goto go_again;
5072 }
5073 } else
5074 ret = 0;
5075
5076 return ret;
5077 } else {
5078 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5079 intel_dp->is_mst = false;
5080 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5081 intel_dp->is_mst);
5082 }
5083 }
5084 return -EINVAL;
5085 }
5086
5087 static bool
5088 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5089 {
5090 u8 link_status[DP_LINK_STATUS_SIZE];
5091
5092 if (!intel_dp->link_trained)
5093 return false;
5094
5095 /*
5096 * While PSR source HW is enabled, it will control main-link sending
5097 * frames, enabling and disabling it so trying to do a retrain will fail
5098 * as the link would or not be on or it could mix training patterns
5099 * and frame data at the same time causing retrain to fail.
5100 * Also when exiting PSR, HW will retrain the link anyways fixing
5101 * any link status error.
5102 */
5103 if (intel_psr_enabled(intel_dp))
5104 return false;
5105
5106 if (!intel_dp_get_link_status(intel_dp, link_status))
5107 return false;
5108
5109 /*
5110 * Validate the cached values of intel_dp->link_rate and
5111 * intel_dp->lane_count before attempting to retrain.
5112 */
5113 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5114 intel_dp->lane_count))
5115 return false;
5116
5117 /* Retrain if Channel EQ or CR not ok */
5118 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5119 }
5120
5121 int intel_dp_retrain_link(struct intel_encoder *encoder,
5122 struct drm_modeset_acquire_ctx *ctx)
5123 {
5124 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5125 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5126 struct intel_connector *connector = intel_dp->attached_connector;
5127 struct drm_connector_state *conn_state;
5128 struct intel_crtc_state *crtc_state;
5129 struct intel_crtc *crtc;
5130 int ret;
5131
5132 /* FIXME handle the MST connectors as well */
5133
5134 if (!connector || connector->base.status != connector_status_connected)
5135 return 0;
5136
5137 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5138 ctx);
5139 if (ret)
5140 return ret;
5141
5142 conn_state = connector->base.state;
5143
5144 crtc = to_intel_crtc(conn_state->crtc);
5145 if (!crtc)
5146 return 0;
5147
5148 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5149 if (ret)
5150 return ret;
5151
5152 crtc_state = to_intel_crtc_state(crtc->base.state);
5153
5154 WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
5155
5156 if (!crtc_state->hw.active)
5157 return 0;
5158
5159 if (conn_state->commit &&
5160 !try_wait_for_completion(&conn_state->commit->hw_done))
5161 return 0;
5162
5163 if (!intel_dp_needs_link_retrain(intel_dp))
5164 return 0;
5165
5166 /* Suppress underruns caused by re-training */
5167 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5168 if (crtc_state->has_pch_encoder)
5169 intel_set_pch_fifo_underrun_reporting(dev_priv,
5170 intel_crtc_pch_transcoder(crtc), false);
5171
5172 intel_dp_start_link_train(intel_dp);
5173 intel_dp_stop_link_train(intel_dp);
5174
5175 /* Keep underrun reporting disabled until things are stable */
5176 intel_wait_for_vblank(dev_priv, crtc->pipe);
5177
5178 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5179 if (crtc_state->has_pch_encoder)
5180 intel_set_pch_fifo_underrun_reporting(dev_priv,
5181 intel_crtc_pch_transcoder(crtc), true);
5182
5183 return 0;
5184 }
5185
5186 /*
5187 * If display is now connected check links status,
5188 * there has been known issues of link loss triggering
5189 * long pulse.
5190 *
5191 * Some sinks (eg. ASUS PB287Q) seem to perform some
5192 * weird HPD ping pong during modesets. So we can apparently
5193 * end up with HPD going low during a modeset, and then
5194 * going back up soon after. And once that happens we must
5195 * retrain the link to get a picture. That's in case no
5196 * userspace component reacted to intermittent HPD dip.
5197 */
5198 static enum intel_hotplug_state
5199 intel_dp_hotplug(struct intel_encoder *encoder,
5200 struct intel_connector *connector,
5201 bool irq_received)
5202 {
5203 struct drm_modeset_acquire_ctx ctx;
5204 enum intel_hotplug_state state;
5205 int ret;
5206
5207 state = intel_encoder_hotplug(encoder, connector, irq_received);
5208
5209 drm_modeset_acquire_init(&ctx, 0);
5210
5211 for (;;) {
5212 ret = intel_dp_retrain_link(encoder, &ctx);
5213
5214 if (ret == -EDEADLK) {
5215 drm_modeset_backoff(&ctx);
5216 continue;
5217 }
5218
5219 break;
5220 }
5221
5222 drm_modeset_drop_locks(&ctx);
5223 drm_modeset_acquire_fini(&ctx);
5224 WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
5225
5226 /*
5227 * Keeping it consistent with intel_ddi_hotplug() and
5228 * intel_hdmi_hotplug().
5229 */
5230 if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5231 state = INTEL_HOTPLUG_RETRY;
5232
5233 return state;
5234 }
5235
5236 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5237 {
5238 u8 val;
5239
5240 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5241 return;
5242
5243 if (drm_dp_dpcd_readb(&intel_dp->aux,
5244 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5245 return;
5246
5247 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5248
5249 if (val & DP_AUTOMATED_TEST_REQUEST)
5250 intel_dp_handle_test_request(intel_dp);
5251
5252 if (val & DP_CP_IRQ)
5253 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5254
5255 if (val & DP_SINK_SPECIFIC_IRQ)
5256 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5257 }
5258
5259 /*
5260 * According to DP spec
5261 * 5.1.2:
5262 * 1. Read DPCD
5263 * 2. Configure link according to Receiver Capabilities
5264 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
5265 * 4. Check link status on receipt of hot-plug interrupt
5266 *
5267 * intel_dp_short_pulse - handles short pulse interrupts
5268 * when full detection is not required.
5269 * Returns %true if short pulse is handled and full detection
5270 * is NOT required and %false otherwise.
5271 */
5272 static bool
5273 intel_dp_short_pulse(struct intel_dp *intel_dp)
5274 {
5275 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5276 u8 old_sink_count = intel_dp->sink_count;
5277 bool ret;
5278
5279 /*
5280 * Clearing compliance test variables to allow capturing
5281 * of values for next automated test request.
5282 */
5283 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5284
5285 /*
5286 * Now read the DPCD to see if it's actually running
5287 * If the current value of sink count doesn't match with
5288 * the value that was stored earlier or dpcd read failed
5289 * we need to do full detection
5290 */
5291 ret = intel_dp_get_dpcd(intel_dp);
5292
5293 if ((old_sink_count != intel_dp->sink_count) || !ret) {
5294 /* No need to proceed if we are going to do full detect */
5295 return false;
5296 }
5297
5298 intel_dp_check_service_irq(intel_dp);
5299
5300 /* Handle CEC interrupts, if any */
5301 drm_dp_cec_irq(&intel_dp->aux);
5302
5303 /* defer to the hotplug work for link retraining if needed */
5304 if (intel_dp_needs_link_retrain(intel_dp))
5305 return false;
5306
5307 intel_psr_short_pulse(intel_dp);
5308
5309 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5310 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5311 /* Send a Hotplug Uevent to userspace to start modeset */
5312 drm_kms_helper_hotplug_event(&dev_priv->drm);
5313 }
5314
5315 return true;
5316 }
5317
5318 /* XXX this is probably wrong for multiple downstream ports */
5319 static enum drm_connector_status
5320 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5321 {
5322 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5323 u8 *dpcd = intel_dp->dpcd;
5324 u8 type;
5325
5326 if (WARN_ON(intel_dp_is_edp(intel_dp)))
5327 return connector_status_connected;
5328
5329 if (lspcon->active)
5330 lspcon_resume(lspcon);
5331
5332 if (!intel_dp_get_dpcd(intel_dp))
5333 return connector_status_disconnected;
5334
5335 /* if there's no downstream port, we're done */
5336 if (!drm_dp_is_branch(dpcd))
5337 return connector_status_connected;
5338
5339 /* If we're HPD-aware, SINK_COUNT changes dynamically */
5340 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5341 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5342
5343 return intel_dp->sink_count ?
