intel_ggtt.c revision 1.18 1 /* $NetBSD: intel_ggtt.c,v 1.18 2025/01/26 18:21:15 riastradh Exp $ */
2
3 // SPDX-License-Identifier: MIT
4 /*
5 * Copyright 2020 Intel Corporation
6 */
7
8 #include <sys/cdefs.h>
9 __KERNEL_RCSID(0, "$NetBSD: intel_ggtt.c,v 1.18 2025/01/26 18:21:15 riastradh Exp $");
10
11 #include <linux/stop_machine.h>
12
13 #include <asm/set_memory.h>
14 #include <asm/smp.h>
15
16 #ifdef __NetBSD__
17 #include <drm/io-mapping.h>
18 #endif
19
20 #include "intel_gt.h"
21 #include "i915_drv.h"
22 #include "i915_scatterlist.h"
23 #include "i915_vgpu.h"
24
25 #include "intel_gtt.h"
26
27 #include <linux/nbsd-namespace.h>
28
29 static int
30 i915_get_ggtt_vma_pages(struct i915_vma *vma);
31
32 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
33 unsigned long color,
34 u64 *start,
35 u64 *end)
36 {
37 if (i915_node_color_differs(node, color))
38 *start += I915_GTT_PAGE_SIZE;
39
40 /*
41 * Also leave a space between the unallocated reserved node after the
42 * GTT and any objects within the GTT, i.e. we use the color adjustment
43 * to insert a guard page to prevent prefetches crossing over the
44 * GTT boundary.
45 */
46 node = list_next_entry(node, node_list);
47 if (node->color != color)
48 *end -= I915_GTT_PAGE_SIZE;
49 }
50
51 static int ggtt_init_hw(struct i915_ggtt *ggtt)
52 {
53 struct drm_i915_private *i915 = ggtt->vm.i915;
54
55 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
56
57 ggtt->vm.is_ggtt = true;
58
59 /* Only VLV supports read-only GGTT mappings */
60 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
61
62 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
63 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
64
65 if (ggtt->mappable_end) {
66 #ifdef __NetBSD__
67 if (!drm_io_mapping_init_wc(&i915->drm, &ggtt->iomap,
68 ggtt->gmadr.start, ggtt->mappable_end)) {
69 ggtt->vm.cleanup(&ggtt->vm);
70 return -EIO;
71 }
72 /*
73 * Note: mappable_end is the size, not end paddr, of
74 * the aperture.
75 */
76 pmap_pv_track(ggtt->gmadr.start, ggtt->mappable_end);
77 #else
78 if (!io_mapping_init_wc(&ggtt->iomap,
79 ggtt->gmadr.start,
80 ggtt->mappable_end)) {
81 ggtt->vm.cleanup(&ggtt->vm);
82 return -EIO;
83 }
84 #endif
85
86 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
87 ggtt->mappable_end);
88 }
89
90 i915_ggtt_init_fences(ggtt);
91
92 return 0;
93 }
94
95 /**
96 * i915_ggtt_init_hw - Initialize GGTT hardware
97 * @i915: i915 device
98 */
99 int i915_ggtt_init_hw(struct drm_i915_private *i915)
100 {
101 int ret;
102
103 #ifndef __NetBSD__
104 stash_init(&i915->mm.wc_stash);
105 #endif
106
107 /*
108 * Note that we use page colouring to enforce a guard page at the
109 * end of the address space. This is required as the CS may prefetch
110 * beyond the end of the batch buffer, across the page boundary,
111 * and beyond the end of the GTT if we do not provide a guard.
112 */
113 ret = ggtt_init_hw(&i915->ggtt);
114 if (ret)
115 return ret;
116
117 return 0;
118 }
119
120 /*
121 * Certain Gen5 chipsets require require idling the GPU before
122 * unmapping anything from the GTT when VT-d is enabled.
123 */
124 static bool needs_idle_maps(struct drm_i915_private *i915)
125 {
126 /*
127 * Query intel_iommu to see if we need the workaround. Presumably that
128 * was loaded first.
129 */
130 return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
131 }
132
133 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
134 {
135 struct drm_i915_private *i915 = ggtt->vm.i915;
136
137 /*
138 * Don't bother messing with faults pre GEN6 as we have little
139 * documentation supporting that it's a good idea.
140 */
141 if (INTEL_GEN(i915) < 6)
142 return;
143
144 intel_gt_check_and_clear_faults(ggtt->vm.gt);
145
146 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
147
148 ggtt->invalidate(ggtt);
149 }
150
151 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
152 {
153 ggtt_suspend_mappings(&i915->ggtt);
154 }
155
156 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
157 {
158 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
159
160 spin_lock_irq(&uncore->lock);
161 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
162 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
163 spin_unlock_irq(&uncore->lock);
164 }
165
166 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
167 {
168 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
169
170 /*
171 * Note that as an uncached mmio write, this will flush the
172 * WCB of the writes into the GGTT before it triggers the invalidate.
173 */
174 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
175 }
176
177 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
178 {
179 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
180 struct drm_i915_private *i915 = ggtt->vm.i915;
181
182 gen8_ggtt_invalidate(ggtt);
183
184 if (INTEL_GEN(i915) >= 12)
185 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
186 GEN12_GUC_TLB_INV_CR_INVALIDATE);
187 else
188 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
189 }
190
191 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
192 {
193 intel_gtt_chipset_flush();
194 }
195
196 #ifdef __NetBSD__
197 static inline void
198 gen8_set_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i,
199 gen8_pte_t pte)
200 {
201 CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
202 CTASSERT(sizeof(gen8_pte_t) == 8);
203 #ifdef _LP64 /* XXX How to detect bus_space_write_8? */
204 bus_space_write_8(bst, bsh, 8*i, pte);
205 #else
206 bus_space_write_4(bst, bsh, 8*i, (uint32_t)pte);
207 bus_space_write_4(bst, bsh, 8*i + 4, (uint32_t)(pte >> 32));
208 #endif
209 }
210 #else
211 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
212 {
213 writeq(pte, addr);
214 }
215 #endif
216
217 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
218 dma_addr_t addr,
219 u64 offset,
220 enum i915_cache_level level,
221 u32 unused)
222 {
223 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
224 #ifndef __NetBSD__
225 gen8_pte_t __iomem *pte =
226 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
227 #endif
228
229 #ifdef __NetBSD__
230 gen8_set_pte(ggtt->gsmt, ggtt->gsmh, offset / I915_GTT_PAGE_SIZE,
231 gen8_pte_encode(addr, level, 0));
232 #else
233 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
234 #endif
235
236 ggtt->invalidate(ggtt);
237 }
238
239 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
240 struct i915_vma *vma,
241 enum i915_cache_level level,
242 u32 flags)
243 {
244 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
245 #ifdef __NetBSD__
246 bus_dmamap_t map = vma->pages->sgl[0].sg_dmamap;
247 unsigned seg;
248 unsigned pgno;
249 #else
250 struct sgt_iter sgt_iter;
251 gen8_pte_t __iomem *gtt_entries;
252 #endif
253 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
254 dma_addr_t addr;
255
256 /*
257 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
258 * not to allow the user to override access to a read only page.
