intel_ggtt.c revision 1.1.1.1 1 /* $NetBSD: intel_ggtt.c,v 1.1.1.1 2021/12/18 20:15:32 riastradh Exp $ */
2
3 // SPDX-License-Identifier: MIT
4 /*
5 * Copyright 2020 Intel Corporation
6 */
7
8 #include <sys/cdefs.h>
9 __KERNEL_RCSID(0, "$NetBSD: intel_ggtt.c,v 1.1.1.1 2021/12/18 20:15:32 riastradh Exp $");
10
11 #include <linux/stop_machine.h>
12
13 #include <asm/set_memory.h>
14 #include <asm/smp.h>
15
16 #include "intel_gt.h"
17 #include "i915_drv.h"
18 #include "i915_scatterlist.h"
19 #include "i915_vgpu.h"
20
21 #include "intel_gtt.h"
22
23 static int
24 i915_get_ggtt_vma_pages(struct i915_vma *vma);
25
26 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
27 unsigned long color,
28 u64 *start,
29 u64 *end)
30 {
31 if (i915_node_color_differs(node, color))
32 *start += I915_GTT_PAGE_SIZE;
33
34 /*
35 * Also leave a space between the unallocated reserved node after the
36 * GTT and any objects within the GTT, i.e. we use the color adjustment
37 * to insert a guard page to prevent prefetches crossing over the
38 * GTT boundary.
39 */
40 node = list_next_entry(node, node_list);
41 if (node->color != color)
42 *end -= I915_GTT_PAGE_SIZE;
43 }
44
45 static int ggtt_init_hw(struct i915_ggtt *ggtt)
46 {
47 struct drm_i915_private *i915 = ggtt->vm.i915;
48
49 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
50
51 ggtt->vm.is_ggtt = true;
52
53 /* Only VLV supports read-only GGTT mappings */
54 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
55
56 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
57 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
58
59 if (ggtt->mappable_end) {
60 if (!io_mapping_init_wc(&ggtt->iomap,
61 ggtt->gmadr.start,
62 ggtt->mappable_end)) {
63 ggtt->vm.cleanup(&ggtt->vm);
64 return -EIO;
65 }
66
67 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
68 ggtt->mappable_end);
69 }
70
71 i915_ggtt_init_fences(ggtt);
72
73 return 0;
74 }
75
76 /**
77 * i915_ggtt_init_hw - Initialize GGTT hardware
78 * @i915: i915 device
79 */
80 int i915_ggtt_init_hw(struct drm_i915_private *i915)
81 {
82 int ret;
83
84 stash_init(&i915->mm.wc_stash);
85
86 /*
87 * Note that we use page colouring to enforce a guard page at the
88 * end of the address space. This is required as the CS may prefetch
89 * beyond the end of the batch buffer, across the page boundary,
90 * and beyond the end of the GTT if we do not provide a guard.
91 */
92 ret = ggtt_init_hw(&i915->ggtt);
93 if (ret)
94 return ret;
95
96 return 0;
97 }
98
99 /*
100 * Certain Gen5 chipsets require require idling the GPU before
101 * unmapping anything from the GTT when VT-d is enabled.
102 */
103 static bool needs_idle_maps(struct drm_i915_private *i915)
104 {
105 /*
106 * Query intel_iommu to see if we need the workaround. Presumably that
107 * was loaded first.
108 */
109 return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
110 }
111
112 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
113 {
114 struct drm_i915_private *i915 = ggtt->vm.i915;
115
116 /*
117 * Don't bother messing with faults pre GEN6 as we have little
118 * documentation supporting that it's a good idea.
119 */
120 if (INTEL_GEN(i915) < 6)
121 return;
122
123 intel_gt_check_and_clear_faults(ggtt->vm.gt);
124
125 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
126
127 ggtt->invalidate(ggtt);
128 }
129
130 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
131 {
132 ggtt_suspend_mappings(&i915->ggtt);
133 }
134
135 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
136 {
137 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
138
139 spin_lock_irq(&uncore->lock);
140 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
141 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
142 spin_unlock_irq(&uncore->lock);
143 }
144
145 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
146 {
147 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
148
149 /*
150 * Note that as an uncached mmio write, this will flush the
151 * WCB of the writes into the GGTT before it triggers the invalidate.
152 */
153 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
154 }
155
156 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
157 {
158 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
159 struct drm_i915_private *i915 = ggtt->vm.i915;
160
161 gen8_ggtt_invalidate(ggtt);
162
163 if (INTEL_GEN(i915) >= 12)
164 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
165 GEN12_GUC_TLB_INV_CR_INVALIDATE);
166 else
167 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
168 }
169
170 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
171 {
172 intel_gtt_chipset_flush();
173 }
174
175 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
176 {
177 writeq(pte, addr);
178 }
179
180 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
181 dma_addr_t addr,
182 u64 offset,
183 enum i915_cache_level level,
184 u32 unused)
185 {
186 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
187 gen8_pte_t __iomem *pte =
188 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
189
190 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
191
192 ggtt->invalidate(ggtt);
193 }
194
195 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
196 struct i915_vma *vma,
197 enum i915_cache_level level,
198 u32 flags)
199 {
200 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
201 struct sgt_iter sgt_iter;
202 gen8_pte_t __iomem *gtt_entries;
203 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
204 dma_addr_t addr;
205
206 /*
207 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
208 * not to allow the user to override access to a read only page.
