Home | History | Annotate | Line # | Download | only in gt
intel_ggtt.c revision 1.1.1.1
      1 /*	$NetBSD: intel_ggtt.c,v 1.1.1.1 2021/12/18 20:15:32 riastradh Exp $	*/
      2 
      3 // SPDX-License-Identifier: MIT
      4 /*
      5  * Copyright  2020 Intel Corporation
      6  */
      7 
      8 #include <sys/cdefs.h>
      9 __KERNEL_RCSID(0, "$NetBSD: intel_ggtt.c,v 1.1.1.1 2021/12/18 20:15:32 riastradh Exp $");
     10 
     11 #include <linux/stop_machine.h>
     12 
     13 #include <asm/set_memory.h>
     14 #include <asm/smp.h>
     15 
     16 #include "intel_gt.h"
     17 #include "i915_drv.h"
     18 #include "i915_scatterlist.h"
     19 #include "i915_vgpu.h"
     20 
     21 #include "intel_gtt.h"
     22 
     23 static int
     24 i915_get_ggtt_vma_pages(struct i915_vma *vma);
     25 
     26 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
     27 				   unsigned long color,
     28 				   u64 *start,
     29 				   u64 *end)
     30 {
     31 	if (i915_node_color_differs(node, color))
     32 		*start += I915_GTT_PAGE_SIZE;
     33 
     34 	/*
     35 	 * Also leave a space between the unallocated reserved node after the
     36 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
     37 	 * to insert a guard page to prevent prefetches crossing over the
     38 	 * GTT boundary.
     39 	 */
     40 	node = list_next_entry(node, node_list);
     41 	if (node->color != color)
     42 		*end -= I915_GTT_PAGE_SIZE;
     43 }
     44 
     45 static int ggtt_init_hw(struct i915_ggtt *ggtt)
     46 {
     47 	struct drm_i915_private *i915 = ggtt->vm.i915;
     48 
     49 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
     50 
     51 	ggtt->vm.is_ggtt = true;
     52 
     53 	/* Only VLV supports read-only GGTT mappings */
     54 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
     55 
     56 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
     57 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
     58 
     59 	if (ggtt->mappable_end) {
     60 		if (!io_mapping_init_wc(&ggtt->iomap,
     61 					ggtt->gmadr.start,
     62 					ggtt->mappable_end)) {
     63 			ggtt->vm.cleanup(&ggtt->vm);
     64 			return -EIO;
     65 		}
     66 
     67 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
     68 					      ggtt->mappable_end);
     69 	}
     70 
     71 	i915_ggtt_init_fences(ggtt);
     72 
     73 	return 0;
     74 }
     75 
     76 /**
     77  * i915_ggtt_init_hw - Initialize GGTT hardware
     78  * @i915: i915 device
     79  */
     80 int i915_ggtt_init_hw(struct drm_i915_private *i915)
     81 {
     82 	int ret;
     83 
     84 	stash_init(&i915->mm.wc_stash);
     85 
     86 	/*
     87 	 * Note that we use page colouring to enforce a guard page at the
     88 	 * end of the address space. This is required as the CS may prefetch
     89 	 * beyond the end of the batch buffer, across the page boundary,
     90 	 * and beyond the end of the GTT if we do not provide a guard.
     91 	 */
     92 	ret = ggtt_init_hw(&i915->ggtt);
     93 	if (ret)
     94 		return ret;
     95 
     96 	return 0;
     97 }
     98 
     99 /*
    100  * Certain Gen5 chipsets require require idling the GPU before
    101  * unmapping anything from the GTT when VT-d is enabled.
    102  */
    103 static bool needs_idle_maps(struct drm_i915_private *i915)
    104 {
    105 	/*
    106 	 * Query intel_iommu to see if we need the workaround. Presumably that
    107 	 * was loaded first.
    108 	 */
    109 	return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
    110 }
    111 
    112 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
    113 {
    114 	struct drm_i915_private *i915 = ggtt->vm.i915;
    115 
    116 	/*
    117 	 * Don't bother messing with faults pre GEN6 as we have little
    118 	 * documentation supporting that it's a good idea.
    119 	 */
    120 	if (INTEL_GEN(i915) < 6)
    121 		return;
    122 
    123 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
    124 
    125 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
    126 
    127 	ggtt->invalidate(ggtt);
    128 }
    129 
    130 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
    131 {
    132 	ggtt_suspend_mappings(&i915->ggtt);
    133 }
    134 
    135 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
    136 {
    137 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
    138 
    139 	spin_lock_irq(&uncore->lock);
    140 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
    141 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
    142 	spin_unlock_irq(&uncore->lock);
    143 }
    144 
    145 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
    146 {
    147 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
    148 
    149 	/*
    150 	 * Note that as an uncached mmio write, this will flush the
    151 	 * WCB of the writes into the GGTT before it triggers the invalidate.
    152 	 */
    153 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
    154 }
    155 
    156 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
    157 {
    158 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
    159 	struct drm_i915_private *i915 = ggtt->vm.i915;
    160 
    161 	gen8_ggtt_invalidate(ggtt);
    162 
    163 	if (INTEL_GEN(i915) >= 12)
    164 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
    165 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
    166 	else
    167 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
    168 }
    169 
    170 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
    171 {
    172 	intel_gtt_chipset_flush();
    173 }
    174 
    175 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
    176 {
    177 	writeq(pte, addr);
    178 }
    179 
    180 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
    181 				  dma_addr_t addr,
    182 				  u64 offset,
    183 				  enum i915_cache_level level,
    184 				  u32 unused)
    185 {
    186 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    187 	gen8_pte_t __iomem *pte =
    188 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
    189 
    190 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
    191 
    192 	ggtt->invalidate(ggtt);
    193 }
    194 
    195 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
    196 				     struct i915_vma *vma,
    197 				     enum i915_cache_level level,
    198 				     u32 flags)
    199 {
    200 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    201 	struct sgt_iter sgt_iter;
    202 	gen8_pte_t __iomem *gtt_entries;
    203 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
    204 	dma_addr_t addr;
    205 
    206 	/*
    207 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
    208 	 * not to allow the user to override access to a read only page.