259 */
260
261 #ifdef __NetBSD__
262 pgno = vma->node.start / I915_GTT_PAGE_SIZE;
263 for (seg = 0; seg < map->dm_nsegs; seg++) {
264 addr = map->dm_segs[seg].ds_addr;
265 bus_size_t len = map->dm_segs[seg].ds_len;
266 KASSERT((addr % I915_GTT_PAGE_SIZE) == 0);
267 KASSERT((len % I915_GTT_PAGE_SIZE) == 0);
268 for (;
269 len >= I915_GTT_PAGE_SIZE;
270 addr += I915_GTT_PAGE_SIZE, len -= I915_GTT_PAGE_SIZE) {
271 gen8_set_pte(ggtt->gsmt, ggtt->gsmh, pgno++,
272 pte_encode | addr);
273 }
274 KASSERT(len == 0);
275 }
276 #else
277 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
278 gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
279 for_each_sgt_daddr(addr, sgt_iter, vma->pages)
280 gen8_set_pte(gtt_entries++, pte_encode | addr);
281 #endif
282
283 /*
284 * We want to flush the TLBs only after we're certain all the PTE
285 * updates have finished.
286 */
287 ggtt->invalidate(ggtt);
288 }
289
290 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
291 dma_addr_t addr,
292 u64 offset,
293 enum i915_cache_level level,
294 u32 flags)
295 {
296 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
297 #ifndef __NetBSD__
298 gen6_pte_t __iomem *pte =
299 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
300 #endif
301
302 #ifdef __NetBSD__
303 CTASSERT(sizeof(gen6_pte_t) == 4);
304 bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
305 sizeof(gen6_pte_t) * (offset / I915_GTT_PAGE_SIZE),
306 vm->pte_encode(addr, level, flags));
307 #else
308 iowrite32(vm->pte_encode(addr, level, flags), pte);
309 #endif
310
311 ggtt->invalidate(ggtt);
312 }
313
314 /*
315 * Binds an object into the global gtt with the specified cache level.
316 * The object will be accessible to the GPU via commands whose operands
317 * reference offsets within the global GTT as well as accessible by the GPU
318 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
319 */
320
321 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
322 struct i915_vma *vma,
323 enum i915_cache_level level,
324 u32 flags)
325 {
326 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
327 #ifdef __NetBSD__
328 bus_dmamap_t map = vma->pages->sgl[0].sg_dmamap;
329 unsigned seg;
330 unsigned pgno;
331 #else
332 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
333 unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
334 struct sgt_iter iter;
335 #endif
336 dma_addr_t addr;
337
338 #ifdef __NetBSD__
339 pgno = vma->node.start >> PAGE_SHIFT;
340 for (seg = 0; seg < map->dm_nsegs; seg++) {
341 addr = map->dm_segs[seg].ds_addr;
342 bus_size_t len = map->dm_segs[seg].ds_len;
343 KASSERT((addr % I915_GTT_PAGE_SIZE) == 0);
344 KASSERT((len % I915_GTT_PAGE_SIZE) == 0);
345 for (;
346 len >= I915_GTT_PAGE_SIZE;
347 addr += I915_GTT_PAGE_SIZE, len -= I915_GTT_PAGE_SIZE) {
348 /* XXX KASSERT(pgno < ...)? */
349 CTASSERT(sizeof(gen6_pte_t) == 4);
350 bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
351 sizeof(gen6_pte_t) * pgno++,
352 vm->pte_encode(addr, level, flags));
353 }
354 KASSERT(len == 0);
355 /* XXX KASSERT(pgno <= ...)? */
356 }
357 #else
358 for_each_sgt_daddr(addr, iter, vma->pages)
359 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
360 #endif
361
362 /*
363 * We want to flush the TLBs only after we're certain all the PTE
364 * updates have finished.
365 */
366 ggtt->invalidate(ggtt);
367 }
368
369 static void nop_clear_range(struct i915_address_space *vm,
370 u64 start, u64 length)
371 {
372 }
373
374 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
375 u64 start, u64 length)
376 {
377 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
378 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
379 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
380 const gen8_pte_t scratch_pte = vm->scratch[0].encode;
381 #ifndef __NetBSD__
382 gen8_pte_t __iomem *gtt_base =
383 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
384 #endif
385 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
386 int i;
387
388 if (WARN(num_entries > max_entries,
389 "First entry = %d; Num entries = %d (max=%d)\n",
390 first_entry, num_entries, max_entries))
391 num_entries = max_entries;
392
393 #ifdef __NetBSD__
394 for (i = 0; i < num_entries; i++)
395 gen8_set_pte(ggtt->gsmt, ggtt->gsmh,
396 first_entry + i*sizeof(gen8_pte_t),
397 scratch_pte);
398 #else
399 for (i = 0; i < num_entries; i++)
400 gen8_set_pte(>t_base[i], scratch_pte);
401 #endif
402 }
403
404 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
405 {
406 /*
407 * Make sure the internal GAM fifo has been cleared of all GTT
408 * writes before exiting stop_machine(). This guarantees that
409 * any aperture accesses waiting to start in another process
410 * cannot back up behind the GTT writes causing a hang.
411 * The register can be any arbitrary GAM register.
