intel_ggtt.c revision 1.17 1 /* $NetBSD: intel_ggtt.c,v 1.17 2025/01/26 17:52:23 riastradh Exp $ */
2
3 // SPDX-License-Identifier: MIT
4 /*
5 * Copyright 2020 Intel Corporation
6 */
7
8 #include <sys/cdefs.h>
9 __KERNEL_RCSID(0, "$NetBSD: intel_ggtt.c,v 1.17 2025/01/26 17:52:23 riastradh Exp $");
10
11 #include <linux/stop_machine.h>
12
13 #include <asm/set_memory.h>
14 #include <asm/smp.h>
15
16 #ifdef __NetBSD__
17 #include <drm/io-mapping.h>
18 #endif
19
20 #include "intel_gt.h"
21 #include "i915_drv.h"
22 #include "i915_scatterlist.h"
23 #include "i915_vgpu.h"
24
25 #include "intel_gtt.h"
26
27 #include <linux/nbsd-namespace.h>
28
29 static int
30 i915_get_ggtt_vma_pages(struct i915_vma *vma);
31
32 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
33 unsigned long color,
34 u64 *start,
35 u64 *end)
36 {
37 if (i915_node_color_differs(node, color))
38 *start += I915_GTT_PAGE_SIZE;
39
40 /*
41 * Also leave a space between the unallocated reserved node after the
42 * GTT and any objects within the GTT, i.e. we use the color adjustment
43 * to insert a guard page to prevent prefetches crossing over the
44 * GTT boundary.
45 */
46 node = list_next_entry(node, node_list);
47 if (node->color != color)
48 *end -= I915_GTT_PAGE_SIZE;
49 }
50
51 static int ggtt_init_hw(struct i915_ggtt *ggtt)
52 {
53 struct drm_i915_private *i915 = ggtt->vm.i915;
54
55 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
56
57 ggtt->vm.is_ggtt = true;
58
59 /* Only VLV supports read-only GGTT mappings */
60 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
61
62 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
63 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
64
65 if (ggtt->mappable_end) {
66 #ifdef __NetBSD__
67 if (!drm_io_mapping_init_wc(&i915->drm, &ggtt->iomap,
68 ggtt->gmadr.start, ggtt->mappable_end)) {
69 ggtt->vm.cleanup(&ggtt->vm);
70 return -EIO;
71 }
72 /*
73 * Note: mappable_end is the size, not end paddr, of
74 * the aperture.
75 */
76 pmap_pv_track(ggtt->gmadr.start, ggtt->mappable_end);
77 #else
78 if (!io_mapping_init_wc(&ggtt->iomap,
79 ggtt->gmadr.start,
80 ggtt->mappable_end)) {
81 ggtt->vm.cleanup(&ggtt->vm);
82 return -EIO;
83 }
84 #endif
85
86 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
87 ggtt->mappable_end);
88 }
89
90 i915_ggtt_init_fences(ggtt);
91
92 return 0;
93 }
94
95 /**
96 * i915_ggtt_init_hw - Initialize GGTT hardware
97 * @i915: i915 device
98 */
99 int i915_ggtt_init_hw(struct drm_i915_private *i915)
100 {
101 int ret;
102
103 #ifndef __NetBSD__
104 stash_init(&i915->mm.wc_stash);
105 #endif
106
107 /*
108 * Note that we use page colouring to enforce a guard page at the
109 * end of the address space. This is required as the CS may prefetch
110 * beyond the end of the batch buffer, across the page boundary,
111 * and beyond the end of the GTT if we do not provide a guard.
112 */
113 ret = ggtt_init_hw(&i915->ggtt);
114 if (ret)
115 return ret;
116
117 return 0;
118 }
119
120 /*
121 * Certain Gen5 chipsets require require idling the GPU before
122 * unmapping anything from the GTT when VT-d is enabled.
123 */
124 static bool needs_idle_maps(struct drm_i915_private *i915)
125 {
126 /*
127 * Query intel_iommu to see if we need the workaround. Presumably that
128 * was loaded first.
129 */
130 return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
131 }
132
133 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
134 {
135 struct drm_i915_private *i915 = ggtt->vm.i915;
136
137 /*
138 * Don't bother messing with faults pre GEN6 as we have little
139 * documentation supporting that it's a good idea.
140 */
141 if (INTEL_GEN(i915) < 6)
142 return;
143
144 intel_gt_check_and_clear_faults(ggtt->vm.gt);
145
146 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
147
148 ggtt->invalidate(ggtt);
149 }
150
151 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
152 {
153 ggtt_suspend_mappings(&i915->ggtt);
154 }
155
156 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
157 {
158 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
159
160 spin_lock_irq(&uncore->lock);
161 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
162 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
163 spin_unlock_irq(&uncore->lock);
164 }
165
166 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
167 {
168 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
169
170 /*
171 * Note that as an uncached mmio write, this will flush the
172 * WCB of the writes into the GGTT before it triggers the invalidate.
173 */
174 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
175 }
176
177 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
178 {
179 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
180 struct drm_i915_private *i915 = ggtt->vm.i915;
181
182 gen8_ggtt_invalidate(ggtt);
183
184 if (INTEL_GEN(i915) >= 12)
185 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
186 GEN12_GUC_TLB_INV_CR_INVALIDATE);
187 else
188 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
189 }
190
191 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
192 {
193 intel_gtt_chipset_flush();
194 }
195
196 #ifdef __NetBSD__
197 static inline void
198 gen8_set_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i,
199 gen8_pte_t pte)
200 {
201 CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
202 CTASSERT(sizeof(gen8_pte_t) == 8);
203 #ifdef _LP64 /* XXX How to detect bus_space_write_8? */
204 bus_space_write_8(bst, bsh, 8*i, pte);
205 #else
206 bus_space_write_4(bst, bsh, 8*i, (uint32_t)pte);
207 bus_space_write_4(bst, bsh, 8*i + 4, (uint32_t)(pte >> 32));
208 #endif
209 }
210 #else
211 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
212 {
213 writeq(pte, addr);
214 }
215 #endif
216
217 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
218 dma_addr_t addr,
219 u64 offset,
220 enum i915_cache_level level,
221 u32 unused)
222 {
223 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
224 #ifndef __NetBSD__
225 gen8_pte_t __iomem *pte =
226 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
227 #endif
228
229 #ifdef __NetBSD__
230 gen8_set_pte(ggtt->gsmt, ggtt->gsmh, offset / I915_GTT_PAGE_SIZE,
231 gen8_pte_encode(addr, level, 0));
232 #else
233 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
234 #endif
235
236 ggtt->invalidate(ggtt);
237 }
238
239 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
240 struct i915_vma *vma,
241 enum i915_cache_level level,
242 u32 flags)
243 {
244 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
245 #ifdef __NetBSD__
246 bus_dmamap_t map = vma->pages->sgl[0].sg_dmamap;
247 unsigned seg;
248 unsigned pgno;
249 #else
250 struct sgt_iter sgt_iter;
251 gen8_pte_t __iomem *gtt_entries;
252 #endif
253 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
254 dma_addr_t addr;
255
256 /*
257 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
258 * not to allow the user to override access to a read only page.