    209 	 */
    210 
    211 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
    212 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
    213 	for_each_sgt_daddr(addr, sgt_iter, vma->pages)
    214 		gen8_set_pte(gtt_entries++, pte_encode | addr);
    215 
    216 	/*
    217 	 * We want to flush the TLBs only after we're certain all the PTE
    218 	 * updates have finished.
    219 	 */
    220 	ggtt->invalidate(ggtt);
    221 }
    222 
    223 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
    224 				  dma_addr_t addr,
    225 				  u64 offset,
    226 				  enum i915_cache_level level,
    227 				  u32 flags)
    228 {
    229 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    230 	gen6_pte_t __iomem *pte =
    231 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
    232 
    233 	iowrite32(vm->pte_encode(addr, level, flags), pte);
    234 
    235 	ggtt->invalidate(ggtt);
    236 }
    237 
    238 /*
    239  * Binds an object into the global gtt with the specified cache level.
    240  * The object will be accessible to the GPU via commands whose operands
    241  * reference offsets within the global GTT as well as accessible by the GPU
    242  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
    243  */
    244 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
    245 				     struct i915_vma *vma,
    246 				     enum i915_cache_level level,
    247 				     u32 flags)
    248 {
    249 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    250 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
    251 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
    252 	struct sgt_iter iter;
    253 	dma_addr_t addr;
    254 
    255 	for_each_sgt_daddr(addr, iter, vma->pages)
    256 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
    257 
    258 	/*
    259 	 * We want to flush the TLBs only after we're certain all the PTE
    260 	 * updates have finished.
    261 	 */
    262 	ggtt->invalidate(ggtt);
    263 }
    264 
    265 static void nop_clear_range(struct i915_address_space *vm,
    266 			    u64 start, u64 length)
    267 {
    268 }
    269 
    270 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
    271 				  u64 start, u64 length)
    272 {
    273 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    274 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
    275 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
    276 	const gen8_pte_t scratch_pte = vm->scratch[0].encode;
    277 	gen8_pte_t __iomem *gtt_base =
    278 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
    279 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
    280 	int i;
    281 
    282 	if (WARN(num_entries > max_entries,
    283 		 "First entry = %d; Num entries = %d (max=%d)\n",
    284 		 first_entry, num_entries, max_entries))
    285 		num_entries = max_entries;
    286 
    287 	for (i = 0; i < num_entries; i++)
    288 		gen8_set_pte(&gtt_base[i], scratch_pte);
    289 }
    290 
    291 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
    292 {
    293 	/*
    294 	 * Make sure the internal GAM fifo has been cleared of all GTT
    295 	 * writes before exiting stop_machine(). This guarantees that
    296 	 * any aperture accesses waiting to start in another process
    297 	 * cannot back up behind the GTT writes causing a hang.
    298 	 * The register can be any arbitrary GAM register.
    299 	 */
    300 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
    301 }
    302 
    303 struct insert_page {
    304 	struct i915_address_space *vm;
    305 	dma_addr_t addr;
    306 	u64 offset;
    307 	enum i915_cache_level level;
    308 };
    309 
    310 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
    311 {
    312 	struct insert_page *arg = _arg;
    313 
    314 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
    315 	bxt_vtd_ggtt_wa(arg->vm);
    316 
    317 	return 0;
    318 }
    319 
    320 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
    321 					  dma_addr_t addr,
    322 					  u64 offset,
    323 					  enum i915_cache_level level,
    324 					  u32 unused)
    325 {
    326 	struct insert_page arg = { vm, addr, offset, level };
    327 
    328 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
    329 }
    330 
    331 struct insert_entries {
    332 	struct i915_address_space *vm;
    333 	struct i915_vma *vma;
    334 	enum i915_cache_level level;
    335 	u32 flags;
    336 };
    337 
    338 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
    339 {
    340 	struct insert_entries *arg = _arg;
    341 
    342 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
    343 	bxt_vtd_ggtt_wa(arg->vm);
    344 
    345 	return 0;
    346 }
    347 
    348 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
    349 					     struct i915_vma *vma,
    350 					     enum i915_cache_level level,
    351 					     u32 flags)
    352 {
    353 	struct insert_entries arg = { vm, vma, level, flags };
    354 
    355 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
    356 }
    357 
    358 struct clear_range {
    359 	struct i915_address_space *vm;
    360 	u64 start;
    361 	u64 length;
    362 };
    363 
    364 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
    365 {
    366 	struct clear_range *arg = _arg;
    367 
    368 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
    369 	bxt_vtd_ggtt_wa(arg->vm);
    370 
    371 	return 0;
    372 }
    373 
    374 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
    375 					  u64 start,
    376 					  u64 length)
    377 {
    378 	struct clear_range arg = { vm, start, length };
    379 
    380 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
    381 }
    382 
    383 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
    384 				  u64 start, u64 length)
    385 {
    386 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    387 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
    388 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
    389 	gen6_pte_t scratch_pte, __iomem *gtt_base =
    390 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
    391 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
    392 	int i;
    393 
    394 	if (WARN(num_entries > max_entries,
    395 		 "First entry = %d; Num entries = %d (max=%d)\n",
    396 		 first_entry, num_entries, max_entries))
    397 		num_entries = max_entries;
    398 
    399 	scratch_pte = vm->scratch[0].encode;
    400 	for (i = 0; i < num_entries; i++)
    401 		iowrite32(scratch_pte, &gtt_base[i]);
    402 }
    403 
    404 static void i915_ggtt_insert_page(struct i915_address_space *vm,
    405 				  dma_addr_t addr,
    406 				  u64 offset,
    407 				  enum i915_cache_level cache_level,
    408 				  u32 unused)
    409 {
    410 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
    411 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
    412 
    413 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
    414 }
    415 
    416 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
    417 				     struct i915_vma *vma,
    418 				     enum i915_cache_level cache_level,
    419 				     u32 unused)
    420 {
    421 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
    422 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
    423 
    424 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
    425 				    flags);
    426 }
    427 
    428 static void i915_ggtt_clear_range(struct i915_address_space *vm,
    429 				  u64 start, u64 length)
    430 {
    431 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
    432 }
    433 
    434 static int ggtt_bind_vma(struct i915_vma *vma,
    435 			 enum i915_cache_level cache_level,
    436 			 u32 flags)
    437 {
    438 	struct drm_i915_gem_object *obj = vma->obj;
    439 	u32 pte_flags;
    440 
    441 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
    442 	pte_flags = 0;
    443 	if (i915_gem_object_is_readonly(obj))
    444 		pte_flags |= PTE_READ_ONLY;
    445 
    446 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
    447 
    448 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
    449 
    450 	/*
    451 	 * Without aliasing PPGTT there's no difference between
    452 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
    453 	 * upgrade to both bound if we bind either to avoid double-binding.
