Home | History | Annotate | Line # | Download | only in gt
intel_ggtt.c revision 1.13
      1 /*	$NetBSD: intel_ggtt.c,v 1.13 2021/12/19 12:34:50 riastradh Exp $	*/
      2 
      3 // SPDX-License-Identifier: MIT
      4 /*
      5  * Copyright  2020 Intel Corporation
      6  */
      7 
      8 #include <sys/cdefs.h>
      9 __KERNEL_RCSID(0, "$NetBSD: intel_ggtt.c,v 1.13 2021/12/19 12:34:50 riastradh Exp $");
     10 
     11 #include <linux/stop_machine.h>
     12 
     13 #include <asm/set_memory.h>
     14 #include <asm/smp.h>
     15 
     16 #ifdef __NetBSD__
     17 #include <drm/io-mapping.h>
     18 #endif
     19 
     20 #include "intel_gt.h"
     21 #include "i915_drv.h"
     22 #include "i915_scatterlist.h"
     23 #include "i915_vgpu.h"
     24 
     25 #include "intel_gtt.h"
     26 
     27 #include <linux/nbsd-namespace.h>
     28 
     29 static int
     30 i915_get_ggtt_vma_pages(struct i915_vma *vma);
     31 
     32 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
     33 				   unsigned long color,
     34 				   u64 *start,
     35 				   u64 *end)
     36 {
     37 	if (i915_node_color_differs(node, color))
     38 		*start += I915_GTT_PAGE_SIZE;
     39 
     40 	/*
     41 	 * Also leave a space between the unallocated reserved node after the
     42 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
     43 	 * to insert a guard page to prevent prefetches crossing over the
     44 	 * GTT boundary.
     45 	 */
     46 	node = list_next_entry(node, node_list);
     47 	if (node->color != color)
     48 		*end -= I915_GTT_PAGE_SIZE;
     49 }
     50 
     51 static int ggtt_init_hw(struct i915_ggtt *ggtt)
     52 {
     53 	struct drm_i915_private *i915 = ggtt->vm.i915;
     54 
     55 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
     56 
     57 	ggtt->vm.is_ggtt = true;
     58 
     59 	/* Only VLV supports read-only GGTT mappings */
     60 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
     61 
     62 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
     63 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
     64 
     65 	if (ggtt->mappable_end) {
     66 #ifdef __NetBSD__
     67 		if (!drm_io_mapping_init_wc(&i915->drm, &ggtt->iomap,
     68 			ggtt->gmadr.start, ggtt->mappable_end)) {
     69 			ggtt->vm.cleanup(&ggtt->vm);
     70 			return -EIO;
     71 		}
     72 		/*
     73 		 * Note: mappable_end is the size, not end paddr, of
     74 		 * the aperture.
     75 		 */
     76 		pmap_pv_track(ggtt->gmadr.start, ggtt->mappable_end);
     77 #else
     78 		if (!io_mapping_init_wc(&ggtt->iomap,
     79 					ggtt->gmadr.start,
     80 					ggtt->mappable_end)) {
     81 			ggtt->vm.cleanup(&ggtt->vm);
     82 			return -EIO;
     83 		}
     84 #endif
     85 
     86 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
     87 					      ggtt->mappable_end);
     88 	}
     89 
     90 	i915_ggtt_init_fences(ggtt);
     91 
     92 	return 0;
     93 }
     94 
     95 /**
     96  * i915_ggtt_init_hw - Initialize GGTT hardware
     97  * @i915: i915 device
     98  */
     99 int i915_ggtt_init_hw(struct drm_i915_private *i915)
    100 {
    101 	int ret;
    102 
    103 #ifndef __NetBSD__
    104 	stash_init(&i915->mm.wc_stash);
    105 #endif
    106 
    107 	/*
    108 	 * Note that we use page colouring to enforce a guard page at the
    109 	 * end of the address space. This is required as the CS may prefetch
    110 	 * beyond the end of the batch buffer, across the page boundary,
    111 	 * and beyond the end of the GTT if we do not provide a guard.
    112 	 */
    113 	ret = ggtt_init_hw(&i915->ggtt);
    114 	if (ret)
    115 		return ret;
    116 
    117 	return 0;
    118 }
    119 
    120 /*
    121  * Certain Gen5 chipsets require require idling the GPU before
    122  * unmapping anything from the GTT when VT-d is enabled.
    123  */
    124 static bool needs_idle_maps(struct drm_i915_private *i915)
    125 {
    126 	/*
    127 	 * Query intel_iommu to see if we need the workaround. Presumably that
    128 	 * was loaded first.
    129 	 */
    130 	return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
    131 }
    132 
    133 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
    134 {
    135 	struct drm_i915_private *i915 = ggtt->vm.i915;
    136 
    137 	/*
    138 	 * Don't bother messing with faults pre GEN6 as we have little
    139 	 * documentation supporting that it's a good idea.
    140 	 */
    141 	if (INTEL_GEN(i915) < 6)
    142 		return;
    143 
    144 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
    145 
    146 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
    147 
    148 	ggtt->invalidate(ggtt);
    149 }
    150 
    151 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
    152 {
    153 	ggtt_suspend_mappings(&i915->ggtt);
    154 }
    155 
    156 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
    157 {
    158 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
    159 
    160 	spin_lock_irq(&uncore->lock);
    161 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
    162 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
    163 	spin_unlock_irq(&uncore->lock);
    164 }
    165 
    166 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
    167 {
    168 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
    169 
    170 	/*
    171 	 * Note that as an uncached mmio write, this will flush the
    172 	 * WCB of the writes into the GGTT before it triggers the invalidate.
    173 	 */
    174 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
    175 }
    176 
    177 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
    178 {
    179 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
    180 	struct drm_i915_private *i915 = ggtt->vm.i915;
    181 
    182 	gen8_ggtt_invalidate(ggtt);
    183 
    184 	if (INTEL_GEN(i915) >= 12)
    185 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
    186 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
    187 	else
    188 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
    189 }
    190 
    191 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
    192 {
    193 	intel_gtt_chipset_flush();
    194 }
    195 
    196 #ifdef __NetBSD__
    197 static inline void
    198 gen8_set_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i,
    199     gen8_pte_t pte)
    200 {
    201         CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
    202         CTASSERT(sizeof(gen8_pte_t) == 8);
    203 #ifdef _LP64                    /* XXX How to detect bus_space_write_8?  */
    204         bus_space_write_8(bst, bsh, 8*i, pte);
    205 #else
    206         bus_space_write_4(bst, bsh, 8*i, (uint32_t)pte);
    207         bus_space_write_4(bst, bsh, 8*i + 4, (uint32_t)(pte >> 32));
    208 #endif
    209 }
    210 #else
    211 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
    212 {
    213 	writeq(pte, addr);
    214 }
    215 #endif
    216 
    217 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
    218 				  dma_addr_t addr,
    219 				  u64 offset,
    220 				  enum i915_cache_level level,
    221 				  u32 unused)
    222 {
    223 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    224 #ifndef __NetBSD__
    225 	gen8_pte_t __iomem *pte =
    226 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
    227 #endif
    228 
    229 #ifdef __NetBSD__
    230 	gen8_set_pte(ggtt->gsmt, ggtt->gsmh, offset / I915_GTT_PAGE_SIZE,
    231 	    gen8_pte_encode(addr, level, 0));
    232 #else
    233 	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
    234 #endif
    235 
    236 	ggtt->invalidate(ggtt);
    237 }
    238 
    239 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
    240 				     struct i915_vma *vma,
    241 				     enum i915_cache_level level,
    242 				     u32 flags)
    243 {
    244 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    245 #ifdef __NetBSD__
    246 	bus_dmamap_t map = vma->pages->sgl[0].sg_dmamap;
    247 	unsigned seg;
    248 	unsigned pgno;
    249 #else
    250 	struct sgt_iter sgt_iter;
    251 	gen8_pte_t __iomem *gtt_entries;
    252 #endif
    253 	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
    254 	dma_addr_t addr;
    255 
    256 	/*
    257 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
    258 	 * not to allow the user to override access to a read only page.
