intel_ggtt.c revision 1.2 1 /* $NetBSD: intel_ggtt.c,v 1.2 2021/12/18 23:45:30 riastradh Exp $ */
2
3 // SPDX-License-Identifier: MIT
4 /*
5 * Copyright 2020 Intel Corporation
6 */
7
8 #include <sys/cdefs.h>
9 __KERNEL_RCSID(0, "$NetBSD: intel_ggtt.c,v 1.2 2021/12/18 23:45:30 riastradh Exp $");
10
11 #include <linux/stop_machine.h>
12
13 #include <asm/set_memory.h>
14 #include <asm/smp.h>
15
16 #include "intel_gt.h"
17 #include "i915_drv.h"
18 #include "i915_scatterlist.h"
19 #include "i915_vgpu.h"
20
21 #include "intel_gtt.h"
22
23 static int
24 i915_get_ggtt_vma_pages(struct i915_vma *vma);
25
26 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
27 unsigned long color,
28 u64 *start,
29 u64 *end)
30 {
31 if (i915_node_color_differs(node, color))
32 *start += I915_GTT_PAGE_SIZE;
33
34 /*
35 * Also leave a space between the unallocated reserved node after the
36 * GTT and any objects within the GTT, i.e. we use the color adjustment
37 * to insert a guard page to prevent prefetches crossing over the
38 * GTT boundary.
39 */
40 node = list_next_entry(node, node_list);
41 if (node->color != color)
42 *end -= I915_GTT_PAGE_SIZE;
43 }
44
45 static int ggtt_init_hw(struct i915_ggtt *ggtt)
46 {
47 struct drm_i915_private *i915 = ggtt->vm.i915;
48
49 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
50
51 ggtt->vm.is_ggtt = true;
52
53 /* Only VLV supports read-only GGTT mappings */
54 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
55
56 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
57 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
58
59 if (ggtt->mappable_end) {
60 if (!io_mapping_init_wc(&ggtt->iomap,
61 ggtt->gmadr.start,
62 ggtt->mappable_end)) {
63 ggtt->vm.cleanup(&ggtt->vm);
64 return -EIO;
65 }
66
67 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
68 ggtt->mappable_end);
69 }
70
71 i915_ggtt_init_fences(ggtt);
72
73 return 0;
74 }
75
76 /**
77 * i915_ggtt_init_hw - Initialize GGTT hardware
78 * @i915: i915 device
79 */
80 int i915_ggtt_init_hw(struct drm_i915_private *i915)
81 {
82 int ret;
83
84 stash_init(&i915->mm.wc_stash);
85
86 /*
87 * Note that we use page colouring to enforce a guard page at the
88 * end of the address space. This is required as the CS may prefetch
89 * beyond the end of the batch buffer, across the page boundary,
90 * and beyond the end of the GTT if we do not provide a guard.
91 */
92 ret = ggtt_init_hw(&i915->ggtt);
93 if (ret)
94 return ret;
95
96 return 0;
97 }
98
99 /*
100 * Certain Gen5 chipsets require require idling the GPU before
101 * unmapping anything from the GTT when VT-d is enabled.
102 */
103 static bool needs_idle_maps(struct drm_i915_private *i915)
104 {
105 /*
106 * Query intel_iommu to see if we need the workaround. Presumably that
107 * was loaded first.
108 */
109 return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
110 }
111
112 static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
113 {
114 struct drm_i915_private *i915 = ggtt->vm.i915;
115
116 /*
117 * Don't bother messing with faults pre GEN6 as we have little
118 * documentation supporting that it's a good idea.
119 */
120 if (INTEL_GEN(i915) < 6)
121 return;
122
123 intel_gt_check_and_clear_faults(ggtt->vm.gt);
124
125 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
126
127 ggtt->invalidate(ggtt);
128 }
129
130 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
131 {
132 ggtt_suspend_mappings(&i915->ggtt);
133 }
134
135 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
136 {
137 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
138
139 spin_lock_irq(&uncore->lock);
140 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
141 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
142 spin_unlock_irq(&uncore->lock);
143 }
144
145 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
146 {
147 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
148
149 /*
150 * Note that as an uncached mmio write, this will flush the
151 * WCB of the writes into the GGTT before it triggers the invalidate.
152 */
153 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
154 }
155
156 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
157 {
158 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
159 struct drm_i915_private *i915 = ggtt->vm.i915;
160
161 gen8_ggtt_invalidate(ggtt);
162
163 if (INTEL_GEN(i915) >= 12)
164 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
165 GEN12_GUC_TLB_INV_CR_INVALIDATE);
166 else
167 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
168 }
169
170 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
171 {
172 intel_gtt_chipset_flush();
173 }
174
175 #ifdef __NetBSD__
176 static inline void
177 gen8_set_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i,
178 gen8_pte_t pte)
179 {
180 CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
181 CTASSERT(sizeof(gen8_pte_t) == 8);
182 #ifdef _LP64 /* XXX How to detect bus_space_write_8? */
183 bus_space_write_8(bst, bsh, 8*i, pte);
184 #else
185 bus_space_write_4(bst, bsh, 8*i, (uint32_t)pte);
186 bus_space_write_4(bst, bsh, 8*i + 4, (uint32_t)(pte >> 32));
187 #endif
188 }
189 static gen8_pte_t
190 gen8_get_pte(bus_space_tag_t bst, bus_space_handle_t bsh, unsigned i)
191 {
192 CTASSERT(_BYTE_ORDER == _LITTLE_ENDIAN); /* x86 */
193 CTASSERT(sizeof(gen8_pte_t) == 8);
194 #ifdef _LP64 /* XXX How to detect bus_space_read_8? */
195 return bus_space_read_8(bst, bsh, 8*i);
196 #else
197 /*
198 * XXX I'm not sure this case can actually happen in practice:
199 * 32-bit gen8 chipsets?