    454 	 */
    455 	atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
    456 
    457 	return 0;
    458 }
    459 
    460 static void ggtt_unbind_vma(struct i915_vma *vma)
    461 {
    462 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
    463 }
    464 
    465 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
    466 {
    467 	u64 size;
    468 	int ret;
    469 
    470 	if (!USES_GUC(ggtt->vm.i915))
    471 		return 0;
    472 
    473 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
    474 	size = ggtt->vm.total - GUC_GGTT_TOP;
    475 
    476 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
    477 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
    478 				   PIN_NOEVICT);
    479 	if (ret)
    480 		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
    481 
    482 	return ret;
    483 }
    484 
    485 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
    486 {
    487 	if (drm_mm_node_allocated(&ggtt->uc_fw))
    488 		drm_mm_remove_node(&ggtt->uc_fw);
    489 }
    490 
    491 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
    492 {
    493 	ggtt_release_guc_top(ggtt);
    494 	if (drm_mm_node_allocated(&ggtt->error_capture))
    495 		drm_mm_remove_node(&ggtt->error_capture);
    496 	mutex_destroy(&ggtt->error_mutex);
    497 }
    498 
    499 static int init_ggtt(struct i915_ggtt *ggtt)
    500 {
    501 	/*
    502 	 * Let GEM Manage all of the aperture.
    503 	 *
    504 	 * However, leave one page at the end still bound to the scratch page.
    505 	 * There are a number of places where the hardware apparently prefetches
    506 	 * past the end of the object, and we've seen multiple hangs with the
    507 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
    508 	 * aperture.  One page should be enough to keep any prefetching inside
    509 	 * of the aperture.
    510 	 */
    511 	unsigned long hole_start, hole_end;
    512 	struct drm_mm_node *entry;
    513 	int ret;
    514 
    515 	/*
    516 	 * GuC requires all resources that we're sharing with it to be placed in
    517 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
    518 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
    519 	 * why.
    520 	 */
    521 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
    522 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
    523 
    524 	ret = intel_vgt_balloon(ggtt);
    525 	if (ret)
    526 		return ret;
    527 
    528 	mutex_init(&ggtt->error_mutex);
    529 	if (ggtt->mappable_end) {
    530 		/* Reserve a mappable slot for our lockless error capture */
    531 		ret = drm_mm_insert_node_in_range(&ggtt->vm.mm,
    532 						  &ggtt->error_capture,
    533 						  PAGE_SIZE, 0,
    534 						  I915_COLOR_UNEVICTABLE,
    535 						  0, ggtt->mappable_end,
    536 						  DRM_MM_INSERT_LOW);
    537 		if (ret)
    538 			return ret;
    539 	}
    540 
    541 	/*
    542 	 * The upper portion of the GuC address space has a sizeable hole
    543 	 * (several MB) that is inaccessible by GuC. Reserve this range within
    544 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
    545 	 */
    546 	ret = ggtt_reserve_guc_top(ggtt);
    547 	if (ret)
    548 		goto err;
    549 
    550 	/* Clear any non-preallocated blocks */
    551 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
    552 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
    553 			      hole_start, hole_end);
    554 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
    555 				     hole_end - hole_start);
    556 	}
    557 
    558 	/* And finally clear the reserved guard page */
    559 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
    560 
    561 	return 0;
    562 
    563 err:
    564 	cleanup_init_ggtt(ggtt);
    565 	return ret;
    566 }
    567 
    568 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
    569 				 enum i915_cache_level cache_level,
    570 				 u32 flags)
    571 {
    572 	u32 pte_flags;
    573 	int ret;
    574 
    575 	/* Currently applicable only to VLV */
    576 	pte_flags = 0;
    577 	if (i915_gem_object_is_readonly(vma->obj))
    578 		pte_flags |= PTE_READ_ONLY;
    579 
    580 	if (flags & I915_VMA_LOCAL_BIND) {
    581 		struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
    582 
    583 		if (flags & I915_VMA_ALLOC) {
    584 			ret = alias->vm.allocate_va_range(&alias->vm,
    585 							  vma->node.start,
    586 							  vma->size);
    587 			if (ret)
    588 				return ret;
    589 
    590 			set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
    591 		}
    592 
    593 		GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
    594 				     __i915_vma_flags(vma)));
    595 		alias->vm.insert_entries(&alias->vm, vma,
    596 					 cache_level, pte_flags);
    597 	}
    598 
    599 	if (flags & I915_VMA_GLOBAL_BIND)
    600 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
    601 
    602 	return 0;
    603 }
    604 
    605 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
    606 {
    607 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
    608 		struct i915_address_space *vm = vma->vm;
    609 
    610 		vm->clear_range(vm, vma->node.start, vma->size);
    611 	}
    612 
    613 	if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
    614 		struct i915_address_space *vm =
    615 			&i915_vm_to_ggtt(vma->vm)->alias->vm;
    616 
    617 		vm->clear_range(vm, vma->node.start, vma->size);
    618 	}
    619 }
    620 
    621 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
    622 {
    623 	struct i915_ppgtt *ppgtt;
    624 	int err;
    625 
    626 	ppgtt = i915_ppgtt_create(ggtt->vm.gt);
    627 	if (IS_ERR(ppgtt))
    628 		return PTR_ERR(ppgtt);
    629 
    630 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
    631 		err = -ENODEV;
    632 		goto err_ppgtt;
    633 	}
    634 
    635 	/*
    636 	 * Note we only pre-allocate as far as the end of the global
    637 	 * GTT. On 48b / 4-level page-tables, the difference is very,
    638 	 * very significant! We have to preallocate as GVT/vgpu does
    639 	 * not like the page directory disappearing.