5344 connector_status_connected : connector_status_disconnected;
5345 }
5346
5347 if (intel_dp_can_mst(intel_dp))
5348 return connector_status_connected;
5349
5350 /* If no HPD, poke DDC gently */
5351 if (drm_probe_ddc(&intel_dp->aux.ddc))
5352 return connector_status_connected;
5353
5354 /* Well we tried, say unknown for unreliable port types */
5355 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5356 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5357 if (type == DP_DS_PORT_TYPE_VGA ||
5358 type == DP_DS_PORT_TYPE_NON_EDID)
5359 return connector_status_unknown;
5360 } else {
5361 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5362 DP_DWN_STRM_PORT_TYPE_MASK;
5363 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5364 type == DP_DWN_STRM_PORT_TYPE_OTHER)
5365 return connector_status_unknown;
5366 }
5367
5368 /* Anything else is out of spec, warn and ignore */
5369 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5370 return connector_status_disconnected;
5371 }
5372
5373 static enum drm_connector_status
5374 edp_detect(struct intel_dp *intel_dp)
5375 {
5376 return connector_status_connected;
5377 }
5378
5379 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5380 {
5381 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5382 u32 bit;
5383
5384 switch (encoder->hpd_pin) {
5385 case HPD_PORT_B:
5386 bit = SDE_PORTB_HOTPLUG;
5387 break;
5388 case HPD_PORT_C:
5389 bit = SDE_PORTC_HOTPLUG;
5390 break;
5391 case HPD_PORT_D:
5392 bit = SDE_PORTD_HOTPLUG;
5393 break;
5394 default:
5395 MISSING_CASE(encoder->hpd_pin);
5396 return false;
5397 }
5398
5399 return I915_READ(SDEISR) & bit;
5400 }
5401
5402 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5403 {
5404 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5405 u32 bit;
5406
5407 switch (encoder->hpd_pin) {
5408 case HPD_PORT_B:
5409 bit = SDE_PORTB_HOTPLUG_CPT;
5410 break;
5411 case HPD_PORT_C:
5412 bit = SDE_PORTC_HOTPLUG_CPT;
5413 break;
5414 case HPD_PORT_D:
5415 bit = SDE_PORTD_HOTPLUG_CPT;
5416 break;
5417 default:
5418 MISSING_CASE(encoder->hpd_pin);
5419 return false;
5420 }
5421
5422 return I915_READ(SDEISR) & bit;
5423 }
5424
5425 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5426 {
5427 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5428 u32 bit;
5429
5430 switch (encoder->hpd_pin) {
5431 case HPD_PORT_A:
5432 bit = SDE_PORTA_HOTPLUG_SPT;
5433 break;
5434 case HPD_PORT_E:
5435 bit = SDE_PORTE_HOTPLUG_SPT;
5436 break;
5437 default:
5438 return cpt_digital_port_connected(encoder);
5439 }
5440
5441 return I915_READ(SDEISR) & bit;
5442 }
5443
5444 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5445 {
5446 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5447 u32 bit;
5448
5449 switch (encoder->hpd_pin) {
5450 case HPD_PORT_B:
5451 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5452 break;
5453 case HPD_PORT_C:
5454 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5455 break;
5456 case HPD_PORT_D:
5457 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5458 break;
5459 default:
5460 MISSING_CASE(encoder->hpd_pin);
5461 return false;
5462 }
5463
5464 return I915_READ(PORT_HOTPLUG_STAT) & bit;
5465 }
5466
5467 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5468 {
5469 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5470 u32 bit;
5471
5472 switch (encoder->hpd_pin) {
5473 case HPD_PORT_B:
5474 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5475 break;
5476 case HPD_PORT_C:
5477 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5478 break;
5479 case HPD_PORT_D:
5480 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5481 break;
5482 default:
5483 MISSING_CASE(encoder->hpd_pin);
5484 return false;
5485 }
5486
5487 return I915_READ(PORT_HOTPLUG_STAT) & bit;
5488 }
5489
5490 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5491 {
5492 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5493
5494 if (encoder->hpd_pin == HPD_PORT_A)
5495 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5496 else
5497 return ibx_digital_port_connected(encoder);
5498 }
5499
5500 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5501 {
5502 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5503
5504 if (encoder->hpd_pin == HPD_PORT_A)
5505 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5506 else
5507 return cpt_digital_port_connected(encoder);
5508 }
5509
5510 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5511 {
5512 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5513
5514 if (encoder->hpd_pin == HPD_PORT_A)
5515 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5516 else
5517 return cpt_digital_port_connected(encoder);
5518 }
5519
5520 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5521 {
5522 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5523
5524 if (encoder->hpd_pin == HPD_PORT_A)
5525 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5526 else
5527 return cpt_digital_port_connected(encoder);
5528 }
5529
5530 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5531 {
5532 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5533 u32 bit;
5534
5535 switch (encoder->hpd_pin) {
5536 case HPD_PORT_A:
5537 bit = BXT_DE_PORT_HP_DDIA;
5538 break;
5539 case HPD_PORT_B:
5540 bit = BXT_DE_PORT_HP_DDIB;
5541 break;
5542 case HPD_PORT_C:
5543 bit = BXT_DE_PORT_HP_DDIC;
5544 break;
5545 default:
5546 MISSING_CASE(encoder->hpd_pin);
5547 return false;
5548 }
5549
5550 return I915_READ(GEN8_DE_PORT_ISR) & bit;
5551 }
5552
5553 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5554 enum phy phy)
5555 {
5556 if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5557 return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5558
5559 return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5560 }
5561
5562 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5563 {
5564 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5565 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5566 enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5567
5568 if (intel_phy_is_combo(dev_priv, phy))
5569 return intel_combo_phy_connected(dev_priv, phy);
5570 else if (intel_phy_is_tc(dev_priv, phy))
5571 return intel_tc_port_connected(dig_port);
5572 else
5573 MISSING_CASE(encoder->hpd_pin);
5574
5575 return false;
5576 }
5577
5578 /*
5579 * intel_digital_port_connected - is the specified port connected?
5580 * @encoder: intel_encoder
5581 *
5582 * In cases where there's a connector physically connected but it can't be used
5583 * by our hardware we also return false, since the rest of the driver should
5584 * pretty much treat the port as disconnected. This is relevant for type-C
5585 * (starting on ICL) where there's ownership involved.
5586 *
5587 * Return %true if port is connected, %false otherwise.
5588 */
5589 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5590 {
5591 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5592
5593 if (HAS_GMCH(dev_priv)) {
5594 if (IS_GM45(dev_priv))
5595 return gm45_digital_port_connected(encoder);
5596 else
5597 return g4x_digital_port_connected(encoder);
5598 }
5599
5600 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
5601 return icp_digital_port_connected(encoder);
5602 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5603 return spt_digital_port_connected(encoder);
5604 else if (IS_GEN9_LP(dev_priv))
5605 return bxt_digital_port_connected(encoder);
5606 else if (IS_GEN(dev_priv, 8))
5607 return bdw_digital_port_connected(encoder);
5608 else if (IS_GEN(dev_priv, 7))
5609 return ivb_digital_port_connected(encoder);
5610 else if (IS_GEN(dev_priv, 6))
5611 return snb_digital_port_connected(encoder);
5612 else if (IS_GEN(dev_priv, 5))
5613 return ilk_digital_port_connected(encoder);
5614
5615 MISSING_CASE(INTEL_GEN(dev_priv));
5616 return false;
5617 }
5618
5619 bool intel_digital_port_connected(struct intel_encoder *encoder)
5620 {
5621 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5622 bool is_connected = false;
5623 intel_wakeref_t wakeref;
5624
5625 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5626 is_connected = __intel_digital_port_connected(encoder);
5627
5628 return is_connected;
5629 }
5630
5631 static struct edid *
5632 intel_dp_get_edid(struct intel_dp *intel_dp)
5633 {
5634 struct intel_connector *intel_connector = intel_dp->attached_connector;
5635
5636 /* use cached edid if we have one */
5637 if (intel_connector->edid) {
5638 /* invalid edid */
5639 if (IS_ERR(intel_connector->edid))
5640 return NULL;
5641
5642 return drm_edid_duplicate(intel_connector->edid);
5643 } else
5644 return drm_get_edid(&intel_connector->base,
5645 &intel_dp->aux.ddc);
5646 }
5647
5648 static void
5649 intel_dp_set_edid(struct intel_dp *intel_dp)
5650 {
5651 struct intel_connector *intel_connector = intel_dp->attached_connector;
5652 struct edid *edid;
5653
5654 intel_dp_unset_edid(intel_dp);
5655 edid = intel_dp_get_edid(intel_dp);
5656 intel_connector->detect_edid = edid;
5657
5658 intel_dp->has_audio = drm_detect_monitor_audio(edid);
5659 drm_dp_cec_set_edid(&intel_dp->aux, edid);
5660 }
5661
5662 static void
5663 intel_dp_unset_edid(struct intel_dp *intel_dp)
5664 {
5665 struct intel_connector *intel_connector = intel_dp->attached_connector;
5666
5667 drm_dp_cec_unset_edid(&intel_dp->aux);
5668 kfree(intel_connector->detect_edid);
5669 intel_connector->detect_edid = NULL;
5670
5671 intel_dp->has_audio = false;
5672 }
5673
5674 static int
5675 intel_dp_detect(struct drm_connector *connector,
5676 struct drm_modeset_acquire_ctx *ctx,
5677 bool force)
5678 {
5679 struct drm_i915_private *dev_priv = to_i915(connector->dev);
5680 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5681 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5682 struct intel_encoder *encoder = &dig_port->base;
5683 enum drm_connector_status status;
5684
5685 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5686 connector->base.id, connector->name);
5687 WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5688
5689 /* Can't disconnect eDP */
5690 if (intel_dp_is_edp(intel_dp))
5691 status = edp_detect(intel_dp);
5692 else if (intel_digital_port_connected(encoder))
5693 status = intel_dp_detect_dpcd(intel_dp);
5694 else
5695 status = connector_status_disconnected;
5696
5697 if (status == connector_status_disconnected) {
5698 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5699 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5700
5701 if (intel_dp->is_mst) {
5702 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5703 intel_dp->is_mst,
5704 intel_dp->mst_mgr.mst_state);
5705 intel_dp->is_mst = false;
5706 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5707 intel_dp->is_mst);
5708 }
5709
5710 goto out;
5711 }
5712
5713 if (intel_dp->reset_link_params) {
5714 /* Initial max link lane count */
5715 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5716
5717 /* Initial max link rate */
5718 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5719
5720 intel_dp->reset_link_params = false;
5721 }
5722
5723 intel_dp_print_rates(intel_dp);
5724
5725 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5726 if (INTEL_GEN(dev_priv) >= 11)
5727 intel_dp_get_dsc_sink_cap(intel_dp);
5728
5729 intel_dp_configure_mst(intel_dp);
5730
5731 if (intel_dp->is_mst) {
5732 /*
5733 * If we are in MST mode then this connector
5734 * won't appear connected or have anything
5735 * with EDID on it
5736 */
5737 status = connector_status_disconnected;
5738 goto out;
5739 }
5740
5741 /*
5742 * Some external monitors do not signal loss of link synchronization
5743 * with an IRQ_HPD, so force a link status check.