209 */
210
211 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
212 gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
213 for_each_sgt_daddr(addr, sgt_iter, vma->pages)
214 gen8_set_pte(gtt_entries++, pte_encode | addr);
215
216 /*
217 * We want to flush the TLBs only after we're certain all the PTE
218 * updates have finished.
219 */
220 ggtt->invalidate(ggtt);
221 }
222
223 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
224 dma_addr_t addr,
225 u64 offset,
226 enum i915_cache_level level,
227 u32 flags)
228 {
229 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
230 gen6_pte_t __iomem *pte =
231 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
232
233 iowrite32(vm->pte_encode(addr, level, flags), pte);
234
235 ggtt->invalidate(ggtt);
236 }
237
238 /*
239 * Binds an object into the global gtt with the specified cache level.
240 * The object will be accessible to the GPU via commands whose operands
241 * reference offsets within the global GTT as well as accessible by the GPU
242 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
243 */
244 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
245 struct i915_vma *vma,
246 enum i915_cache_level level,
247 u32 flags)
248 {
249 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
250 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
251 unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
252 struct sgt_iter iter;
253 dma_addr_t addr;
254
255 for_each_sgt_daddr(addr, iter, vma->pages)
256 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
257
258 /*
259 * We want to flush the TLBs only after we're certain all the PTE
260 * updates have finished.
261 */
262 ggtt->invalidate(ggtt);
263 }
264
265 static void nop_clear_range(struct i915_address_space *vm,
266 u64 start, u64 length)
267 {
268 }
269
270 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
271 u64 start, u64 length)
272 {
273 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
274 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
275 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
276 const gen8_pte_t scratch_pte = vm->scratch[0].encode;
277 gen8_pte_t __iomem *gtt_base =
278 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
279 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
280 int i;
281
282 if (WARN(num_entries > max_entries,
283 "First entry = %d; Num entries = %d (max=%d)\n",
284 first_entry, num_entries, max_entries))
285 num_entries = max_entries;
286
287 for (i = 0; i < num_entries; i++)
288 gen8_set_pte(>t_base[i], scratch_pte);
289 }
290
291 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
292 {
293 /*
294 * Make sure the internal GAM fifo has been cleared of all GTT
295 * writes before exiting stop_machine(). This guarantees that
296 * any aperture accesses waiting to start in another process
297 * cannot back up behind the GTT writes causing a hang.
298 * The register can be any arbitrary GAM register.
299 */
300 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
301 }
302
303 struct insert_page {
304 struct i915_address_space *vm;
305 dma_addr_t addr;
306 u64 offset;
307 enum i915_cache_level level;
308 };
309
310 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
311 {
312 struct insert_page *arg = _arg;
313
314 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
315 bxt_vtd_ggtt_wa(arg->vm);
316
317 return 0;
318 }
319
320 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
321 dma_addr_t addr,
322 u64 offset,
323 enum i915_cache_level level,
324 u32 unused)
325 {
326 struct insert_page arg = { vm, addr, offset, level };
327
328 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
329 }
330
331 struct insert_entries {
332 struct i915_address_space *vm;
333 struct i915_vma *vma;
334 enum i915_cache_level level;
335 u32 flags;
336 };
337
338 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
339 {
340 struct insert_entries *arg = _arg;
341
342 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
343 bxt_vtd_ggtt_wa(arg->vm);
344
345 return 0;
346 }
347
348 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
349 struct i915_vma *vma,
350 enum i915_cache_level level,
351 u32 flags)
352 {
353 struct insert_entries arg = { vm, vma, level, flags };
354
355 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
356 }
357
358 struct clear_range {
359 struct i915_address_space *vm;
360 u64 start;
361 u64 length;
362 };
363
364 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
365 {
366 struct clear_range *arg = _arg;
367
368 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
369 bxt_vtd_ggtt_wa(arg->vm);
370
371 return 0;
372 }
373
374 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
375 u64 start,
376 u64 length)
377 {
378 struct clear_range arg = { vm, start, length };
379
380 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
381 }
382
383 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
384 u64 start, u64 length)
385 {
386 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
387 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
388 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
389 gen6_pte_t scratch_pte, __iomem *gtt_base =
390 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
391 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
392 int i;
393
394 if (WARN(num_entries > max_entries,
395 "First entry = %d; Num entries = %d (max=%d)\n",
396 first_entry, num_entries, max_entries))
397 num_entries = max_entries;
398
399 scratch_pte = vm->scratch[0].encode;
400 for (i = 0; i < num_entries; i++)
401 iowrite32(scratch_pte, >t_base[i]);
402 }
403
404 static void i915_ggtt_insert_page(struct i915_address_space *vm,
405 dma_addr_t addr,
406 u64 offset,
407 enum i915_cache_level cache_level,
408 u32 unused)
409 {
410 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
411 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
412
413 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
414 }
415
416 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
417 struct i915_vma *vma,
418 enum i915_cache_level cache_level,
419 u32 unused)
420 {
421 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
422 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
423
424 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
425 flags);
426 }
427
428 static void i915_ggtt_clear_range(struct i915_address_space *vm,
429 u64 start, u64 length)
430 {
431 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
432 }
433
434 static int ggtt_bind_vma(struct i915_vma *vma,
435 enum i915_cache_level cache_level,
436 u32 flags)
437 {
438 struct drm_i915_gem_object *obj = vma->obj;
439 u32 pte_flags;
440
441 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
442 pte_flags = 0;
443 if (i915_gem_object_is_readonly(obj))
444 pte_flags |= PTE_READ_ONLY;
445
446 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
447
448 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
449
450 /*
451 * Without aliasing PPGTT there's no difference between
452 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
453 * upgrade to both bound if we bind either to avoid double-binding.