    640 	 */
    641 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
    642 	if (err)
    643 		goto err_ppgtt;
    644 
    645 	ggtt->alias = ppgtt;
    646 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
    647 
    648 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
    649 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
    650 
    651 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
    652 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
    653 
    654 	return 0;
    655 
    656 err_ppgtt:
    657 	i915_vm_put(&ppgtt->vm);
    658 	return err;
    659 }
    660 
    661 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
    662 {
    663 	struct i915_ppgtt *ppgtt;
    664 
    665 	ppgtt = fetch_and_zero(&ggtt->alias);
    666 	if (!ppgtt)
    667 		return;
    668 
    669 	i915_vm_put(&ppgtt->vm);
    670 
    671 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
    672 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
    673 }
    674 
    675 int i915_init_ggtt(struct drm_i915_private *i915)
    676 {
    677 	int ret;
    678 
    679 	ret = init_ggtt(&i915->ggtt);
    680 	if (ret)
    681 		return ret;
    682 
    683 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
    684 		ret = init_aliasing_ppgtt(&i915->ggtt);
    685 		if (ret)
    686 			cleanup_init_ggtt(&i915->ggtt);
    687 	}
    688 
    689 	return 0;
    690 }
    691 
    692 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
    693 {
    694 	struct i915_vma *vma, *vn;
    695 
    696 	atomic_set(&ggtt->vm.open, 0);
    697 
    698 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
    699 	flush_workqueue(ggtt->vm.i915->wq);
    700 
    701 	mutex_lock(&ggtt->vm.mutex);
    702 
    703 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
    704 		WARN_ON(__i915_vma_unbind(vma));
    705 
    706 	if (drm_mm_node_allocated(&ggtt->error_capture))
    707 		drm_mm_remove_node(&ggtt->error_capture);
    708 	mutex_destroy(&ggtt->error_mutex);
    709 
    710 	ggtt_release_guc_top(ggtt);
    711 	intel_vgt_deballoon(ggtt);
    712 
    713 	ggtt->vm.cleanup(&ggtt->vm);
    714 
    715 	mutex_unlock(&ggtt->vm.mutex);
    716 	i915_address_space_fini(&ggtt->vm);
    717 
    718 	arch_phys_wc_del(ggtt->mtrr);
    719 
    720 	if (ggtt->iomap.size)
    721 		io_mapping_fini(&ggtt->iomap);
    722 }
    723 
    724 /**
    725  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
    726  * @i915: i915 device
    727  */
    728 void i915_ggtt_driver_release(struct drm_i915_private *i915)
    729 {
    730 	struct pagevec *pvec;
    731 
    732 	fini_aliasing_ppgtt(&i915->ggtt);
    733 
    734 	ggtt_cleanup_hw(&i915->ggtt);
    735 
    736 	pvec = &i915->mm.wc_stash.pvec;
    737 	if (pvec->nr) {
    738 		set_pages_array_wb(pvec->pages, pvec->nr);
    739 		__pagevec_release(pvec);
    740 	}
    741 }
    742 
    743 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
    744 {
    745 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
    746 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
    747 	return snb_gmch_ctl << 20;
    748 }
    749 
    750 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
    751 {
    752 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
    753 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
    754 	if (bdw_gmch_ctl)
    755 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
    756 
    757 #ifdef CONFIG_X86_32
    758 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
    759 	if (bdw_gmch_ctl > 4)
    760 		bdw_gmch_ctl = 4;
    761 #endif
    762 
    763 	return bdw_gmch_ctl << 20;
    764 }
    765 
    766 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
    767 {
    768 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
    769 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
    770 
    771 	if (gmch_ctrl)
    772 		return 1 << (20 + gmch_ctrl);
    773 
    774 	return 0;
    775 }
    776 
    777 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
    778 {
    779 	struct drm_i915_private *i915 = ggtt->vm.i915;
    780 	struct pci_dev *pdev = i915->drm.pdev;
    781 	phys_addr_t phys_addr;
    782 	int ret;
    783 
    784 	/* For Modern GENs the PTEs and register space are split in the BAR */
    785 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
    786 
    787 	/*
    788 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
    789 	 * will be dropped. For WC mappings in general we have 64 byte burst
    790 	 * writes when the WC buffer is flushed, so we can't use it, but have to
    791 	 * resort to an uncached mapping. The WC issue is easily caught by the
    792 	 * readback check when writing GTT PTE entries.