200 */
201 return bus_space_read_4(bst, bsh, 8*i) |
202 ((uint64_t)bus_space_read_4(bst, bsh, 8*i + 4) << 32);
203 #endif
204 }
205
206 #else
207 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
208 {
209 writeq(pte, addr);
210 }
211 #endif
212
213 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
214 dma_addr_t addr,
215 u64 offset,
216 enum i915_cache_level level,
217 u32 unused)
218 {
219 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
220 gen8_pte_t __iomem *pte =
221 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
222
223 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
224
225 ggtt->invalidate(ggtt);
226 }
227
228 #ifdef __NetBSD__
229 static void
230 gen8_ggtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
231 uint64_t start, enum i915_cache_level level, uint32_t flags)
232 {
233 struct drm_i915_private *dev_priv = vm->dev->dev_private;
234 unsigned first_entry = start >> PAGE_SHIFT;
235 const bus_space_tag_t bst = dev_priv->gtt.bst;
236 const bus_space_handle_t bsh = dev_priv->gtt.bsh;
237 unsigned i;
238
239 KASSERT(0 < dmamap->dm_nsegs);
240 for (i = 0; i < dmamap->dm_nsegs; i++) {
241 KASSERT(dmamap->dm_segs[i].ds_len == PAGE_SIZE);
242 gen8_set_pte(bst, bsh, first_entry + i,
243 gen8_pte_encode(dmamap->dm_segs[i].ds_addr, level, true, flags));
244 }
245 if (0 < i) {
246 /* Posting read. */
247 WARN_ON(gen8_get_pte(bst, bsh, (first_entry + i - 1))
248 != gen8_pte_encode(dmamap->dm_segs[i - 1].ds_addr, level,
249 true, flags));
250 }
251 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
252 POSTING_READ(GFX_FLSH_CNTL_GEN6);
253 }
254 #else
255 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
256 struct i915_vma *vma,
257 enum i915_cache_level level,
258 u32 flags)
259 {
260 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
261 struct sgt_iter sgt_iter;
262 gen8_pte_t __iomem *gtt_entries;
263 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
264 dma_addr_t addr;
265
266 /*
267 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
268 * not to allow the user to override access to a read only page.
269 */
270
271 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
272 gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
273 for_each_sgt_daddr(addr, sgt_iter, vma->pages)
274 gen8_set_pte(gtt_entries++, pte_encode | addr);
275
276 /*
277 * We want to flush the TLBs only after we're certain all the PTE
278 * updates have finished.
279 */
280 ggtt->invalidate(ggtt);
281 }
282 #endif
283
284 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
285 dma_addr_t addr,
286 u64 offset,
287 enum i915_cache_level level,
288 u32 flags)
289 {
290 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
291 gen6_pte_t __iomem *pte =
292 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
293
294 iowrite32(vm->pte_encode(addr, level, flags), pte);
295
296 ggtt->invalidate(ggtt);
297 }
298
299 /*
300 * Binds an object into the global gtt with the specified cache level.
301 * The object will be accessible to the GPU via commands whose operands
302 * reference offsets within the global GTT as well as accessible by the GPU
303 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
304 */
305
306 #ifdef __NetBSD__
307 static void
308 gen6_ggtt_insert_entries(struct i915_address_space *vm, bus_dmamap_t dmamap,
309 uint64_t start, enum i915_cache_level level, uint32_t flags)
310 {
311 struct drm_i915_private *dev_priv = vm->dev->dev_private;
312 unsigned first_entry = start >> PAGE_SHIFT;
313 const bus_space_tag_t bst = dev_priv->gtt.bst;
314 const bus_space_handle_t bsh = dev_priv->gtt.bsh;
315 unsigned i;
316
317 KASSERT(0 < dmamap->dm_nsegs);
318 for (i = 0; i < dmamap->dm_nsegs; i++) {
319 KASSERT(dmamap->dm_segs[i].ds_len == PAGE_SIZE);
320 CTASSERT(sizeof(gen6_pte_t) == 4);
321 bus_space_write_4(bst, bsh, 4*(first_entry + i),
322 vm->pte_encode(dmamap->dm_segs[i].ds_addr, level, true,
323 flags));
324 }
325 if (0 < i) {
326 /* Posting read. */
327 WARN_ON(bus_space_read_4(bst, bsh, 4*(first_entry + i - 1))
328 != vm->pte_encode(dmamap->dm_segs[i - 1].ds_addr, level,
329 true, flags));
330 }
331 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
332 POSTING_READ(GFX_FLSH_CNTL_GEN6);
333 }
334 #else
335 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
336 struct i915_vma *vma,
337 enum i915_cache_level level,
338 u32 flags)
339 {
340 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
341 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
342 unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
343 struct sgt_iter iter;
344 dma_addr_t addr;
345
346 for_each_sgt_daddr(addr, iter, vma->pages)
347 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
348
349 /*
350 * We want to flush the TLBs only after we're certain all the PTE
351 * updates have finished.