259 */
260
261 #ifdef __NetBSD__
262 pgno = vma->node.start / I915_GTT_PAGE_SIZE;
263 for (seg = 0; seg < map->dm_nsegs; seg++) {
264 addr = map->dm_segs[seg].ds_addr;
265 bus_size_t len = map->dm_segs[seg].ds_len;
266 KASSERT((addr % I915_GTT_PAGE_SIZE) == 0);
267 KASSERT((len % I915_GTT_PAGE_SIZE) == 0);
268 for (;
269 len >= I915_GTT_PAGE_SIZE;
270 addr += I915_GTT_PAGE_SIZE, len -= I915_GTT_PAGE_SIZE) {
271 gen8_set_pte(ggtt->gsmt, ggtt->gsmh, pgno++,
272 pte_encode | addr);
273 }
274 KASSERT(len == 0);
275 }
276 #else
277 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
278 gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
279 for_each_sgt_daddr(addr, sgt_iter, vma->pages)
280 gen8_set_pte(gtt_entries++, pte_encode | addr);
281 #endif
282
283 /*
284 * We want to flush the TLBs only after we're certain all the PTE
285 * updates have finished.
286 */
287 ggtt->invalidate(ggtt);
288 }
289
290 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
291 dma_addr_t addr,
292 u64 offset,
293 enum i915_cache_level level,
294 u32 flags)
295 {
296 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
297 #ifndef __NetBSD__
298 gen6_pte_t __iomem *pte =
299 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
300 #endif
301
302 #ifdef __NetBSD__
303 CTASSERT(sizeof(gen6_pte_t) == 4);
304 bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
305 sizeof(gen6_pte_t) * (offset / I915_GTT_PAGE_SIZE),
306 vm->pte_encode(addr, level, flags));
307 #else
308 iowrite32(vm->pte_encode(addr, level, flags), pte);
309 #endif
310
311 ggtt->invalidate(ggtt);
312 }
313
314 /*
315 * Binds an object into the global gtt with the specified cache level.
316 * The object will be accessible to the GPU via commands whose operands
317 * reference offsets within the global GTT as well as accessible by the GPU
318 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
319 */
320
321 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
322 struct i915_vma *vma,
323 enum i915_cache_level level,
324 u32 flags)
325 {
326 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
327 #ifdef __NetBSD__
328 bus_dmamap_t map = vma->pages->sgl[0].sg_dmamap;
329 unsigned seg;
330 unsigned pgno;
331 #else
332 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
333 unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
334 struct sgt_iter iter;
335 #endif
336 dma_addr_t addr;
337
338 #ifdef __NetBSD__
339 pgno = vma->node.start >> PAGE_SHIFT;
340 for (seg = 0; seg < map->dm_nsegs; seg++) {
341 addr = map->dm_segs[seg].ds_addr;
342 bus_size_t len = map->dm_segs[seg].ds_len;
343 KASSERT((addr % I915_GTT_PAGE_SIZE) == 0);
344 KASSERT((len % I915_GTT_PAGE_SIZE) == 0);
345 for (;
346 len >= I915_GTT_PAGE_SIZE;
347 addr += I915_GTT_PAGE_SIZE, len -= I915_GTT_PAGE_SIZE) {
348 /* XXX KASSERT(pgno < ...)? */
349 CTASSERT(sizeof(gen6_pte_t) == 4);
350 bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
351 sizeof(gen6_pte_t) * pgno++,
352 vm->pte_encode(addr, level, flags));
353 }
354 KASSERT(len == 0);
355 /* XXX KASSERT(pgno <= ...)? */
356 }
357 #else
358 for_each_sgt_daddr(addr, iter, vma->pages)
359 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
360 #endif
361
362 /*
363 * We want to flush the TLBs only after we're certain all the PTE
364 * updates have finished.
365 */
366 ggtt->invalidate(ggtt);
367 }
368
369 static void nop_clear_range(struct i915_address_space *vm,
370 u64 start, u64 length)
371 {
372 }
373
374 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
375 u64 start, u64 length)
376 {
377 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
378 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
379 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
380 const gen8_pte_t scratch_pte = vm->scratch[0].encode;
381 #ifndef __NetBSD__
382 gen8_pte_t __iomem *gtt_base =
383 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
384 #endif
385 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
386 int i;
387
388 if (WARN(num_entries > max_entries,
389 "First entry = %d; Num entries = %d (max=%d)\n",
390 first_entry, num_entries, max_entries))
391 num_entries = max_entries;
392
393 #ifdef __NetBSD__
394 for (i = 0; i < num_entries; i++)
395 gen8_set_pte(ggtt->gsmt, ggtt->gsmh, first_entry + i,
396 scratch_pte);
397 #else
398 for (i = 0; i < num_entries; i++)
399 gen8_set_pte(>t_base[i], scratch_pte);
400 #endif
401 }
402
403 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
404 {
405 /*
406 * Make sure the internal GAM fifo has been cleared of all GTT
407 * writes before exiting stop_machine(). This guarantees that
408 * any aperture accesses waiting to start in another process
409 * cannot back up behind the GTT writes causing a hang.
410 * The register can be any arbitrary GAM register.