    793 	 */
    794 	if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
    795 		ggtt->gsm = ioremap(phys_addr, size);
    796 	else
    797 		ggtt->gsm = ioremap_wc(phys_addr, size);
    798 	if (!ggtt->gsm) {
    799 		DRM_ERROR("Failed to map the ggtt page table\n");
    800 		return -ENOMEM;
    801 	}
    802 
    803 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
    804 	if (ret) {
    805 		DRM_ERROR("Scratch setup failed\n");
    806 		/* iounmap will also get called at remove, but meh */
    807 		iounmap(ggtt->gsm);
    808 		return ret;
    809 	}
    810 
    811 	ggtt->vm.scratch[0].encode =
    812 		ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
    813 				    I915_CACHE_NONE, 0);
    814 
    815 	return 0;
    816 }
    817 
    818 int ggtt_set_pages(struct i915_vma *vma)
    819 {
    820 	int ret;
    821 
    822 	GEM_BUG_ON(vma->pages);
    823 
    824 	ret = i915_get_ggtt_vma_pages(vma);
    825 	if (ret)
    826 		return ret;
    827 
    828 	vma->page_sizes = vma->obj->mm.page_sizes;
    829 
    830 	return 0;
    831 }
    832 
    833 static void gen6_gmch_remove(struct i915_address_space *vm)
    834 {
    835 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    836 
    837 	iounmap(ggtt->gsm);
    838 	cleanup_scratch_page(vm);
    839 }
    840 
    841 static struct resource pci_resource(struct pci_dev *pdev, int bar)
    842 {
    843 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
    844 					       pci_resource_len(pdev, bar));
    845 }
    846 
    847 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
    848 {
    849 	struct drm_i915_private *i915 = ggtt->vm.i915;
    850 	struct pci_dev *pdev = i915->drm.pdev;
    851 	unsigned int size;
    852 	u16 snb_gmch_ctl;
    853 	int err;
    854 
    855 	/* TODO: We're not aware of mappable constraints on gen8 yet */
    856 	if (!IS_DGFX(i915)) {
    857 		ggtt->gmadr = pci_resource(pdev, 2);
    858 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
    859 	}
    860 
    861 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
    862 	if (!err)
    863 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
    864 	if (err)
    865 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
    866 
    867 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
    868 	if (IS_CHERRYVIEW(i915))
    869 		size = chv_get_total_gtt_size(snb_gmch_ctl);
    870 	else
    871 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
    872 
    873 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
    874 	ggtt->vm.cleanup = gen6_gmch_remove;
    875 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
    876 	ggtt->vm.clear_range = nop_clear_range;
    877 	if (intel_scanout_needs_vtd_wa(i915))
    878 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
    879 
    880 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
    881 
    882 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
    883 	if (intel_ggtt_update_needs_vtd_wa(i915) ||
    884 	    IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
    885 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
    886 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
    887 		if (ggtt->vm.clear_range != nop_clear_range)
    888 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
    889 	}
    890 
    891 	ggtt->invalidate = gen8_ggtt_invalidate;
    892 
    893 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
    894 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
    895 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
    896 	ggtt->vm.vma_ops.clear_pages = clear_pages;
    897 
    898 	ggtt->vm.pte_encode = gen8_pte_encode;
    899 
    900 	setup_private_pat(ggtt->vm.gt->uncore);
    901 
    902 	return ggtt_probe_common(ggtt, size);
    903 }
    904 
    905 static u64 snb_pte_encode(dma_addr_t addr,
    906 			  enum i915_cache_level level,
    907 			  u32 flags)
    908 {
    909 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
    910 
    911 	switch (level) {
    912 	case I915_CACHE_L3_LLC:
    913 	case I915_CACHE_LLC:
    914 		pte |= GEN6_PTE_CACHE_LLC;
    915 		break;
    916 	case I915_CACHE_NONE:
    917 		pte |= GEN6_PTE_UNCACHED;
    918 		break;
    919 	default:
    920 		MISSING_CASE(level);
    921 	}
    922 
    923 	return pte;
    924 }
    925 
    926 static u64 ivb_pte_encode(dma_addr_t addr,
    927 			  enum i915_cache_level level,
    928 			  u32 flags)
    929 {
    930 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
    931 
    932 	switch (level) {
    933 	case I915_CACHE_L3_LLC:
    934 		pte |= GEN7_PTE_CACHE_L3_LLC;
    935 		break;
    936 	case I915_CACHE_LLC:
    937 		pte |= GEN6_PTE_CACHE_LLC;
    938 		break;
    939 	case I915_CACHE_NONE:
    940 		pte |= GEN6_PTE_UNCACHED;
    941 		break;
    942 	default:
    943 		MISSING_CASE(level);
    944 	}
    945 
    946 	return pte;
    947 }
    948 
    949 static u64 byt_pte_encode(dma_addr_t addr,
    950 			  enum i915_cache_level level,
    951 			  u32 flags)
    952 {
    953 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
    954 
    955 	if (!(flags & PTE_READ_ONLY))
    956 		pte |= BYT_PTE_WRITEABLE;
    957 
    958 	if (level != I915_CACHE_NONE)
    959 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
    960 
    961 	return pte;
    962 }
    963 
    964 static u64 hsw_pte_encode(dma_addr_t addr,
    965 			  enum i915_cache_level level,
    966 			  u32 flags)
    967 {
    968 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
    969 
    970 	if (level != I915_CACHE_NONE)
    971 		pte |= HSW_WB_LLC_AGE3;
    972 
    973 	return pte;
    974 }
    975 
    976 static u64 iris_pte_encode(dma_addr_t addr,
    977 			   enum i915_cache_level level,
    978 			   u32 flags)
    979 {
    980 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
    981 
    982 	switch (level) {
    983 	case I915_CACHE_NONE:
    984 		break;
    985 	case I915_CACHE_WT:
    986 		pte |= HSW_WT_ELLC_LLC_AGE3;
    987 		break;
    988 	default:
    989 		pte |= HSW_WB_ELLC_LLC_AGE3;
    990 		break;
    991 	}
    992 
    993 	return pte;
    994 }
    995 
    996 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
    997 {
    998 	struct drm_i915_private *i915 = ggtt->vm.i915;
    999 	struct pci_dev *pdev = i915->drm.pdev;
   1000 	unsigned int size;
   1001 	u16 snb_gmch_ctl;
   1002 	int err;
   1003 
   1004 	ggtt->gmadr = pci_resource(pdev, 2);
   1005 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
   1006 
   1007 	/*
   1008 	 * 64/512MB is the current min/max we actually know of, but this is
   1009 	 * just a coarse sanity check.