352 */
353 ggtt->invalidate(ggtt);
354 }
355 #endif
356
357 static void nop_clear_range(struct i915_address_space *vm,
358 u64 start, u64 length)
359 {
360 }
361
362 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
363 u64 start, u64 length)
364 {
365 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
366 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
367 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
368 const gen8_pte_t scratch_pte = vm->scratch[0].encode;
369 #ifdef __NetBSD__
370 const bus_space_tag_t bst = dev_priv->gtt.bst;
371 const bus_space_handle_t bsh = dev_priv->gtt.bsh;
372 #else
373 gen8_pte_t __iomem *gtt_base =
374 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
375 #endif
376 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
377 int i;
378
379 if (WARN(num_entries > max_entries,
380 "First entry = %d; Num entries = %d (max=%d)\n",
381 first_entry, num_entries, max_entries))
382 num_entries = max_entries;
383
384 #ifdef __NetBSD__
385 for (i = 0; i < num_entries; i++)
386 gen8_set_pte(bst, bsh, first_entry + i, scratch_pte);
387 (void)gen8_get_pte(bst, bsh, first_entry);
388 #else
389 for (i = 0; i < num_entries; i++)
390 gen8_set_pte(>t_base[i], scratch_pte);
391 #endif
392 }
393
394 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
395 {
396 /*
397 * Make sure the internal GAM fifo has been cleared of all GTT
398 * writes before exiting stop_machine(). This guarantees that
399 * any aperture accesses waiting to start in another process
400 * cannot back up behind the GTT writes causing a hang.
401 * The register can be any arbitrary GAM register.
402 */
403 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
404 }
405
406 struct insert_page {
407 struct i915_address_space *vm;
408 dma_addr_t addr;
409 u64 offset;
410 enum i915_cache_level level;
411 };
412
413 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
414 {
415 struct insert_page *arg = _arg;
416
417 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
418 bxt_vtd_ggtt_wa(arg->vm);
419
420 return 0;
421 }
422
423 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
424 dma_addr_t addr,
425 u64 offset,
426 enum i915_cache_level level,
427 u32 unused)
428 {
429 struct insert_page arg = { vm, addr, offset, level };
430
431 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
432 }
433
434 struct insert_entries {
435 struct i915_address_space *vm;
436 struct i915_vma *vma;
437 enum i915_cache_level level;
438 u32 flags;
439 };
440
441 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
442 {
443 struct insert_entries *arg = _arg;
444
445 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
446 bxt_vtd_ggtt_wa(arg->vm);
447
448 return 0;
449 }
450
451 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
452 struct i915_vma *vma,
453 enum i915_cache_level level,
454 u32 flags)
455 {
456 struct insert_entries arg = { vm, vma, level, flags };
457
458 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
459 }
460
461 struct clear_range {
462 struct i915_address_space *vm;
463 u64 start;
464 u64 length;
465 };
466
467 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
468 {
469 struct clear_range *arg = _arg;
470
471 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
472 bxt_vtd_ggtt_wa(arg->vm);
473
474 return 0;
475 }
476
477 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
478 u64 start,
479 u64 length)
480 {
481 struct clear_range arg = { vm, start, length };
482
483 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
484 }
485
486 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
487 u64 start, u64 length)
488 {
489 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
490 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
491 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
492 #ifdef __NetBSD__
493 const bus_space_tag_t bst = dev_priv->gtt.bst;
494 const bus_space_handle_t bsh = dev_priv->gtt.bsh;
495 gen6_pte_t scratch_pte;
496 #else
497 gen6_pte_t scratch_pte, __iomem *gtt_base =
498 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
499 #endif
500 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
501 int i;
502
503 if (WARN(num_entries > max_entries,
504 "First entry = %d; Num entries = %d (max=%d)\n",
505 first_entry, num_entries, max_entries))
506 num_entries = max_entries;
507
508 scratch_pte = vm->scratch[0].encode;
509 #ifdef __NetBSD__
510 CTASSERT(sizeof(gen6_pte_t) == 4);
511 for (i = 0; i < num_entries; i++)
512 bus_space_write_4(bst, bsh, 4*(first_entry + i), scratch_pte);
513 (void)bus_space_read_4(bst, bsh, 4*first_entry);
514 #else
515 for (i = 0; i < num_entries; i++)
516 iowrite32(scratch_pte, >t_base[i]);
517 #endif
518 }
519
520 static void i915_ggtt_insert_page(struct i915_address_space *vm,
521 dma_addr_t addr,
522 u64 offset,
523 enum i915_cache_level cache_level,
524 u32 unused)
525 {
526 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
527 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
528
529 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
530 }
531
532 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
533 struct i915_vma *vma,
534 enum i915_cache_level cache_level,
535 u32 unused)
536 {
537 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
538 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
539
540 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
541 flags);
542 }
543
544 static void i915_ggtt_clear_range(struct i915_address_space *vm,
545 u64 start, u64 length)
546 {
547 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
548 }
549
550 static int ggtt_bind_vma(struct i915_vma *vma,
551 enum i915_cache_level cache_level,
552 u32 flags)
553 {
554 struct drm_i915_gem_object *obj = vma->obj;
555 u32 pte_flags;
556
557 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
558 pte_flags = 0;
559 if (i915_gem_object_is_readonly(obj))
560 pte_flags |= PTE_READ_ONLY;
561
562 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
563
564 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
565
566 /*
567 * Without aliasing PPGTT there's no difference between
568 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
569 * upgrade to both bound if we bind either to avoid double-binding.
570 */
571 atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
572
573 return 0;
574 }
575
576 static void ggtt_unbind_vma(struct i915_vma *vma)
577 {
578 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
579 }
580
581 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
582 {
583 u64 size;
584 int ret;
585
586 if (!USES_GUC(ggtt->vm.i915))
587 return 0;
588
589 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
590 size = ggtt->vm.total - GUC_GGTT_TOP;
591
592 ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
593 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
594 PIN_NOEVICT);
595 if (ret)
596 DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");
597
598 return ret;
599 }
600
601 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
602 {
603 if (drm_mm_node_allocated(&ggtt->uc_fw))
604 drm_mm_remove_node(&ggtt->uc_fw);
605 }
606
607 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
608 {
609 ggtt_release_guc_top(ggtt);
610 if (drm_mm_node_allocated(&ggtt->error_capture))
611 drm_mm_remove_node(&ggtt->error_capture);
612 mutex_destroy(&ggtt->error_mutex);
613 }
614
615 static int init_ggtt(struct i915_ggtt *ggtt)
616 {
617 /*
618 * Let GEM Manage all of the aperture.