411 */
412 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
413 }
414
415 struct insert_page {
416 struct i915_address_space *vm;
417 dma_addr_t addr;
418 u64 offset;
419 enum i915_cache_level level;
420 };
421
422 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
423 {
424 struct insert_page *arg = _arg;
425
426 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
427 bxt_vtd_ggtt_wa(arg->vm);
428
429 return 0;
430 }
431
432 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
433 dma_addr_t addr,
434 u64 offset,
435 enum i915_cache_level level,
436 u32 unused)
437 {
438 struct insert_page arg = { vm, addr, offset, level };
439
440 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
441 }
442
443 struct insert_entries {
444 struct i915_address_space *vm;
445 struct i915_vma *vma;
446 enum i915_cache_level level;
447 u32 flags;
448 };
449
450 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
451 {
452 struct insert_entries *arg = _arg;
453
454 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
455 bxt_vtd_ggtt_wa(arg->vm);
456
457 return 0;
458 }
459
460 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
461 struct i915_vma *vma,
462 enum i915_cache_level level,
463 u32 flags)
464 {
465 struct insert_entries arg = { vm, vma, level, flags };
466
467 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
468 }
469
470 struct clear_range {
471 struct i915_address_space *vm;
472 u64 start;
473 u64 length;
474 };
475
476 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
477 {
478 struct clear_range *arg = _arg;
479
480 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
481 bxt_vtd_ggtt_wa(arg->vm);
482
483 return 0;
484 }
485
486 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
487 u64 start,
488 u64 length)
489 {
490 struct clear_range arg = { vm, start, length };
491
492 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
493 }
494
495 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
496 u64 start, u64 length)
497 {
498 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
499 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
500 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
501 #ifdef __NetBSD__
502 gen6_pte_t scratch_pte;
503 #else
504 gen6_pte_t scratch_pte, __iomem *gtt_base =
505 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
506 #endif
507 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
508 int i;
509
510 if (WARN(num_entries > max_entries,
511 "First entry = %d; Num entries = %d (max=%d)\n",
512 first_entry, num_entries, max_entries))
513 num_entries = max_entries;
514
515 scratch_pte = vm->scratch[0].encode;
516 #ifdef __NetBSD__
517 CTASSERT(sizeof(gen6_pte_t) == 4);
518 for (i = 0; i < num_entries; i++)
519 bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
520 sizeof(gen6_pte_t) * (first_entry + i),
521 scratch_pte);
522 #else
523 for (i = 0; i < num_entries; i++)
524 iowrite32(scratch_pte, >t_base[i]);
525 #endif
526 }
527
528 static void i915_ggtt_insert_page(struct i915_address_space *vm,
529 dma_addr_t addr,
530 u64 offset,
531 enum i915_cache_level cache_level,
532 u32 unused)
533 {
534 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
535 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
536
537 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
538 }
539
540 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
541 struct i915_vma *vma,
542 enum i915_cache_level cache_level,
543 u32 unused)
544 {
545 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
546 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
547
548 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
549 flags);
550 }
551
552 static void i915_ggtt_clear_range(struct i915_address_space *vm,
553 u64 start, u64 length)
554 {
555 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
556 }
557
558 static int ggtt_bind_vma(struct i915_vma *vma,
559 enum i915_cache_level cache_level,
560 u32 flags)
561 {
562 struct drm_i915_gem_object *obj = vma->obj;
563 u32 pte_flags;
564
565 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
566 pte_flags = 0;
567 if (i915_gem_object_is_readonly(obj))
568 pte_flags |= PTE_READ_ONLY;
569
570 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
571
572 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
573
574 /*
575 * Without aliasing PPGTT there's no difference between
576 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
577 * upgrade to both bound if we bind either to avoid double-binding.
578 */
579 atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
580
581 return 0;
582 }
583
584 static void ggtt_unbind_vma(struct i915_vma *vma)
585 {
586 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
587 }
588
589 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
590 {
591 u64 size;
592 int ret;
593
594 if (!USES_GUC(ggtt->vm.i915))
595 return 0;
596
597 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
598 size = ggtt->vm.total - GUC_GGTT_TOP;
599
600 ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
601 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
602 PIN_NOEVICT);
603 if (ret)
604 DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
605
606 return ret;
607 }
608
609 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
610 {
611 if (drm_mm_node_allocated(&ggtt->uc_fw))
612 drm_mm_remove_node(&ggtt->uc_fw);
613 }
614
615 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
616 {
617 ggtt_release_guc_top(ggtt);
618 if (drm_mm_node_allocated(&ggtt->error_capture))
619 drm_mm_remove_node(&ggtt->error_capture);
620 mutex_destroy(&ggtt->error_mutex);
621 }
622
623 static int init_ggtt(struct i915_ggtt *ggtt)
624 {
625 /*
626 * Let GEM Manage all of the aperture.
627 *
628 * However, leave one page at the end still bound to the scratch page.
629 * There are a number of places where the hardware apparently prefetches
630 * past the end of the object, and we've seen multiple hangs with the
631 * GPU head pointer stuck in a batchbuffer bound at the last page of the
632 * aperture. One page should be enough to keep any prefetching inside
633 * of the aperture.
634 */
635 unsigned long hole_start, hole_end;
636 struct drm_mm_node *entry;
637 int ret;
638
639 /*
640 * GuC requires all resources that we're sharing with it to be placed in
641 * non-WOPCM memory. If GuC is not present or not in use we still need a
642 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
643 * why.
644 */
645 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
646 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
647
648 ret = intel_vgt_balloon(ggtt);
649 if (ret)
650 return ret;
651
652 mutex_init(&ggtt->error_mutex);
653 if (ggtt->mappable_end) {
654 /* Reserve a mappable slot for our lockless error capture */
655 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm,
656 &ggtt->error_capture,
657 PAGE_SIZE, 0,
658 I915_COLOR_UNEVICTABLE,
659 0, ggtt->mappable_end,
660 DRM_MM_INSERT_LOW);
661 if (ret)
662 return ret;
663 }
664
665 /*
666 * The upper portion of the GuC address space has a sizeable hole
667 * (several MB) that is inaccessible by GuC. Reserve this range within
668 * GGTT as it can comfortably hold GuC/HuC firmware images.
669 */
670 ret = ggtt_reserve_guc_top(ggtt);
671 if (ret)
672 goto err;
673
674 /* Clear any non-preallocated blocks */
675 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
676 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
677 hole_start, hole_end);
678 ggtt->vm.clear_range(&ggtt->vm, hole_start,
679 hole_end - hole_start);
680 }
681
682 /* And finally clear the reserved guard page */
683 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
684
685 return 0;
686
687 err:
688 cleanup_init_ggtt(ggtt);
689 return ret;
690 }
691
692 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
693 enum i915_cache_level cache_level,
694 u32 flags)
695 {
696 u32 pte_flags;
697 int ret;
698
699 /* Currently applicable only to VLV */
700 pte_flags = 0;
701 if (i915_gem_object_is_readonly(vma->obj))
702 pte_flags |= PTE_READ_ONLY;
703
704 if (flags & I915_VMA_LOCAL_BIND) {
705 struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
706
707 if (flags & I915_VMA_ALLOC) {
708 ret = alias->vm.allocate_va_range(&alias->vm,
709 vma->node.start,
710 vma->size);
711 if (ret)
712 return ret;
713
714 set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
715 }
716
717 GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
718 __i915_vma_flags(vma)));
719 alias->vm.insert_entries(&alias->vm, vma,
720 cache_level, pte_flags);
721 }
722
723 if (flags & I915_VMA_GLOBAL_BIND)
724 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
725
726 return 0;
727 }
728
729 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
730 {
731 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
732 struct i915_address_space *vm = vma->vm;
733
734 vm->clear_range(vm, vma->node.start, vma->size);
735 }
736
737 if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
738 struct i915_address_space *vm =
739 &i915_vm_to_ggtt(vma->vm)->alias->vm;
740
741 vm->clear_range(vm, vma->node.start, vma->size);
742 }
743 }
744
745 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
746 {
747 struct i915_ppgtt *ppgtt;
748 int err;
749
750 ppgtt = i915_ppgtt_create(ggtt->vm.gt);
751 if (IS_ERR(ppgtt))
752 return PTR_ERR(ppgtt);
753
754 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
755 err = -ENODEV;
756 goto err_ppgtt;
757 }
758
759 /*
760 * Note we only pre-allocate as far as the end of the global
761 * GTT. On 48b / 4-level page-tables, the difference is very,
762 * very significant! We have to preallocate as GVT/vgpu does
763 * not like the page directory disappearing.