5744 */
5745 if (!intel_dp_is_edp(intel_dp)) {
5746 int ret;
5747
5748 ret = intel_dp_retrain_link(encoder, ctx);
5749 if (ret)
5750 return ret;
5751 }
5752
5753 /*
5754 * Clearing NACK and defer counts to get their exact values
5755 * while reading EDID which are required by Compliance tests
5756 * 4.2.2.4 and 4.2.2.5
5757 */
5758 intel_dp->aux.i2c_nack_count = 0;
5759 intel_dp->aux.i2c_defer_count = 0;
5760
5761 intel_dp_set_edid(intel_dp);
5762 if (intel_dp_is_edp(intel_dp) ||
5763 to_intel_connector(connector)->detect_edid)
5764 status = connector_status_connected;
5765
5766 intel_dp_check_service_irq(intel_dp);
5767
5768 out:
5769 if (status != connector_status_connected && !intel_dp->is_mst)
5770 intel_dp_unset_edid(intel_dp);
5771
5772 /*
5773 * Make sure the refs for power wells enabled during detect are
5774 * dropped to avoid a new detect cycle triggered by HPD polling.
5775 */
5776 intel_display_power_flush_work(dev_priv);
5777
5778 return status;
5779 }
5780
5781 static void
5782 intel_dp_force(struct drm_connector *connector)
5783 {
5784 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5785 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5786 struct intel_encoder *intel_encoder = &dig_port->base;
5787 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5788 enum intel_display_power_domain aux_domain =
5789 intel_aux_power_domain(dig_port);
5790 intel_wakeref_t wakeref;
5791
5792 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5793 connector->base.id, connector->name);
5794 intel_dp_unset_edid(intel_dp);
5795
5796 if (connector->status != connector_status_connected)
5797 return;
5798
5799 wakeref = intel_display_power_get(dev_priv, aux_domain);
5800
5801 intel_dp_set_edid(intel_dp);
5802
5803 intel_display_power_put(dev_priv, aux_domain, wakeref);
5804 }
5805
5806 static int intel_dp_get_modes(struct drm_connector *connector)
5807 {
5808 struct intel_connector *intel_connector = to_intel_connector(connector);
5809 struct edid *edid;
5810
5811 edid = intel_connector->detect_edid;
5812 if (edid) {
5813 int ret = intel_connector_update_modes(connector, edid);
5814 if (ret)
5815 return ret;
5816 }
5817
5818 /* if eDP has no EDID, fall back to fixed mode */
5819 if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
5820 intel_connector->panel.fixed_mode) {
5821 struct drm_display_mode *mode;
5822
5823 mode = drm_mode_duplicate(connector->dev,
5824 intel_connector->panel.fixed_mode);
5825 if (mode) {
5826 drm_mode_probed_add(connector, mode);
5827 return 1;
5828 }
5829 }
5830
5831 return 0;
5832 }
5833
5834 static int
5835 intel_dp_connector_register(struct drm_connector *connector)
5836 {
5837 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5838 int ret;
5839
5840 ret = intel_connector_register(connector);
5841 if (ret)
5842 return ret;
5843
5844 i915_debugfs_connector_add(connector);
5845
5846 #ifdef __NetBSD__
5847 DRM_DEBUG_KMS("registering %s bus for %s\n",
5848 intel_dp->aux.name, device_xname(connector->kdev));
5849 #else
5850 DRM_DEBUG_KMS("registering %s bus for %s\n",
5851 intel_dp->aux.name, connector->kdev->kobj.name);
5852 #endif
5853
5854 intel_dp->aux.dev = connector->kdev;
5855 ret = drm_dp_aux_register(&intel_dp->aux);
5856 if (!ret)
5857 drm_dp_cec_register_connector(&intel_dp->aux, connector);
5858 return ret;
5859 }
5860
5861 static void
5862 intel_dp_connector_unregister(struct drm_connector *connector)
5863 {
5864 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5865
5866 drm_dp_cec_unregister_connector(&intel_dp->aux);
5867 drm_dp_aux_unregister(&intel_dp->aux);
5868 intel_connector_unregister(connector);
5869 }
5870
5871 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5872 {
5873 struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
5874 struct intel_dp *intel_dp = &intel_dig_port->dp;
5875
5876 intel_dp_mst_encoder_cleanup(intel_dig_port);
5877 if (intel_dp_is_edp(intel_dp)) {
5878 intel_wakeref_t wakeref;
5879
5880 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5881 /*
5882 * vdd might still be enabled do to the delayed vdd off.
5883 * Make sure vdd is actually turned off here.
5884 */
5885 with_pps_lock(intel_dp, wakeref)
5886 edp_panel_vdd_off_sync(intel_dp);
5887
5888 if (intel_dp->edp_notifier.notifier_call) {
5889 unregister_reboot_notifier(&intel_dp->edp_notifier);
5890 intel_dp->edp_notifier.notifier_call = NULL;
5891 }
5892 }
5893
5894 intel_dp_aux_fini(intel_dp);
5895 }
5896
5897 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5898 {
5899 intel_dp_encoder_flush_work(encoder);
5900
5901 drm_encoder_cleanup(encoder);
5902 kfree(enc_to_dig_port(to_intel_encoder(encoder)));
5903 }
5904
5905 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5906 {
5907 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
5908 intel_wakeref_t wakeref;
5909
5910 if (!intel_dp_is_edp(intel_dp))
5911 return;
5912
5913 /*
5914 * vdd might still be enabled do to the delayed vdd off.
5915 * Make sure vdd is actually turned off here.
5916 */
5917 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5918 with_pps_lock(intel_dp, wakeref)
5919 edp_panel_vdd_off_sync(intel_dp);
5920 }
5921
5922 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5923 {
5924 long ret;
5925
5926 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5927 unsigned long irqflags;
5928 spin_lock_irqsave(&hdcp->cp_irq_lock, irqflags);
5929 DRM_SPIN_TIMED_WAIT_UNTIL(ret, &hdcp->cp_irq_queue,
5930 &hdcp->cp_irq_lock,
5931 msecs_to_jiffies(timeout),
5932 C);
5933 if (!ret)
5934 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5935 spin_unlock_irqrestore(&hdcp->cp_irq_lock, irqflags);
5936 }
5937
5938 static
5939 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5940 u8 *an)
5941 {
5942 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
5943 static const struct drm_dp_aux_msg msg = {
5944 .request = DP_AUX_NATIVE_WRITE,
5945 .address = DP_AUX_HDCP_AKSV,
5946 .size = DRM_HDCP_KSV_LEN,
5947 };
5948 u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5949 ssize_t dpcd_ret;
5950 int ret;
5951
5952 /* Output An first, that's easy */
5953 dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5954 an, DRM_HDCP_AN_LEN);
5955 if (dpcd_ret != DRM_HDCP_AN_LEN) {
5956 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5957 dpcd_ret);
5958 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5959 }
5960
5961 /*
5962 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5963 * order to get it on the wire, we need to create the AUX header as if
5964 * we were writing the data, and then tickle the hardware to output the
5965 * data once the header is sent out.
5966 */
5967 intel_dp_aux_header(txbuf, &msg);
5968
5969 ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5970 rxbuf, sizeof(rxbuf),
5971 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5972 if (ret < 0) {
5973 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5974 return ret;
5975 } else if (ret == 0) {
5976 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5977 return -EIO;
5978 }
5979
5980 reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5981 if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5982 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5983 reply);
5984 return -EIO;
5985 }
5986 return 0;
5987 }
5988
5989 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5990 u8 *bksv)
5991 {
5992 ssize_t ret;
5993 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5994 DRM_HDCP_KSV_LEN);
5995 if (ret != DRM_HDCP_KSV_LEN) {
5996 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5997 return ret >= 0 ? -EIO : ret;
5998 }
5999 return 0;
6000 }
6001
6002 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6003 u8 *bstatus)
6004 {
6005 ssize_t ret;
6006 /*
6007 * For some reason the HDMI and DP HDCP specs call this register
6008 * definition by different names. In the HDMI spec, it's called BSTATUS,
6009 * but in DP it's called BINFO.