619 *
620 * However, leave one page at the end still bound to the scratch page.
621 * There are a number of places where the hardware apparently prefetches
622 * past the end of the object, and we've seen multiple hangs with the
623 * GPU head pointer stuck in a batchbuffer bound at the last page of the
624 * aperture. One page should be enough to keep any prefetching inside
625 * of the aperture.
626 */
627 unsigned long hole_start, hole_end;
628 struct drm_mm_node *entry;
629 int ret;
630
631 /*
632 * GuC requires all resources that we're sharing with it to be placed in
633 * non-WOPCM memory. If GuC is not present or not in use we still need a
634 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
635 * why.
636 */
637 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
638 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
639
640 ret = intel_vgt_balloon(ggtt);
641 if (ret)
642 return ret;
643
644 mutex_init(&ggtt->error_mutex);
645 if (ggtt->mappable_end) {
646 /* Reserve a mappable slot for our lockless error capture */
647 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm,
648 &ggtt->error_capture,
649 PAGE_SIZE, 0,
650 I915_COLOR_UNEVICTABLE,
651 0, ggtt->mappable_end,
652 DRM_MM_INSERT_LOW);
653 if (ret)
654 return ret;
655 }
656
657 /*
658 * The upper portion of the GuC address space has a sizeable hole
659 * (several MB) that is inaccessible by GuC. Reserve this range within
660 * GGTT as it can comfortably hold GuC/HuC firmware images.
661 */
662 ret = ggtt_reserve_guc_top(ggtt);
663 if (ret)
664 goto err;
665
666 /* Clear any non-preallocated blocks */
667 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
668 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
669 hole_start, hole_end);
670 ggtt->vm.clear_range(&ggtt->vm, hole_start,
671 hole_end - hole_start);
672 }
673
674 /* And finally clear the reserved guard page */
675 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
676
677 return 0;
678
679 err:
680 cleanup_init_ggtt(ggtt);
681 return ret;
682 }
683
684 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
685 enum i915_cache_level cache_level,
686 u32 flags)
687 {
688 u32 pte_flags;
689 int ret;
690
691 /* Currently applicable only to VLV */
692 pte_flags = 0;
693 if (i915_gem_object_is_readonly(vma->obj))
694 pte_flags |= PTE_READ_ONLY;
695
696 if (flags & I915_VMA_LOCAL_BIND) {
697 struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
698
699 if (flags & I915_VMA_ALLOC) {
700 ret = alias->vm.allocate_va_range(&alias->vm,
701 vma->node.start,
702 vma->size);
703 if (ret)
704 return ret;
705
706 set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
707 }
708
709 GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
710 __i915_vma_flags(vma)));
711 alias->vm.insert_entries(&alias->vm, vma,
712 cache_level, pte_flags);
713 }
714
715 if (flags & I915_VMA_GLOBAL_BIND)
716 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
717
718 return 0;
719 }
720
721 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
722 {
723 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
724 struct i915_address_space *vm = vma->vm;
725
726 vm->clear_range(vm, vma->node.start, vma->size);
727 }
728
729 if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
730 struct i915_address_space *vm =
731 &i915_vm_to_ggtt(vma->vm)->alias->vm;
732
733 vm->clear_range(vm, vma->node.start, vma->size);
734 }
735 }
736
737 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
738 {
739 struct i915_ppgtt *ppgtt;
740 int err;
741
742 ppgtt = i915_ppgtt_create(ggtt->vm.gt);
743 if (IS_ERR(ppgtt))
744 return PTR_ERR(ppgtt);
745
746 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
747 err = -ENODEV;
748 goto err_ppgtt;
749 }
750
751 /*
752 * Note we only pre-allocate as far as the end of the global
753 * GTT. On 48b / 4-level page-tables, the difference is very,
754 * very significant! We have to preallocate as GVT/vgpu does
755 * not like the page directory disappearing.