764 */
765 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
766 if (err)
767 goto err_ppgtt;
768
769 ggtt->alias = ppgtt;
770 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
771
772 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
773 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
774
775 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
776 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
777
778 return 0;
779
780 err_ppgtt:
781 i915_vm_put(&ppgtt->vm);
782 return err;
783 }
784
785 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
786 {
787 struct i915_ppgtt *ppgtt;
788
789 ppgtt = fetch_and_zero(&ggtt->alias);
790 if (!ppgtt)
791 return;
792
793 i915_vm_put(&ppgtt->vm);
794
795 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
796 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
797 }
798
799 int i915_init_ggtt(struct drm_i915_private *i915)
800 {
801 int ret;
802
803 ret = init_ggtt(&i915->ggtt);
804 if (ret)
805 return ret;
806
807 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
808 ret = init_aliasing_ppgtt(&i915->ggtt);
809 if (ret)
810 cleanup_init_ggtt(&i915->ggtt);
811 }
812
813 return 0;
814 }
815
816 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
817 {
818 struct i915_vma *vma, *vn;
819
820 atomic_set(&ggtt->vm.open, 0);
821
822 rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
823 flush_workqueue(ggtt->vm.i915->wq);
824
825 mutex_lock(&ggtt->vm.mutex);
826
827 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
828 WARN_ON(__i915_vma_unbind(vma));
829
830 if (drm_mm_node_allocated(&ggtt->error_capture))
831 drm_mm_remove_node(&ggtt->error_capture);
832 mutex_destroy(&ggtt->error_mutex);
833
834 ggtt_release_guc_top(ggtt);
835 intel_vgt_deballoon(ggtt);
836
837 ggtt->vm.cleanup(&ggtt->vm);
838
839 mutex_unlock(&ggtt->vm.mutex);
840 i915_address_space_fini(&ggtt->vm);
841
842 #ifdef __NetBSD__
843 if (ggtt->mappable_end)
844 pmap_pv_untrack(ggtt->gmadr.start, ggtt->mappable_end);
845 #endif
846
847 arch_phys_wc_del(ggtt->mtrr);
848
849 if (ggtt->iomap.size)
850 io_mapping_fini(&ggtt->iomap);
851 }
852
853 /**
854 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
855 * @i915: i915 device
856 */
857 void i915_ggtt_driver_release(struct drm_i915_private *i915)
858 {
859 #ifndef __NetBSD__
860 struct pagevec *pvec;
861 #endif
862
863 fini_aliasing_ppgtt(&i915->ggtt);
864
865 ggtt_cleanup_hw(&i915->ggtt);
866
867 #ifndef __NetBSD__
868 pvec = &i915->mm.wc_stash.pvec;
869 if (pvec->nr) {
870 set_pages_array_wb(pvec->pages, pvec->nr);
871 __pagevec_release(pvec);
872 }
873 #endif
874 }
875
876 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
877 {
878 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
879 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
880 return snb_gmch_ctl << 20;
881 }
882
883 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
884 {
885 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
886 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
887 if (bdw_gmch_ctl)
888 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
889
890 #ifdef CONFIG_X86_32
891 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
892 if (bdw_gmch_ctl > 4)
893 bdw_gmch_ctl = 4;
894 #endif
895
896 return bdw_gmch_ctl << 20;
897 }
898
899 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
900 {
901 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
902 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
903
904 if (gmch_ctrl)
905 return 1 << (20 + gmch_ctrl);
906
907 return 0;
908 }
909
910 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
911 {
912 struct drm_i915_private *i915 = ggtt->vm.i915;
913 struct pci_dev *pdev = i915->drm.pdev;
914 phys_addr_t phys_addr;
915 int ret;
916
917 /* For Modern GENs the PTEs and register space are split in the BAR */
918 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
919
920 /*
921 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
922 * will be dropped. For WC mappings in general we have 64 byte burst
923 * writes when the WC buffer is flushed, so we can't use it, but have to
924 * resort to an uncached mapping. The WC issue is easily caught by the
925 * readback check when writing GTT PTE entries.