412 */
413 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
414 }
415
416 struct insert_page {
417 struct i915_address_space *vm;
418 dma_addr_t addr;
419 u64 offset;
420 enum i915_cache_level level;
421 };
422
423 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
424 {
425 struct insert_page *arg = _arg;
426
427 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
428 bxt_vtd_ggtt_wa(arg->vm);
429
430 return 0;
431 }
432
433 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
434 dma_addr_t addr,
435 u64 offset,
436 enum i915_cache_level level,
437 u32 unused)
438 {
439 struct insert_page arg = { vm, addr, offset, level };
440
441 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
442 }
443
444 struct insert_entries {
445 struct i915_address_space *vm;
446 struct i915_vma *vma;
447 enum i915_cache_level level;
448 u32 flags;
449 };
450
451 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
452 {
453 struct insert_entries *arg = _arg;
454
455 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
456 bxt_vtd_ggtt_wa(arg->vm);
457
458 return 0;
459 }
460
461 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
462 struct i915_vma *vma,
463 enum i915_cache_level level,
464 u32 flags)
465 {
466 struct insert_entries arg = { vm, vma, level, flags };
467
468 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
469 }
470
471 struct clear_range {
472 struct i915_address_space *vm;
473 u64 start;
474 u64 length;
475 };
476
477 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
478 {
479 struct clear_range *arg = _arg;
480
481 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
482 bxt_vtd_ggtt_wa(arg->vm);
483
484 return 0;
485 }
486
487 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
488 u64 start,
489 u64 length)
490 {
491 struct clear_range arg = { vm, start, length };
492
493 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
494 }
495
496 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
497 u64 start, u64 length)
498 {
499 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
500 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
501 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
502 #ifdef __NetBSD__
503 gen6_pte_t scratch_pte;
504 #else
505 gen6_pte_t scratch_pte, __iomem *gtt_base =
506 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
507 #endif
508 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
509 int i;
510
511 if (WARN(num_entries > max_entries,
512 "First entry = %d; Num entries = %d (max=%d)\n",
513 first_entry, num_entries, max_entries))
514 num_entries = max_entries;
515
516 scratch_pte = vm->scratch[0].encode;
517 #ifdef __NetBSD__
518 CTASSERT(sizeof(gen6_pte_t) == 4);
519 for (i = 0; i < num_entries; i++)
520 bus_space_write_4(ggtt->gsmt, ggtt->gsmh,
521 sizeof(gen6_pte_t) * (first_entry + i),
522 scratch_pte);
523 #else
524 for (i = 0; i < num_entries; i++)
525 iowrite32(scratch_pte, >t_base[i]);
526 #endif
527 }
528
529 static void i915_ggtt_insert_page(struct i915_address_space *vm,
530 dma_addr_t addr,
531 u64 offset,
532 enum i915_cache_level cache_level,
533 u32 unused)
534 {
535 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
536 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
537
538 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
539 }
540
541 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
542 struct i915_vma *vma,
543 enum i915_cache_level cache_level,
544 u32 unused)
545 {
546 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
547 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
548
549 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
550 flags);
551 }
552
553 static void i915_ggtt_clear_range(struct i915_address_space *vm,
554 u64 start, u64 length)
555 {
556 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
557 }
558
559 static int ggtt_bind_vma(struct i915_vma *vma,
560 enum i915_cache_level cache_level,
561 u32 flags)
562 {
563 struct drm_i915_gem_object *obj = vma->obj;
564 u32 pte_flags;
565
566 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
567 pte_flags = 0;
568 if (i915_gem_object_is_readonly(obj))
569 pte_flags |= PTE_READ_ONLY;
570
571 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
572
573 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
574
575 /*
576 * Without aliasing PPGTT there's no difference between
577 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
578 * upgrade to both bound if we bind either to avoid double-binding.
579 */
580 atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
581
582 return 0;
583 }
584
585 static void ggtt_unbind_vma(struct i915_vma *vma)
586 {
587 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
588 }
589
590 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
591 {
592 u64 size;
593 int ret;
594
595 if (!USES_GUC(ggtt->vm.i915))
596 return 0;
597
598 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
599 size = ggtt->vm.total - GUC_GGTT_TOP;
600
601 ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
602 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
603 PIN_NOEVICT);
604 if (ret)
605 DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
606
607 return ret;
608 }
609
610 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
611 {
612 if (drm_mm_node_allocated(&ggtt->uc_fw))
613 drm_mm_remove_node(&ggtt->uc_fw);
614 }
615
616 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
617 {
618 ggtt_release_guc_top(ggtt);
619 if (drm_mm_node_allocated(&ggtt->error_capture))
620 drm_mm_remove_node(&ggtt->error_capture);
621 mutex_destroy(&ggtt->error_mutex);
622 }
623
624 static int init_ggtt(struct i915_ggtt *ggtt)
625 {
626 /*
627 * Let GEM Manage all of the aperture.
628 *
629 * However, leave one page at the end still bound to the scratch page.
630 * There are a number of places where the hardware apparently prefetches
631 * past the end of the object, and we've seen multiple hangs with the
632 * GPU head pointer stuck in a batchbuffer bound at the last page of the
633 * aperture. One page should be enough to keep any prefetching inside
634 * of the aperture.
635 */
636 unsigned long hole_start, hole_end;
637 struct drm_mm_node *entry;
638 int ret;
639
640 /*
641 * GuC requires all resources that we're sharing with it to be placed in
642 * non-WOPCM memory. If GuC is not present or not in use we still need a
643 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
644 * why.
645 */
646 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
647 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
648
649 ret = intel_vgt_balloon(ggtt);
650 if (ret)
651 return ret;
652
653 mutex_init(&ggtt->error_mutex);
654 if (ggtt->mappable_end) {
655 /* Reserve a mappable slot for our lockless error capture */
656 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm,
657 &ggtt->error_capture,
658 PAGE_SIZE, 0,
659 I915_COLOR_UNEVICTABLE,
660 0, ggtt->mappable_end,
661 DRM_MM_INSERT_LOW);
662 if (ret)
663 return ret;
664 }
665
666 /*
667 * The upper portion of the GuC address space has a sizeable hole
668 * (several MB) that is inaccessible by GuC. Reserve this range within
669 * GGTT as it can comfortably hold GuC/HuC firmware images.
670 */
671 ret = ggtt_reserve_guc_top(ggtt);
672 if (ret)
673 goto err;
674
675 /* Clear any non-preallocated blocks */
676 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
677 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
678 hole_start, hole_end);
679 ggtt->vm.clear_range(&ggtt->vm, hole_start,
680 hole_end - hole_start);
681 }
682
683 /* And finally clear the reserved guard page */
684 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
685
686 return 0;
687
688 err:
689 cleanup_init_ggtt(ggtt);
690 return ret;
691 }
692
693 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
694 enum i915_cache_level cache_level,
695 u32 flags)
696 {
697 u32 pte_flags;
698 int ret;
699
700 /* Currently applicable only to VLV */
701 pte_flags = 0;
702 if (i915_gem_object_is_readonly(vma->obj))
703 pte_flags |= PTE_READ_ONLY;
704
705 if (flags & I915_VMA_LOCAL_BIND) {
706 struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
707
708 if (flags & I915_VMA_ALLOC) {
709 ret = alias->vm.allocate_va_range(&alias->vm,
710 vma->node.start,
711 vma->size);
712 if (ret)
713 return ret;
714
715 set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
716 }
717
718 GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
719 __i915_vma_flags(vma)));
720 alias->vm.insert_entries(&alias->vm, vma,
721 cache_level, pte_flags);
722 }
723
724 if (flags & I915_VMA_GLOBAL_BIND)
725 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
726
727 return 0;
728 }
729
730 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
731 {
732 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
733 struct i915_address_space *vm = vma->vm;
734
735 vm->clear_range(vm, vma->node.start, vma->size);
736 }
737
738 if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
739 struct i915_address_space *vm =
740 &i915_vm_to_ggtt(vma->vm)->alias->vm;
741
742 vm->clear_range(vm, vma->node.start, vma->size);
743 }
744 }
745
746 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
747 {
748 struct i915_ppgtt *ppgtt;
749 int err;
750
751 ppgtt = i915_ppgtt_create(ggtt->vm.gt);
752 if (IS_ERR(ppgtt))
753 return PTR_ERR(ppgtt);
754
755 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
756 err = -ENODEV;
757 goto err_ppgtt;
758 }
759
760 /*
761 * Note we only pre-allocate as far as the end of the global
762 * GTT. On 48b / 4-level page-tables, the difference is very,
763 * very significant! We have to preallocate as GVT/vgpu does
764 * not like the page directory disappearing.