756 */
757 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
758 if (err)
759 goto err_ppgtt;
760
761 ggtt->alias = ppgtt;
762 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
763
764 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
765 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
766
767 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
768 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
769
770 return 0;
771
772 err_ppgtt:
773 i915_vm_put(&ppgtt->vm);
774 return err;
775 }
776
777 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
778 {
779 struct i915_ppgtt *ppgtt;
780
781 ppgtt = fetch_and_zero(&ggtt->alias);
782 if (!ppgtt)
783 return;
784
785 i915_vm_put(&ppgtt->vm);
786
787 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
788 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
789 }
790
791 int i915_init_ggtt(struct drm_i915_private *i915)
792 {
793 int ret;
794
795 ret = init_ggtt(&i915->ggtt);
796 if (ret)
797 return ret;
798
799 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
800 ret = init_aliasing_ppgtt(&i915->ggtt);
801 if (ret)
802 cleanup_init_ggtt(&i915->ggtt);
803 }
804
805 return 0;
806 }
807
808 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
809 {
810 struct i915_vma *vma, *vn;
811
812 atomic_set(&ggtt->vm.open, 0);
813
814 rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
815 flush_workqueue(ggtt->vm.i915->wq);
816
817 mutex_lock(&ggtt->vm.mutex);
818
819 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
820 WARN_ON(__i915_vma_unbind(vma));
821
822 if (drm_mm_node_allocated(&ggtt->error_capture))
823 drm_mm_remove_node(&ggtt->error_capture);
824 mutex_destroy(&ggtt->error_mutex);
825
826 ggtt_release_guc_top(ggtt);
827 intel_vgt_deballoon(ggtt);
828
829 ggtt->vm.cleanup(&ggtt->vm);
830
831 mutex_unlock(&ggtt->vm.mutex);
832 i915_address_space_fini(&ggtt->vm);
833
834 arch_phys_wc_del(ggtt->mtrr);
835
836 if (ggtt->iomap.size)
837 io_mapping_fini(&ggtt->iomap);
838 }
839
840 /**
841 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
842 * @i915: i915 device
843 */
844 void i915_ggtt_driver_release(struct drm_i915_private *i915)
845 {
846 struct pagevec *pvec;
847
848 fini_aliasing_ppgtt(&i915->ggtt);
849
850 ggtt_cleanup_hw(&i915->ggtt);
851
852 pvec = &i915->mm.wc_stash.pvec;
853 if (pvec->nr) {
854 set_pages_array_wb(pvec->pages, pvec->nr);
855 __pagevec_release(pvec);
856 }
857 }
858
859 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
860 {
861 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
862 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
863 return snb_gmch_ctl << 20;
864 }
865
866 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
867 {
868 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
869 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
870 if (bdw_gmch_ctl)
871 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
872
873 #ifdef CONFIG_X86_32
874 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
875 if (bdw_gmch_ctl > 4)
876 bdw_gmch_ctl = 4;
877 #endif
878
879 return bdw_gmch_ctl << 20;
880 }
881
882 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
883 {
884 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
885 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
886
887 if (gmch_ctrl)
888 return 1 << (20 + gmch_ctrl);
889
890 return 0;
891 }
892
893 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
894 {
895 struct drm_i915_private *i915 = ggtt->vm.i915;
896 struct pci_dev *pdev = i915->drm.pdev;
897 phys_addr_t phys_addr;
898 int ret;
899
900 /* For Modern GENs the PTEs and register space are split in the BAR */
901 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
902
903 /*
904 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
905 * will be dropped. For WC mappings in general we have 64 byte burst
906 * writes when the WC buffer is flushed, so we can't use it, but have to
907 * resort to an uncached mapping. The WC issue is easily caught by the
908 * readback check when writing GTT PTE entries.
909 */
910 if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
911 ggtt->gsm = ioremap(phys_addr, size);
912 else
913 ggtt->gsm = ioremap_wc(phys_addr, size);
914 if (!ggtt->gsm) {
915 DRM_ERROR("Failed to map the ggtt page table\n");
916 return -ENOMEM;
917 }
918
919 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
920 if (ret) {
921 DRM_ERROR("Scratch setup failed\n");
922 /* iounmap will also get called at remove, but meh */
923 iounmap(ggtt->gsm);
924 return ret;
925 }
926
927 ggtt->vm.scratch[0].encode =
928 ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
929 I915_CACHE_NONE, 0);
930
931 return 0;
932 }
933
934 int ggtt_set_pages(struct i915_vma *vma)
935 {
936 int ret;
937
938 GEM_BUG_ON(vma->pages);
939
940 ret = i915_get_ggtt_vma_pages(vma);
941 if (ret)
942 return ret;
943
944 vma->page_sizes = vma->obj->mm.page_sizes;
945
946 return 0;
947 }
948
949 static void gen6_gmch_remove(struct i915_address_space *vm)
950 {
951 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
952
953 iounmap(ggtt->gsm);
954 cleanup_scratch_page(vm);
955 }
956
957 static struct resource pci_resource(struct pci_dev *pdev, int bar)
958 {
959 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
960 pci_resource_len(pdev, bar));
961 }
962
963 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
964 {
965 struct drm_i915_private *i915 = ggtt->vm.i915;
966 struct pci_dev *pdev = i915->drm.pdev;
967 unsigned int size;
968 u16 snb_gmch_ctl;
969 int err;
970
971 /* TODO: We're not aware of mappable constraints on gen8 yet */
972 if (!IS_DGFX(i915)) {
973 ggtt->gmadr = pci_resource(pdev, 2);
974 ggtt->mappable_end = resource_size(&ggtt->gmadr);
975 }
976
977 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
978 if (!err)
979 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
980 if (err)
981 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
982
983 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
984 if (IS_CHERRYVIEW(i915))
985 size = chv_get_total_gtt_size(snb_gmch_ctl);
986 else
987 size = gen8_get_total_gtt_size(snb_gmch_ctl);
988
989 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
990 ggtt->vm.cleanup = gen6_gmch_remove;
991 ggtt->vm.insert_page = gen8_ggtt_insert_page;
992 ggtt->vm.clear_range = nop_clear_range;
993 if (intel_scanout_needs_vtd_wa(i915))