454 */
455 atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
456
457 return 0;
458 }
459
460 static void ggtt_unbind_vma(struct i915_vma *vma)
461 {
462 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
463 }
464
465 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
466 {
467 u64 size;
468 int ret;
469
470 if (!USES_GUC(ggtt->vm.i915))
471 return 0;
472
473 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
474 size = ggtt->vm.total - GUC_GGTT_TOP;
475
476 ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
477 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
478 PIN_NOEVICT);
479 if (ret)
480 DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
481
482 return ret;
483 }
484
485 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
486 {
487 if (drm_mm_node_allocated(&ggtt->uc_fw))
488 drm_mm_remove_node(&ggtt->uc_fw);
489 }
490
491 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
492 {
493 ggtt_release_guc_top(ggtt);
494 if (drm_mm_node_allocated(&ggtt->error_capture))
495 drm_mm_remove_node(&ggtt->error_capture);
496 mutex_destroy(&ggtt->error_mutex);
497 }
498
499 static int init_ggtt(struct i915_ggtt *ggtt)
500 {
501 /*
502 * Let GEM Manage all of the aperture.
503 *
504 * However, leave one page at the end still bound to the scratch page.
505 * There are a number of places where the hardware apparently prefetches
506 * past the end of the object, and we've seen multiple hangs with the
507 * GPU head pointer stuck in a batchbuffer bound at the last page of the
508 * aperture. One page should be enough to keep any prefetching inside
509 * of the aperture.
510 */
511 unsigned long hole_start, hole_end;
512 struct drm_mm_node *entry;
513 int ret;
514
515 /*
516 * GuC requires all resources that we're sharing with it to be placed in
517 * non-WOPCM memory. If GuC is not present or not in use we still need a
518 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
519 * why.
520 */
521 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
522 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
523
524 ret = intel_vgt_balloon(ggtt);
525 if (ret)
526 return ret;
527
528 mutex_init(&ggtt->error_mutex);
529 if (ggtt->mappable_end) {
530 /* Reserve a mappable slot for our lockless error capture */
531 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm,
532 &ggtt->error_capture,
533 PAGE_SIZE, 0,
534 I915_COLOR_UNEVICTABLE,
535 0, ggtt->mappable_end,
536 DRM_MM_INSERT_LOW);
537 if (ret)
538 return ret;
539 }
540
541 /*
542 * The upper portion of the GuC address space has a sizeable hole
543 * (several MB) that is inaccessible by GuC. Reserve this range within
544 * GGTT as it can comfortably hold GuC/HuC firmware images.
545 */
546 ret = ggtt_reserve_guc_top(ggtt);
547 if (ret)
548 goto err;
549
550 /* Clear any non-preallocated blocks */
551 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
552 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
553 hole_start, hole_end);
554 ggtt->vm.clear_range(&ggtt->vm, hole_start,
555 hole_end - hole_start);
556 }
557
558 /* And finally clear the reserved guard page */
559 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
560
561 return 0;
562
563 err:
564 cleanup_init_ggtt(ggtt);
565 return ret;
566 }
567
568 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
569 enum i915_cache_level cache_level,
570 u32 flags)
571 {
572 u32 pte_flags;
573 int ret;
574
575 /* Currently applicable only to VLV */
576 pte_flags = 0;
577 if (i915_gem_object_is_readonly(vma->obj))
578 pte_flags |= PTE_READ_ONLY;
579
580 if (flags & I915_VMA_LOCAL_BIND) {
581 struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
582
583 if (flags & I915_VMA_ALLOC) {
584 ret = alias->vm.allocate_va_range(&alias->vm,
585 vma->node.start,
586 vma->size);
587 if (ret)
588 return ret;
589
590 set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
591 }
592
593 GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
594 __i915_vma_flags(vma)));
595 alias->vm.insert_entries(&alias->vm, vma,
596 cache_level, pte_flags);
597 }
598
599 if (flags & I915_VMA_GLOBAL_BIND)
600 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
601
602 return 0;
603 }
604
605 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
606 {
607 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
608 struct i915_address_space *vm = vma->vm;
609
610 vm->clear_range(vm, vma->node.start, vma->size);
611 }
612
613 if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
614 struct i915_address_space *vm =
615 &i915_vm_to_ggtt(vma->vm)->alias->vm;
616
617 vm->clear_range(vm, vma->node.start, vma->size);
618 }
619 }
620
621 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
622 {
623 struct i915_ppgtt *ppgtt;
624 int err;
625
626 ppgtt = i915_ppgtt_create(ggtt->vm.gt);
627 if (IS_ERR(ppgtt))
628 return PTR_ERR(ppgtt);
629
630 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
631 err = -ENODEV;
632 goto err_ppgtt;
633 }
634
635 /*
636 * Note we only pre-allocate as far as the end of the global
637 * GTT. On 48b / 4-level page-tables, the difference is very,
638 * very significant! We have to preallocate as GVT/vgpu does
639 * not like the page directory disappearing.