765 */
766 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
767 if (err)
768 goto err_ppgtt;
769
770 ggtt->alias = ppgtt;
771 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
772
773 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
774 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
775
776 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
777 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
778
779 return 0;
780
781 err_ppgtt:
782 i915_vm_put(&ppgtt->vm);
783 return err;
784 }
785
786 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
787 {
788 struct i915_ppgtt *ppgtt;
789
790 ppgtt = fetch_and_zero(&ggtt->alias);
791 if (!ppgtt)
792 return;
793
794 i915_vm_put(&ppgtt->vm);
795
796 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
797 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
798 }
799
800 int i915_init_ggtt(struct drm_i915_private *i915)
801 {
802 int ret;
803
804 ret = init_ggtt(&i915->ggtt);
805 if (ret)
806 return ret;
807
808 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
809 ret = init_aliasing_ppgtt(&i915->ggtt);
810 if (ret)
811 cleanup_init_ggtt(&i915->ggtt);
812 }
813
814 return 0;
815 }
816
817 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
818 {
819 struct i915_vma *vma, *vn;
820
821 atomic_set(&ggtt->vm.open, 0);
822
823 rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
824 flush_workqueue(ggtt->vm.i915->wq);
825
826 mutex_lock(&ggtt->vm.mutex);
827
828 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
829 WARN_ON(__i915_vma_unbind(vma));
830
831 if (drm_mm_node_allocated(&ggtt->error_capture))
832 drm_mm_remove_node(&ggtt->error_capture);
833 mutex_destroy(&ggtt->error_mutex);
834
835 ggtt_release_guc_top(ggtt);
836 intel_vgt_deballoon(ggtt);
837
838 ggtt->vm.cleanup(&ggtt->vm);
839
840 mutex_unlock(&ggtt->vm.mutex);
841 i915_address_space_fini(&ggtt->vm);
842
843 #ifdef __NetBSD__
844 if (ggtt->mappable_end)
845 pmap_pv_untrack(ggtt->gmadr.start, ggtt->mappable_end);
846 #endif
847
848 arch_phys_wc_del(ggtt->mtrr);
849
850 if (ggtt->iomap.size)
851 io_mapping_fini(&ggtt->iomap);
852 }
853
854 /**
855 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
856 * @i915: i915 device
857 */
858 void i915_ggtt_driver_release(struct drm_i915_private *i915)
859 {
860 #ifndef __NetBSD__
861 struct pagevec *pvec;
862 #endif
863
864 fini_aliasing_ppgtt(&i915->ggtt);
865
866 ggtt_cleanup_hw(&i915->ggtt);
867
868 #ifndef __NetBSD__
869 pvec = &i915->mm.wc_stash.pvec;
870 if (pvec->nr) {
871 set_pages_array_wb(pvec->pages, pvec->nr);
872 __pagevec_release(pvec);
873 }
874 #endif
875 }
876
877 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
878 {
879 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
880 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
881 return snb_gmch_ctl << 20;
882 }
883
884 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
885 {
886 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
887 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
888 if (bdw_gmch_ctl)
889 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
890
891 #ifdef CONFIG_X86_32
892 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
893 if (bdw_gmch_ctl > 4)
894 bdw_gmch_ctl = 4;
895 #endif
896
897 return bdw_gmch_ctl << 20;
898 }
899
900 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
901 {
902 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
903 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
904
905 if (gmch_ctrl)
906 return 1 << (20 + gmch_ctrl);
907
908 return 0;
909 }
910
911 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
912 {
913 struct drm_i915_private *i915 = ggtt->vm.i915;
914 struct pci_dev *pdev = i915->drm.pdev;
915 phys_addr_t phys_addr;
916 int ret;
917
918 /* For Modern GENs the PTEs and register space are split in the BAR */
919 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
920
921 /*
922 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
923 * will be dropped. For WC mappings in general we have 64 byte burst
924 * writes when the WC buffer is flushed, so we can't use it, but have to
925 * resort to an uncached mapping. The WC issue is easily caught by the
926 * readback check when writing GTT PTE entries.