994 ggtt->vm.clear_range = gen8_ggtt_clear_range;
995
996 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
997
998 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
999 if (intel_ggtt_update_needs_vtd_wa(i915) ||
1000 IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
1001 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1002 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
1003 if (ggtt->vm.clear_range != nop_clear_range)
1004 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
1005 }
1006
1007 ggtt->invalidate = gen8_ggtt_invalidate;
1008
1009 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1010 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1011 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1012 ggtt->vm.vma_ops.clear_pages = clear_pages;
1013
1014 ggtt->vm.pte_encode = gen8_pte_encode;
1015
1016 setup_private_pat(ggtt->vm.gt->uncore);
1017
1018 return ggtt_probe_common(ggtt, size);
1019 }
1020
1021 static u64 snb_pte_encode(dma_addr_t addr,
1022 enum i915_cache_level level,
1023 u32 flags)
1024 {
1025 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1026
1027 switch (level) {
1028 case I915_CACHE_L3_LLC:
1029 case I915_CACHE_LLC:
1030 pte |= GEN6_PTE_CACHE_LLC;
1031 break;
1032 case I915_CACHE_NONE:
1033 pte |= GEN6_PTE_UNCACHED;
1034 break;
1035 default:
1036 MISSING_CASE(level);
1037 }
1038
1039 return pte;
1040 }
1041
1042 static u64 ivb_pte_encode(dma_addr_t addr,
1043 enum i915_cache_level level,
1044 u32 flags)
1045 {
1046 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1047
1048 switch (level) {
1049 case I915_CACHE_L3_LLC:
1050 pte |= GEN7_PTE_CACHE_L3_LLC;
1051 break;
1052 case I915_CACHE_LLC:
1053 pte |= GEN6_PTE_CACHE_LLC;
1054 break;
1055 case I915_CACHE_NONE:
1056 pte |= GEN6_PTE_UNCACHED;
1057 break;
1058 default:
1059 MISSING_CASE(level);
1060 }
1061
1062 return pte;
1063 }
1064
1065 static u64 byt_pte_encode(dma_addr_t addr,
1066 enum i915_cache_level level,
1067 u32 flags)
1068 {
1069 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1070
1071 if (!(flags & PTE_READ_ONLY))
1072 pte |= BYT_PTE_WRITEABLE;
1073
1074 if (level != I915_CACHE_NONE)
1075 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1076
1077 return pte;
1078 }
1079
1080 static u64 hsw_pte_encode(dma_addr_t addr,
1081 enum i915_cache_level level,
1082 u32 flags)
1083 {
1084 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1085
1086 if (level != I915_CACHE_NONE)
1087 pte |= HSW_WB_LLC_AGE3;
1088
1089 return pte;
1090 }
1091
1092 static u64 iris_pte_encode(dma_addr_t addr,
1093 enum i915_cache_level level,
1094 u32 flags)
1095 {
1096 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1097
1098 switch (level) {
1099 case I915_CACHE_NONE:
1100 break;
1101 case I915_CACHE_WT:
1102 pte |= HSW_WT_ELLC_LLC_AGE3;
1103 break;
1104 default:
1105 pte |= HSW_WB_ELLC_LLC_AGE3;
1106 break;
1107 }
1108
1109 return pte;
1110 }
1111
1112 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1113 {
1114 struct drm_i915_private *i915 = ggtt->vm.i915;
1115 struct pci_dev *pdev = i915->drm.pdev;
1116 unsigned int size;
1117 u16 snb_gmch_ctl;
1118 int err;
1119
1120 ggtt->gmadr = pci_resource(pdev, 2);
1121 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1122
1123 /*
1124 * 64/512MB is the current min/max we actually know of, but this is
1125 * just a coarse sanity check.
1126 */
1127 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
1128 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
1129 return -ENXIO;
1130 }
1131
1132 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
1133 if (!err)
1134 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
1135 if (err)
1136 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
1137 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1138
1139 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1140 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1141
1142 ggtt->vm.clear_range = nop_clear_range;
1143 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1144 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1145 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1146 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1147 ggtt->vm.cleanup = gen6_gmch_remove;
1148
1149 ggtt->invalidate = gen6_ggtt_invalidate;
1150
1151 if (HAS_EDRAM(i915))
1152 ggtt->vm.pte_encode = iris_pte_encode;
1153 else if (IS_HASWELL(i915))
1154 ggtt->vm.pte_encode = hsw_pte_encode;
1155 else if (IS_VALLEYVIEW(i915))
1156 ggtt->vm.pte_encode = byt_pte_encode;
1157 else if (INTEL_GEN(i915) >= 7)
1158 ggtt->vm.pte_encode = ivb_pte_encode;
1159 else
1160 ggtt->vm.pte_encode = snb_pte_encode;
1161
1162 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1163 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1164 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1165 ggtt->vm.vma_ops.clear_pages = clear_pages;
1166
1167 return ggtt_probe_common(ggtt, size);
1168 }
1169
1170 static void i915_gmch_remove(struct i915_address_space *vm)
1171 {
1172 intel_gmch_remove();
1173 }
1174
1175 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1176 {
1177 struct drm_i915_private *i915 = ggtt->vm.i915;
1178 phys_addr_t gmadr_base;
1179 int ret;
1180
1181 ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
1182 if (!ret) {
1183 DRM_ERROR("failed to set up gmch\n");
1184 return -EIO;
1185 }
1186
1187 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1188
1189 ggtt->gmadr =
1190 (struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1191
1192 ggtt->do_idle_maps = needs_idle_maps(i915);
1193 ggtt->vm.insert_page = i915_ggtt_insert_page;
1194 ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1195 ggtt->vm.clear_range = i915_ggtt_clear_range;
1196 ggtt->vm.cleanup = i915_gmch_remove;
1197
1198 ggtt->invalidate = gmch_ggtt_invalidate;
1199
1200 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
1201 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
1202 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
1203 ggtt->vm.vma_ops.clear_pages = clear_pages;
1204
1205 if (unlikely(ggtt->do_idle_maps))
1206 dev_notice(i915->drm.dev,
1207 "Applying Ironlake quirks for intel_iommu\n");
1208
1209 return 0;
1210 }
1211
1212 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1213 {
1214 struct drm_i915_private *i915 = gt->i915;
1215 int ret;
1216