    259 	 */
    260 
    261 #ifdef __NetBSD__
    262 	pgno = vma->node.start / I915_GTT_PAGE_SIZE;
    263 	for (seg = 0; seg < map->dm_nsegs; seg++) {
    264 		addr = map->dm_segs[seg].ds_addr;
    265 		bus_size_t len = map->dm_segs[seg].ds_len;
    266 		KASSERT((addr % I915_GTT_PAGE_SIZE) == 0);
    267 		KASSERT((len % I915_GTT_PAGE_SIZE) == 0);
    268 		for (;
    269 		     len >= I915_GTT_PAGE_SIZE;
    270 		     addr += I915_GTT_PAGE_SIZE, len -= I915_GTT_PAGE_SIZE) {
    271 			gen8_set_pte(ggtt->gsmt, ggtt->gsmh, pgno++,
    272 			    pte_encode | addr);
    273 		}
    274 		KASSERT(len == 0);
    275 	}
    276 #else
    277 	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
    278 	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
    279 	for_each_sgt_daddr(addr, sgt_iter, vma->pages)
    280 		gen8_set_pte(gtt_entries++, pte_encode | addr);
    281 #endif
    282 
    283 	/*
    284 	 * We want to flush the TLBs only after we're certain all the PTE
    285 	 * updates have finished.
    286 	 */
    287 	ggtt->invalidate(ggtt);
    288 }
    289 
    290 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
    291 				  dma_addr_t addr,
    292 				  u64 offset,
    293 				  enum i915_cache_level level,
    294 				  u32 flags)
    295 {
    296 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    297 #ifndef __NetBSD__
    298 	gen6_pte_t __iomem *pte =
    299 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
    300 #endif
    301 
    302 #ifdef __NetBSD__
    303 	bus_space_write_4(ggtt->gsmt, ggtt->gsmh, offset / I915_GTT_PAGE_SIZE,
    304 	    vm->pte_encode(addr, level, flags));
    305 #else
    306 	iowrite32(vm->pte_encode(addr, level, flags), pte);
    307 #endif
    308 
    309 	ggtt->invalidate(ggtt);
    310 }
    311 
    312 /*
    313  * Binds an object into the global gtt with the specified cache level.
    314  * The object will be accessible to the GPU via commands whose operands
    315  * reference offsets within the global GTT as well as accessible by the GPU
    316  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
    317  */
    318 
    319 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
    320 				     struct i915_vma *vma,
    321 				     enum i915_cache_level level,
    322 				     u32 flags)
    323 {
    324 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    325 #ifdef __NetBSD__
    326 	bus_dmamap_t map = vma->pages->sgl[0].sg_dmamap;
    327 	unsigned seg;
    328 	unsigned pgno;
    329 #else
    330 	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
    331 	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
    332 	struct sgt_iter iter;
    333 #endif
    334 	dma_addr_t addr;
    335 
    336 #ifdef __NetBSD__
    337 	pgno = vma->node.start >> PAGE_SHIFT;
    338 	for (seg = 0; seg < map->dm_nsegs; seg++) {
    339 		addr = map->dm_segs[seg].ds_addr;
    340 		bus_size_t len = map->dm_segs[seg].ds_len;
    341 		KASSERT((addr % I915_GTT_PAGE_SIZE) == 0);
    342 		KASSERT((len % I915_GTT_PAGE_SIZE) == 0);
    343 		for (;
    344 		     len >= I915_GTT_PAGE_SIZE;
    345 		     addr += I915_GTT_PAGE_SIZE, len -= I915_GTT_PAGE_SIZE) {
    346 			/* XXX KASSERT(pgno < ...)?  */
    347 			CTASSERT(sizeof(gen6_pte_t) == 4);
    348 			bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
    349 			    sizeof(gen6_pte_t) * pgno++,
    350 			    vm->pte_encode(addr, level, flags));
    351 		}
    352 		KASSERT(len == 0);
    353 		/* XXX KASSERT(pgno <= ...)?  */
    354 	}
    355 #else
    356 	for_each_sgt_daddr(addr, iter, vma->pages)
    357 		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
    358 #endif
    359 
    360 	/*
    361 	 * We want to flush the TLBs only after we're certain all the PTE
    362 	 * updates have finished.
    363 	 */
    364 	ggtt->invalidate(ggtt);
    365 }
    366 
    367 static void nop_clear_range(struct i915_address_space *vm,
    368 			    u64 start, u64 length)
    369 {
    370 }
    371 
    372 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
    373 				  u64 start, u64 length)
    374 {
    375 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    376 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
    377 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
    378 	const gen8_pte_t scratch_pte = vm->scratch[0].encode;
    379 #ifndef __NetBSD__
    380 	gen8_pte_t __iomem *gtt_base =
    381 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
    382 #endif
    383 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
    384 	int i;
    385 
    386 	if (WARN(num_entries > max_entries,
    387 		 "First entry = %d; Num entries = %d (max=%d)\n",
    388 		 first_entry, num_entries, max_entries))
    389 		num_entries = max_entries;
    390 
    391 #ifdef __NetBSD__
    392 	for (i = 0; i < num_entries; i++)
    393 		gen8_set_pte(ggtt->gsmt, ggtt->gsmh, first_entry + i,
    394 		    scratch_pte);
    395 #else
    396 	for (i = 0; i < num_entries; i++)
    397 		gen8_set_pte(&gtt_base[i], scratch_pte);
    398 #endif
    399 }
    400 
    401 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
    402 {
    403 	/*
    404 	 * Make sure the internal GAM fifo has been cleared of all GTT
    405 	 * writes before exiting stop_machine(). This guarantees that
    406 	 * any aperture accesses waiting to start in another process
    407 	 * cannot back up behind the GTT writes causing a hang.
    408 	 * The register can be any arbitrary GAM register.