926 */
927 #ifdef __NetBSD__
928 {
929 int flags;
930 if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
931 flags = 0;
932 else
933 flags = BUS_SPACE_MAP_PREFETCHABLE;
934 ggtt->gsmt = i915->drm.pdev->pd_pa.pa_memt;
935 /* XXX errno NetBSD->Linux */
936 ret = -bus_space_map(ggtt->gsmt, phys_addr, size, flags, &ggtt->gsmh);
937 if (ret) {
938 DRM_ERROR("Failed to map the ggtt page table: %d\n", ret);
939 return ret;
940 }
941 ggtt->gsmsz = size;
942 }
943 #else
944 if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
945 ggtt->gsm = ioremap(phys_addr, size);
946 else
947 ggtt->gsm = ioremap_wc(phys_addr, size);
948 if (!ggtt->gsm) {
949 DRM_ERROR("Failed to map the ggtt page table\n");
950 return -ENOMEM;
951 }
952 #endif
953
954 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
955 if (ret) {
956 DRM_ERROR("Scratch setup failed\n");
957 /* iounmap will also get called at remove, but meh */
958 #ifdef __NetBSD__
959 KASSERT(ggtt->gsmsz == size);
960 bus_space_unmap(ggtt->gsmt, ggtt->gsmh, ggtt->gsmsz);
961 ggtt->gsmsz = 0;
962 #else
963 iounmap(ggtt->gsm);
964 #endif
965 return ret;
966 }
967
968 ggtt->vm.scratch[0].encode =
969 ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
970 I915_CACHE_NONE, 0);
971
972 return 0;
973 }
974
975 int ggtt_set_pages(struct i915_vma *vma)
976 {
977 int ret;
978
979 GEM_BUG_ON(vma->pages);
980
981 ret = i915_get_ggtt_vma_pages(vma);
982 if (ret)
983 return ret;
984
985 vma->page_sizes = vma->obj->mm.page_sizes;
986
987 return 0;
988 }
989
990 static void gen6_gmch_remove(struct i915_address_space *vm)
991 {
992 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
993
994 #ifdef __NetBSD__
995 if (ggtt->gsmsz) {
996 bus_space_unmap(ggtt->gsmt, ggtt->gsmh, ggtt->gsmsz);
997 ggtt->gsmsz = 0;
998 }
999 #else
1000 iounmap(ggtt->gsm);
1001 #endif
1002 cleanup_scratch_page(vm);
1003 }
1004
1005 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1006 {
1007 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1008 pci_resource_len(pdev, bar));
1009 }
1010
1011 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1012 {
1013 struct drm_i915_private *i915 = ggtt->vm.i915;
1014 struct pci_dev *pdev = i915->drm.pdev;
1015 unsigned int size;
1016 u16 snb_gmch_ctl;
1017 int err;
1018
1019 /* TODO: We're not aware of mappable constraints on gen8 yet */
1020 if (!IS_DGFX(i915)) {
1021 ggtt->gmadr = pci_resource(pdev, 2);
1022 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1023 }
1024
1025 #ifdef __NetBSD__
1026 __USE(err);
1027 ggtt->max_paddr = DMA_BIT_MASK(39);
1028 #else
1029 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
1030 if (!err)
1031 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
1032 if (err)
1033 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
1034 #endif
1035
1036 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1037 if (IS_CHERRYVIEW(i915))
1038 size = chv_get_total_gtt_size(snb_gmch_ctl);
1039 else
1040 size = gen8_get_total_gtt_size(snb_gmch_ctl);
1041
1042 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1043 ggtt->vm.cleanup = gen6_gmch_remove;
1044 ggtt->vm.insert_page = gen8_ggtt_insert_page;
1045 ggtt->vm.clear_range = nop_clear_range;
1046 if (intel_scanout_needs_vtd_wa(i915))
1047 ggtt->vm.clear_range = gen8_ggtt_clear_range;
1048
1049 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1050
1051 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
1052 if (intel_ggtt_update_needs_vtd_wa(i915) ||
1053 IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
1054 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1055 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
1056 if (ggtt->vm.clear_range != nop_clear_range)
1057 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
1058 }
1059
1060 ggtt->invalidate = gen8_ggtt_invalidate;
1061
1062 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1063 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1064 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1065 ggtt->vm.vma_ops.clear_pages = clear_pages;
1066
1067 ggtt->vm.pte_encode = gen8_pte_encode;
1068
1069 setup_private_pat(ggtt->vm.gt->uncore);
1070
1071 return ggtt_probe_common(ggtt, size);
1072 }
1073
1074 static u64 snb_pte_encode(dma_addr_t addr,
1075 enum i915_cache_level level,
1076 u32 flags)
1077 {
1078 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1079
1080 switch (level) {
1081 case I915_CACHE_L3_LLC:
1082 case I915_CACHE_LLC:
1083 pte |= GEN6_PTE_CACHE_LLC;
1084 break;
1085 case I915_CACHE_NONE:
1086 pte |= GEN6_PTE_UNCACHED;
1087 break;
1088 default:
1089 MISSING_CASE(level);
1090 }
1091
1092 return pte;
1093 }
1094
1095 static u64 ivb_pte_encode(dma_addr_t addr,
1096 enum i915_cache_level level,
1097 u32 flags)
1098 {
1099 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1100
1101 switch (level) {
1102 case I915_CACHE_L3_LLC:
1103 pte |= GEN7_PTE_CACHE_L3_LLC;
1104 break;
1105 case I915_CACHE_LLC:
1106 pte |= GEN6_PTE_CACHE_LLC;
1107 break;
1108 case I915_CACHE_NONE:
1109 pte |= GEN6_PTE_UNCACHED;
1110 break;
1111 default:
1112 MISSING_CASE(level);
1113 }
1114
1115 return pte;
1116 }
1117
1118 static u64 byt_pte_encode(dma_addr_t addr,
1119 enum i915_cache_level level,
1120 u32 flags)
1121 {
1122 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1123
1124 if (!(flags & PTE_READ_ONLY))
1125 pte |= BYT_PTE_WRITEABLE;
1126
1127 if (level != I915_CACHE_NONE)
1128 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1129
1130 return pte;
1131 }
1132
1133 static u64 hsw_pte_encode(dma_addr_t addr,
1134 enum i915_cache_level level,
1135 u32 flags)
1136 {
1137 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1138
1139 if (level != I915_CACHE_NONE)
1140 pte |= HSW_WB_LLC_AGE3;
1141
1142 return pte;
1143 }
1144
1145 static u64 iris_pte_encode(dma_addr_t addr,
1146 enum i915_cache_level level,
1147 u32 flags)
1148 {
1149 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1150
1151 switch (level) {
1152 case I915_CACHE_NONE:
1153 break;
1154 case I915_CACHE_WT:
1155 pte |= HSW_WT_ELLC_LLC_AGE3;
1156 break;
1157 default:
1158 pte |= HSW_WB_ELLC_LLC_AGE3;
1159 break;
1160 }
1161
1162 return pte;
1163 }
1164
1165 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1166 {
1167 struct drm_i915_private *i915 = ggtt->vm.i915;
1168 struct pci_dev *pdev = i915->drm.pdev;
1169 unsigned int size;
1170 u16 snb_gmch_ctl;
1171 int err;
1172
1173 ggtt->gmadr = pci_resource(pdev, 2);
1174 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1175
1176 /*
1177 * 64/512MB is the current min/max we actually know of, but this is
1178 * just a coarse sanity check.