6010 */
6011 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6012 bstatus, DRM_HDCP_BSTATUS_LEN);
6013 if (ret != DRM_HDCP_BSTATUS_LEN) {
6014 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6015 return ret >= 0 ? -EIO : ret;
6016 }
6017 return 0;
6018 }
6019
6020 static
6021 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6022 u8 *bcaps)
6023 {
6024 ssize_t ret;
6025
6026 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6027 bcaps, 1);
6028 if (ret != 1) {
6029 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
6030 return ret >= 0 ? -EIO : ret;
6031 }
6032
6033 return 0;
6034 }
6035
6036 static
6037 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6038 bool *repeater_present)
6039 {
6040 ssize_t ret;
6041 u8 bcaps;
6042
6043 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6044 if (ret)
6045 return ret;
6046
6047 *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6048 return 0;
6049 }
6050
6051 static
6052 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6053 u8 *ri_prime)
6054 {
6055 ssize_t ret;
6056 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6057 ri_prime, DRM_HDCP_RI_LEN);
6058 if (ret != DRM_HDCP_RI_LEN) {
6059 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6060 return ret >= 0 ? -EIO : ret;
6061 }
6062 return 0;
6063 }
6064
6065 static
6066 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6067 bool *ksv_ready)
6068 {
6069 ssize_t ret;
6070 u8 bstatus;
6071 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6072 &bstatus, 1);
6073 if (ret != 1) {
6074 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6075 return ret >= 0 ? -EIO : ret;
6076 }
6077 *ksv_ready = bstatus & DP_BSTATUS_READY;
6078 return 0;
6079 }
6080
6081 static
6082 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6083 int num_downstream, u8 *ksv_fifo)
6084 {
6085 ssize_t ret;
6086 int i;
6087
6088 /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6089 for (i = 0; i < num_downstream; i += 3) {
6090 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6091 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6092 DP_AUX_HDCP_KSV_FIFO,
6093 ksv_fifo + i * DRM_HDCP_KSV_LEN,
6094 len);
6095 if (ret != len) {
6096 DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6097 i, ret);
6098 return ret >= 0 ? -EIO : ret;
6099 }
6100 }
6101 return 0;
6102 }
6103
6104 static
6105 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6106 int i, u32 *part)
6107 {
6108 ssize_t ret;
6109
6110 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6111 return -EINVAL;
6112
6113 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6114 DP_AUX_HDCP_V_PRIME(i), part,
6115 DRM_HDCP_V_PRIME_PART_LEN);
6116 if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6117 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6118 return ret >= 0 ? -EIO : ret;
6119 }
6120 return 0;
6121 }
6122
6123 static
6124 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6125 bool enable)
6126 {
6127 /* Not used for single stream DisplayPort setups */
6128 return 0;
6129 }
6130
6131 static
6132 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6133 {
6134 ssize_t ret;
6135 u8 bstatus;
6136
6137 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6138 &bstatus, 1);
6139 if (ret != 1) {
6140 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6141 return false;
6142 }
6143
6144 return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6145 }
6146
6147 static
6148 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6149 bool *hdcp_capable)
6150 {
6151 ssize_t ret;
6152 u8 bcaps;
6153
6154 ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6155 if (ret)
6156 return ret;
6157
6158 *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6159 return 0;
6160 }
6161
6162 struct hdcp2_dp_errata_stream_type {
6163 u8 msg_id;
6164 u8 stream_type;
6165 } __packed;
6166
6167 struct hdcp2_dp_msg_data {
6168 u8 msg_id;
6169 u32 offset;
6170 bool msg_detectable;
6171 u32 timeout;
6172 u32 timeout2; /* Added for non_paired situation */
6173 };
6174
6175 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6176 { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6177 { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6178 false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6179 { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6180 false, 0, 0 },
6181 { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6182 false, 0, 0 },
6183 { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6184 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6185 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6186 { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6187 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6188 HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6189 { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6190 { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6191 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6192 { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6193 0, 0 },
6194 { HDCP_2_2_REP_SEND_RECVID_LIST,
6195 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6196 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6197 { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6198 0, 0 },
6199 { HDCP_2_2_REP_STREAM_MANAGE,
6200 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6201 0, 0 },
6202 { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6203 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6204 /* local define to shovel this through the write_2_2 interface */
6205 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50
6206 { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6207 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6208 0, 0 },
6209 };
6210
6211 static inline
6212 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6213 u8 *rx_status)
6214 {
6215 ssize_t ret;
6216
6217 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6218 DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6219 HDCP_2_2_DP_RXSTATUS_LEN);
6220 if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6221 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6222 return ret >= 0 ? -EIO : ret;
6223 }
6224
6225 return 0;
6226 }
6227
6228 static
6229 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6230 u8 msg_id, bool *msg_ready)
6231 {
6232 u8 rx_status;
6233 int ret;
6234
6235 *msg_ready = false;
6236 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6237 if (ret < 0)
6238 return ret;
6239
6240 switch (msg_id) {
6241 case HDCP_2_2_AKE_SEND_HPRIME:
6242 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6243 *msg_ready = true;
6244 break;
6245 case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6246 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6247 *msg_ready = true;
6248 break;
6249 case HDCP_2_2_REP_SEND_RECVID_LIST:
6250 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6251 *msg_ready = true;
6252 break;
6253 default:
6254 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6255 return -EINVAL;
6256 }
6257
6258 return 0;
6259 }
6260
6261 static ssize_t
6262 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6263 const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6264 {
6265 struct intel_dp *dp = &intel_dig_port->dp;
6266 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6267 u8 msg_id = hdcp2_msg_data->msg_id;
6268 int ret, timeout;
6269 bool msg_ready = false;
6270
6271 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6272 timeout = hdcp2_msg_data->timeout2;
6273 else
6274 timeout = hdcp2_msg_data->timeout;
6275
6276 /*
6277 * There is no way to detect the CERT, LPRIME and STREAM_READY
6278 * availability. So Wait for timeout and read the msg.
6279 */
6280 if (!hdcp2_msg_data->msg_detectable) {
6281 mdelay(timeout);
6282 ret = 0;
6283 } else {
6284 /*
6285 * As we want to check the msg availability at timeout, Ignoring
6286 * the timeout at wait for CP_IRQ.
6287 */
6288 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6289 ret = hdcp2_detect_msg_availability(intel_dig_port,
6290 msg_id, &msg_ready);
6291 if (!msg_ready)
6292 ret = -ETIMEDOUT;
6293 }
6294
6295 if (ret)
6296 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6297 hdcp2_msg_data->msg_id, ret, timeout);
6298
6299 return ret;
6300 }
6301
6302 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6303 {
6304 int i;
6305
6306 for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6307 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6308 return &hdcp2_dp_msg_data[i];
6309
6310 return NULL;
6311 }
6312
6313 static
6314 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6315 void *buf, size_t size)
6316 {
6317 struct intel_dp *dp = &intel_dig_port->dp;
6318 struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6319 unsigned int offset;
6320 u8 *byte = buf;
6321 ssize_t ret, bytes_to_write, len;
6322 const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6323
6324 hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6325 if (!hdcp2_msg_data)
6326 return -EINVAL;
6327
6328 offset = hdcp2_msg_data->offset;
6329
6330 /* No msg_id in DP HDCP2.2 msgs */
6331 bytes_to_write = size - 1;
6332 byte++;
6333
6334 hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6335
6336 while (bytes_to_write) {
6337 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6338 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6339
6340 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6341 offset, (void *)byte, len);
6342 if (ret < 0)
6343 return ret;
6344
6345 bytes_to_write -= ret;
6346 byte += ret;
6347 offset += ret;
6348 }
6349
6350 return size;
6351 }
6352
6353 static
6354 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6355 {
6356 u8 rx_info[HDCP_2_2_RXINFO_LEN];
6357 u32 dev_cnt;
6358 ssize_t ret;
6359
6360 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6361 DP_HDCP_2_2_REG_RXINFO_OFFSET,
6362 (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6363 if (ret != HDCP_2_2_RXINFO_LEN)
6364 return ret >= 0 ? -EIO : ret;
6365
6366 dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6367 HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6368
6369 if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6370 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6371
6372 ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6373 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6374 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6375
6376 return ret;
6377 }
6378
6379 static
6380 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6381 u8 msg_id, void *buf, size_t size)
6382 {
6383 unsigned int offset;
6384 u8 *byte = buf;
6385 ssize_t ret, bytes_to_recv, len;
6386 const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6387
6388 hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6389 if (!hdcp2_msg_data)
6390 return -EINVAL;
6391 offset = hdcp2_msg_data->offset;
6392
6393 ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6394 if (ret < 0)
6395 return ret;
6396
6397 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6398 ret = get_receiver_id_list_size(intel_dig_port);
6399 if (ret < 0)
6400 return ret;
6401
6402 size = ret;
6403 }
6404 bytes_to_recv = size - 1;
6405
6406 /* DP adaptation msgs has no msg_id */
6407 byte++;
6408
6409 while (bytes_to_recv) {
6410 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6411 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6412
6413 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6414 (void *)byte, len);
6415 if (ret < 0) {
6416 DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6417 return ret;
6418 }
6419
6420 bytes_to_recv -= ret;
6421 byte += ret;
6422 offset += ret;
6423 }
6424 byte = buf;
6425 *byte = msg_id;
6426
6427 return size;
6428 }
6429
6430 static
6431 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6432 bool is_repeater, u8 content_type)
6433 {
6434 struct hdcp2_dp_errata_stream_type stream_type_msg;
6435
6436 if (is_repeater)
6437 return 0;
6438
6439 /*
6440 * Errata for DP: As Stream type is used for encryption, Receiver
6441 * should be communicated with stream type for the decryption of the
6442 * content.
6443 * Repeater will be communicated with stream type as a part of it's
6444 * auth later in time.