    409 	 */
    410 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
    411 }
    412 
    413 struct insert_page {
    414 	struct i915_address_space *vm;
    415 	dma_addr_t addr;
    416 	u64 offset;
    417 	enum i915_cache_level level;
    418 };
    419 
    420 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
    421 {
    422 	struct insert_page *arg = _arg;
    423 
    424 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
    425 	bxt_vtd_ggtt_wa(arg->vm);
    426 
    427 	return 0;
    428 }
    429 
    430 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
    431 					  dma_addr_t addr,
    432 					  u64 offset,
    433 					  enum i915_cache_level level,
    434 					  u32 unused)
    435 {
    436 	struct insert_page arg = { vm, addr, offset, level };
    437 
    438 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
    439 }
    440 
    441 struct insert_entries {
    442 	struct i915_address_space *vm;
    443 	struct i915_vma *vma;
    444 	enum i915_cache_level level;
    445 	u32 flags;
    446 };
    447 
    448 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
    449 {
    450 	struct insert_entries *arg = _arg;
    451 
    452 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
    453 	bxt_vtd_ggtt_wa(arg->vm);
    454 
    455 	return 0;
    456 }
    457 
    458 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
    459 					     struct i915_vma *vma,
    460 					     enum i915_cache_level level,
    461 					     u32 flags)
    462 {
    463 	struct insert_entries arg = { vm, vma, level, flags };
    464 
    465 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
    466 }
    467 
    468 struct clear_range {
    469 	struct i915_address_space *vm;
    470 	u64 start;
    471 	u64 length;
    472 };
    473 
    474 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
    475 {
    476 	struct clear_range *arg = _arg;
    477 
    478 	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
    479 	bxt_vtd_ggtt_wa(arg->vm);
    480 
    481 	return 0;
    482 }
    483 
    484 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
    485 					  u64 start,
    486 					  u64 length)
    487 {
    488 	struct clear_range arg = { vm, start, length };
    489 
    490 	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
    491 }
    492 
    493 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
    494 				  u64 start, u64 length)
    495 {
    496 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    497 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
    498 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
    499 #ifdef __NetBSD__
    500 	gen6_pte_t scratch_pte;
    501 #else
    502 	gen6_pte_t scratch_pte, __iomem *gtt_base =
    503 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
    504 #endif
    505 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
    506 	int i;
    507 
    508 	if (WARN(num_entries > max_entries,
    509 		 "First entry = %d; Num entries = %d (max=%d)\n",
    510 		 first_entry, num_entries, max_entries))
    511 		num_entries = max_entries;
    512 
    513 	scratch_pte = vm->scratch[0].encode;
    514 #ifdef __NetBSD__
    515         CTASSERT(sizeof(gen6_pte_t) == 4);
    516         for (i = 0; i < num_entries; i++)
    517 		bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
    518 		    sizeof(gen6_pte_t) * (first_entry + i),
    519 		    scratch_pte);
    520 #else
    521 	for (i = 0; i < num_entries; i++)
    522 		iowrite32(scratch_pte, &gtt_base[i]);
    523 #endif
    524 }
    525 
    526 static void i915_ggtt_insert_page(struct i915_address_space *vm,
    527 				  dma_addr_t addr,
    528 				  u64 offset,
    529 				  enum i915_cache_level cache_level,
    530 				  u32 unused)
    531 {
    532 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
    533 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
    534 
    535 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
    536 }
    537 
    538 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
    539 				     struct i915_vma *vma,
    540 				     enum i915_cache_level cache_level,
    541 				     u32 unused)
    542 {
    543 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
    544 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
    545 
    546 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
    547 				    flags);
    548 }
    549 
    550 static void i915_ggtt_clear_range(struct i915_address_space *vm,
    551 				  u64 start, u64 length)
    552 {
    553 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
    554 }
    555 
    556 static int ggtt_bind_vma(struct i915_vma *vma,
    557 			 enum i915_cache_level cache_level,
    558 			 u32 flags)
    559 {
    560 	struct drm_i915_gem_object *obj = vma->obj;
    561 	u32 pte_flags;
    562 
    563 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
    564 	pte_flags = 0;
    565 	if (i915_gem_object_is_readonly(obj))
    566 		pte_flags |= PTE_READ_ONLY;
    567 
    568 	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
    569 
    570 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
    571 
    572 	/*
    573 	 * Without aliasing PPGTT there's no difference between
    574 	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
    575 	 * upgrade to both bound if we bind either to avoid double-binding.
    576 	 */
    577 	atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
    578 
    579 	return 0;
    580 }
    581 
    582 static void ggtt_unbind_vma(struct i915_vma *vma)
    583 {
    584 	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
    585 }
    586 
    587 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
    588 {
    589 	u64 size;
    590 	int ret;
    591 
    592 	if (!USES_GUC(ggtt->vm.i915))
    593 		return 0;
    594 
    595 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
    596 	size = ggtt->vm.total - GUC_GGTT_TOP;
    597 
    598 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
    599 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
    600 				   PIN_NOEVICT);
    601 	if (ret)
    602 		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
    603 
    604 	return ret;
    605 }
    606 
    607 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
    608 {
    609 	if (drm_mm_node_allocated(&ggtt->uc_fw))
    610 		drm_mm_remove_node(&ggtt->uc_fw);
    611 }
    612 
    613 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
    614 {
    615 	ggtt_release_guc_top(ggtt);
    616 	if (drm_mm_node_allocated(&ggtt->error_capture))
    617 		drm_mm_remove_node(&ggtt->error_capture);
    618 	mutex_destroy(&ggtt->error_mutex);
    619 }
    620 
    621 static int init_ggtt(struct i915_ggtt *ggtt)
    622 {
    623 	/*
    624 	 * Let GEM Manage all of the aperture.
    625 	 *
    626 	 * However, leave one page at the end still bound to the scratch page.
    627 	 * There are a number of places where the hardware apparently prefetches
    628 	 * past the end of the object, and we've seen multiple hangs with the
    629 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
    630 	 * aperture.  One page should be enough to keep any prefetching inside
    631 	 * of the aperture.
    632 	 */
    633 	unsigned long hole_start, hole_end;
    634 	struct drm_mm_node *entry;
    635 	int ret;
    636 
    637 	/*
    638 	 * GuC requires all resources that we're sharing with it to be placed in
    639 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
    640 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
    641 	 * why.
    642 	 */
    643 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
    644 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
    645 
    646 	ret = intel_vgt_balloon(ggtt);
    647 	if (ret)
    648 		return ret;
    649 
    650 	mutex_init(&ggtt->error_mutex);
    651 	if (ggtt->mappable_end) {
    652 		/* Reserve a mappable slot for our lockless error capture */
    653 		ret = drm_mm_insert_node_in_range(&ggtt->vm.mm,
    654 						  &ggtt->error_capture,
    655 						  PAGE_SIZE, 0,
    656 						  I915_COLOR_UNEVICTABLE,
    657 						  0, ggtt->mappable_end,
    658 						  DRM_MM_INSERT_LOW);
    659 		if (ret)
    660 			return ret;
    661 	}
    662 
    663 	/*
    664 	 * The upper portion of the GuC address space has a sizeable hole
    665 	 * (several MB) that is inaccessible by GuC. Reserve this range within
    666 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
    667 	 */
    668 	ret = ggtt_reserve_guc_top(ggtt);
    669 	if (ret)
    670 		goto err;
    671 
    672 	/* Clear any non-preallocated blocks */
    673 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
    674 		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
    675 			      hole_start, hole_end);
    676 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
    677 				     hole_end - hole_start);
    678 	}
    679 
    680 	/* And finally clear the reserved guard page */
    681 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
    682 
    683 	return 0;
    684 
    685 err:
    686 	cleanup_init_ggtt(ggtt);
    687 	return ret;
    688 }
    689 
    690 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
    691 				 enum i915_cache_level cache_level,
    692 				 u32 flags)
    693 {
    694 	u32 pte_flags;
    695 	int ret;
    696 
    697 	/* Currently applicable only to VLV */
    698 	pte_flags = 0;
    699 	if (i915_gem_object_is_readonly(vma->obj))
    700 		pte_flags |= PTE_READ_ONLY;
    701 
    702 	if (flags & I915_VMA_LOCAL_BIND) {
    703 		struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
    704 
    705 		if (flags & I915_VMA_ALLOC) {
    706 			ret = alias->vm.allocate_va_range(&alias->vm,
    707 							  vma->node.start,
    708 							  vma->size);
    709 			if (ret)
    710 				return ret;
    711 
    712 			set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
    713 		}
    714 
    715 		GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
    716 				     __i915_vma_flags(vma)));
    717 		alias->vm.insert_entries(&alias->vm, vma,
    718 					 cache_level, pte_flags);
    719 	}
    720 
    721 	if (flags & I915_VMA_GLOBAL_BIND)
    722 		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
    723 
    724 	return 0;
    725 }
    726 
    727 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
    728 {
    729 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
    730 		struct i915_address_space *vm = vma->vm;
    731 
    732 		vm->clear_range(vm, vma->node.start, vma->size);
    733 	}
    734 
    735 	if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
    736 		struct i915_address_space *vm =
    737 			&i915_vm_to_ggtt(vma->vm)->alias->vm;
    738 
    739 		vm->clear_range(vm, vma->node.start, vma->size);
    740 	}
    741 }
    742 
    743 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
    744 {
    745 	struct i915_ppgtt *ppgtt;
    746 	int err;
    747 
    748 	ppgtt = i915_ppgtt_create(ggtt->vm.gt);
    749 	if (IS_ERR(ppgtt))
    750 		return PTR_ERR(ppgtt);
    751 
    752 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
    753 		err = -ENODEV;
    754 		goto err_ppgtt;
    755 	}
    756 
    757 	/*
    758 	 * Note we only pre-allocate as far as the end of the global
    759 	 * GTT. On 48b / 4-level page-tables, the difference is very,
    760 	 * very significant! We have to preallocate as GVT/vgpu does
    761 	 * not like the page directory disappearing.