1179 */
1180 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
1181 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
1182 return -ENXIO;
1183 }
1184
1185 #ifdef __NetBSD__
1186 __USE(err);
1187 ggtt->max_paddr = DMA_BIT_MASK(40);
1188 #else
1189 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
1190 if (!err)
1191 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
1192 if (err)
1193 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
1194 #endif
1195 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1196
1197 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1198 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1199
1200 ggtt->vm.clear_range = nop_clear_range;
1201 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1202 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1203 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1204 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1205 ggtt->vm.cleanup = gen6_gmch_remove;
1206
1207 ggtt->invalidate = gen6_ggtt_invalidate;
1208
1209 if (HAS_EDRAM(i915))
1210 ggtt->vm.pte_encode = iris_pte_encode;
1211 else if (IS_HASWELL(i915))
1212 ggtt->vm.pte_encode = hsw_pte_encode;
1213 else if (IS_VALLEYVIEW(i915))
1214 ggtt->vm.pte_encode = byt_pte_encode;
1215 else if (INTEL_GEN(i915) >= 7)
1216 ggtt->vm.pte_encode = ivb_pte_encode;
1217 else
1218 ggtt->vm.pte_encode = snb_pte_encode;
1219
1220 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1221 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1222 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1223 ggtt->vm.vma_ops.clear_pages = clear_pages;
1224
1225 return ggtt_probe_common(ggtt, size);
1226 }
1227
1228 static void i915_gmch_remove(struct i915_address_space *vm)
1229 {
1230 intel_gmch_remove();
1231 }
1232
1233 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1234 {
1235 struct drm_i915_private *i915 = ggtt->vm.i915;
1236 phys_addr_t gmadr_base;
1237 int ret;
1238
1239 ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
1240 if (!ret) {
1241 DRM_ERROR("failed to set up gmch\n");
1242 return -EIO;
1243 }
1244
1245 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1246
1247 ggtt->gmadr =
1248 (struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1249
1250 #ifdef __NetBSD__
1251 /* Based on i915_drv.c, i915_driver_hw_probe. */
1252 if (IS_GEN(i915, 2))
1253 ggtt->max_paddr = DMA_BIT_MASK(30);
1254 else if (IS_I965G(i915) || IS_I965GM(i915))
1255 ggtt->max_paddr = DMA_BIT_MASK(32);
1256 else
1257 ggtt->max_paddr = DMA_BIT_MASK(40);
1258 #endif
1259
1260 ggtt->do_idle_maps = needs_idle_maps(i915);
1261 ggtt->vm.insert_page = i915_ggtt_insert_page;
1262 ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1263 ggtt->vm.clear_range = i915_ggtt_clear_range;
1264 ggtt->vm.cleanup = i915_gmch_remove;
1265
1266 ggtt->invalidate = gmch_ggtt_invalidate;
1267
1268 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1269 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1270 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1271 ggtt->vm.vma_ops.clear_pages = clear_pages;
1272
1273 if (unlikely(ggtt->do_idle_maps))
1274 dev_notice(i915->drm.dev,
1275 "Applying Ironlake quirks for intel_iommu\n");
1276
1277 return 0;
1278 }
1279
1280 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1281 {
1282 struct drm_i915_private *i915 = gt->i915;
1283 int ret;
1284
1285 ggtt->vm.gt = gt;
1286 ggtt->vm.i915 = i915;
1287 #ifdef __NetBSD__
1288 ggtt->vm.dmat = i915->drm.dmat;
1289 #else
1290 ggtt->vm.dma = &i915->drm.pdev->dev;
1291 #endif
1292
1293 if (INTEL_GEN(i915) <= 5)
1294 ret = i915_gmch_probe(ggtt);
1295 else if (INTEL_GEN(i915) < 8)
1296 ret = gen6_gmch_probe(ggtt);
1297 else
1298 ret = gen8_gmch_probe(ggtt);
1299 if (ret)
1300 return ret;
1301
1302 #ifdef __NetBSD__
1303 ggtt->pgfl = x86_select_freelist(ggtt->max_paddr);
1304 ret = drm_limit_dma_space(&i915->drm, 0, ggtt->max_paddr);
1305 if (ret) {
1306 DRM_ERROR("Unable to limit DMA paddr allocations: %d\n", ret);
1307 i915_ggtt_driver_release(i915);
1308 return ret;
1309 }
1310 #endif
1311
1312 if ((ggtt->vm.total - 1) >> 32) {
1313 DRM_ERROR("We never expected a Global GTT with more than 32bits"
1314 " of address space! Found %"PRId64"M!\n",
1315 ggtt->vm.total >> 20);
1316 ggtt->vm.total = 1ULL << 32;
1317 ggtt->mappable_end =
1318 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1319 }
1320
1321 if (ggtt->mappable_end > ggtt->vm.total) {
1322 DRM_ERROR("mappable aperture extends past end of GGTT,"
1323 " aperture=%pa, total=%"PRIx64"\n",
1324 &ggtt->mappable_end, ggtt->vm.total);
1325 ggtt->mappable_end = ggtt->vm.total;
1326 }
1327
1328 /* GMADR is the PCI mmio aperture into the global GTT. */
1329 DRM_DEBUG_DRIVER("GGTT size = %"PRIu64"M\n", ggtt->vm.total >> 20);
1330 DRM_DEBUG_DRIVER("GMADR size = %"PRIu64"M\n", (u64)ggtt->mappable_end >> 20);
1331 DRM_DEBUG_DRIVER("DSM size = %"PRIu64"M\n",
1332 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1333
1334 return 0;
1335 }
1336
1337 /**
1338 * i915_ggtt_probe_hw - Probe GGTT hardware location
1339 * @i915: i915 device
1340 */
1341 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1342 {
1343 int ret;
1344
1345 ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1346 if (ret)
1347 return ret;
1348
1349 if (intel_vtd_active())
1350 dev_info(i915->drm.dev, "VT-d active for gfx access\n");
1351
1352 return 0;
1353 }
1354
1355 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1356 {
1357 if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
1358 return -EIO;
1359
1360 return 0;
1361 }
1362
1363 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1364 {
1365 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1366
1367 ggtt->invalidate = guc_ggtt_invalidate;
1368
1369 ggtt->invalidate(ggtt);
1370 }
1371
1372 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1373 {
1374 /* XXX Temporary pardon for error unload */
1375 if (ggtt->invalidate == gen8_ggtt_invalidate)
1376 return;
1377
1378 /* We should only be called after i915_ggtt_enable_guc() */
1379 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1380
1381 ggtt->invalidate = gen8_ggtt_invalidate;
1382
1383 ggtt->invalidate(ggtt);
1384 }
1385
1386 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
1387 {
1388 struct i915_vma *vma;
1389 bool flush = false;
1390 int open;
1391
1392 intel_gt_check_and_clear_faults(ggtt->vm.gt);
1393
1394 mutex_lock(&ggtt->vm.mutex);
1395
1396 /* First fill our portion of the GTT with scratch pages */
1397 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1398
1399 /* Skip rewriting PTE on VMA unbind. */
1400 open = atomic_xchg(&ggtt->vm.open, 0);
1401
1402 /* clflush objects bound into the GGTT and rebind them. */
1403 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1404 struct drm_i915_gem_object *obj = vma->obj;
1405
1406 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
1407 continue;
1408
1409 clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
1410 WARN_ON(i915_vma_bind(vma,
1411 obj ? obj->cache_level : 0,
1412 PIN_GLOBAL, NULL));
1413 if (obj) { /* only used during resume => exclusive access */
1414 flush |= fetch_and_zero(&obj->write_domain);
1415 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1416 }
1417 }
1418
1419 atomic_set(&ggtt->vm.open, open);
1420 ggtt->invalidate(ggtt);
1421
1422 mutex_unlock(&ggtt->vm.mutex);
1423
1424 if (flush)
1425 wbinvd_on_all_cpus();
1426 }
1427
1428 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
1429 {
1430 struct i915_ggtt *ggtt = &i915->ggtt;
1431
1432 ggtt_restore_mappings(ggtt);
1433
1434 if (INTEL_GEN(i915) >= 8)
1435 setup_private_pat(ggtt->vm.gt->uncore);
1436 }
1437
1438 #ifndef __NetBSD__
1439
1440 static struct scatterlist *
1441 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1442 unsigned int width, unsigned int height,
1443 unsigned int stride,
1444 struct sg_table *st, struct scatterlist *sg)
1445 {
1446 unsigned int column, row;
1447 unsigned int src_idx;
1448
1449 for (column = 0; column < width; column++) {
1450 src_idx = stride * (height - 1) + column + offset;
1451 for (row = 0; row < height; row++) {
1452 st->nents++;
1453 /*
1454 * We don't need the pages, but need to initialize
1455 * the entries so the sg list can be happily traversed.