640 */
641 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
642 if (err)
643 goto err_ppgtt;
644
645 ggtt->alias = ppgtt;
646 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
647
648 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
649 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
650
651 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
652 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
653
654 return 0;
655
656 err_ppgtt:
657 i915_vm_put(&ppgtt->vm);
658 return err;
659 }
660
661 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
662 {
663 struct i915_ppgtt *ppgtt;
664
665 ppgtt = fetch_and_zero(&ggtt->alias);
666 if (!ppgtt)
667 return;
668
669 i915_vm_put(&ppgtt->vm);
670
671 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
672 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
673 }
674
675 int i915_init_ggtt(struct drm_i915_private *i915)
676 {
677 int ret;
678
679 ret = init_ggtt(&i915->ggtt);
680 if (ret)
681 return ret;
682
683 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
684 ret = init_aliasing_ppgtt(&i915->ggtt);
685 if (ret)
686 cleanup_init_ggtt(&i915->ggtt);
687 }
688
689 return 0;
690 }
691
692 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
693 {
694 struct i915_vma *vma, *vn;
695
696 atomic_set(&ggtt->vm.open, 0);
697
698 rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
699 flush_workqueue(ggtt->vm.i915->wq);
700
701 mutex_lock(&ggtt->vm.mutex);
702
703 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
704 WARN_ON(__i915_vma_unbind(vma));
705
706 if (drm_mm_node_allocated(&ggtt->error_capture))
707 drm_mm_remove_node(&ggtt->error_capture);
708 mutex_destroy(&ggtt->error_mutex);
709
710 ggtt_release_guc_top(ggtt);
711 intel_vgt_deballoon(ggtt);
712
713 ggtt->vm.cleanup(&ggtt->vm);
714
715 mutex_unlock(&ggtt->vm.mutex);
716 i915_address_space_fini(&ggtt->vm);
717
718 arch_phys_wc_del(ggtt->mtrr);
719
720 if (ggtt->iomap.size)
721 io_mapping_fini(&ggtt->iomap);
722 }
723
724 /**
725 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
726 * @i915: i915 device
727 */
728 void i915_ggtt_driver_release(struct drm_i915_private *i915)
729 {
730 struct pagevec *pvec;
731
732 fini_aliasing_ppgtt(&i915->ggtt);
733
734 ggtt_cleanup_hw(&i915->ggtt);
735
736 pvec = &i915->mm.wc_stash.pvec;
737 if (pvec->nr) {
738 set_pages_array_wb(pvec->pages, pvec->nr);
739 __pagevec_release(pvec);
740 }
741 }
742
743 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
744 {
745 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
746 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
747 return snb_gmch_ctl << 20;
748 }
749
750 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
751 {
752 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
753 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
754 if (bdw_gmch_ctl)
755 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
756
757 #ifdef CONFIG_X86_32
758 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
759 if (bdw_gmch_ctl > 4)
760 bdw_gmch_ctl = 4;
761 #endif
762
763 return bdw_gmch_ctl << 20;
764 }
765
766 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
767 {
768 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
769 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
770
771 if (gmch_ctrl)
772 return 1 << (20 + gmch_ctrl);
773
774 return 0;
775 }
776
777 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
778 {
779 struct drm_i915_private *i915 = ggtt->vm.i915;
780 struct pci_dev *pdev = i915->drm.pdev;
781 phys_addr_t phys_addr;
782 int ret;
783
784 /* For Modern GENs the PTEs and register space are split in the BAR */
785 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
786
787 /*
788 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
789 * will be dropped. For WC mappings in general we have 64 byte burst
790 * writes when the WC buffer is flushed, so we can't use it, but have to
791 * resort to an uncached mapping. The WC issue is easily caught by the
792 * readback check when writing GTT PTE entries.