1217 ggtt->vm.gt = gt;
1218 ggtt->vm.i915 = i915;
1219 ggtt->vm.dma = &i915->drm.pdev->dev;
1220
1221 if (INTEL_GEN(i915) <= 5)
1222 ret = i915_gmch_probe(ggtt);
1223 else if (INTEL_GEN(i915) < 8)
1224 ret = gen6_gmch_probe(ggtt);
1225 else
1226 ret = gen8_gmch_probe(ggtt);
1227 if (ret)
1228 return ret;
1229
1230 if ((ggtt->vm.total - 1) >> 32) {
1231 DRM_ERROR("We never expected a Global GTT with more than 32bits"
1232 " of address space! Found %lldM!\n",
1233 ggtt->vm.total >> 20);
1234 ggtt->vm.total = 1ULL << 32;
1235 ggtt->mappable_end =
1236 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1237 }
1238
1239 if (ggtt->mappable_end > ggtt->vm.total) {
1240 DRM_ERROR("mappable aperture extends past end of GGTT,"
1241 " aperture=%pa, total=%llx\n",
1242 &ggtt->mappable_end, ggtt->vm.total);
1243 ggtt->mappable_end = ggtt->vm.total;
1244 }
1245
1246 /* GMADR is the PCI mmio aperture into the global GTT. */
1247 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
1248 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
1249 DRM_DEBUG_DRIVER("DSM size = %lluM\n",
1250 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1251
1252 return 0;
1253 }
1254
1255 /**
1256 * i915_ggtt_probe_hw - Probe GGTT hardware location
1257 * @i915: i915 device
1258 */
1259 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1260 {
1261 int ret;
1262
1263 ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1264 if (ret)
1265 return ret;
1266
1267 if (intel_vtd_active())
1268 dev_info(i915->drm.dev, "VT-d active for gfx access\n");
1269
1270 return 0;
1271 }
1272
1273 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1274 {
1275 if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
1276 return -EIO;
1277
1278 return 0;
1279 }
1280
1281 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1282 {
1283 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1284
1285 ggtt->invalidate = guc_ggtt_invalidate;
1286
1287 ggtt->invalidate(ggtt);
1288 }
1289
1290 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1291 {
1292 /* XXX Temporary pardon for error unload */
1293 if (ggtt->invalidate == gen8_ggtt_invalidate)
1294 return;
1295
1296 /* We should only be called after i915_ggtt_enable_guc() */
1297 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1298
1299 ggtt->invalidate = gen8_ggtt_invalidate;
1300
1301 ggtt->invalidate(ggtt);
1302 }
1303
1304 static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
1305 {
1306 struct i915_vma *vma;
1307 bool flush = false;
1308 int open;
1309
1310 intel_gt_check_and_clear_faults(ggtt->vm.gt);
1311
1312 mutex_lock(&ggtt->vm.mutex);
1313
1314 /* First fill our portion of the GTT with scratch pages */
1315 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1316
1317 /* Skip rewriting PTE on VMA unbind. */
1318 open = atomic_xchg(&ggtt->vm.open, 0);
1319
1320 /* clflush objects bound into the GGTT and rebind them. */
1321 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1322 struct drm_i915_gem_object *obj = vma->obj;
1323
1324 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
1325 continue;
1326
1327 clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
1328 WARN_ON(i915_vma_bind(vma,
1329 obj ? obj->cache_level : 0,
1330 PIN_GLOBAL, NULL));
1331 if (obj) { /* only used during resume => exclusive access */
1332 flush |= fetch_and_zero(&obj->write_domain);
1333 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1334 }
1335 }
1336
1337 atomic_set(&ggtt->vm.open, open);
1338 ggtt->invalidate(ggtt);
1339
1340 mutex_unlock(&ggtt->vm.mutex);
1341
1342 if (flush)
1343 wbinvd_on_all_cpus();
1344 }
1345
1346 void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
1347 {
1348 struct i915_ggtt *ggtt = &i915->ggtt;
1349
1350 ggtt_restore_mappings(ggtt);
1351
1352 if (INTEL_GEN(i915) >= 8)
1353 setup_private_pat(ggtt->vm.gt->uncore);
1354 }
1355
1356 static struct scatterlist *
1357 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1358 unsigned int width, unsigned int height,
1359 unsigned int stride,
1360 struct sg_table *st, struct scatterlist *sg)
1361 {
1362 unsigned int column, row;
1363 unsigned int src_idx;
1364
1365 for (column = 0; column < width; column++) {
1366 src_idx = stride * (height - 1) + column + offset;
1367 for (row = 0; row < height; row++) {
1368 st->nents++;
1369 /*
1370 * We don't need the pages, but need to initialize
1371 * the entries so the sg list can be happily traversed.
1372 * The only thing we need are DMA addresses.
1373 */
1374 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1375 sg_dma_address(sg) =
1376 i915_gem_object_get_dma_address(obj, src_idx);
1377 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1378 sg = sg_next(sg);
1379 src_idx -= stride;
1380 }
1381 }
1382
1383 return sg;
1384 }
1385
1386 static noinline struct sg_table *
1387 intel_rotate_pages(struct intel_rotation_info *rot_info,
1388 struct drm_i915_gem_object *obj)
1389 {
1390 unsigned int size = intel_rotation_info_size(rot_info);
1391 struct sg_table *st;
1392 struct scatterlist *sg;
1393 int ret = -ENOMEM;
1394 int i;
1395
1396 /* Allocate target SG list. */
1397 st = kmalloc(sizeof(*st), GFP_KERNEL);
1398 if (!st)
1399 goto err_st_alloc;
1400
1401 ret = sg_alloc_table(st, size, GFP_KERNEL);
1402 if (ret)
1403 goto err_sg_alloc;
1404
1405 st->nents = 0;
1406 sg = st->sgl;
1407
1408 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
1409 sg = rotate_pages(obj, rot_info->plane[i].offset,
1410 rot_info->plane[i].width, rot_info->plane[i].height,
1411 rot_info->plane[i].stride, st, sg);
1412 }
1413
1414 return st;
1415
1416 err_sg_alloc:
1417 kfree(st);
1418 err_st_alloc:
1419
1420 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1421 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
1422
1423 return ERR_PTR(ret);
1424 }
1425
1426 static struct scatterlist *
1427 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1428 unsigned int width, unsigned int height,
1429 unsigned int stride,
1430 struct sg_table *st, struct scatterlist *sg)
1431 {
1432 unsigned int row;
1433
1434 for (row = 0; row < height; row++) {
1435 unsigned int left = width * I915_GTT_PAGE_SIZE;
1436
1437 while (left) {
1438 dma_addr_t addr;
1439 unsigned int length;
1440
1441 /*
1442 * We don't need the pages, but need to initialize
1443 * the entries so the sg list can be happily traversed.