6445 */
6446 stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6447 stream_type_msg.stream_type = content_type;
6448
6449 return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6450 sizeof(stream_type_msg));
6451 }
6452
6453 static
6454 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6455 {
6456 u8 rx_status;
6457 int ret;
6458
6459 ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6460 if (ret)
6461 return ret;
6462
6463 if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6464 ret = HDCP_REAUTH_REQUEST;
6465 else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6466 ret = HDCP_LINK_INTEGRITY_FAILURE;
6467 else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6468 ret = HDCP_TOPOLOGY_CHANGE;
6469
6470 return ret;
6471 }
6472
6473 static
6474 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6475 bool *capable)
6476 {
6477 u8 rx_caps[3];
6478 int ret;
6479
6480 *capable = false;
6481 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6482 DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6483 rx_caps, HDCP_2_2_RXCAPS_LEN);
6484 if (ret != HDCP_2_2_RXCAPS_LEN)
6485 return ret >= 0 ? -EIO : ret;
6486
6487 if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6488 HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6489 *capable = true;
6490
6491 return 0;
6492 }
6493
6494 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6495 .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6496 .read_bksv = intel_dp_hdcp_read_bksv,
6497 .read_bstatus = intel_dp_hdcp_read_bstatus,
6498 .repeater_present = intel_dp_hdcp_repeater_present,
6499 .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6500 .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6501 .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6502 .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6503 .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6504 .check_link = intel_dp_hdcp_check_link,
6505 .hdcp_capable = intel_dp_hdcp_capable,
6506 .write_2_2_msg = intel_dp_hdcp2_write_msg,
6507 .read_2_2_msg = intel_dp_hdcp2_read_msg,
6508 .config_stream_type = intel_dp_hdcp2_config_stream_type,
6509 .check_2_2_link = intel_dp_hdcp2_check_link,
6510 .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6511 .protocol = HDCP_PROTOCOL_DP,
6512 };
6513
6514 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6515 {
6516 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6517 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6518
6519 lockdep_assert_held(&dev_priv->pps_mutex);
6520
6521 if (!edp_have_panel_vdd(intel_dp))
6522 return;
6523
6524 /*
6525 * The VDD bit needs a power domain reference, so if the bit is
6526 * already enabled when we boot or resume, grab this reference and
6527 * schedule a vdd off, so we don't hold on to the reference
6528 * indefinitely.
6529 */
6530 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6531 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6532
6533 edp_panel_vdd_schedule_off(intel_dp);
6534 }
6535
6536 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6537 {
6538 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6539 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6540 enum pipe pipe;
6541
6542 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6543 encoder->port, &pipe))
6544 return pipe;
6545
6546 return INVALID_PIPE;
6547 }
6548
6549 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6550 {
6551 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6552 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6553 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6554 intel_wakeref_t wakeref;
6555
6556 if (!HAS_DDI(dev_priv))
6557 intel_dp->DP = I915_READ(intel_dp->output_reg);
6558
6559 if (lspcon->active)
6560 lspcon_resume(lspcon);
6561
6562 intel_dp->reset_link_params = true;
6563
6564 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6565 !intel_dp_is_edp(intel_dp))
6566 return;
6567
6568 with_pps_lock(intel_dp, wakeref) {
6569 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6570 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6571
6572 if (intel_dp_is_edp(intel_dp)) {
6573 /*
6574 * Reinit the power sequencer, in case BIOS did
6575 * something nasty with it.
6576 */
6577 intel_dp_pps_init(intel_dp);
6578 intel_edp_panel_vdd_sanitize(intel_dp);
6579 }
6580 }
6581 }
6582
6583 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6584 .force = intel_dp_force,
6585 .fill_modes = drm_helper_probe_single_connector_modes,
6586 .atomic_get_property = intel_digital_connector_atomic_get_property,
6587 .atomic_set_property = intel_digital_connector_atomic_set_property,
6588 .late_register = intel_dp_connector_register,
6589 .early_unregister = intel_dp_connector_unregister,
6590 .destroy = intel_connector_destroy,
6591 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6592 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6593 };
6594
6595 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6596 .detect_ctx = intel_dp_detect,
6597 .get_modes = intel_dp_get_modes,
6598 .mode_valid = intel_dp_mode_valid,
6599 .atomic_check = intel_digital_connector_atomic_check,
6600 };
6601
6602 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6603 .reset = intel_dp_encoder_reset,
6604 .destroy = intel_dp_encoder_destroy,
6605 };
6606
6607 enum irqreturn
6608 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6609 {
6610 struct intel_dp *intel_dp = &intel_dig_port->dp;
6611
6612 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6613 /*
6614 * vdd off can generate a long pulse on eDP which
6615 * would require vdd on to handle it, and thus we
6616 * would end up in an endless cycle of
6617 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6618 */
6619 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6620 intel_dig_port->base.base.base.id,
6621 intel_dig_port->base.base.name);
6622 return IRQ_HANDLED;
6623 }
6624
6625 DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6626 intel_dig_port->base.base.base.id,
6627 intel_dig_port->base.base.name,
6628 long_hpd ? "long" : "short");
6629
6630 if (long_hpd) {
6631 intel_dp->reset_link_params = true;
6632 return IRQ_NONE;
6633 }
6634
6635 if (intel_dp->is_mst) {
6636 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6637 /*
6638 * If we were in MST mode, and device is not
6639 * there, get out of MST mode
6640 */
6641 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6642 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6643 intel_dp->is_mst = false;
6644 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6645 intel_dp->is_mst);
6646
6647 return IRQ_NONE;
6648 }
6649 }
6650
6651 if (!intel_dp->is_mst) {
6652 bool handled;
6653
6654 handled = intel_dp_short_pulse(intel_dp);
6655
6656 if (!handled)
6657 return IRQ_NONE;
6658 }
6659
6660 return IRQ_HANDLED;
6661 }
6662
6663 /* check the VBT to see whether the eDP is on another port */
6664 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6665 {
6666 /*
6667 * eDP not supported on g4x. so bail out early just
6668 * for a bit extra safety in case the VBT is bonkers.
6669 */
6670 if (INTEL_GEN(dev_priv) < 5)
6671 return false;
6672
6673 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6674 return true;
6675
6676 return intel_bios_is_port_edp(dev_priv, port);
6677 }
6678
6679 static void
6680 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6681 {
6682 struct drm_i915_private *dev_priv = to_i915(connector->dev);
6683 enum port port = dp_to_dig_port(intel_dp)->base.port;
6684
6685 if (!IS_G4X(dev_priv) && port != PORT_A)
6686 intel_attach_force_audio_property(connector);
6687
6688 intel_attach_broadcast_rgb_property(connector);
6689 if (HAS_GMCH(dev_priv))
6690 drm_connector_attach_max_bpc_property(connector, 6, 10);
6691 else if (INTEL_GEN(dev_priv) >= 5)
6692 drm_connector_attach_max_bpc_property(connector, 6, 12);
6693
6694 intel_attach_colorspace_property(connector);
6695
6696 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6697 drm_object_attach_property(&connector->base,
6698 connector->dev->mode_config.hdr_output_metadata_property,
6699 0);
6700
6701 if (intel_dp_is_edp(intel_dp)) {
6702 u32 allowed_scalers;
6703
6704 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6705 if (!HAS_GMCH(dev_priv))
6706 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6707
6708 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6709
6710 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6711
6712 }
6713 }
6714
6715 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6716 {
6717 intel_dp->panel_power_off_time = ktime_get_boottime();
6718 intel_dp->last_power_on = jiffies;
6719 intel_dp->last_backlight_off = jiffies;
6720 }
6721
6722 static void
6723 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6724 {
6725 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6726 u32 pp_on, pp_off, pp_ctl;
6727 struct pps_registers regs;
6728
6729 intel_pps_get_registers(intel_dp, ®s);
6730
6731 pp_ctl = ilk_get_pp_control(intel_dp);
6732
6733 /* Ensure PPS is unlocked */
6734 if (!HAS_DDI(dev_priv))
6735 I915_WRITE(regs.pp_ctrl, pp_ctl);
6736
6737 pp_on = I915_READ(regs.pp_on);
6738 pp_off = I915_READ(regs.pp_off);
6739
6740 /* Pull timing values out of registers */
6741 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6742 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6743 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6744 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6745
6746 if (i915_mmio_reg_valid(regs.pp_div)) {
6747 u32 pp_div;
6748
6749 pp_div = I915_READ(regs.pp_div);
6750
6751 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6752 } else {
6753 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6754 }
6755 }
6756
6757 static void
6758 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6759 {
6760 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6761 state_name,
6762 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6763 }
6764
6765 static void
6766 intel_pps_verify_state(struct intel_dp *intel_dp)
6767 {
6768 struct edp_power_seq hw;
6769 struct edp_power_seq *sw = &intel_dp->pps_delays;
6770
6771 intel_pps_readout_hw_state(intel_dp, &hw);
6772
6773 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6774 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6775 DRM_ERROR("PPS state mismatch\n");
6776 intel_pps_dump_state("sw", sw);
6777 intel_pps_dump_state("hw", &hw);
6778 }
6779 }
6780
6781 static void
6782 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6783 {
6784 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6785 struct edp_power_seq cur, vbt, spec,
6786 *final = &intel_dp->pps_delays;
6787
6788 lockdep_assert_held(&dev_priv->pps_mutex);
6789
6790 /* already initialized? */
6791 if (final->t11_t12 != 0)
6792 return;
6793
6794 intel_pps_readout_hw_state(intel_dp, &cur);
6795
6796 intel_pps_dump_state("cur", &cur);
6797
6798 vbt = dev_priv->vbt.edp.pps;
6799 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6800 * of 500ms appears to be too short. Ocassionally the panel
6801 * just fails to power back on. Increasing the delay to 800ms
6802 * seems sufficient to avoid this problem.