927 */
928 #ifdef __NetBSD__
929 {
930 int flags;
931 if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
932 flags = 0;
933 else
934 flags = BUS_SPACE_MAP_PREFETCHABLE;
935 ggtt->gsmt = i915->drm.pdev->pd_pa.pa_memt;
936 /* XXX errno NetBSD->Linux */
937 ret = -bus_space_map(ggtt->gsmt, phys_addr, size, flags, &ggtt->gsmh);
938 if (ret) {
939 DRM_ERROR("Failed to map the ggtt page table: %d\n", ret);
940 return ret;
941 }
942 ggtt->gsmsz = size;
943 }
944 #else
945 if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
946 ggtt->gsm = ioremap(phys_addr, size);
947 else
948 ggtt->gsm = ioremap_wc(phys_addr, size);
949 if (!ggtt->gsm) {
950 DRM_ERROR("Failed to map the ggtt page table\n");
951 return -ENOMEM;
952 }
953 #endif
954
955 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
956 if (ret) {
957 DRM_ERROR("Scratch setup failed\n");
958 /* iounmap will also get called at remove, but meh */
959 #ifdef __NetBSD__
960 KASSERT(ggtt->gsmsz == size);
961 bus_space_unmap(ggtt->gsmt, ggtt->gsmh, ggtt->gsmsz);
962 ggtt->gsmsz = 0;
963 #else
964 iounmap(ggtt->gsm);
965 #endif
966 return ret;
967 }
968
969 ggtt->vm.scratch[0].encode =
970 ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
971 I915_CACHE_NONE, 0);
972
973 return 0;
974 }
975
976 int ggtt_set_pages(struct i915_vma *vma)
977 {
978 int ret;
979
980 GEM_BUG_ON(vma->pages);
981
982 ret = i915_get_ggtt_vma_pages(vma);
983 if (ret)
984 return ret;
985
986 vma->page_sizes = vma->obj->mm.page_sizes;
987
988 return 0;
989 }
990
991 static void gen6_gmch_remove(struct i915_address_space *vm)
992 {
993 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
994
995 #ifdef __NetBSD__
996 if (ggtt->gsmsz) {
997 bus_space_unmap(ggtt->gsmt, ggtt->gsmh, ggtt->gsmsz);
998 ggtt->gsmsz = 0;
999 }
1000 #else
1001 iounmap(ggtt->gsm);
1002 #endif
1003 cleanup_scratch_page(vm);
1004 }
1005
1006 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1007 {
1008 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1009 pci_resource_len(pdev, bar));
1010 }
1011
1012 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1013 {
1014 struct drm_i915_private *i915 = ggtt->vm.i915;
1015 struct pci_dev *pdev = i915->drm.pdev;
1016 unsigned int size;
1017 u16 snb_gmch_ctl;
1018 int err;
1019
1020 /* TODO: We're not aware of mappable constraints on gen8 yet */
1021 if (!IS_DGFX(i915)) {
1022 ggtt->gmadr = pci_resource(pdev, 2);
1023 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1024 }
1025
1026 #ifdef __NetBSD__
1027 __USE(err);
1028 ggtt->max_paddr = DMA_BIT_MASK(39);
1029 #else
1030 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
1031 if (!err)
1032 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
1033 if (err)
1034 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
1035 #endif
1036
1037 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1038 if (IS_CHERRYVIEW(i915))
1039 size = chv_get_total_gtt_size(snb_gmch_ctl);
1040 else
1041 size = gen8_get_total_gtt_size(snb_gmch_ctl);
1042
1043 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1044 ggtt->vm.cleanup = gen6_gmch_remove;
1045 ggtt->vm.insert_page = gen8_ggtt_insert_page;
1046 ggtt->vm.clear_range = nop_clear_range;
1047 if (intel_scanout_needs_vtd_wa(i915))
1048 ggtt->vm.clear_range = gen8_ggtt_clear_range;
1049
1050 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1051
1052 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
1053 if (intel_ggtt_update_needs_vtd_wa(i915) ||
1054 IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
1055 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1056 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
1057 if (ggtt->vm.clear_range != nop_clear_range)
1058 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
1059 }
1060
1061 ggtt->invalidate = gen8_ggtt_invalidate;
1062
1063 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1064 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1065 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1066 ggtt->vm.vma_ops.clear_pages = clear_pages;
1067
1068 ggtt->vm.pte_encode = gen8_pte_encode;
1069
1070 setup_private_pat(ggtt->vm.gt->uncore);
1071
1072 return ggtt_probe_common(ggtt, size);
1073 }
1074
1075 static u64 snb_pte_encode(dma_addr_t addr,
1076 enum i915_cache_level level,
1077 u32 flags)
1078 {
1079 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1080
1081 switch (level) {
1082 case I915_CACHE_L3_LLC:
1083 case I915_CACHE_LLC:
1084 pte |= GEN6_PTE_CACHE_LLC;
1085 break;
1086 case I915_CACHE_NONE:
1087 pte |= GEN6_PTE_UNCACHED;
1088 break;
1089 default:
1090 MISSING_CASE(level);
1091 }
1092
1093 return pte;
1094 }
1095
1096 static u64 ivb_pte_encode(dma_addr_t addr,
1097 enum i915_cache_level level,
1098 u32 flags)
1099 {
1100 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1101
1102 switch (level) {
1103 case I915_CACHE_L3_LLC:
1104 pte |= GEN7_PTE_CACHE_L3_LLC;
1105 break;
1106 case I915_CACHE_LLC:
1107 pte |= GEN6_PTE_CACHE_LLC;
1108 break;
1109 case I915_CACHE_NONE:
1110 pte |= GEN6_PTE_UNCACHED;
1111 break;
1112 default:
1113 MISSING_CASE(level);
1114 }
1115
1116 return pte;
1117 }
1118
1119 static u64 byt_pte_encode(dma_addr_t addr,
1120 enum i915_cache_level level,
1121 u32 flags)
1122 {
1123 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1124
1125 if (!(flags & PTE_READ_ONLY))
1126 pte |= BYT_PTE_WRITEABLE;
1127
1128 if (level != I915_CACHE_NONE)
1129 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1130
1131 return pte;
1132 }
1133
1134 static u64 hsw_pte_encode(dma_addr_t addr,
1135 enum i915_cache_level level,
1136 u32 flags)
1137 {
1138 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1139
1140 if (level != I915_CACHE_NONE)
1141 pte |= HSW_WB_LLC_AGE3;
1142
1143 return pte;
1144 }
1145
1146 static u64 iris_pte_encode(dma_addr_t addr,
1147 enum i915_cache_level level,
1148 u32 flags)
1149 {
1150 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1151
1152 switch (level) {
1153 case I915_CACHE_NONE:
1154 break;
1155 case I915_CACHE_WT:
1156 pte |= HSW_WT_ELLC_LLC_AGE3;
1157 break;
1158 default:
1159 pte |= HSW_WB_ELLC_LLC_AGE3;
1160 break;
1161 }
1162
1163 return pte;
1164 }
1165
1166 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1167 {
1168 struct drm_i915_private *i915 = ggtt->vm.i915;
1169 struct pci_dev *pdev = i915->drm.pdev;
1170 unsigned int size;
1171 u16 snb_gmch_ctl;
1172 int err;
1173
1174 ggtt->gmadr = pci_resource(pdev, 2);
1175 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1176
1177 /*
1178 * 64/512MB is the current min/max we actually know of, but this is
1179 * just a coarse sanity check.