    762 	 */
    763 	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
    764 	if (err)
    765 		goto err_ppgtt;
    766 
    767 	ggtt->alias = ppgtt;
    768 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
    769 
    770 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
    771 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
    772 
    773 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
    774 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
    775 
    776 	return 0;
    777 
    778 err_ppgtt:
    779 	i915_vm_put(&ppgtt->vm);
    780 	return err;
    781 }
    782 
    783 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
    784 {
    785 	struct i915_ppgtt *ppgtt;
    786 
    787 	ppgtt = fetch_and_zero(&ggtt->alias);
    788 	if (!ppgtt)
    789 		return;
    790 
    791 	i915_vm_put(&ppgtt->vm);
    792 
    793 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
    794 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
    795 }
    796 
    797 int i915_init_ggtt(struct drm_i915_private *i915)
    798 {
    799 	int ret;
    800 
    801 	ret = init_ggtt(&i915->ggtt);
    802 	if (ret)
    803 		return ret;
    804 
    805 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
    806 		ret = init_aliasing_ppgtt(&i915->ggtt);
    807 		if (ret)
    808 			cleanup_init_ggtt(&i915->ggtt);
    809 	}
    810 
    811 	return 0;
    812 }
    813 
    814 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
    815 {
    816 	struct i915_vma *vma, *vn;
    817 
    818 	atomic_set(&ggtt->vm.open, 0);
    819 
    820 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
    821 	flush_workqueue(ggtt->vm.i915->wq);
    822 
    823 	mutex_lock(&ggtt->vm.mutex);
    824 
    825 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
    826 		WARN_ON(__i915_vma_unbind(vma));
    827 
    828 	if (drm_mm_node_allocated(&ggtt->error_capture))
    829 		drm_mm_remove_node(&ggtt->error_capture);
    830 	mutex_destroy(&ggtt->error_mutex);
    831 
    832 	ggtt_release_guc_top(ggtt);
    833 	intel_vgt_deballoon(ggtt);
    834 
    835 	ggtt->vm.cleanup(&ggtt->vm);
    836 
    837 	mutex_unlock(&ggtt->vm.mutex);
    838 	i915_address_space_fini(&ggtt->vm);
    839 
    840 #ifdef __NetBSD__
    841 	if (ggtt->mappable_end)
    842 		pmap_pv_untrack(ggtt->gmadr.start, ggtt->mappable_end);
    843 #endif
    844 
    845 	arch_phys_wc_del(ggtt->mtrr);
    846 
    847 	if (ggtt->iomap.size)
    848 		io_mapping_fini(&ggtt->iomap);
    849 }
    850 
    851 /**
    852  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
    853  * @i915: i915 device
    854  */
    855 void i915_ggtt_driver_release(struct drm_i915_private *i915)
    856 {
    857 #ifndef __NetBSD__
    858 	struct pagevec *pvec;
    859 #endif
    860 
    861 	fini_aliasing_ppgtt(&i915->ggtt);
    862 
    863 	ggtt_cleanup_hw(&i915->ggtt);
    864 
    865 #ifndef __NetBSD__
    866 	pvec = &i915->mm.wc_stash.pvec;
    867 	if (pvec->nr) {
    868 		set_pages_array_wb(pvec->pages, pvec->nr);
    869 		__pagevec_release(pvec);
    870 	}
    871 #endif
    872 }
    873 
    874 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
    875 {
    876 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
    877 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
    878 	return snb_gmch_ctl << 20;
    879 }
    880 
    881 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
    882 {
    883 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
    884 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
    885 	if (bdw_gmch_ctl)
    886 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
    887 
    888 #ifdef CONFIG_X86_32
    889 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
    890 	if (bdw_gmch_ctl > 4)
    891 		bdw_gmch_ctl = 4;
    892 #endif
    893 
    894 	return bdw_gmch_ctl << 20;
    895 }
    896 
    897 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
    898 {
    899 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
    900 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
    901 
    902 	if (gmch_ctrl)
    903 		return 1 << (20 + gmch_ctrl);
    904 
    905 	return 0;
    906 }
    907 
    908 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
    909 {
    910 	struct drm_i915_private *i915 = ggtt->vm.i915;
    911 	struct pci_dev *pdev = i915->drm.pdev;
    912 	phys_addr_t phys_addr;
    913 	int ret;
    914 
    915 	/* For Modern GENs the PTEs and register space are split in the BAR */
    916 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
    917 
    918 	/*
    919 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
    920 	 * will be dropped. For WC mappings in general we have 64 byte burst
    921 	 * writes when the WC buffer is flushed, so we can't use it, but have to
    922 	 * resort to an uncached mapping. The WC issue is easily caught by the
    923 	 * readback check when writing GTT PTE entries.