6803 */
6804 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6805 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6806 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6807 vbt.t11_t12);
6808 }
6809 /* T11_T12 delay is special and actually in units of 100ms, but zero
6810 * based in the hw (so we need to add 100 ms). But the sw vbt
6811 * table multiplies it with 1000 to make it in units of 100usec,
6812 * too. */
6813 vbt.t11_t12 += 100 * 10;
6814
6815 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6816 * our hw here, which are all in 100usec. */
6817 spec.t1_t3 = 210 * 10;
6818 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6819 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6820 spec.t10 = 500 * 10;
6821 /* This one is special and actually in units of 100ms, but zero
6822 * based in the hw (so we need to add 100 ms). But the sw vbt
6823 * table multiplies it with 1000 to make it in units of 100usec,
6824 * too. */
6825 spec.t11_t12 = (510 + 100) * 10;
6826
6827 intel_pps_dump_state("vbt", &vbt);
6828
6829 /* Use the max of the register settings and vbt. If both are
6830 * unset, fall back to the spec limits. */
6831 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
6832 spec.field : \
6833 max(cur.field, vbt.field))
6834 assign_final(t1_t3);
6835 assign_final(t8);
6836 assign_final(t9);
6837 assign_final(t10);
6838 assign_final(t11_t12);
6839 #undef assign_final
6840
6841 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
6842 intel_dp->panel_power_up_delay = get_delay(t1_t3);
6843 intel_dp->backlight_on_delay = get_delay(t8);
6844 intel_dp->backlight_off_delay = get_delay(t9);
6845 intel_dp->panel_power_down_delay = get_delay(t10);
6846 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6847 #undef get_delay
6848
6849 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6850 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6851 intel_dp->panel_power_cycle_delay);
6852
6853 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6854 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6855
6856 /*
6857 * We override the HW backlight delays to 1 because we do manual waits
6858 * on them. For T8, even BSpec recommends doing it. For T9, if we
6859 * don't do this, we'll end up waiting for the backlight off delay
6860 * twice: once when we do the manual sleep, and once when we disable
6861 * the panel and wait for the PP_STATUS bit to become zero.
6862 */
6863 final->t8 = 1;
6864 final->t9 = 1;
6865
6866 /*
6867 * HW has only a 100msec granularity for t11_t12 so round it up
6868 * accordingly.
6869 */
6870 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6871 }
6872
6873 static void
6874 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6875 bool force_disable_vdd)
6876 {
6877 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6878 u32 pp_on, pp_off, port_sel = 0;
6879 int div = dev_priv->rawclk_freq / 1000;
6880 struct pps_registers regs;
6881 enum port port = dp_to_dig_port(intel_dp)->base.port;
6882 const struct edp_power_seq *seq = &intel_dp->pps_delays;
6883
6884 lockdep_assert_held(&dev_priv->pps_mutex);
6885
6886 intel_pps_get_registers(intel_dp, ®s);
6887
6888 /*
6889 * On some VLV machines the BIOS can leave the VDD
6890 * enabled even on power sequencers which aren't
6891 * hooked up to any port. This would mess up the
6892 * power domain tracking the first time we pick
6893 * one of these power sequencers for use since
6894 * edp_panel_vdd_on() would notice that the VDD was
6895 * already on and therefore wouldn't grab the power
6896 * domain reference. Disable VDD first to avoid this.
6897 * This also avoids spuriously turning the VDD on as
6898 * soon as the new power sequencer gets initialized.
6899 */
6900 if (force_disable_vdd) {
6901 u32 pp = ilk_get_pp_control(intel_dp);
6902
6903 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6904
6905 if (pp & EDP_FORCE_VDD)
6906 DRM_DEBUG_KMS("VDD already on, disabling first\n");
6907
6908 pp &= ~EDP_FORCE_VDD;
6909
6910 I915_WRITE(regs.pp_ctrl, pp);
6911 }
6912
6913 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6914 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6915 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6916 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6917
6918 /* Haswell doesn't have any port selection bits for the panel
6919 * power sequencer any more. */
6920 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6921 port_sel = PANEL_PORT_SELECT_VLV(port);
6922 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6923 switch (port) {
6924 case PORT_A:
6925 port_sel = PANEL_PORT_SELECT_DPA;
6926 break;
6927 case PORT_C:
6928 port_sel = PANEL_PORT_SELECT_DPC;
6929 break;
6930 case PORT_D:
6931 port_sel = PANEL_PORT_SELECT_DPD;
6932 break;
6933 default:
6934 MISSING_CASE(port);
6935 break;
6936 }
6937 }
6938
6939 pp_on |= port_sel;
6940
6941 I915_WRITE(regs.pp_on, pp_on);
6942 I915_WRITE(regs.pp_off, pp_off);
6943
6944 /*
6945 * Compute the divisor for the pp clock, simply match the Bspec formula.
6946 */
6947 if (i915_mmio_reg_valid(regs.pp_div)) {
6948 I915_WRITE(regs.pp_div,
6949 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6950 REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6951 } else {
6952 u32 pp_ctl;
6953
6954 pp_ctl = I915_READ(regs.pp_ctrl);
6955 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6956 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6957 I915_WRITE(regs.pp_ctrl, pp_ctl);
6958 }
6959
6960 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6961 I915_READ(regs.pp_on),
6962 I915_READ(regs.pp_off),
6963 i915_mmio_reg_valid(regs.pp_div) ?
6964 I915_READ(regs.pp_div) :
6965 (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6966 }
6967
6968 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6969 {
6970 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6971
6972 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6973 vlv_initial_power_sequencer_setup(intel_dp);
6974 } else {
6975 intel_dp_init_panel_power_sequencer(intel_dp);
6976 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6977 }
6978 }
6979
6980 /**
6981 * intel_dp_set_drrs_state - program registers for RR switch to take effect
6982 * @dev_priv: i915 device
6983 * @crtc_state: a pointer to the active intel_crtc_state
6984 * @refresh_rate: RR to be programmed
6985 *
6986 * This function gets called when refresh rate (RR) has to be changed from
6987 * one frequency to another. Switches can be between high and low RR
6988 * supported by the panel or to any other RR based on media playback (in
6989 * this case, RR value needs to be passed from user space).
6990 *
6991 * The caller of this function needs to take a lock on dev_priv->drrs.
6992 */
6993 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6994 const struct intel_crtc_state *crtc_state,
6995 int refresh_rate)
6996 {
6997 struct intel_dp *intel_dp = dev_priv->drrs.dp;
6998 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
6999 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7000
7001 if (refresh_rate <= 0) {
7002 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
7003 return;
7004 }
7005
7006 if (intel_dp == NULL) {
7007 DRM_DEBUG_KMS("DRRS not supported.\n");
7008 return;
7009 }
7010
7011 if (!intel_crtc) {
7012 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
7013 return;
7014 }
7015
7016 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7017 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
7018 return;
7019 }
7020
7021 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7022 refresh_rate)
7023 index = DRRS_LOW_RR;
7024
7025 if (index == dev_priv->drrs.refresh_rate_type) {
7026 DRM_DEBUG_KMS(
7027 "DRRS requested for previously set RR...ignoring\n");
7028 return;
7029 }
7030
7031 if (!crtc_state->hw.active) {
7032 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
7033 return;
7034 }
7035
7036 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7037 switch (index) {
7038 case DRRS_HIGH_RR:
7039 intel_dp_set_m_n(crtc_state, M1_N1);
7040 break;
7041 case DRRS_LOW_RR:
7042 intel_dp_set_m_n(crtc_state, M2_N2);
7043 break;
7044 case DRRS_MAX_RR:
7045 default:
7046 DRM_ERROR("Unsupported refreshrate type\n");
7047 }
7048 } else if (INTEL_GEN(dev_priv) > 6) {
7049 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7050 u32 val;
7051
7052 val = I915_READ(reg);
7053 if (index > DRRS_HIGH_RR) {
7054 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7055 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7056 else
7057 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7058 } else {
7059 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7060 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7061 else
7062 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7063 }
7064 I915_WRITE(reg, val);
7065 }
7066
7067 dev_priv->drrs.refresh_rate_type = index;
7068
7069 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
7070 }
7071
7072 /**
7073 * intel_edp_drrs_enable - init drrs struct if supported
7074 * @intel_dp: DP struct
7075 * @crtc_state: A pointer to the active crtc state.
7076 *
7077 * Initializes frontbuffer_bits and drrs.dp
7078 */
7079 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7080 const struct intel_crtc_state *crtc_state)
7081 {
7082 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7083
7084 if (!crtc_state->has_drrs) {
7085 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
7086 return;
7087 }
7088
7089 if (dev_priv->psr.enabled) {
7090 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
7091 return;
7092 }
7093
7094 mutex_lock(&dev_priv->drrs.mutex);
7095 if (dev_priv->drrs.dp) {
7096 DRM_DEBUG_KMS("DRRS already enabled\n");
7097 goto unlock;
7098 }
7099
7100 dev_priv->drrs.busy_frontbuffer_bits = 0;
7101
7102 dev_priv->drrs.dp = intel_dp;
7103
7104 unlock:
7105 mutex_unlock(&dev_priv->drrs.mutex);
7106 }
7107
7108 /**
7109 * intel_edp_drrs_disable - Disable DRRS
7110 * @intel_dp: DP struct
7111 * @old_crtc_state: Pointer to old crtc_state.