1180 */
1181 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
1182 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
1183 return -ENXIO;
1184 }
1185
1186 #ifdef __NetBSD__
1187 __USE(err);
1188 ggtt->max_paddr = DMA_BIT_MASK(40);
1189 #else
1190 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
1191 if (!err)
1192 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
1193 if (err)
1194 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
1195 #endif
1196 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1197
1198 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1199 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1200
1201 ggtt->vm.clear_range = nop_clear_range;
1202 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1203 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1204 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1205 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1206 ggtt->vm.cleanup = gen6_gmch_remove;
1207
1208 ggtt->invalidate = gen6_ggtt_invalidate;
1209
1210 if (HAS_EDRAM(i915))
1211 ggtt->vm.pte_encode = iris_pte_encode;
1212 else if (IS_HASWELL(i915))
1213 ggtt->vm.pte_encode = hsw_pte_encode;
1214 else if (IS_VALLEYVIEW(i915))
1215 ggtt->vm.pte_encode = byt_pte_encode;
1216 else if (INTEL_GEN(i915) >= 7)
1217 ggtt->vm.pte_encode = ivb_pte_encode;
1218 else
1219 ggtt->vm.pte_encode = snb_pte_encode;
1220
1221 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1222 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1223 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1224 ggtt->vm.vma_ops.clear_pages = clear_pages;
1225
1226 return ggtt_probe_common(ggtt, size);
1227 }
1228
1229 static void i915_gmch_remove(struct i915_address_space *vm)
1230 {
1231 intel_gmch_remove();
1232 }
1233
1234 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1235 {
1236 struct drm_i915_private *i915 = ggtt->vm.i915;
1237 phys_addr_t gmadr_base;
1238 int ret;
1239
1240 ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
1241 if (!ret) {
1242 DRM_ERROR("failed to set up gmch\n");
1243 return -EIO;
1244 }
1245
1246 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1247
1248 ggtt->gmadr =
1249 (struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1250
1251 #ifdef __NetBSD__
1252 /* Based on i915_drv.c, i915_driver_hw_probe. */
1253 if (IS_GEN(i915, 2))
1254 ggtt->max_paddr = DMA_BIT_MASK(30);
1255 else if (IS_I965G(i915) || IS_I965GM(i915))
1256 ggtt->max_paddr = DMA_BIT_MASK(32);
1257 else
1258 ggtt->max_paddr = DMA_BIT_MASK(40);
1259 #endif
1260
1261 ggtt->do_idle_maps = needs_idle_maps(i915);
1262 ggtt->vm.insert_page = i915_ggtt_insert_page;
1263 ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1264 ggtt->vm.clear_range = i915_ggtt_clear_range;
1265 ggtt->vm.cleanup = i915_gmch_remove;
1266
1267 ggtt->invalidate = gmch_ggtt_invalidate;
1268
1269 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1270 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1271 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1272 ggtt->vm.vma_ops.clear_pages = clear_pages;
1273
1274 if (unlikely(ggtt->do_idle_maps))
1275 dev_notice(i915->drm.dev,
1276 "Applying Ironlake quirks for intel_iommu\n");
1277
1278 return 0;
1279 }
1280
1281 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1282 {
1283 struct drm_i915_private *i915 = gt->i915;
1284 int ret;
1285
1286 ggtt->vm.gt = gt;
1287 ggtt->vm.i915 = i915;
1288 #ifdef __NetBSD__
1289 ggtt->vm.dmat = i915->drm.dmat;
1290 #else
1291 ggtt->vm.dma = &i915->drm.pdev->dev;
1292 #endif
1293
1294 if (INTEL_GEN(i915) <= 5)
1295 ret = i915_gmch_probe(ggtt);
1296 else if (INTEL_GEN(i915) < 8)
1297 ret = gen6_gmch_probe(ggtt);
1298 else
1299 ret = gen8_gmch_probe(ggtt);
1300 if (ret)
1301 return ret;
1302
1303 #ifdef __NetBSD__
1304 ggtt->pgfl = x86_select_freelist(ggtt->max_paddr);
1305 ret = drm_limit_dma_space(&i915->drm, 0, ggtt->max_paddr);
1306 if (ret) {
1307 DRM_ERROR("Unable to limit DMA paddr allocations: %d\n", ret);
1308 i915_ggtt_driver_release(i915);
1309 return ret;
1310 }
1311 #endif
1312
1313 if ((ggtt->vm.total - 1) >> 32) {
1314 DRM_ERROR("We never expected a Global GTT with more than 32bits"
1315 " of address space! Found %"PRId64"M!\n",
1316 ggtt->vm.total >> 20);
1317 ggtt->vm.total = 1ULL << 32;
1318 ggtt->mappable_end =
1319 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1320 }
1321
1322 if (ggtt->mappable_end > ggtt->vm.total) {
1323 DRM_ERROR("mappable aperture extends past end of GGTT,"
1324 " aperture=%pa, total=%"PRIx64"\n",
1325 &ggtt->mappable_end, ggtt->vm.total);
1326 ggtt->mappable_end = ggtt->vm.total;
1327 }
1328
1329 /* GMADR is the PCI mmio aperture into the global GTT. */
1330 DRM_DEBUG_DRIVER("GGTT size = %"PRIu64"M\n", ggtt->vm.total >> 20);
1331 DRM_DEBUG_DRIVER("GMADR size = %"PRIu64"M\n", (u64)ggtt->mappable_end >> 20);
1332 DRM_DEBUG_DRIVER("DSM size = %"PRIu64"M\n",
1333 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1334
1335 return 0;
1336 }
1337
1338 /**
1339 * i915_ggtt_probe_hw - Probe GGTT hardware location
1340 * @i915: i915 device
1341 */
1342 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1343 {
1344 int ret;
1345
1346 ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1347 if (ret)
1348 return ret;
1349
1350 if (intel_vtd_active())
1351 dev_info(i915->drm.dev, "VT-d active for gfx access\n");
1352
1353 return 0;
1354 }
1355
1356 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1357 {
1358 if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
1359 return -EIO;
1360
1361 return 0;
1362 }
1363
1364 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1365 {
1366 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1367
1368 ggtt->invalidate = guc_ggtt_invalidate;
1369
1370 ggtt->invalidate(ggtt);
1371 }
1372
1373 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1374 {
1375 /* XXX Temporary pardon for error unload */
1376 if (ggtt->invalidate == gen8_ggtt_invalidate)
1377 return;
1378
1379 /* We should only be called after i915_ggtt_enable_guc() */
1380 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1381
1382 ggtt->invalidate = gen8_ggtt_invalidate;
1383
1384 ggtt->invalidate(ggtt);
1385 }
1386
1387 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
1388 {
1389 struct i915_vma *vma;
1390 bool flush = false;
1391 int open;
1392
1393 intel_gt_check_and_clear_faults(ggtt->vm.gt);
1394
1395 mutex_lock(&ggtt->vm.mutex);
1396
1397 /* First fill our portion of the GTT with scratch pages */
1398 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1399
1400 /* Skip rewriting PTE on VMA unbind. */
1401 open = atomic_xchg(&ggtt->vm.open, 0);
1402
1403 /* clflush objects bound into the GGTT and rebind them. */
1404 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1405 struct drm_i915_gem_object *obj = vma->obj;
1406
1407 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
1408 continue;
1409
1410 clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
1411 WARN_ON(i915_vma_bind(vma,
1412 obj ? obj->cache_level : 0,
1413 PIN_GLOBAL, NULL));
1414 if (obj) { /* only used during resume => exclusive access */
1415 flush |= fetch_and_zero(&obj->write_domain);
1416 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1417 }
1418 }
1419
1420 atomic_set(&ggtt->vm.open, open);
1421 ggtt->invalidate(ggtt);
1422
1423 mutex_unlock(&ggtt->vm.mutex);
1424
1425 if (flush)
1426 wbinvd_on_all_cpus();
1427 }
1428
1429 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
1430 {
1431 struct i915_ggtt *ggtt = &i915->ggtt;
1432
1433 ggtt_restore_mappings(ggtt);
1434
1435 if (INTEL_GEN(i915) >= 8)
1436 setup_private_pat(ggtt->vm.gt->uncore);
1437 }
1438
1439 #ifndef __NetBSD__
1440
1441 static struct scatterlist *
1442 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1443 unsigned int width, unsigned int height,
1444 unsigned int stride,
1445 struct sg_table *st, struct scatterlist *sg)
1446 {
1447 unsigned int column, row;
1448 unsigned int src_idx;
1449
1450 for (column = 0; column < width; column++) {
1451 src_idx = stride * (height - 1) + column + offset;
1452 for (row = 0; row < height; row++) {
1453 st->nents++;
1454 /*
1455 * We don't need the pages, but need to initialize
1456 * the entries so the sg list can be happily traversed.