   1010 	 */
   1011 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
   1012 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
   1013 		return -ENXIO;
   1014 	}
   1015 
   1016 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
   1017 	if (!err)
   1018 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
   1019 	if (err)
   1020 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
   1021 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   1022 
   1023 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
   1024 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
   1025 
   1026 	ggtt->vm.clear_range = nop_clear_range;
   1027 	if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
   1028 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
   1029 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
   1030 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
   1031 	ggtt->vm.cleanup = gen6_gmch_remove;
   1032 
   1033 	ggtt->invalidate = gen6_ggtt_invalidate;
   1034 
   1035 	if (HAS_EDRAM(i915))
   1036 		ggtt->vm.pte_encode = iris_pte_encode;
   1037 	else if (IS_HASWELL(i915))
   1038 		ggtt->vm.pte_encode = hsw_pte_encode;
   1039 	else if (IS_VALLEYVIEW(i915))
   1040 		ggtt->vm.pte_encode = byt_pte_encode;
   1041 	else if (INTEL_GEN(i915) >= 7)
   1042 		ggtt->vm.pte_encode = ivb_pte_encode;
   1043 	else
   1044 		ggtt->vm.pte_encode = snb_pte_encode;
   1045 
   1046 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
   1047 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
   1048 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
   1049 	ggtt->vm.vma_ops.clear_pages = clear_pages;
   1050 
   1051 	return ggtt_probe_common(ggtt, size);
   1052 }
   1053 
   1054 static void i915_gmch_remove(struct i915_address_space *vm)
   1055 {
   1056 	intel_gmch_remove();
   1057 }
   1058 
   1059 static int i915_gmch_probe(struct i915_ggtt *ggtt)
   1060 {
   1061 	struct drm_i915_private *i915 = ggtt->vm.i915;
   1062 	phys_addr_t gmadr_base;
   1063 	int ret;
   1064 
   1065 	ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
   1066 	if (!ret) {
   1067 		DRM_ERROR("failed to set up gmch\n");
   1068 		return -EIO;
   1069 	}
   1070 
   1071 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
   1072 
   1073 	ggtt->gmadr =
   1074 		(struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
   1075 
   1076 	ggtt->do_idle_maps = needs_idle_maps(i915);
   1077 	ggtt->vm.insert_page = i915_ggtt_insert_page;
   1078 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
   1079 	ggtt->vm.clear_range = i915_ggtt_clear_range;
   1080 	ggtt->vm.cleanup = i915_gmch_remove;
   1081 
   1082 	ggtt->invalidate = gmch_ggtt_invalidate;
   1083 
   1084 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
   1085 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
   1086 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
   1087 	ggtt->vm.vma_ops.clear_pages = clear_pages;
   1088 
   1089 	if (unlikely(ggtt->do_idle_maps))
   1090 		dev_notice(i915->drm.dev,
   1091 			   "Applying Ironlake quirks for intel_iommu\n");
   1092 
   1093 	return 0;
   1094 }
   1095 
   1096 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
   1097 {
   1098 	struct drm_i915_private *i915 = gt->i915;
   1099 	int ret;
   1100 
   1101 	ggtt->vm.gt = gt;
   1102 	ggtt->vm.i915 = i915;
   1103 	ggtt->vm.dma = &i915->drm.pdev->dev;
   1104 
   1105 	if (INTEL_GEN(i915) <= 5)
   1106 		ret = i915_gmch_probe(ggtt);
   1107 	else if (INTEL_GEN(i915) < 8)
   1108 		ret = gen6_gmch_probe(ggtt);
   1109 	else
   1110 		ret = gen8_gmch_probe(ggtt);
   1111 	if (ret)
   1112 		return ret;
   1113 
   1114 	if ((ggtt->vm.total - 1) >> 32) {
   1115 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
   1116 			  " of address space! Found %lldM!\n",
   1117 			  ggtt->vm.total >> 20);
   1118 		ggtt->vm.total = 1ULL << 32;
   1119 		ggtt->mappable_end =
   1120 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
   1121 	}
   1122 
   1123 	if (ggtt->mappable_end > ggtt->vm.total) {
   1124 		DRM_ERROR("mappable aperture extends past end of GGTT,"
   1125 			  " aperture=%pa, total=%llx\n",
   1126 			  &ggtt->mappable_end, ggtt->vm.total);
   1127 		ggtt->mappable_end = ggtt->vm.total;
   1128 	}
   1129 
   1130 	/* GMADR is the PCI mmio aperture into the global GTT. */
   1131 	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
   1132 	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
   1133 	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
   1134 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
   1135 
   1136 	return 0;
   1137 }
   1138 
   1139 /**
   1140  * i915_ggtt_probe_hw - Probe GGTT hardware location
   1141  * @i915: i915 device
   1142  */
   1143 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
   1144 {
   1145 	int ret;
   1146 
   1147 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
   1148 	if (ret)
   1149 		return ret;
   1150 
   1151 	if (intel_vtd_active())
   1152 		dev_info(i915->drm.dev, "VT-d active for gfx access\n");
   1153 
   1154 	return 0;
   1155 }
   1156 
   1157 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
   1158 {
   1159 	if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
   1160 		return -EIO;
   1161 
   1162 	return 0;
   1163 }