    924 	 */
    925 #ifdef __NetBSD__
    926     {
    927 	int flags;
    928 	if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
    929 		flags = 0;
    930 	else
    931 		flags = BUS_SPACE_MAP_PREFETCHABLE;
    932 	ggtt->gsmt = i915->drm.pdev->pd_pa.pa_memt;
    933 	/* XXX errno NetBSD->Linux */
    934 	ret = -bus_space_map(ggtt->gsmt, phys_addr, size, flags, &ggtt->gsmh);
    935 	if (ret) {
    936 		DRM_ERROR("Failed to map the ggtt page table: %d\n", ret);
    937 		return ret;
    938 	}
    939 	ggtt->gsmsz = size;
    940     }
    941 #else
    942 	if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
    943 		ggtt->gsm = ioremap(phys_addr, size);
    944 	else
    945 		ggtt->gsm = ioremap_wc(phys_addr, size);
    946 	if (!ggtt->gsm) {
    947 		DRM_ERROR("Failed to map the ggtt page table\n");
    948 		return -ENOMEM;
    949 	}
    950 #endif
    951 
    952 	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
    953 	if (ret) {
    954 		DRM_ERROR("Scratch setup failed\n");
    955 		/* iounmap will also get called at remove, but meh */
    956 #ifdef __NetBSD__
    957 		KASSERT(ggtt->gsmsz == size);
    958 		bus_space_unmap(ggtt->gsmt, ggtt->gsmh, ggtt->gsmsz);
    959 		ggtt->gsmsz = 0;
    960 #else
    961 		iounmap(ggtt->gsm);
    962 #endif
    963 		return ret;
    964 	}
    965 
    966 	ggtt->vm.scratch[0].encode =
    967 		ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
    968 				    I915_CACHE_NONE, 0);
    969 
    970 	return 0;
    971 }
    972 
    973 int ggtt_set_pages(struct i915_vma *vma)
    974 {
    975 	int ret;
    976 
    977 	GEM_BUG_ON(vma->pages);
    978 
    979 	ret = i915_get_ggtt_vma_pages(vma);
    980 	if (ret)
    981 		return ret;
    982 
    983 	vma->page_sizes = vma->obj->mm.page_sizes;
    984 
    985 	return 0;
    986 }
    987 
    988 static void gen6_gmch_remove(struct i915_address_space *vm)
    989 {
    990 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
    991 
    992 #ifdef __NetBSD__
    993 	if (ggtt->gsmsz) {
    994 		bus_space_unmap(ggtt->gsmt, ggtt->gsmh, ggtt->gsmsz);
    995 		ggtt->gsmsz = 0;
    996 	}
    997 #else
    998 	iounmap(ggtt->gsm);
    999 #endif
   1000 	cleanup_scratch_page(vm);
   1001 }
   1002 
   1003 static struct resource pci_resource(struct pci_dev *pdev, int bar)
   1004 {
   1005 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
   1006 					       pci_resource_len(pdev, bar));
   1007 }
   1008 
   1009 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
   1010 {
   1011 	struct drm_i915_private *i915 = ggtt->vm.i915;
   1012 	struct pci_dev *pdev = i915->drm.pdev;
   1013 	unsigned int size;
   1014 	u16 snb_gmch_ctl;
   1015 	int err;
   1016 
   1017 	/* TODO: We're not aware of mappable constraints on gen8 yet */
   1018 	if (!IS_DGFX(i915)) {
   1019 		ggtt->gmadr = pci_resource(pdev, 2);
   1020 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
   1021 	}
   1022 
   1023 #ifdef __NetBSD__
   1024 	__USE(err);
   1025 	ggtt->max_paddr = DMA_BIT_MASK(39);
   1026 #else
   1027 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
   1028 	if (!err)
   1029 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
   1030 	if (err)
   1031 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
   1032 #endif
   1033 
   1034 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   1035 	if (IS_CHERRYVIEW(i915))
   1036 		size = chv_get_total_gtt_size(snb_gmch_ctl);
   1037 	else
   1038 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
   1039 
   1040 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
   1041 	ggtt->vm.cleanup = gen6_gmch_remove;
   1042 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
   1043 	ggtt->vm.clear_range = nop_clear_range;
   1044 	if (intel_scanout_needs_vtd_wa(i915))
   1045 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
   1046 
   1047 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
   1048 
   1049 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
   1050 	if (intel_ggtt_update_needs_vtd_wa(i915) ||
   1051 	    IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
   1052 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
   1053 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
   1054 		if (ggtt->vm.clear_range != nop_clear_range)
   1055 			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
   1056 	}
   1057 
   1058 	ggtt->invalidate = gen8_ggtt_invalidate;
   1059 
   1060 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
   1061 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
   1062 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
   1063 	ggtt->vm.vma_ops.clear_pages = clear_pages;
   1064 
   1065 	ggtt->vm.pte_encode = gen8_pte_encode;
   1066 
   1067 	setup_private_pat(ggtt->vm.gt->uncore);
   1068 
   1069 	return ggtt_probe_common(ggtt, size);
   1070 }
   1071 
   1072 static u64 snb_pte_encode(dma_addr_t addr,
   1073 			  enum i915_cache_level level,
   1074 			  u32 flags)
   1075 {
   1076 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
   1077 
   1078 	switch (level) {
   1079 	case I915_CACHE_L3_LLC:
   1080 	case I915_CACHE_LLC:
   1081 		pte |= GEN6_PTE_CACHE_LLC;
   1082 		break;
   1083 	case I915_CACHE_NONE:
   1084 		pte |= GEN6_PTE_UNCACHED;
   1085 		break;
   1086 	default:
   1087 		MISSING_CASE(level);
   1088 	}
   1089 
   1090 	return pte;
   1091 }
   1092 
   1093 static u64 ivb_pte_encode(dma_addr_t addr,
   1094 			  enum i915_cache_level level,
   1095 			  u32 flags)
   1096 {
   1097 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
   1098 
   1099 	switch (level) {
   1100 	case I915_CACHE_L3_LLC:
   1101 		pte |= GEN7_PTE_CACHE_L3_LLC;
   1102 		break;
   1103 	case I915_CACHE_LLC:
   1104 		pte |= GEN6_PTE_CACHE_LLC;
   1105 		break;
   1106 	case I915_CACHE_NONE:
   1107 		pte |= GEN6_PTE_UNCACHED;
   1108 		break;
   1109 	default:
   1110 		MISSING_CASE(level);
   1111 	}
   1112 
   1113 	return pte;
   1114 }
   1115 
   1116 static u64 byt_pte_encode(dma_addr_t addr,
   1117 			  enum i915_cache_level level,
   1118 			  u32 flags)
   1119 {
   1120 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
   1121 
   1122 	if (!(flags & PTE_READ_ONLY))
   1123 		pte |= BYT_PTE_WRITEABLE;
   1124 
   1125 	if (level != I915_CACHE_NONE)
   1126 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
   1127 
   1128 	return pte;
   1129 }
   1130 
   1131 static u64 hsw_pte_encode(dma_addr_t addr,
   1132 			  enum i915_cache_level level,
   1133 			  u32 flags)
   1134 {
   1135 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
   1136 
   1137 	if (level != I915_CACHE_NONE)
   1138 		pte |= HSW_WB_LLC_AGE3;
   1139 
   1140 	return pte;
   1141 }
   1142 
   1143 static u64 iris_pte_encode(dma_addr_t addr,
   1144 			   enum i915_cache_level level,
   1145 			   u32 flags)
   1146 {
   1147 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
   1148 
   1149 	switch (level) {
   1150 	case I915_CACHE_NONE:
   1151 		break;
   1152 	case I915_CACHE_WT:
   1153 		pte |= HSW_WT_ELLC_LLC_AGE3;
   1154 		break;
   1155 	default:
   1156 		pte |= HSW_WB_ELLC_LLC_AGE3;
   1157 		break;
   1158 	}
   1159 
   1160 	return pte;
   1161 }
   1162 
   1163 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
   1164 {
   1165 	struct drm_i915_private *i915 = ggtt->vm.i915;
   1166 	struct pci_dev *pdev = i915->drm.pdev;
   1167 	unsigned int size;
   1168 	u16 snb_gmch_ctl;
   1169 	int err;
   1170 
   1171 	ggtt->gmadr = pci_resource(pdev, 2);
   1172 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
   1173 
   1174 	/*
   1175 	 * 64/512MB is the current min/max we actually know of, but this is
   1176 	 * just a coarse sanity check.