793 */
794 if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
795 ggtt->gsm = ioremap(phys_addr, size);
796 else
797 ggtt->gsm = ioremap_wc(phys_addr, size);
798 if (!ggtt->gsm) {
799 DRM_ERROR("Failed to map the ggtt page table\n");
800 return -ENOMEM;
801 }
802
803 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
804 if (ret) {
805 DRM_ERROR("Scratch setup failed\n");
806 /* iounmap will also get called at remove, but meh */
807 iounmap(ggtt->gsm);
808 return ret;
809 }
810
811 ggtt->vm.scratch[0].encode =
812 ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
813 I915_CACHE_NONE, 0);
814
815 return 0;
816 }
817
818 int ggtt_set_pages(struct i915_vma *vma)
819 {
820 int ret;
821
822 GEM_BUG_ON(vma->pages);
823
824 ret = i915_get_ggtt_vma_pages(vma);
825 if (ret)
826 return ret;
827
828 vma->page_sizes = vma->obj->mm.page_sizes;
829
830 return 0;
831 }
832
833 static void gen6_gmch_remove(struct i915_address_space *vm)
834 {
835 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
836
837 iounmap(ggtt->gsm);
838 cleanup_scratch_page(vm);
839 }
840
841 static struct resource pci_resource(struct pci_dev *pdev, int bar)
842 {
843 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
844 pci_resource_len(pdev, bar));
845 }
846
847 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
848 {
849 struct drm_i915_private *i915 = ggtt->vm.i915;
850 struct pci_dev *pdev = i915->drm.pdev;
851 unsigned int size;
852 u16 snb_gmch_ctl;
853 int err;
854
855 /* TODO: We're not aware of mappable constraints on gen8 yet */
856 if (!IS_DGFX(i915)) {
857 ggtt->gmadr = pci_resource(pdev, 2);
858 ggtt->mappable_end = resource_size(&ggtt->gmadr);
859 }
860
861 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
862 if (!err)
863 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
864 if (err)
865 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
866
867 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
868 if (IS_CHERRYVIEW(i915))
869 size = chv_get_total_gtt_size(snb_gmch_ctl);
870 else
871 size = gen8_get_total_gtt_size(snb_gmch_ctl);
872
873 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
874 ggtt->vm.cleanup = gen6_gmch_remove;
875 ggtt->vm.insert_page = gen8_ggtt_insert_page;
876 ggtt->vm.clear_range = nop_clear_range;
877 if (intel_scanout_needs_vtd_wa(i915))
878 ggtt->vm.clear_range = gen8_ggtt_clear_range;
879
880 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
881
882 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
883 if (intel_ggtt_update_needs_vtd_wa(i915) ||
884 IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
885 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
886 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
887 if (ggtt->vm.clear_range != nop_clear_range)
888 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
889 }
890
891 ggtt->invalidate = gen8_ggtt_invalidate;
892
893 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
894 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
895 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
896 ggtt->vm.vma_ops.clear_pages = clear_pages;
897
898 ggtt->vm.pte_encode = gen8_pte_encode;
899
900 setup_private_pat(ggtt->vm.gt->uncore);
901
902 return ggtt_probe_common(ggtt, size);
903 }
904
905 static u64 snb_pte_encode(dma_addr_t addr,
906 enum i915_cache_level level,
907 u32 flags)
908 {
909 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
910
911 switch (level) {
912 case I915_CACHE_L3_LLC:
913 case I915_CACHE_LLC:
914 pte |= GEN6_PTE_CACHE_LLC;
915 break;
916 case I915_CACHE_NONE:
917 pte |= GEN6_PTE_UNCACHED;
918 break;
919 default:
920 MISSING_CASE(level);
921 }
922
923 return pte;
924 }
925
926 static u64 ivb_pte_encode(dma_addr_t addr,
927 enum i915_cache_level level,
928 u32 flags)
929 {
930 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
931
932 switch (level) {
933 case I915_CACHE_L3_LLC:
934 pte |= GEN7_PTE_CACHE_L3_LLC;
935 break;
936 case I915_CACHE_LLC:
937 pte |= GEN6_PTE_CACHE_LLC;
938 break;
939 case I915_CACHE_NONE:
940 pte |= GEN6_PTE_UNCACHED;
941 break;
942 default:
943 MISSING_CASE(level);
944 }
945
946 return pte;
947 }
948
949 static u64 byt_pte_encode(dma_addr_t addr,
950 enum i915_cache_level level,
951 u32 flags)
952 {
953 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
954
955 if (!(flags & PTE_READ_ONLY))
956 pte |= BYT_PTE_WRITEABLE;
957
958 if (level != I915_CACHE_NONE)
959 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
960
961 return pte;
962 }
963
964 static u64 hsw_pte_encode(dma_addr_t addr,
965 enum i915_cache_level level,
966 u32 flags)
967 {
968 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
969
970 if (level != I915_CACHE_NONE)
971 pte |= HSW_WB_LLC_AGE3;
972
973 return pte;
974 }
975
976 static u64 iris_pte_encode(dma_addr_t addr,
977 enum i915_cache_level level,
978 u32 flags)
979 {
980 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
981
982 switch (level) {
983 case I915_CACHE_NONE:
984 break;
985 case I915_CACHE_WT:
986 pte |= HSW_WT_ELLC_LLC_AGE3;
987 break;
988 default:
989 pte |= HSW_WB_ELLC_LLC_AGE3;
990 break;
991 }
992
993 return pte;
994 }
995
996 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
997 {
998 struct drm_i915_private *i915 = ggtt->vm.i915;
999 struct pci_dev *pdev = i915->drm.pdev;
1000 unsigned int size;
1001 u16 snb_gmch_ctl;
1002 int err;
1003
1004 ggtt->gmadr = pci_resource(pdev, 2);
1005 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1006
1007 /*
1008 * 64/512MB is the current min/max we actually know of, but this is
1009 * just a coarse sanity check.