1444 * The only thing we need are DMA addresses.
1445 */
1446
1447 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1448
1449 length = min(left, length);
1450
1451 st->nents++;
1452
1453 sg_set_page(sg, NULL, length, 0);
1454 sg_dma_address(sg) = addr;
1455 sg_dma_len(sg) = length;
1456 sg = sg_next(sg);
1457
1458 offset += length / I915_GTT_PAGE_SIZE;
1459 left -= length;
1460 }
1461
1462 offset += stride - width;
1463 }
1464
1465 return sg;
1466 }
1467
1468 static noinline struct sg_table *
1469 intel_remap_pages(struct intel_remapped_info *rem_info,
1470 struct drm_i915_gem_object *obj)
1471 {
1472 unsigned int size = intel_remapped_info_size(rem_info);
1473 struct sg_table *st;
1474 struct scatterlist *sg;
1475 int ret = -ENOMEM;
1476 int i;
1477
1478 /* Allocate target SG list. */
1479 st = kmalloc(sizeof(*st), GFP_KERNEL);
1480 if (!st)
1481 goto err_st_alloc;
1482
1483 ret = sg_alloc_table(st, size, GFP_KERNEL);
1484 if (ret)
1485 goto err_sg_alloc;
1486
1487 st->nents = 0;
1488 sg = st->sgl;
1489
1490 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1491 sg = remap_pages(obj, rem_info->plane[i].offset,
1492 rem_info->plane[i].width, rem_info->plane[i].height,
1493 rem_info->plane[i].stride, st, sg);
1494 }
1495
1496 i915_sg_trim(st);
1497
1498 return st;
1499
1500 err_sg_alloc:
1501 kfree(st);
1502 err_st_alloc:
1503
1504 DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1505 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
1506
1507 return ERR_PTR(ret);
1508 }
1509
1510 static noinline struct sg_table *
1511 intel_partial_pages(const struct i915_ggtt_view *view,
1512 struct drm_i915_gem_object *obj)
1513 {
1514 struct sg_table *st;
1515 struct scatterlist *sg, *iter;
1516 unsigned int count = view->partial.size;
1517 unsigned int offset;
1518 int ret = -ENOMEM;
1519
1520 st = kmalloc(sizeof(*st), GFP_KERNEL);
1521 if (!st)
1522 goto err_st_alloc;
1523
1524 ret = sg_alloc_table(st, count, GFP_KERNEL);
1525 if (ret)
1526 goto err_sg_alloc;
1527
1528 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
1529 GEM_BUG_ON(!iter);
1530
1531 sg = st->sgl;
1532 st->nents = 0;
1533 do {
1534 unsigned int len;
1535
1536 len = min(iter->length - (offset << PAGE_SHIFT),
1537 count << PAGE_SHIFT);
1538 sg_set_page(sg, NULL, len, 0);
1539 sg_dma_address(sg) =
1540 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1541 sg_dma_len(sg) = len;
1542
1543 st->nents++;
1544 count -= len >> PAGE_SHIFT;
1545 if (count == 0) {
1546 sg_mark_end(sg);
1547 i915_sg_trim(st); /* Drop any unused tail entries. */
1548
1549 return st;
1550 }
1551
1552 sg = __sg_next(sg);
1553 iter = __sg_next(iter);
1554 offset = 0;
1555 } while (1);
1556
1557 err_sg_alloc:
1558 kfree(st);
1559 err_st_alloc:
1560 return ERR_PTR(ret);
1561 }
1562
1563 static int
1564 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1565 {
1566 int ret;
1567
1568 /*
1569 * The vma->pages are only valid within the lifespan of the borrowed
1570 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1571 * must be the vma->pages. A simple rule is that vma->pages must only
1572 * be accessed when the obj->mm.pages are pinned.
1573 */
1574 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1575
1576 switch (vma->ggtt_view.type) {
1577 default:
1578 GEM_BUG_ON(vma->ggtt_view.type);
1579 /* fall through */
1580 case I915_GGTT_VIEW_NORMAL:
1581 vma->pages = vma->obj->mm.pages;
1582 return 0;
1583
1584 case I915_GGTT_VIEW_ROTATED:
1585 vma->pages =
1586 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1587 break;
1588
1589 case I915_GGTT_VIEW_REMAPPED:
1590 vma->pages =
1591 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1592 break;
1593
1594 case I915_GGTT_VIEW_PARTIAL:
1595 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1596 break;
1597 }
1598
1599 ret = 0;
1600 if (IS_ERR(vma->pages)) {
1601 ret = PTR_ERR(vma->pages);
1602 vma->pages = NULL;
1603 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
1604 vma->ggtt_view.type, ret);
1605 }
1606 return ret;
1607 }
1608