   1177 	 */
   1178 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
   1179 		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
   1180 		return -ENXIO;
   1181 	}
   1182 
   1183 #ifdef __NetBSD__
   1184 	__USE(err);
   1185 	ggtt->max_paddr = DMA_BIT_MASK(40);
   1186 #else
   1187 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
   1188 	if (!err)
   1189 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
   1190 	if (err)
   1191 		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
   1192 #endif
   1193 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
   1194 
   1195 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
   1196 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
   1197 
   1198 	ggtt->vm.clear_range = nop_clear_range;
   1199 	if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
   1200 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
   1201 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
   1202 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
   1203 	ggtt->vm.cleanup = gen6_gmch_remove;
   1204 
   1205 	ggtt->invalidate = gen6_ggtt_invalidate;
   1206 
   1207 	if (HAS_EDRAM(i915))
   1208 		ggtt->vm.pte_encode = iris_pte_encode;
   1209 	else if (IS_HASWELL(i915))
   1210 		ggtt->vm.pte_encode = hsw_pte_encode;
   1211 	else if (IS_VALLEYVIEW(i915))
   1212 		ggtt->vm.pte_encode = byt_pte_encode;
   1213 	else if (INTEL_GEN(i915) >= 7)
   1214 		ggtt->vm.pte_encode = ivb_pte_encode;
   1215 	else
   1216 		ggtt->vm.pte_encode = snb_pte_encode;
   1217 
   1218 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
   1219 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
   1220 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
   1221 	ggtt->vm.vma_ops.clear_pages = clear_pages;
   1222 
   1223 	return ggtt_probe_common(ggtt, size);
   1224 }
   1225 
   1226 static void i915_gmch_remove(struct i915_address_space *vm)
   1227 {
   1228 	intel_gmch_remove();
   1229 }
   1230 
   1231 static int i915_gmch_probe(struct i915_ggtt *ggtt)
   1232 {
   1233 	struct drm_i915_private *i915 = ggtt->vm.i915;
   1234 	phys_addr_t gmadr_base;
   1235 	int ret;
   1236 
   1237 	ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
   1238 	if (!ret) {
   1239 		DRM_ERROR("failed to set up gmch\n");
   1240 		return -EIO;
   1241 	}
   1242 
   1243 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
   1244 
   1245 	ggtt->gmadr =
   1246 		(struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
   1247 
   1248 #ifdef __NetBSD__
   1249 	/* Based on i915_drv.c, i915_driver_hw_probe.  */
   1250 	if (IS_GEN(i915, 2))
   1251 		ggtt->max_paddr = DMA_BIT_MASK(30);
   1252 	else if (IS_I965G(i915) || IS_I965GM(i915))
   1253 		ggtt->max_paddr = DMA_BIT_MASK(32);
   1254 	else
   1255 		ggtt->max_paddr = DMA_BIT_MASK(40);
   1256 #endif
   1257 
   1258 	ggtt->do_idle_maps = needs_idle_maps(i915);
   1259 	ggtt->vm.insert_page = i915_ggtt_insert_page;
   1260 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
   1261 	ggtt->vm.clear_range = i915_ggtt_clear_range;
   1262 	ggtt->vm.cleanup = i915_gmch_remove;
   1263 
   1264 	ggtt->invalidate = gmch_ggtt_invalidate;
   1265 
   1266 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
   1267 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
   1268 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
   1269 	ggtt->vm.vma_ops.clear_pages = clear_pages;
   1270 
   1271 	if (unlikely(ggtt->do_idle_maps))
   1272 		dev_notice(i915->drm.dev,
   1273 			   "Applying Ironlake quirks for intel_iommu\n");
   1274 
   1275 	return 0;
   1276 }
   1277 
   1278 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
   1279 {
   1280 	struct drm_i915_private *i915 = gt->i915;
   1281 	int ret;
   1282 
   1283 	ggtt->vm.gt = gt;
   1284 	ggtt->vm.i915 = i915;
   1285 #ifdef __NetBSD__
   1286 	ggtt->vm.dmat = i915->drm.dmat;
   1287 #else
   1288 	ggtt->vm.dma = &i915->drm.pdev->dev;
   1289 #endif
   1290 
   1291 	if (INTEL_GEN(i915) <= 5)
   1292 		ret = i915_gmch_probe(ggtt);
   1293 	else if (INTEL_GEN(i915) < 8)
   1294 		ret = gen6_gmch_probe(ggtt);
   1295 	else
   1296 		ret = gen8_gmch_probe(ggtt);
   1297 	if (ret)
   1298 		return ret;
   1299 
   1300 #ifdef __NetBSD__
   1301 	ggtt->pgfl = x86_select_freelist(ggtt->max_paddr);
   1302 	ret = drm_limit_dma_space(&i915->drm, 0, ggtt->max_paddr);
   1303 	if (ret) {
   1304 		DRM_ERROR("Unable to limit DMA paddr allocations: %d\n", ret);
   1305 		i915_ggtt_driver_release(i915);
   1306 		return ret;
   1307 	}
   1308 #endif
   1309 
   1310 	if ((ggtt->vm.total - 1) >> 32) {
   1311 		DRM_ERROR("We never expected a Global GTT with more than 32bits"
   1312 			  " of address space! Found %"PRId64"M!\n",
   1313 			  ggtt->vm.total >> 20);
   1314 		ggtt->vm.total = 1ULL << 32;
   1315 		ggtt->mappable_end =
   1316 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
   1317 	}
   1318 
   1319 	if (ggtt->mappable_end > ggtt->vm.total) {
   1320 		DRM_ERROR("mappable aperture extends past end of GGTT,"
   1321 			  " aperture=%pa, total=%"PRIx64"\n",
   1322 			  &ggtt->mappable_end, ggtt->vm.total);
   1323 		ggtt->mappable_end = ggtt->vm.total;
   1324 	}
   1325 
   1326 	/* GMADR is the PCI mmio aperture into the global GTT. */
   1327 	DRM_DEBUG_DRIVER("GGTT size = %"PRIu64"M\n", ggtt->vm.total >> 20);
   1328 	DRM_DEBUG_DRIVER("GMADR size = %"PRIu64"M\n", (u64)ggtt->mappable_end >> 20);
   1329 	DRM_DEBUG_DRIVER("DSM size = %"PRIu64"M\n",
   1330 			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
   1331 
   1332 	return 0;
   1333 }
   1334 
   1335 /**
   1336  * i915_ggtt_probe_hw - Probe GGTT hardware location
   1337  * @i915: i915 device
   1338  */
   1339 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
   1340 {
   1341 	int ret;
   1342 
   1343 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
   1344 	if (ret)
   1345 		return ret;
   1346 
   1347 	if (intel_vtd_active())
   1348 		dev_info(i915->drm.dev, "VT-d active for gfx access\n");
   1349 
   1350 	return 0;
   1351 }
   1352 
   1353 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
   1354 {
   1355 	if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
   1356 		return -EIO;
   1357 
   1358 	return 0;
   1359 }
   1360 
   1361 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
   1362 {
   1363 	GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
   1364 
   1365 	ggtt->invalidate = guc_ggtt_invalidate;
   1366 
   1367 	ggtt->invalidate(ggtt);
   1368 }
   1369 
   1370 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
   1371 {
   1372 	/* XXX Temporary pardon for error unload */
   1373 	if (ggtt->invalidate == gen8_ggtt_invalidate)
   1374 		return;
   1375 
   1376 	/* We should only be called after i915_ggtt_enable_guc() */
   1377 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
   1378 
   1379 	ggtt->invalidate = gen8_ggtt_invalidate;
   1380 
   1381 	ggtt->invalidate(ggtt);
   1382 }
   1383 
   1384 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
   1385 {
   1386 	struct i915_vma *vma;
   1387 	bool flush = false;
   1388 	int open;
   1389 
   1390 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
   1391 
   1392 	mutex_lock(&ggtt->vm.mutex);
   1393 
   1394 	/* First fill our portion of the GTT with scratch pages */
   1395 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
   1396 
   1397 	/* Skip rewriting PTE on VMA unbind. */
   1398 	open = atomic_xchg(&ggtt->vm.open, 0);
   1399 
   1400 	/* clflush objects bound into the GGTT and rebind them. */
   1401 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
   1402 		struct drm_i915_gem_object *obj = vma->obj;