1010 */
1011 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
1012 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
1013 return -ENXIO;
1014 }
1015
1016 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
1017 if (!err)
1018 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
1019 if (err)
1020 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
1021 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1022
1023 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1024 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1025
1026 ggtt->vm.clear_range = nop_clear_range;
1027 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1028 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1029 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1030 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1031 ggtt->vm.cleanup = gen6_gmch_remove;
1032
1033 ggtt->invalidate = gen6_ggtt_invalidate;
1034
1035 if (HAS_EDRAM(i915))
1036 ggtt->vm.pte_encode = iris_pte_encode;
1037 else if (IS_HASWELL(i915))
1038 ggtt->vm.pte_encode = hsw_pte_encode;
1039 else if (IS_VALLEYVIEW(i915))
1040 ggtt->vm.pte_encode = byt_pte_encode;
1041 else if (INTEL_GEN(i915) >= 7)
1042 ggtt->vm.pte_encode = ivb_pte_encode;
1043 else
1044 ggtt->vm.pte_encode = snb_pte_encode;
1045
1046 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1047 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1048 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1049 ggtt->vm.vma_ops.clear_pages = clear_pages;
1050
1051 return ggtt_probe_common(ggtt, size);
1052 }
1053
1054 static void i915_gmch_remove(struct i915_address_space *vm)
1055 {
1056 intel_gmch_remove();
1057 }
1058
1059 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1060 {
1061 struct drm_i915_private *i915 = ggtt->vm.i915;
1062 phys_addr_t gmadr_base;
1063 int ret;
1064
1065 ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
1066 if (!ret) {
1067 DRM_ERROR("failed to set up gmch\n");
1068 return -EIO;
1069 }
1070
1071 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1072
1073 ggtt->gmadr =
1074 (struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1075
1076 ggtt->do_idle_maps = needs_idle_maps(i915);
1077 ggtt->vm.insert_page = i915_ggtt_insert_page;
1078 ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1079 ggtt->vm.clear_range = i915_ggtt_clear_range;
1080 ggtt->vm.cleanup = i915_gmch_remove;
1081
1082 ggtt->invalidate = gmch_ggtt_invalidate;
1083
1084 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1085 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1086 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1087 ggtt->vm.vma_ops.clear_pages = clear_pages;
1088
1089 if (unlikely(ggtt->do_idle_maps))
1090 dev_notice(i915->drm.dev,
1091 "Applying Ironlake quirks for intel_iommu\n");
1092
1093 return 0;
1094 }
1095
1096 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1097 {
1098 struct drm_i915_private *i915 = gt->i915;
1099 int ret;
1100
1101 ggtt->vm.gt = gt;
1102 ggtt->vm.i915 = i915;
1103 ggtt->vm.dma = &i915->drm.pdev->dev;
1104
1105 if (INTEL_GEN(i915) <= 5)
1106 ret = i915_gmch_probe(ggtt);
1107 else if (INTEL_GEN(i915) < 8)
1108 ret = gen6_gmch_probe(ggtt);
1109 else
1110 ret = gen8_gmch_probe(ggtt);
1111 if (ret)
1112 return ret;
1113
1114 if ((ggtt->vm.total - 1) >> 32) {
1115 DRM_ERROR("We never expected a Global GTT with more than 32bits"
1116 " of address space! Found %lldM!\n",
1117 ggtt->vm.total >> 20);
1118 ggtt->vm.total = 1ULL << 32;
1119 ggtt->mappable_end =
1120 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1121 }
1122
1123 if (ggtt->mappable_end > ggtt->vm.total) {
1124 DRM_ERROR("mappable aperture extends past end of GGTT,"
1125 " aperture=%pa, total=%llx\n",
1126 &ggtt->mappable_end, ggtt->vm.total);
1127 ggtt->mappable_end = ggtt->vm.total;
1128 }
1129
1130 /* GMADR is the PCI mmio aperture into the global GTT. */
1131 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
1132 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
1133 DRM_DEBUG_DRIVER("DSM size = %lluM\n",
1134 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1135
1136 return 0;
1137 }
1138
1139 /**
1140 * i915_ggtt_probe_hw - Probe GGTT hardware location
1141 * @i915: i915 device
1142 */
1143 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1144 {
1145 int ret;
1146
1147 ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1148 if (ret)
1149 return ret;
1150
1151 if (intel_vtd_active())
1152 dev_info(i915->drm.dev, "VT-d active for gfx access\n");
1153
1154 return 0;
1155 }
1156
1157 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1158 {
1159 if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