1457 * The only thing we need are DMA addresses.
1458 */
1459 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1460 sg_dma_address(sg) =
1461 i915_gem_object_get_dma_address(obj, src_idx);
1462 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1463 sg = sg_next(sg);
1464 src_idx -= stride;
1465 }
1466 }
1467
1468 return sg;
1469 }
1470
1471 static noinline struct sg_table *
1472 intel_rotate_pages(struct intel_rotation_info *rot_info,
1473 struct drm_i915_gem_object *obj)
1474 {
1475 unsigned int size = intel_rotation_info_size(rot_info);
1476 struct sg_table *st;
1477 struct scatterlist *sg;
1478 int ret = -ENOMEM;
1479 int i;
1480
1481 /* Allocate target SG list. */
1482 st = kmalloc(sizeof(*st), GFP_KERNEL);
1483 if (!st)
1484 goto err_st_alloc;
1485
1486 ret = sg_alloc_table(st, size, GFP_KERNEL);
1487 if (ret)
1488 goto err_sg_alloc;
1489
1490 st->nents = 0;
1491 sg = st->sgl;
1492
1493 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
1494 sg = rotate_pages(obj, rot_info->plane[i].offset,
1495 rot_info->plane[i].width, rot_info->plane[i].height,
1496 rot_info->plane[i].stride, st, sg);
1497 }
1498
1499 return st;
1500
1501 err_sg_alloc:
1502 kfree(st);
1503 err_st_alloc:
1504
1505 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1506 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
1507
1508 return ERR_PTR(ret);
1509 }
1510
1511 static struct scatterlist *
1512 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1513 unsigned int width, unsigned int height,
1514 unsigned int stride,
1515 struct sg_table *st, struct scatterlist *sg)
1516 {
1517 unsigned int row;
1518
1519 for (row = 0; row < height; row++) {
1520 unsigned int left = width * I915_GTT_PAGE_SIZE;
1521
1522 while (left) {
1523 dma_addr_t addr;
1524 unsigned int length;
1525
1526 /*
1527 * We don't need the pages, but need to initialize
1528 * the entries so the sg list can be happily traversed.
1529 * The only thing we need are DMA addresses.
1530 */
1531
1532 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1533
1534 length = min(left, length);
1535
1536 st->nents++;
1537
1538 sg_set_page(sg, NULL, length, 0);
1539 sg_dma_address(sg) = addr;
1540 sg_dma_len(sg) = length;
1541 sg = sg_next(sg);
1542
1543 offset += length / I915_GTT_PAGE_SIZE;
1544 left -= length;
1545 }
1546
1547 offset += stride - width;
1548 }
1549
1550 return sg;
1551 }
1552
1553 static noinline struct sg_table *
1554 intel_remap_pages(struct intel_remapped_info *rem_info,
1555 struct drm_i915_gem_object *obj)
1556 {
1557 unsigned int size = intel_remapped_info_size(rem_info);
1558 struct sg_table *st;
1559 struct scatterlist *sg;
1560 int ret = -ENOMEM;
1561 int i;
1562
1563 /* Allocate target SG list. */
1564 st = kmalloc(sizeof(*st), GFP_KERNEL);
1565 if (!st)
1566 goto err_st_alloc;
1567
1568 ret = sg_alloc_table(st, size, GFP_KERNEL);
1569 if (ret)
1570 goto err_sg_alloc;
1571
1572 st->nents = 0;
1573 sg = st->sgl;
1574
1575 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1576 sg = remap_pages(obj, rem_info->plane[i].offset,
1577 rem_info->plane[i].width, rem_info->plane[i].height,
1578 rem_info->plane[i].stride, st, sg);
1579 }
1580
1581 i915_sg_trim(st);
1582
1583 return st;
1584
1585 err_sg_alloc:
1586 kfree(st);
1587 err_st_alloc:
1588
1589 DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1590 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
1591
1592 return ERR_PTR(ret);
1593 }
1594
1595 #endif /* __NetBSD__ */
1596
1597 static noinline struct sg_table *
1598 intel_partial_pages(const struct i915_ggtt_view *view,
1599 struct drm_i915_gem_object *obj)
1600 {
1601 #ifdef __NetBSD__
1602 struct sg_table *st = NULL;
1603 int ret = -ENOMEM;
1604
1605 KASSERTMSG(view->partial.offset <= obj->base.size >> PAGE_SHIFT,
1606 "obj=%p size=0x%zx; view offset=0x%zx size=0x%zx",
1607 obj,
1608 (size_t)obj->base.size >> PAGE_SHIFT,
1609 (size_t)view->partial.offset,
1610 (size_t)view->partial.size);
1611 KASSERTMSG((view->partial.size <=
1612 (obj->base.size >> PAGE_SHIFT) - view->partial.offset),
1613 "obj=%p size=0x%zx; view offset=0x%zx size=0x%zx",
1614 obj,
1615 (size_t)obj->base.size >> PAGE_SHIFT,
1616 (size_t)view->partial.offset,
1617 (size_t)view->partial.size);
1618 KASSERTMSG(view->partial.size <= INT_MAX, "view size=0x%zx",
1619 (size_t)view->partial.size);
1620
1621 st = kmalloc(sizeof(*st), GFP_KERNEL);
1622 if (st == NULL)
1623 goto fail;
1624 ret = sg_alloc_table(st, view->partial.size, GFP_KERNEL);
1625 if (ret) {
1626 kfree(st);
1627 st = NULL;
1628 goto fail;
1629 }
1630
1631 /* XXX errno NetBSD->Linux */
1632 if (obj->mm.pages->sgl->sg_dmamap) { /* XXX KASSERT? */
1633 ret = -bus_dmamap_create(obj->base.dev->dmat,
1634 (bus_size_t)view->partial.size << PAGE_SHIFT,
1635 view->partial.size, PAGE_SIZE, 0, BUS_DMA_NOWAIT,
1636 &st->sgl->sg_dmamap);
1637 if (ret) {
1638 st->sgl->sg_dmamap = NULL;
1639 goto fail;
1640 }
1641 st->sgl->sg_dmat = obj->base.dev->dmat;
1642 }
1643
1644 /*
1645 * Copy over the pages. The view's offset and size are in
1646 * units of pages already.