   1403 
   1404 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
   1405 			continue;
   1406 
   1407 		clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
   1408 		WARN_ON(i915_vma_bind(vma,
   1409 				      obj ? obj->cache_level : 0,
   1410 				      PIN_GLOBAL, NULL));
   1411 		if (obj) { /* only used during resume => exclusive access */
   1412 			flush |= fetch_and_zero(&obj->write_domain);
   1413 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
   1414 		}
   1415 	}
   1416 
   1417 	atomic_set(&ggtt->vm.open, open);
   1418 	ggtt->invalidate(ggtt);
   1419 
   1420 	mutex_unlock(&ggtt->vm.mutex);
   1421 
   1422 	if (flush)
   1423 		wbinvd_on_all_cpus();
   1424 }
   1425 
   1426 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
   1427 {
   1428 	struct i915_ggtt *ggtt = &i915->ggtt;
   1429 
   1430 	ggtt_restore_mappings(ggtt);
   1431 
   1432 	if (INTEL_GEN(i915) >= 8)
   1433 		setup_private_pat(ggtt->vm.gt->uncore);
   1434 }
   1435 
   1436 #ifndef __NetBSD__
   1437 
   1438 static struct scatterlist *
   1439 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
   1440 	     unsigned int width, unsigned int height,
   1441 	     unsigned int stride,
   1442 	     struct sg_table *st, struct scatterlist *sg)
   1443 {
   1444 	unsigned int column, row;
   1445 	unsigned int src_idx;
   1446 
   1447 	for (column = 0; column < width; column++) {
   1448 		src_idx = stride * (height - 1) + column + offset;
   1449 		for (row = 0; row < height; row++) {
   1450 			st->nents++;
   1451 			/*
   1452 			 * We don't need the pages, but need to initialize
   1453 			 * the entries so the sg list can be happily traversed.
   1454 			 * The only thing we need are DMA addresses.
   1455 			 */
   1456 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
   1457 			sg_dma_address(sg) =
   1458 				i915_gem_object_get_dma_address(obj, src_idx);
   1459 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
   1460 			sg = sg_next(sg);
   1461 			src_idx -= stride;
   1462 		}
   1463 	}
   1464 
   1465 	return sg;
   1466 }
   1467 
   1468 static noinline struct sg_table *
   1469 intel_rotate_pages(struct intel_rotation_info *rot_info,
   1470 		   struct drm_i915_gem_object *obj)
   1471 {
   1472 	unsigned int size = intel_rotation_info_size(rot_info);
   1473 	struct sg_table *st;
   1474 	struct scatterlist *sg;
   1475 	int ret = -ENOMEM;
   1476 	int i;
   1477 
   1478 	/* Allocate target SG list. */
   1479 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   1480 	if (!st)
   1481 		goto err_st_alloc;
   1482 
   1483 	ret = sg_alloc_table(st, size, GFP_KERNEL);
   1484 	if (ret)
   1485 		goto err_sg_alloc;
   1486 
   1487 	st->nents = 0;
   1488 	sg = st->sgl;
   1489 
   1490 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
   1491 		sg = rotate_pages(obj, rot_info->plane[i].offset,
   1492 				  rot_info->plane[i].width, rot_info->plane[i].height,
   1493 				  rot_info->plane[i].stride, st, sg);
   1494 	}
   1495 
   1496 	return st;
   1497 
   1498 err_sg_alloc:
   1499 	kfree(st);
   1500 err_st_alloc:
   1501 
   1502 	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
   1503 			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
   1504 
   1505 	return ERR_PTR(ret);
   1506 }
   1507 
   1508 static struct scatterlist *
   1509 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
   1510 	    unsigned int width, unsigned int height,
   1511 	    unsigned int stride,
   1512 	    struct sg_table *st, struct scatterlist *sg)
   1513 {
   1514 	unsigned int row;
   1515 
   1516 	for (row = 0; row < height; row++) {
   1517 		unsigned int left = width * I915_GTT_PAGE_SIZE;
   1518 
   1519 		while (left) {
   1520 			dma_addr_t addr;
   1521 			unsigned int length;
   1522 
   1523 			/*
   1524 			 * We don't need the pages, but need to initialize
   1525 			 * the entries so the sg list can be happily traversed.
   1526 			 * The only thing we need are DMA addresses.
   1527 			 */
   1528 
   1529 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
   1530 
   1531 			length = min(left, length);
   1532 
   1533 			st->nents++;
   1534 
   1535 			sg_set_page(sg, NULL, length, 0);
   1536 			sg_dma_address(sg) = addr;
   1537 			sg_dma_len(sg) = length;
   1538 			sg = sg_next(sg);
   1539 
   1540 			offset += length / I915_GTT_PAGE_SIZE;
   1541 			left -= length;
   1542 		}
   1543 
   1544 		offset += stride - width;
   1545 	}
   1546 
   1547 	return sg;
   1548 }
   1549 
   1550 static noinline struct sg_table *
   1551 intel_remap_pages(struct intel_remapped_info *rem_info,
   1552 		  struct drm_i915_gem_object *obj)
   1553 {
   1554 	unsigned int size = intel_remapped_info_size(rem_info);
   1555 	struct sg_table *st;
   1556 	struct scatterlist *sg;
   1557 	int ret = -ENOMEM;
   1558 	int i;
   1559 
   1560 	/* Allocate target SG list. */
   1561 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   1562 	if (!st)
   1563 		goto err_st_alloc;
   1564 
   1565 	ret = sg_alloc_table(st, size, GFP_KERNEL);
   1566 	if (ret)
   1567 		goto err_sg_alloc;
   1568 
   1569 	st->nents = 0;
   1570 	sg = st->sgl;
   1571 
   1572 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
   1573 		sg = remap_pages(obj, rem_info->plane[i].offset,
   1574 				 rem_info->plane[i].width, rem_info->plane[i].height,
   1575 				 rem_info->plane[i].stride, st, sg);
   1576 	}
   1577 
   1578 	i915_sg_trim(st);
   1579 
   1580 	return st;
   1581 
   1582 err_sg_alloc:
   1583 	kfree(st);
   1584 err_st_alloc:
   1585 
   1586 	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
   1587 			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
   1588 
   1589 	return ERR_PTR(ret);
   1590 }
   1591 
   1592 #endif	/* __NetBSD__ */
   1593 
   1594 static noinline struct sg_table *
   1595 intel_partial_pages(const struct i915_ggtt_view *view,
   1596 		    struct drm_i915_gem_object *obj)
   1597 {
   1598 #ifdef __NetBSD__
   1599 	struct sg_table *st = NULL;
   1600 	int ret = -ENOMEM;
   1601 
   1602 	KASSERTMSG(view->partial.offset <= obj->base.size >> PAGE_SHIFT,
   1603 	    "obj=%p size=0x%zx; view offset=0x%zx size=0x%zx",
   1604 	    obj,
   1605 	    (size_t)obj->base.size >> PAGE_SHIFT,
   1606 	    (size_t)view->partial.offset,
   1607 	    (size_t)view->partial.size);
   1608 	KASSERTMSG((view->partial.size <=
   1609 		(obj->base.size >> PAGE_SHIFT) - view->partial.offset),
   1610 	    "obj=%p size=0x%zx; view offset=0x%zx size=0x%zx",
   1611 	    obj,
   1612 	    (size_t)obj->base.size >> PAGE_SHIFT,
   1613 	    (size_t)view->partial.offset,
   1614 	    (size_t)view->partial.size);
   1615 	KASSERTMSG(view->partial.size <= INT_MAX, "view size=0x%zx",
   1616 	    (size_t)view->partial.size);
   1617 
   1618 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   1619 	if (st == NULL)
   1620 		goto fail;
   1621 	ret = sg_alloc_table(st, view->partial.size, GFP_KERNEL);
   1622 	if (ret) {
   1623 		kfree(st);
   1624 		st = NULL;
   1625 		goto fail;
   1626 	}
   1627 
   1628 	/* XXX errno NetBSD->Linux */
   1629 	if (obj->mm.pages->sgl->sg_dmamap) { /* XXX KASSERT?  */
   1630 		ret = -bus_dmamap_create(obj->base.dev->dmat,
   1631 		    (bus_size_t)view->partial.size << PAGE_SHIFT,
   1632 		    view->partial.size, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
   1633 		    &st->sgl->sg_dmamap);
   1634 		if (ret) {
   1635 			st->sgl->sg_dmamap = NULL;
   1636 			goto fail;
   1637 		}
   1638 		st->sgl->sg_dmat = obj->base.dev->dmat;
   1639 	}
   1640 
   1641 	/*
   1642 	 * Copy over the pages.  The view's offset and size are in
   1643 	 * units of pages already.