1456 * The only thing we need are DMA addresses.
1457 */
1458 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1459 sg_dma_address(sg) =
1460 i915_gem_object_get_dma_address(obj, src_idx);
1461 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1462 sg = sg_next(sg);
1463 src_idx -= stride;
1464 }
1465 }
1466
1467 return sg;
1468 }
1469
1470 static noinline struct sg_table *
1471 intel_rotate_pages(struct intel_rotation_info *rot_info,
1472 struct drm_i915_gem_object *obj)
1473 {
1474 unsigned int size = intel_rotation_info_size(rot_info);
1475 struct sg_table *st;
1476 struct scatterlist *sg;
1477 int ret = -ENOMEM;
1478 int i;
1479
1480 /* Allocate target SG list. */
1481 st = kmalloc(sizeof(*st), GFP_KERNEL);
1482 if (!st)
1483 goto err_st_alloc;
1484
1485 ret = sg_alloc_table(st, size, GFP_KERNEL);
1486 if (ret)
1487 goto err_sg_alloc;
1488
1489 st->nents = 0;
1490 sg = st->sgl;
1491
1492 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
1493 sg = rotate_pages(obj, rot_info->plane[i].offset,
1494 rot_info->plane[i].width, rot_info->plane[i].height,
1495 rot_info->plane[i].stride, st, sg);
1496 }
1497
1498 return st;
1499
1500 err_sg_alloc:
1501 kfree(st);
1502 err_st_alloc:
1503
1504 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1505 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
1506
1507 return ERR_PTR(ret);
1508 }
1509
1510 static struct scatterlist *
1511 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1512 unsigned int width, unsigned int height,
1513 unsigned int stride,
1514 struct sg_table *st, struct scatterlist *sg)
1515 {
1516 unsigned int row;
1517
1518 for (row = 0; row < height; row++) {
1519 unsigned int left = width * I915_GTT_PAGE_SIZE;
1520
1521 while (left) {
1522 dma_addr_t addr;
1523 unsigned int length;
1524
1525 /*
1526 * We don't need the pages, but need to initialize
1527 * the entries so the sg list can be happily traversed.
1528 * The only thing we need are DMA addresses.
1529 */
1530
1531 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1532
1533 length = min(left, length);
1534
1535 st->nents++;
1536
1537 sg_set_page(sg, NULL, length, 0);
1538 sg_dma_address(sg) = addr;
1539 sg_dma_len(sg) = length;
1540 sg = sg_next(sg);
1541
1542 offset += length / I915_GTT_PAGE_SIZE;
1543 left -= length;
1544 }
1545
1546 offset += stride - width;
1547 }
1548
1549 return sg;
1550 }
1551
1552 static noinline struct sg_table *
1553 intel_remap_pages(struct intel_remapped_info *rem_info,
1554 struct drm_i915_gem_object *obj)
1555 {
1556 unsigned int size = intel_remapped_info_size(rem_info);
1557 struct sg_table *st;
1558 struct scatterlist *sg;
1559 int ret = -ENOMEM;
1560 int i;
1561
1562 /* Allocate target SG list. */
1563 st = kmalloc(sizeof(*st), GFP_KERNEL);
1564 if (!st)
1565 goto err_st_alloc;
1566
1567 ret = sg_alloc_table(st, size, GFP_KERNEL);
1568 if (ret)
1569 goto err_sg_alloc;
1570
1571 st->nents = 0;
1572 sg = st->sgl;
1573
1574 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1575 sg = remap_pages(obj, rem_info->plane[i].offset,
1576 rem_info->plane[i].width, rem_info->plane[i].height,
1577 rem_info->plane[i].stride, st, sg);
1578 }
1579
1580 i915_sg_trim(st);
1581
1582 return st;
1583
1584 err_sg_alloc:
1585 kfree(st);
1586 err_st_alloc:
1587
1588 DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1589 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
1590
1591 return ERR_PTR(ret);
1592 }
1593
1594 #endif /* __NetBSD__ */
1595
1596 static noinline struct sg_table *
1597 intel_partial_pages(const struct i915_ggtt_view *view,
1598 struct drm_i915_gem_object *obj)
1599 {
1600 #ifdef __NetBSD__
1601 struct sg_table *st = NULL;
1602 int ret = -ENOMEM;
1603
1604 KASSERTMSG(view->partial.offset <= obj->base.size >> PAGE_SHIFT,
1605 "obj=%p size=0x%zx; view offset=0x%zx size=0x%zx",
1606 obj,
1607 (size_t)obj->base.size >> PAGE_SHIFT,
1608 (size_t)view->partial.offset,
1609 (size_t)view->partial.size);
1610 KASSERTMSG((view->partial.size <=
1611 (obj->base.size >> PAGE_SHIFT) - view->partial.offset),
1612 "obj=%p size=0x%zx; view offset=0x%zx size=0x%zx",
1613 obj,
1614 (size_t)obj->base.size >> PAGE_SHIFT,
1615 (size_t)view->partial.offset,
1616 (size_t)view->partial.size);
1617 KASSERTMSG(view->partial.size <= INT_MAX, "view size=0x%zx",
1618 (size_t)view->partial.size);
1619
1620 st = kmalloc(sizeof(*st), GFP_KERNEL);
1621 if (st == NULL)
1622 goto fail;
1623 ret = sg_alloc_table(st, view->partial.size, GFP_KERNEL);
1624 if (ret) {
1625 kfree(st);
1626 st = NULL;
1627 goto fail;
1628 }
1629
1630 /* XXX errno NetBSD->Linux */
1631 if (obj->mm.pages->sgl->sg_dmamap) { /* XXX KASSERT? */
1632 ret = -bus_dmamap_create(obj->base.dev->dmat,
1633 (bus_size_t)view->partial.size << PAGE_SHIFT,
1634 view->partial.size, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
1635 &st->sgl->sg_dmamap);
1636 if (ret) {
1637 st->sgl->sg_dmamap = NULL;
1638 goto fail;
1639 }
1640 st->sgl->sg_dmat = obj->base.dev->dmat;
1641 }
1642
1643 /*
1644 * Copy over the pages. The view's offset and size are in
1645 * units of pages already.