1647 */
1648 KASSERT(st->sgl->sg_npgs == view->partial.size);
1649 memcpy(st->sgl->sg_pgs,
1650 obj->mm.pages->sgl->sg_pgs + view->partial.offset,
1651 sizeof(st->sgl->sg_pgs[0]) * view->partial.size);
1652
1653 /*
1654 * Copy over the DMA addresses. For simplicity, we don't do
1655 * anything to compress contiguous pages into larger segments.
1656 */
1657 if (obj->mm.pages->sgl->sg_dmamap) {
1658 bus_size_t offset = (bus_size_t)view->partial.offset
1659 << PAGE_SHIFT;
1660 unsigned i, j, k;
1661
1662 st->sgl->sg_dmamap->dm_nsegs = view->partial.size;
1663 for (i = j = 0; i < view->partial.size; j++) {
1664 KASSERT(j < obj->mm.pages->sgl->sg_dmamap->dm_nsegs);
1665 const bus_dma_segment_t *iseg =
1666 &obj->mm.pages->sgl->sg_dmamap->dm_segs[j];
1667
1668 KASSERT(iseg->ds_len % PAGE_SIZE == 0);
1669
1670 /* Skip segments prior to the start offset. */
1671 if (offset >= iseg->ds_len) {
1672 offset -= iseg->ds_len;
1673 continue;
1674 }
1675 for (k = 0;
1676 (i < view->partial.size &&
1677 k < iseg->ds_len >> PAGE_SHIFT);
1678 k++) {
1679 KASSERT(i < view->partial.size);
1680 bus_dma_segment_t *oseg =
1681 &st->sgl->sg_dmamap->dm_segs[i++];
1682 oseg->ds_addr = iseg->ds_addr + offset +
1683 k*PAGE_SIZE;
1684 oseg->ds_len = PAGE_SIZE;
1685 }
1686
1687 /*
1688 * After the first segment which we possibly
1689 * use only a suffix of, the remainder we will
1690 * take from the beginning.
1691 */
1692 offset = 0;
1693 }
1694 }
1695
1696 /* Success! */
1697 return st;
1698
1699 fail: if (st) {
1700 sg_free_table(st);
1701 kfree(st);
1702 }
1703 return ERR_PTR(ret);
1704 #else
1705 struct sg_table *st;
1706 struct scatterlist *sg, *iter;
1707 unsigned int count = view->partial.size;
1708 unsigned int offset;
1709 int ret;
1710
1711 st = kmalloc(sizeof(*st), GFP_KERNEL);
1712 if (!st) {
1713 ret = -ENOMEM;
1714 goto err_st_alloc;
1715 }
1716
1717 ret = sg_alloc_table(st, count, GFP_KERNEL);
1718 if (ret)
1719 goto err_sg_alloc;
1720
1721 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
1722 GEM_BUG_ON(!iter);
1723
1724 sg = st->sgl;
1725 st->nents = 0;
1726 do {
1727 unsigned int len;
1728
1729 len = min(iter->length - (offset << PAGE_SHIFT),
1730 count << PAGE_SHIFT);
1731 sg_set_page(sg, NULL, len, 0);
1732 sg_dma_address(sg) =
1733 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1734 sg_dma_len(sg) = len;
1735
1736 st->nents++;
1737 count -= len >> PAGE_SHIFT;
1738 if (count == 0) {
1739 sg_mark_end(sg);
1740 i915_sg_trim(st); /* Drop any unused tail entries. */
1741
1742 return st;
1743 }
1744
1745 sg = __sg_next(sg);
1746 iter = __sg_next(iter);
1747 offset = 0;
1748 } while (1);
1749
1750 err_sg_alloc:
1751 kfree(st);
1752 err_st_alloc:
1753 return ERR_PTR(ret);
1754 #endif /* __NetBSD__ */
1755 }
1756
1757 static int
1758 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1759 {
1760 int ret;
1761
1762 /*
1763 * The vma->pages are only valid within the lifespan of the borrowed
1764 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1765 * must be the vma->pages. A simple rule is that vma->pages must only
1766 * be accessed when the obj->mm.pages are pinned.
1767 */
1768 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1769
1770 switch (vma->ggtt_view.type) {
1771 default:
1772 GEM_BUG_ON(vma->ggtt_view.type);
1773 /* fall through */
1774 case I915_GGTT_VIEW_NORMAL:
1775 vma->pages = vma->obj->mm.pages;
1776 return 0;
1777
1778 case I915_GGTT_VIEW_ROTATED:
1779 #ifdef __NetBSD__
1780 vma->pages = ERR_PTR(-ENODEV);
1781 #else
1782 vma->pages =
1783 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1784 #endif
1785 break;
1786
1787 case I915_GGTT_VIEW_REMAPPED:
1788 #ifdef __NetBSD__
1789 vma->pages = ERR_PTR(-ENODEV);
1790 #else
1791 vma->pages =
1792 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1793 #endif
1794 break;
1795
1796 case I915_GGTT_VIEW_PARTIAL:
1797 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1798 break;
1799 }
1800
1801 ret = 0;
1802 if (IS_ERR(vma->pages)) {
1803 ret = PTR_ERR(vma->pages);
1804 vma->pages = NULL;
1805 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
1806 vma->ggtt_view.type, ret);
1807 }
1808 return ret;
1809 }
1810