   1644 	 */
   1645 	KASSERT(st->sgl->sg_npgs == view->partial.size);
   1646 	memcpy(st->sgl->sg_pgs,
   1647 	    obj->mm.pages->sgl->sg_pgs + view->partial.offset,
   1648 	    sizeof(st->sgl->sg_pgs[0]) * view->partial.size);
   1649 
   1650 	/*
   1651 	 * Copy over the DMA addresses.  For simplicity, we don't do
   1652 	 * anything to compress contiguous pages into larger segments.
   1653 	 */
   1654 	if (obj->mm.pages->sgl->sg_dmamap) {
   1655 		bus_size_t offset = (bus_size_t)view->partial.offset
   1656 		    << PAGE_SHIFT;
   1657 		unsigned i, j, k;
   1658 
   1659 		st->sgl->sg_dmamap->dm_nsegs = view->partial.size;
   1660 		for (i = j = 0; i < view->partial.size; j++) {
   1661 			KASSERT(j < obj->mm.pages->sgl->sg_dmamap->dm_nsegs);
   1662 			const bus_dma_segment_t *iseg =
   1663 			    &obj->mm.pages->sgl->sg_dmamap->dm_segs[j];
   1664 
   1665 			KASSERT(iseg->ds_len % PAGE_SIZE == 0);
   1666 
   1667 			/* Skip segments prior to the start offset.  */
   1668 			if (offset >= iseg->ds_len) {
   1669 				offset -= iseg->ds_len;
   1670 				continue;
   1671 			}
   1672 			for (k = 0; k < iseg->ds_len >> PAGE_SHIFT; k++) {
   1673 				bus_dma_segment_t *oseg =
   1674 				    &st->sgl->sg_dmamap->dm_segs[i++];
   1675 				oseg->ds_addr = iseg->ds_addr + offset +
   1676 				    k*PAGE_SIZE;
   1677 				oseg->ds_len = PAGE_SIZE;
   1678 			}
   1679 
   1680 			/*
   1681 			 * After the first segment which we possibly
   1682 			 * use only a suffix of, the remainder we will
   1683 			 * take from the beginning.
   1684 			 */
   1685 			offset = 0;
   1686 		}
   1687 	}
   1688 
   1689 	/* Success!  */
   1690 	return st;
   1691 
   1692 fail:	if (st) {
   1693 		sg_free_table(st);
   1694 		kfree(st);
   1695 	}
   1696 	return ERR_PTR(ret);
   1697 #else
   1698 	struct sg_table *st;
   1699 	struct scatterlist *sg, *iter;
   1700 	unsigned int count = view->partial.size;
   1701 	unsigned int offset;
   1702 	int ret;
   1703 
   1704 	st = kmalloc(sizeof(*st), GFP_KERNEL);
   1705 	if (!st) {
   1706 		ret = -ENOMEM;
   1707 		goto err_st_alloc;
   1708 	}
   1709 
   1710 	ret = sg_alloc_table(st, count, GFP_KERNEL);
   1711 	if (ret)
   1712 		goto err_sg_alloc;
   1713 
   1714 	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
   1715 	GEM_BUG_ON(!iter);
   1716 
   1717 	sg = st->sgl;
   1718 	st->nents = 0;
   1719 	do {
   1720 		unsigned int len;
   1721 
   1722 		len = min(iter->length - (offset << PAGE_SHIFT),
   1723 			  count << PAGE_SHIFT);
   1724 		sg_set_page(sg, NULL, len, 0);
   1725 		sg_dma_address(sg) =
   1726 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
   1727 		sg_dma_len(sg) = len;
   1728 
   1729 		st->nents++;
   1730 		count -= len >> PAGE_SHIFT;
   1731 		if (count == 0) {
   1732 			sg_mark_end(sg);
   1733 			i915_sg_trim(st); /* Drop any unused tail entries. */
   1734 
   1735 			return st;
   1736 		}
   1737 
   1738 		sg = __sg_next(sg);
   1739 		iter = __sg_next(iter);
   1740 		offset = 0;
   1741 	} while (1);
   1742 
   1743 err_sg_alloc:
   1744 	kfree(st);
   1745 err_st_alloc:
   1746 	return ERR_PTR(ret);
   1747 #endif	/* __NetBSD__ */
   1748 }
   1749 
   1750 static int
   1751 i915_get_ggtt_vma_pages(struct i915_vma *vma)
   1752 {
   1753 	int ret;
   1754 
   1755 	/*
   1756 	 * The vma->pages are only valid within the lifespan of the borrowed
   1757 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
   1758 	 * must be the vma->pages. A simple rule is that vma->pages must only
   1759 	 * be accessed when the obj->mm.pages are pinned.
   1760 	 */
   1761 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
   1762 
   1763 	switch (vma->ggtt_view.type) {
   1764 	default:
   1765 		GEM_BUG_ON(vma->ggtt_view.type);
   1766 		/* fall through */
   1767 	case I915_GGTT_VIEW_NORMAL:
   1768 		vma->pages = vma->obj->mm.pages;
   1769 		return 0;
   1770 
   1771 #ifndef __NetBSD__
   1772 	case I915_GGTT_VIEW_ROTATED:
   1773 		vma->pages =
   1774 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
   1775 		break;
   1776 
   1777 	case I915_GGTT_VIEW_REMAPPED:
   1778 		vma->pages =
   1779 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
   1780 		break;
   1781 #endif
   1782 
   1783 	case I915_GGTT_VIEW_PARTIAL:
   1784 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
   1785 		break;
   1786 	}
   1787 
   1788 	ret = 0;
   1789 	if (IS_ERR(vma->pages)) {
   1790 		ret = PTR_ERR(vma->pages);
   1791 		vma->pages = NULL;
   1792 		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
   1793 			  vma->ggtt_view.type, ret);
   1794 	}
   1795 	return ret;
   1796 }
   1797