7112 *
7113 */
7114 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7115 const struct intel_crtc_state *old_crtc_state)
7116 {
7117 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7118
7119 if (!old_crtc_state->has_drrs)
7120 return;
7121
7122 mutex_lock(&dev_priv->drrs.mutex);
7123 if (!dev_priv->drrs.dp) {
7124 mutex_unlock(&dev_priv->drrs.mutex);
7125 return;
7126 }
7127
7128 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7129 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7130 intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7131
7132 dev_priv->drrs.dp = NULL;
7133 mutex_unlock(&dev_priv->drrs.mutex);
7134
7135 cancel_delayed_work_sync(&dev_priv->drrs.work);
7136 }
7137
7138 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7139 {
7140 struct drm_i915_private *dev_priv =
7141 container_of(work, typeof(*dev_priv), drrs.work.work);
7142 struct intel_dp *intel_dp;
7143
7144 mutex_lock(&dev_priv->drrs.mutex);
7145
7146 intel_dp = dev_priv->drrs.dp;
7147
7148 if (!intel_dp)
7149 goto unlock;
7150
7151 /*
7152 * The delayed work can race with an invalidate hence we need to
7153 * recheck.
7154 */
7155
7156 if (dev_priv->drrs.busy_frontbuffer_bits)
7157 goto unlock;
7158
7159 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7160 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7161
7162 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7163 intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7164 }
7165
7166 unlock:
7167 mutex_unlock(&dev_priv->drrs.mutex);
7168 }
7169
7170 /**
7171 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7172 * @dev_priv: i915 device
7173 * @frontbuffer_bits: frontbuffer plane tracking bits
7174 *
7175 * This function gets called everytime rendering on the given planes start.
7176 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7177 *
7178 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7179 */
7180 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7181 unsigned int frontbuffer_bits)
7182 {
7183 struct drm_crtc *crtc;
7184 enum pipe pipe;
7185
7186 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7187 return;
7188
7189 cancel_delayed_work(&dev_priv->drrs.work);
7190
7191 mutex_lock(&dev_priv->drrs.mutex);
7192 if (!dev_priv->drrs.dp) {
7193 mutex_unlock(&dev_priv->drrs.mutex);
7194 return;
7195 }
7196
7197 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7198 pipe = to_intel_crtc(crtc)->pipe;
7199
7200 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7201 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7202
7203 /* invalidate means busy screen hence upclock */
7204 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7205 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7206 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7207
7208 mutex_unlock(&dev_priv->drrs.mutex);
7209 }
7210
7211 /**
7212 * intel_edp_drrs_flush - Restart Idleness DRRS
7213 * @dev_priv: i915 device
7214 * @frontbuffer_bits: frontbuffer plane tracking bits
7215 *
7216 * This function gets called every time rendering on the given planes has
7217 * completed or flip on a crtc is completed. So DRRS should be upclocked
7218 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7219 * if no other planes are dirty.
7220 *
7221 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7222 */
7223 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7224 unsigned int frontbuffer_bits)
7225 {
7226 struct drm_crtc *crtc;
7227 enum pipe pipe;
7228
7229 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7230 return;
7231
7232 cancel_delayed_work(&dev_priv->drrs.work);
7233
7234 mutex_lock(&dev_priv->drrs.mutex);
7235 if (!dev_priv->drrs.dp) {
7236 mutex_unlock(&dev_priv->drrs.mutex);
7237 return;
7238 }
7239
7240 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7241 pipe = to_intel_crtc(crtc)->pipe;
7242
7243 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7244 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7245
7246 /* flush means busy screen hence upclock */
7247 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7248 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7249 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7250
7251 /*
7252 * flush also means no more activity hence schedule downclock, if all
7253 * other fbs are quiescent too
7254 */
7255 if (!dev_priv->drrs.busy_frontbuffer_bits)
7256 schedule_delayed_work(&dev_priv->drrs.work,
7257 msecs_to_jiffies(1000));
7258 mutex_unlock(&dev_priv->drrs.mutex);
7259 }
7260
7261 /**
7262 * DOC: Display Refresh Rate Switching (DRRS)
7263 *
7264 * Display Refresh Rate Switching (DRRS) is a power conservation feature
7265 * which enables swtching between low and high refresh rates,
7266 * dynamically, based on the usage scenario. This feature is applicable
7267 * for internal panels.
7268 *
7269 * Indication that the panel supports DRRS is given by the panel EDID, which
7270 * would list multiple refresh rates for one resolution.
7271 *
7272 * DRRS is of 2 types - static and seamless.
7273 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7274 * (may appear as a blink on screen) and is used in dock-undock scenario.
7275 * Seamless DRRS involves changing RR without any visual effect to the user
7276 * and can be used during normal system usage. This is done by programming
7277 * certain registers.
7278 *
7279 * Support for static/seamless DRRS may be indicated in the VBT based on
7280 * inputs from the panel spec.
7281 *
7282 * DRRS saves power by switching to low RR based on usage scenarios.
7283 *
7284 * The implementation is based on frontbuffer tracking implementation. When
7285 * there is a disturbance on the screen triggered by user activity or a periodic
7286 * system activity, DRRS is disabled (RR is changed to high RR). When there is
7287 * no movement on screen, after a timeout of 1 second, a switch to low RR is
7288 * made.
7289 *
7290 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7291 * and intel_edp_drrs_flush() are called.
7292 *
7293 * DRRS can be further extended to support other internal panels and also
7294 * the scenario of video playback wherein RR is set based on the rate
7295 * requested by userspace.
7296 */
7297
7298 /**
7299 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7300 * @connector: eDP connector
7301 * @fixed_mode: preferred mode of panel
7302 *
7303 * This function is called only once at driver load to initialize basic
7304 * DRRS stuff.
7305 *
7306 * Returns:
7307 * Downclock mode if panel supports it, else return NULL.
7308 * DRRS support is determined by the presence of downclock mode (apart
7309 * from VBT setting).
7310 */
7311 static struct drm_display_mode *
7312 intel_dp_drrs_init(struct intel_connector *connector,
7313 struct drm_display_mode *fixed_mode)
7314 {
7315 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7316 struct drm_display_mode *downclock_mode = NULL;
7317
7318 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7319
7320 if (INTEL_GEN(dev_priv) <= 6) {
7321 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7322 return NULL;
7323 }
7324
7325 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7326 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7327 return NULL;
7328 }
7329
7330 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7331 if (!downclock_mode) {
7332 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7333 return NULL;
7334 }
7335
7336 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7337
7338 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7339 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7340 return downclock_mode;
7341 }
7342
7343 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7344 struct intel_connector *intel_connector)
7345 {
7346 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7347 struct drm_device *dev = &dev_priv->drm;
7348 struct drm_connector *connector = &intel_connector->base;
7349 struct drm_display_mode *fixed_mode = NULL;
7350 struct drm_display_mode *downclock_mode = NULL;
7351 bool has_dpcd;
7352 enum pipe pipe = INVALID_PIPE;
7353 intel_wakeref_t wakeref;
7354 struct edid *edid;
7355
7356 if (!intel_dp_is_edp(intel_dp))
7357 return true;
7358
7359 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7360
7361 /*
7362 * On IBX/CPT we may get here with LVDS already registered. Since the
7363 * driver uses the only internal power sequencer available for both
7364 * eDP and LVDS bail out early in this case to prevent interfering
7365 * with an already powered-on LVDS power sequencer.
7366 */
7367 if (intel_get_lvds_encoder(dev_priv)) {
7368 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7369 DRM_INFO("LVDS was detected, not registering eDP\n");
7370
7371 return false;
7372 }
7373
7374 with_pps_lock(intel_dp, wakeref) {
7375 intel_dp_init_panel_power_timestamps(intel_dp);
7376 intel_dp_pps_init(intel_dp);
7377 intel_edp_panel_vdd_sanitize(intel_dp);
7378 }
7379
7380 /* Cache DPCD and EDID for edp. */
7381 has_dpcd = intel_edp_init_dpcd(intel_dp);
7382
7383 if (!has_dpcd) {
7384 /* if this fails, presume the device is a ghost */
7385 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7386 goto out_vdd_off;
7387 }
7388
7389 mutex_lock(&dev->mode_config.mutex);
7390 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7391 if (edid) {
7392 if (drm_add_edid_modes(connector, edid)) {
7393 drm_connector_update_edid_property(connector,
7394 edid);
7395 } else {
7396 kfree(edid);
7397 edid = ERR_PTR(-EINVAL);
7398 }
7399 } else {
7400 edid = ERR_PTR(-ENOENT);
7401 }
7402 intel_connector->edid = edid;
7403
7404 fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7405 if (fixed_mode)
7406 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7407
7408 /* fallback to VBT if available for eDP */
7409 if (!fixed_mode)
7410 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7411 mutex_unlock(&dev->mode_config.mutex);
7412
7413 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7414 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7415 register_reboot_notifier(&intel_dp->edp_notifier);
7416
7417 /*
7418 * Figure out the current pipe for the initial backlight setup.
7419 * If the current pipe isn't valid, try the PPS pipe, and if that
7420 * fails just assume pipe A.
7421 */
7422 pipe = vlv_active_pipe(intel_dp);
7423
7424 if (pipe != PIPE_A && pipe != PIPE_B)
7425 pipe = intel_dp->pps_pipe;
7426
7427 if (pipe != PIPE_A && pipe != PIPE_B)
7428 pipe = PIPE_A;
7429
7430 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7431 pipe_name(pipe));
7432 }
7433
7434 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7435 intel_connector->panel.backlight.power = intel_edp_backlight_power;
7436 intel_panel_setup_backlight(connector, pipe);
7437
7438 if (fixed_mode)
7439 drm_connector_init_panel_orientation_property(
7440 connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7441
7442 return true;
7443
7444 out_vdd_off:
7445 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7446 /*
7447 * vdd might still be enabled do to the delayed vdd off.