1160 return -EIO;
1161
1162 return 0;
1163 }
1164
1165 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1166 {
1167 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1168
1169 ggtt->invalidate = guc_ggtt_invalidate;
1170
1171 ggtt->invalidate(ggtt);
1172 }
1173
1174 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1175 {
1176 /* XXX Temporary pardon for error unload */
1177 if (ggtt->invalidate == gen8_ggtt_invalidate)
1178 return;
1179
1180 /* We should only be called after i915_ggtt_enable_guc() */
1181 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1182
1183 ggtt->invalidate = gen8_ggtt_invalidate;
1184
1185 ggtt->invalidate(ggtt);
1186 }
1187
1188 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
1189 {
1190 struct i915_vma *vma;
1191 bool flush = false;
1192 int open;
1193
1194 intel_gt_check_and_clear_faults(ggtt->vm.gt);
1195
1196 mutex_lock(&ggtt->vm.mutex);
1197
1198 /* First fill our portion of the GTT with scratch pages */
1199 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1200
1201 /* Skip rewriting PTE on VMA unbind. */
1202 open = atomic_xchg(&ggtt->vm.open, 0);
1203
1204 /* clflush objects bound into the GGTT and rebind them. */
1205 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1206 struct drm_i915_gem_object *obj = vma->obj;
1207
1208 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
1209 continue;
1210
1211 clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
1212 WARN_ON(i915_vma_bind(vma,
1213 obj ? obj->cache_level : 0,
1214 PIN_GLOBAL, NULL));
1215 if (obj) { /* only used during resume => exclusive access */
1216 flush |= fetch_and_zero(&obj->write_domain);
1217 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1218 }
1219 }
1220
1221 atomic_set(&ggtt->vm.open, open);
1222 ggtt->invalidate(ggtt);
1223
1224 mutex_unlock(&ggtt->vm.mutex);
1225
1226 if (flush)
1227 wbinvd_on_all_cpus();
1228 }
1229
1230 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
1231 {
1232 struct i915_ggtt *ggtt = &i915->ggtt;
1233
1234 ggtt_restore_mappings(ggtt);
1235
1236 if (INTEL_GEN(i915) >= 8)
1237 setup_private_pat(ggtt->vm.gt->uncore);
1238 }
1239
1240 static struct scatterlist *
1241 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1242 unsigned int width, unsigned int height,
1243 unsigned int stride,
1244 struct sg_table *st, struct scatterlist *sg)
1245 {
1246 unsigned int column, row;
1247 unsigned int src_idx;
1248
1249 for (column = 0; column < width; column++) {
1250 src_idx = stride * (height - 1) + column + offset;
1251 for (row = 0; row < height; row++) {
1252 st->nents++;
1253 /*
1254 * We don't need the pages, but need to initialize
1255 * the entries so the sg list can be happily traversed.
1256 * The only thing we need are DMA addresses.
1257 */
1258 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1259 sg_dma_address(sg) =
1260 i915_gem_object_get_dma_address(obj, src_idx);
1261 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1262 sg = sg_next(sg);
1263 src_idx -= stride;
1264 }
1265 }
1266
1267 return sg;
1268 }
1269
1270 static noinline struct sg_table *
1271 intel_rotate_pages(struct intel_rotation_info *rot_info,
1272 struct drm_i915_gem_object *obj)
1273 {
1274 unsigned int size = intel_rotation_info_size(rot_info);
1275 struct sg_table *st;
1276 struct scatterlist *sg;
1277 int ret = -ENOMEM;
1278 int i;
1279
1280 /* Allocate target SG list. */
1281 st = kmalloc(sizeof(*st), GFP_KERNEL);
1282 if (!st)
1283 goto err_st_alloc;
1284
1285 ret = sg_alloc_table(st, size, GFP_KERNEL);
1286 if (ret)
1287 goto err_sg_alloc;
1288
1289 st->nents = 0;
1290 sg = st->sgl;
1291
1292 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
1293 sg = rotate_pages(obj, rot_info->plane[i].offset,
1294 rot_info->plane[i].width, rot_info->plane[i].height,
1295 rot_info->plane[i].stride, st, sg);
1296 }
1297
1298 return st;
1299
1300 err_sg_alloc:
1301 kfree(st);
1302 err_st_alloc:
1303
1304 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1305 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
1306
1307 return ERR_PTR(ret);
1308 }
1309
1310 static struct scatterlist *
1311 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1312 unsigned int width, unsigned int height,
1313 unsigned int stride,
1314 struct sg_table *st, struct scatterlist *sg)
1315 {
1316 unsigned int row;
1317
1318 for (row = 0; row < height; row++) {
1319 unsigned int left = width * I915_GTT_PAGE_SIZE;
1320
1321 while (left) {
1322 dma_addr_t addr;
1323 unsigned int length;
1324
1325 /*
1326 * We don't need the pages, but need to initialize
1327 * the entries so the sg list can be happily traversed.