   1164 
   1165 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
   1166 {
   1167 	GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
   1168 
   1169 	ggtt->invalidate = guc_ggtt_invalidate;
   1170 
   1171 	ggtt->invalidate(ggtt);
   1172 }
   1173 
   1174 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
   1175 {
   1176 	/* XXX Temporary pardon for error unload */
   1177 	if (ggtt->invalidate == gen8_ggtt_invalidate)
   1178 		return;
   1179 
   1180 	/* We should only be called after i915_ggtt_enable_guc() */
   1181 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
   1182 
   1183 	ggtt->invalidate = gen8_ggtt_invalidate;
   1184 
   1185 	ggtt->invalidate(ggtt);
   1186 }
   1187 
   1188 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
   1189 {
   1190 	struct i915_vma *vma;
   1191 	bool flush = false;
   1192 	int open;
   1193 
   1194 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
   1195 
   1196 	mutex_lock(&ggtt->vm.mutex);
   1197 
   1198 	/* First fill our portion of the GTT with scratch pages */
   1199 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
   1200 
   1201 	/* Skip rewriting PTE on VMA unbind. */
   1202 	open = atomic_xchg(&ggtt->vm.open, 0);
   1203 
   1204 	/* clflush objects bound into the GGTT and rebind them. */
   1205 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
   1206 		struct drm_i915_gem_object *obj = vma->obj;
   1207 
   1208 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
   1209 			continue;
   1210 
   1211 		clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
   1212 		WARN_ON(i915_vma_bind(vma,
   1213 				      obj ? obj->cache_level : 0,
   1214 				      PIN_GLOBAL, NULL));
   1215 		if (obj) { /* only used during resume => exclusive access */
   1216 			flush |= fetch_and_zero(&obj->write_domain);
   1217 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
   1218 		}
   1219 	}
   1220 
   1221 	atomic_set(&ggtt->vm.open, open);
   1222 	ggtt->invalidate(ggtt);
   1223 
   1224 	mutex_unlock(&ggtt->vm.mutex);
   1225 
   1226 	if (flush)
   1227 		wbinvd_on_all_cpus();
   1228 }
   1229 
   1230 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
   1231 {
   1232 	struct i915_ggtt *ggtt = &i915->ggtt;
   1233 
   1234 	ggtt_restore_mappings(ggtt);
   1235 
   1236 	if (INTEL_GEN(i915) >= 8)
   1237 		setup_private_pat(ggtt->vm.gt->uncore);
   1238 }
   1239 
   1240 static struct scatterlist *
   1241 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
   1242 	     unsigned int width, unsigned int height,
   1243 	     unsigned int stride,
   1244 	     struct sg_table *st, struct scatterlist *sg)
   1245 {
   1246 	unsigned int column, row;
   1247 	unsigned int src_idx;
   1248 
   1249 	for (column = 0; column < width; column++) {
   1250 		src_idx = stride * (height - 1) + column + offset;
   1251 		for (row = 0; row < height; row++) {
   1252 			st->nents++;
   1253 			/*
   1254 			 * We don't need the pages, but need to initialize
   1255 			 * the entries so the sg list can be happily traversed.
   1256 			 * The only thing we need are DMA addresses.
   1257 			 */
   1258 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
   1259 			sg_dma_address(sg) =
   1260 				i915_gem_object_get_dma_address(obj, src_idx);
   1261 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
   1262 			sg = sg_next(sg);
   1263 			src_idx -= stride;
   1264 		}
   1265 	}
   1266 
   1267 	return sg;
   1268 }
   1269 
   1270 static noinline struct sg_table *
   1271 intel_rotate_pages(struct intel_rotation_info *rot_info,
   1272 		   struct drm_i915_gem_object *obj)
   1273 {
   1274 	unsigned int size = intel_rotation_info_size(rot_info);
   1275 	struct sg_table *st;
   1276 	struct scatterlist *sg;
   1277 	int ret = -ENOMEM;
   1278 	int i;
   1279 
   1280 	/* Allocate target SG list. */
   1281 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   1282 	if (!st)
   1283 		goto err_st_alloc;
   1284 
   1285 	ret = sg_alloc_table(st, size, GFP_KERNEL);
   1286 	if (ret)
   1287 		goto err_sg_alloc;
   1288 
   1289 	st->nents = 0;
   1290 	sg = st->sgl;
   1291 
   1292 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
   1293 		sg = rotate_pages(obj, rot_info->plane[i].offset,
   1294 				  rot_info->plane[i].width, rot_info->plane[i].height,
   1295 				  rot_info->plane[i].stride, st, sg);
   1296 	}
   1297 
   1298 	return st;
   1299 
   1300 err_sg_alloc:
   1301 	kfree(st);
   1302 err_st_alloc:
   1303 
   1304 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
   1305 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
   1306 
   1307 	return ERR_PTR(ret);
   1308 }
   1309 
   1310 static struct scatterlist *
   1311 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
   1312 	    unsigned int width, unsigned int height,
   1313 	    unsigned int stride,
   1314 	    struct sg_table *st, struct scatterlist *sg)
   1315 {
   1316 	unsigned int row;
   1317 
   1318 	for (row = 0; row < height; row++) {
   1319 		unsigned int left = width * I915_GTT_PAGE_SIZE;
   1320 
   1321 		while (left) {
   1322 			dma_addr_t addr;
   1323 			unsigned int length;
   1324 
   1325 			/*
   1326 			 * We don't need the pages, but need to initialize
   1327 			 * the entries so the sg list can be happily traversed.