7448 * Make sure vdd is actually turned off here.
7449 */
7450 with_pps_lock(intel_dp, wakeref)
7451 edp_panel_vdd_off_sync(intel_dp);
7452
7453 return false;
7454 }
7455
7456 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7457 {
7458 struct intel_connector *intel_connector;
7459 struct drm_connector *connector;
7460
7461 intel_connector = container_of(work, typeof(*intel_connector),
7462 modeset_retry_work);
7463 connector = &intel_connector->base;
7464 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7465 connector->name);
7466
7467 /* Grab the locks before changing connector property*/
7468 mutex_lock(&connector->dev->mode_config.mutex);
7469 /* Set connector link status to BAD and send a Uevent to notify
7470 * userspace to do a modeset.
7471 */
7472 drm_connector_set_link_status_property(connector,
7473 DRM_MODE_LINK_STATUS_BAD);
7474 mutex_unlock(&connector->dev->mode_config.mutex);
7475 /* Send Hotplug uevent so userspace can reprobe */
7476 drm_kms_helper_hotplug_event(connector->dev);
7477 }
7478
7479 bool
7480 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7481 struct intel_connector *intel_connector)
7482 {
7483 struct drm_connector *connector = &intel_connector->base;
7484 struct intel_dp *intel_dp = &intel_dig_port->dp;
7485 struct intel_encoder *intel_encoder = &intel_dig_port->base;
7486 struct drm_device *dev = intel_encoder->base.dev;
7487 struct drm_i915_private *dev_priv = to_i915(dev);
7488 enum port port = intel_encoder->port;
7489 enum phy phy = intel_port_to_phy(dev_priv, port);
7490 int type;
7491
7492 /* Initialize the work for modeset in case of link train failure */
7493 INIT_WORK(&intel_connector->modeset_retry_work,
7494 intel_dp_modeset_retry_work_fn);
7495
7496 if (WARN(intel_dig_port->max_lanes < 1,
7497 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7498 intel_dig_port->max_lanes, intel_encoder->base.base.id,
7499 intel_encoder->base.name))
7500 return false;
7501
7502 intel_dp_set_source_rates(intel_dp);
7503
7504 intel_dp->reset_link_params = true;
7505 intel_dp->pps_pipe = INVALID_PIPE;
7506 intel_dp->active_pipe = INVALID_PIPE;
7507
7508 /* Preserve the current hw state. */
7509 intel_dp->DP = I915_READ(intel_dp->output_reg);
7510 intel_dp->attached_connector = intel_connector;
7511
7512 if (intel_dp_is_port_edp(dev_priv, port)) {
7513 /*
7514 * Currently we don't support eDP on TypeC ports, although in
7515 * theory it could work on TypeC legacy ports.
7516 */
7517 WARN_ON(intel_phy_is_tc(dev_priv, phy));
7518 type = DRM_MODE_CONNECTOR_eDP;
7519 } else {
7520 type = DRM_MODE_CONNECTOR_DisplayPort;
7521 }
7522
7523 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7524 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7525
7526 /*
7527 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7528 * for DP the encoder type can be set by the caller to
7529 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7530 */
7531 if (type == DRM_MODE_CONNECTOR_eDP)
7532 intel_encoder->type = INTEL_OUTPUT_EDP;
7533
7534 /* eDP only on port B and/or C on vlv/chv */
7535 if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7536 intel_dp_is_edp(intel_dp) &&
7537 port != PORT_B && port != PORT_C))
7538 return false;
7539
7540 DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7541 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7542 intel_encoder->base.base.id, intel_encoder->base.name);
7543
7544 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7545 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7546
7547 if (!HAS_GMCH(dev_priv))
7548 connector->interlace_allowed = true;
7549 connector->doublescan_allowed = 0;
7550
7551 if (INTEL_GEN(dev_priv) >= 11)
7552 connector->ycbcr_420_allowed = true;
7553
7554 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7555
7556 intel_dp_aux_init(intel_dp);
7557
7558 intel_connector_attach_encoder(intel_connector, intel_encoder);
7559
7560 if (HAS_DDI(dev_priv))
7561 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7562 else
7563 intel_connector->get_hw_state = intel_connector_get_hw_state;
7564
7565 /* init MST on ports that can support it */
7566 intel_dp_mst_encoder_init(intel_dig_port,
7567 intel_connector->base.base.id);
7568
7569 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7570 intel_dp_aux_fini(intel_dp);
7571 intel_dp_mst_encoder_cleanup(intel_dig_port);
7572 goto fail;
7573 }
7574
7575 intel_dp_add_properties(intel_dp, connector);
7576
7577 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7578 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7579 if (ret)
7580 DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7581 }
7582
7583 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7584 * 0xd. Failure to do so will result in spurious interrupts being
7585 * generated on the port when a cable is not attached.
7586 */
7587 if (IS_G45(dev_priv)) {
7588 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7589 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7590 }
7591
7592 return true;
7593
7594 fail:
7595 drm_connector_cleanup(connector);
7596
7597 return false;
7598 }
7599
7600 bool intel_dp_init(struct drm_i915_private *dev_priv,
7601 i915_reg_t output_reg,
7602 enum port port)
7603 {
7604 struct intel_digital_port *intel_dig_port;
7605 struct intel_encoder *intel_encoder;
7606 struct drm_encoder *encoder;
7607 struct intel_connector *intel_connector;
7608
7609 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7610 if (!intel_dig_port)
7611 return false;
7612
7613 intel_connector = intel_connector_alloc();
7614 if (!intel_connector)
7615 goto err_connector_alloc;
7616
7617 intel_encoder = &intel_dig_port->base;
7618 encoder = &intel_encoder->base;
7619
7620 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7621 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7622 "DP %c", port_name(port)))
7623 goto err_encoder_init;
7624
7625 intel_encoder->hotplug = intel_dp_hotplug;
7626 intel_encoder->compute_config = intel_dp_compute_config;
7627 intel_encoder->get_hw_state = intel_dp_get_hw_state;
7628 intel_encoder->get_config = intel_dp_get_config;
7629 intel_encoder->update_pipe = intel_panel_update_backlight;
7630 intel_encoder->suspend = intel_dp_encoder_suspend;
7631 if (IS_CHERRYVIEW(dev_priv)) {
7632 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7633 intel_encoder->pre_enable = chv_pre_enable_dp;
7634 intel_encoder->enable = vlv_enable_dp;
7635 intel_encoder->disable = vlv_disable_dp;
7636 intel_encoder->post_disable = chv_post_disable_dp;
7637 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7638 } else if (IS_VALLEYVIEW(dev_priv)) {
7639 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7640 intel_encoder->pre_enable = vlv_pre_enable_dp;
7641 intel_encoder->enable = vlv_enable_dp;
7642 intel_encoder->disable = vlv_disable_dp;
7643 intel_encoder->post_disable = vlv_post_disable_dp;
7644 } else {
7645 intel_encoder->pre_enable = g4x_pre_enable_dp;
7646 intel_encoder->enable = g4x_enable_dp;
7647 intel_encoder->disable = g4x_disable_dp;
7648 intel_encoder->post_disable = g4x_post_disable_dp;
7649 }
7650
7651 intel_dig_port->dp.output_reg = output_reg;
7652 intel_dig_port->max_lanes = 4;
7653
7654 intel_encoder->type = INTEL_OUTPUT_DP;
7655 intel_encoder->power_domain = intel_port_to_power_domain(port);
7656 if (IS_CHERRYVIEW(dev_priv)) {
7657 if (port == PORT_D)
7658 intel_encoder->pipe_mask = BIT(PIPE_C);
7659 else
7660 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7661 } else {
7662 intel_encoder->pipe_mask = ~0;
7663 }
7664 intel_encoder->cloneable = 0;
7665 intel_encoder->port = port;
7666
7667 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7668
7669 if (port != PORT_A)
7670 intel_infoframe_init(intel_dig_port);
7671
7672 intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7673 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7674 goto err_init_connector;
7675
7676 return true;
7677
7678 err_init_connector:
7679 drm_encoder_cleanup(encoder);
7680 err_encoder_init:
7681 kfree(intel_connector);
7682 err_connector_alloc:
7683 kfree(intel_dig_port);
7684 return false;
7685 }
7686
7687 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7688 {
7689 struct intel_encoder *encoder;
7690
7691 for_each_intel_encoder(&dev_priv->drm, encoder) {
7692 struct intel_dp *intel_dp;
7693
7694 if (encoder->type != INTEL_OUTPUT_DDI)
7695 continue;
7696
7697 intel_dp = enc_to_intel_dp(encoder);
7698
7699 if (!intel_dp->can_mst)
7700 continue;
7701
7702 if (intel_dp->is_mst)
7703 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7704 }
7705 }
7706
7707 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7708 {
7709 struct intel_encoder *encoder;
7710
7711 for_each_intel_encoder(&dev_priv->drm, encoder) {
7712 struct intel_dp *intel_dp;
7713 int ret;
7714
7715 if (encoder->type != INTEL_OUTPUT_DDI)
7716 continue;
7717
7718 intel_dp = enc_to_intel_dp(encoder);
7719
7720 if (!intel_dp->can_mst)
7721 continue;
7722
7723 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7724 true);
7725 if (ret) {
7726 intel_dp->is_mst = false;
7727 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7728 false);
7729 }
7730 }
7731 }
7732