1328 * The only thing we need are DMA addresses.
1329 */
1330
1331 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1332
1333 length = min(left, length);
1334
1335 st->nents++;
1336
1337 sg_set_page(sg, NULL, length, 0);
1338 sg_dma_address(sg) = addr;
1339 sg_dma_len(sg) = length;
1340 sg = sg_next(sg);
1341
1342 offset += length / I915_GTT_PAGE_SIZE;
1343 left -= length;
1344 }
1345
1346 offset += stride - width;
1347 }
1348
1349 return sg;
1350 }
1351
1352 static noinline struct sg_table *
1353 intel_remap_pages(struct intel_remapped_info *rem_info,
1354 struct drm_i915_gem_object *obj)
1355 {
1356 unsigned int size = intel_remapped_info_size(rem_info);
1357 struct sg_table *st;
1358 struct scatterlist *sg;
1359 int ret = -ENOMEM;
1360 int i;
1361
1362 /* Allocate target SG list. */
1363 st = kmalloc(sizeof(*st), GFP_KERNEL);
1364 if (!st)
1365 goto err_st_alloc;
1366
1367 ret = sg_alloc_table(st, size, GFP_KERNEL);
1368 if (ret)
1369 goto err_sg_alloc;
1370
1371 st->nents = 0;
1372 sg = st->sgl;
1373
1374 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1375 sg = remap_pages(obj, rem_info->plane[i].offset,
1376 rem_info->plane[i].width, rem_info->plane[i].height,
1377 rem_info->plane[i].stride, st, sg);
1378 }
1379
1380 i915_sg_trim(st);
1381
1382 return st;
1383
1384 err_sg_alloc:
1385 kfree(st);
1386 err_st_alloc:
1387
1388 DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1389 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
1390
1391 return ERR_PTR(ret);
1392 }
1393
1394 static noinline struct sg_table *
1395 intel_partial_pages(const struct i915_ggtt_view *view,
1396 struct drm_i915_gem_object *obj)
1397 {
1398 struct sg_table *st;
1399 struct scatterlist *sg, *iter;
1400 unsigned int count = view->partial.size;
1401 unsigned int offset;
1402 int ret = -ENOMEM;
1403
1404 st = kmalloc(sizeof(*st), GFP_KERNEL);
1405 if (!st)
1406 goto err_st_alloc;
1407
1408 ret = sg_alloc_table(st, count, GFP_KERNEL);
1409 if (ret)
1410 goto err_sg_alloc;
1411
1412 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
1413 GEM_BUG_ON(!iter);
1414
1415 sg = st->sgl;
1416 st->nents = 0;
1417 do {
1418 unsigned int len;
1419
1420 len = min(iter->length - (offset << PAGE_SHIFT),
1421 count << PAGE_SHIFT);
1422 sg_set_page(sg, NULL, len, 0);
1423 sg_dma_address(sg) =
1424 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1425 sg_dma_len(sg) = len;
1426
1427 st->nents++;
1428 count -= len >> PAGE_SHIFT;
1429 if (count == 0) {
1430 sg_mark_end(sg);
1431 i915_sg_trim(st); /* Drop any unused tail entries. */
1432
1433 return st;
1434 }
1435
1436 sg = __sg_next(sg);
1437 iter = __sg_next(iter);
1438 offset = 0;
1439 } while (1);
1440
1441 err_sg_alloc:
1442 kfree(st);
1443 err_st_alloc:
1444 return ERR_PTR(ret);
1445 }
1446
1447 static int
1448 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1449 {
1450 int ret;
1451
1452 /*
1453 * The vma->pages are only valid within the lifespan of the borrowed
1454 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1455 * must be the vma->pages. A simple rule is that vma->pages must only
1456 * be accessed when the obj->mm.pages are pinned.
1457 */
1458 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1459
1460 switch (vma->ggtt_view.type) {
1461 default:
1462 GEM_BUG_ON(vma->ggtt_view.type);
1463 /* fall through */
1464 case I915_GGTT_VIEW_NORMAL:
1465 vma->pages = vma->obj->mm.pages;
1466 return 0;
1467
1468 case I915_GGTT_VIEW_ROTATED:
1469 vma->pages =
1470 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1471 break;
1472
1473 case I915_GGTT_VIEW_REMAPPED:
1474 vma->pages =
1475 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1476 break;
1477
1478 case I915_GGTT_VIEW_PARTIAL:
1479 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1480 break;
1481 }
1482
1483 ret = 0;
1484 if (IS_ERR(vma->pages)) {
1485 ret = PTR_ERR(vma->pages);
1486 vma->pages = NULL;
1487 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
1488 vma->ggtt_view.type, ret);
1489 }
1490 return ret;
1491 }
1492