   1328 			 * The only thing we need are DMA addresses.
   1329 			 */
   1330 
   1331 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
   1332 
   1333 			length = min(left, length);
   1334 
   1335 			st->nents++;
   1336 
   1337 			sg_set_page(sg, NULL, length, 0);
   1338 			sg_dma_address(sg) = addr;
   1339 			sg_dma_len(sg) = length;
   1340 			sg = sg_next(sg);
   1341 
   1342 			offset += length / I915_GTT_PAGE_SIZE;
   1343 			left -= length;
   1344 		}
   1345 
   1346 		offset += stride - width;
   1347 	}
   1348 
   1349 	return sg;
   1350 }
   1351 
   1352 static noinline struct sg_table *
   1353 intel_remap_pages(struct intel_remapped_info *rem_info,
   1354 		  struct drm_i915_gem_object *obj)
   1355 {
   1356 	unsigned int size = intel_remapped_info_size(rem_info);
   1357 	struct sg_table *st;
   1358 	struct scatterlist *sg;
   1359 	int ret = -ENOMEM;
   1360 	int i;
   1361 
   1362 	/* Allocate target SG list. */
   1363 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   1364 	if (!st)
   1365 		goto err_st_alloc;
   1366 
   1367 	ret = sg_alloc_table(st, size, GFP_KERNEL);
   1368 	if (ret)
   1369 		goto err_sg_alloc;
   1370 
   1371 	st->nents = 0;
   1372 	sg = st->sgl;
   1373 
   1374 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
   1375 		sg = remap_pages(obj, rem_info->plane[i].offset,
   1376 				 rem_info->plane[i].width, rem_info->plane[i].height,
   1377 				 rem_info->plane[i].stride, st, sg);
   1378 	}
   1379 
   1380 	i915_sg_trim(st);
   1381 
   1382 	return st;
   1383 
   1384 err_sg_alloc:
   1385 	kfree(st);
   1386 err_st_alloc:
   1387 
   1388 	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
   1389 			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
   1390 
   1391 	return ERR_PTR(ret);
   1392 }
   1393 
   1394 static noinline struct sg_table *
   1395 intel_partial_pages(const struct i915_ggtt_view *view,
   1396 		    struct drm_i915_gem_object *obj)
   1397 {
   1398 	struct sg_table *st;
   1399 	struct scatterlist *sg, *iter;
   1400 	unsigned int count = view->partial.size;
   1401 	unsigned int offset;
   1402 	int ret = -ENOMEM;
   1403 
   1404 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   1405 	if (!st)
   1406 		goto err_st_alloc;
   1407 
   1408 	ret = sg_alloc_table(st, count, GFP_KERNEL);
   1409 	if (ret)
   1410 		goto err_sg_alloc;
   1411 
   1412 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
   1413 	GEM_BUG_ON(!iter);
   1414 
   1415 	sg = st->sgl;
   1416 	st->nents = 0;
   1417 	do {
   1418 		unsigned int len;
   1419 
   1420 		len = min(iter->length - (offset << PAGE_SHIFT),
   1421 			  count << PAGE_SHIFT);
   1422 		sg_set_page(sg, NULL, len, 0);
   1423 		sg_dma_address(sg) =
   1424 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
   1425 		sg_dma_len(sg) = len;
   1426 
   1427 		st->nents++;
   1428 		count -= len >> PAGE_SHIFT;
   1429 		if (count == 0) {
   1430 			sg_mark_end(sg);
   1431 			i915_sg_trim(st); /* Drop any unused tail entries. */
   1432 
   1433 			return st;
   1434 		}
   1435 
   1436 		sg = __sg_next(sg);
   1437 		iter = __sg_next(iter);
   1438 		offset = 0;
   1439 	} while (1);
   1440 
   1441 err_sg_alloc:
   1442 	kfree(st);
   1443 err_st_alloc:
   1444 	return ERR_PTR(ret);
   1445 }
   1446 
   1447 static int
   1448 i915_get_ggtt_vma_pages(struct i915_vma *vma)
   1449 {
   1450 	int ret;
   1451 
   1452 	/*
   1453 	 * The vma->pages are only valid within the lifespan of the borrowed
   1454 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
   1455 	 * must be the vma->pages. A simple rule is that vma->pages must only
   1456 	 * be accessed when the obj->mm.pages are pinned.
   1457 	 */
   1458 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
   1459 
   1460 	switch (vma->ggtt_view.type) {
   1461 	default:
   1462 		GEM_BUG_ON(vma->ggtt_view.type);
   1463 		/* fall through */
   1464 	case I915_GGTT_VIEW_NORMAL:
   1465 		vma->pages = vma->obj->mm.pages;
   1466 		return 0;
   1467 
   1468 	case I915_GGTT_VIEW_ROTATED:
   1469 		vma->pages =
   1470 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
   1471 		break;
   1472 
   1473 	case I915_GGTT_VIEW_REMAPPED:
   1474 		vma->pages =
   1475 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
   1476 		break;
   1477 
   1478 	case I915_GGTT_VIEW_PARTIAL:
   1479 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
   1480 		break;
   1481 	}
   1482 
   1483 	ret = 0;
   1484 	if (IS_ERR(vma->pages)) {
   1485 		ret = PTR_ERR(vma->pages);
   1486 		vma->pages = NULL;
   1487 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
   1488 			  vma->ggtt_view.type, ret);
   1489 	}
   1490 	return ret;
   1491 }
   1492