1646 */
1647 KASSERT(st->sgl->sg_npgs == view->partial.size);
1648 memcpy(st->sgl->sg_pgs,
1649 obj->mm.pages->sgl->sg_pgs + view->partial.offset,
1650 sizeof(st->sgl->sg_pgs[0]) * view->partial.size);
1651
1652 /*
1653 * Copy over the DMA addresses. For simplicity, we don't do
1654 * anything to compress contiguous pages into larger segments.
1655 */
1656 if (obj->mm.pages->sgl->sg_dmamap) {
1657 bus_size_t offset = (bus_size_t)view->partial.offset
1658 << PAGE_SHIFT;
1659 unsigned i, j, k;
1660
1661 st->sgl->sg_dmamap->dm_nsegs = view->partial.size;
1662 for (i = j = 0; i < view->partial.size; j++) {
1663 KASSERT(j < obj->mm.pages->sgl->sg_dmamap->dm_nsegs);
1664 const bus_dma_segment_t *iseg =
1665 &obj->mm.pages->sgl->sg_dmamap->dm_segs[j];
1666
1667 KASSERT(iseg->ds_len % PAGE_SIZE == 0);
1668
1669 /* Skip segments prior to the start offset. */
1670 if (offset >= iseg->ds_len) {
1671 offset -= iseg->ds_len;
1672 continue;
1673 }
1674 for (k = 0;
1675 (i < view->partial.size &&
1676 k < iseg->ds_len >> PAGE_SHIFT);
1677 k++) {
1678 KASSERT(i < view->partial.size);
1679 bus_dma_segment_t *oseg =
1680 &st->sgl->sg_dmamap->dm_segs[i++];
1681 oseg->ds_addr = iseg->ds_addr + offset +
1682 k*PAGE_SIZE;
1683 oseg->ds_len = PAGE_SIZE;
1684 }
1685
1686 /*
1687 * After the first segment which we possibly
1688 * use only a suffix of, the remainder we will
1689 * take from the beginning.
1690 */
1691 offset = 0;
1692 }
1693 }
1694
1695 /* Success! */
1696 return st;
1697
1698 fail: if (st) {
1699 sg_free_table(st);
1700 kfree(st);
1701 }
1702 return ERR_PTR(ret);
1703 #else
1704 struct sg_table *st;
1705 struct scatterlist *sg, *iter;
1706 unsigned int count = view->partial.size;
1707 unsigned int offset;
1708 int ret;
1709
1710 st = kmalloc(sizeof(*st), GFP_KERNEL);
1711 if (!st) {
1712 ret = -ENOMEM;
1713 goto err_st_alloc;
1714 }
1715
1716 ret = sg_alloc_table(st, count, GFP_KERNEL);
1717 if (ret)
1718 goto err_sg_alloc;
1719
1720 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
1721 GEM_BUG_ON(!iter);
1722
1723 sg = st->sgl;
1724 st->nents = 0;
1725 do {
1726 unsigned int len;
1727
1728 len = min(iter->length - (offset << PAGE_SHIFT),
1729 count << PAGE_SHIFT);
1730 sg_set_page(sg, NULL, len, 0);
1731 sg_dma_address(sg) =
1732 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1733 sg_dma_len(sg) = len;
1734
1735 st->nents++;
1736 count -= len >> PAGE_SHIFT;
1737 if (count == 0) {
1738 sg_mark_end(sg);
1739 i915_sg_trim(st); /* Drop any unused tail entries. */
1740
1741 return st;
1742 }
1743
1744 sg = __sg_next(sg);
1745 iter = __sg_next(iter);
1746 offset = 0;
1747 } while (1);
1748
1749 err_sg_alloc:
1750 kfree(st);
1751 err_st_alloc:
1752 return ERR_PTR(ret);
1753 #endif /* __NetBSD__ */
1754 }
1755
1756 static int
1757 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1758 {
1759 int ret;
1760
1761 /*
1762 * The vma->pages are only valid within the lifespan of the borrowed
1763 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1764 * must be the vma->pages. A simple rule is that vma->pages must only
1765 * be accessed when the obj->mm.pages are pinned.
1766 */
1767 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1768
1769 switch (vma->ggtt_view.type) {
1770 default:
1771 GEM_BUG_ON(vma->ggtt_view.type);
1772 /* fall through */
1773 case I915_GGTT_VIEW_NORMAL:
1774 vma->pages = vma->obj->mm.pages;
1775 return 0;
1776
1777 case I915_GGTT_VIEW_ROTATED:
1778 #ifdef __NetBSD__
1779 vma->pages = ERR_PTR(-ENODEV);
1780 #else
1781 vma->pages =
1782 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1783 #endif
1784 break;
1785
1786 case I915_GGTT_VIEW_REMAPPED:
1787 #ifdef __NetBSD__
1788 vma->pages = ERR_PTR(-ENODEV);
1789 #else
1790 vma->pages =
1791 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1792 #endif
1793 break;
1794
1795 case I915_GGTT_VIEW_PARTIAL:
1796 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1797 break;
1798 }
1799
1800 ret = 0;
1801 if (IS_ERR(vma->pages)) {
1802 ret = PTR_ERR(vma->pages);
1803 vma->pages = NULL;
1804 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
1805 vma->ggtt_view.type, ret);
1806 }
1807 return ret;
1808 }
1809