Home | History | Annotate | Line # | Download | only in gt
intel_gtt.c revision 1.1
      1 /*	$NetBSD: intel_gtt.c,v 1.1 2021/12/18 20:15:32 riastradh Exp $	*/
      2 
      3 // SPDX-License-Identifier: MIT
      4 /*
      5  * Copyright  2020 Intel Corporation
      6  */
      7 
      8 #include <sys/cdefs.h>
      9 __KERNEL_RCSID(0, "$NetBSD: intel_gtt.c,v 1.1 2021/12/18 20:15:32 riastradh Exp $");
     10 
     11 #include <linux/slab.h> /* fault-inject.h is not standalone! */
     12 
     13 #include <linux/fault-inject.h>
     14 
     15 #include "i915_trace.h"
     16 #include "intel_gt.h"
     17 #include "intel_gtt.h"
     18 
     19 void stash_init(struct pagestash *stash)
     20 {
     21 	pagevec_init(&stash->pvec);
     22 	spin_lock_init(&stash->lock);
     23 }
     24 
     25 static struct page *stash_pop_page(struct pagestash *stash)
     26 {
     27 	struct page *page = NULL;
     28 
     29 	spin_lock(&stash->lock);
     30 	if (likely(stash->pvec.nr))
     31 		page = stash->pvec.pages[--stash->pvec.nr];
     32 	spin_unlock(&stash->lock);
     33 
     34 	return page;
     35 }
     36 
     37 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
     38 {
     39 	unsigned int nr;
     40 
     41 	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
     42 
     43 	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
     44 	memcpy(stash->pvec.pages + stash->pvec.nr,
     45 	       pvec->pages + pvec->nr - nr,
     46 	       sizeof(pvec->pages[0]) * nr);
     47 	stash->pvec.nr += nr;
     48 
     49 	spin_unlock(&stash->lock);
     50 
     51 	pvec->nr -= nr;
     52 }
     53 
     54 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
     55 {
     56 	struct pagevec stack;
     57 	struct page *page;
     58 
     59 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
     60 		i915_gem_shrink_all(vm->i915);
     61 
     62 	page = stash_pop_page(&vm->free_pages);
     63 	if (page)
     64 		return page;
     65 
     66 	if (!vm->pt_kmap_wc)
     67 		return alloc_page(gfp);
     68 
     69 	/* Look in our global stash of WC pages... */
     70 	page = stash_pop_page(&vm->i915->mm.wc_stash);
     71 	if (page)
     72 		return page;
     73 
     74 	/*
     75 	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
     76 	 *
     77 	 * We have to be careful as page allocation may trigger the shrinker
     78 	 * (via direct reclaim) which will fill up the WC stash underneath us.
     79 	 * So we add our WB pages into a temporary pvec on the stack and merge
     80 	 * them into the WC stash after all the allocations are complete.
     81 	 */
     82 	pagevec_init(&stack);
     83 	do {
     84 		struct page *page;
     85 
     86 		page = alloc_page(gfp);
     87 		if (unlikely(!page))
     88 			break;
     89 
     90 		stack.pages[stack.nr++] = page;
     91 	} while (pagevec_space(&stack));
     92 
     93 	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
     94 		page = stack.pages[--stack.nr];
     95 
     96 		/* Merge spare WC pages to the global stash */
     97 		if (stack.nr)
     98 			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
     99 
    100 		/* Push any surplus WC pages onto the local VM stash */
    101 		if (stack.nr)
    102 			stash_push_pagevec(&vm->free_pages, &stack);
    103 	}
    104 
    105 	/* Return unwanted leftovers */
    106 	if (unlikely(stack.nr)) {
    107 		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
    108 		__pagevec_release(&stack);
    109 	}
    110 
    111 	return page;
    112 }
    113 
    114 static void vm_free_pages_release(struct i915_address_space *vm,
    115 				  bool immediate)
    116 {
    117 	struct pagevec *pvec = &vm->free_pages.pvec;
    118 	struct pagevec stack;
    119 
    120 	lockdep_assert_held(&vm->free_pages.lock);
    121 	GEM_BUG_ON(!pagevec_count(pvec));
    122 
    123 	if (vm->pt_kmap_wc) {
    124 		/*
    125 		 * When we use WC, first fill up the global stash and then
    126 		 * only if full immediately free the overflow.
    127 		 */
    128 		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
    129 
    130 		/*
    131 		 * As we have made some room in the VM's free_pages,
    132 		 * we can wait for it to fill again. Unless we are
    133 		 * inside i915_address_space_fini() and must
    134 		 * immediately release the pages!
    135 		 */
    136 		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
    137 			return;
    138 
    139 		/*
    140 		 * We have to drop the lock to allow ourselves to sleep,
    141 		 * so take a copy of the pvec and clear the stash for
    142 		 * others to use it as we sleep.
    143 		 */
    144 		stack = *pvec;
    145 		pagevec_reinit(pvec);
    146 		spin_unlock(&vm->free_pages.lock);
    147 
    148 		pvec = &stack;
    149 		set_pages_array_wb(pvec->pages, pvec->nr);
    150 
    151 		spin_lock(&vm->free_pages.lock);
    152 	}
    153 
    154 	__pagevec_release(pvec);
    155 }
    156 
    157 static void vm_free_page(struct i915_address_space *vm, struct page *page)
    158 {
    159 	/*
    160 	 * On !llc, we need to change the pages back to WB. We only do so
    161 	 * in bulk, so we rarely need to change the page attributes here,
    162 	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
    163 	 * To make detection of the possible sleep more likely, use an
    164 	 * unconditional might_sleep() for everybody.
    165 	 */
    166 	might_sleep();
    167 	spin_lock(&vm->free_pages.lock);
    168 	while (!pagevec_space(&vm->free_pages.pvec))
    169 		vm_free_pages_release(vm, false);
    170 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
    171 	pagevec_add(&vm->free_pages.pvec, page);
    172 	spin_unlock(&vm->free_pages.lock);
    173 }
    174 
    175 void __i915_vm_close(struct i915_address_space *vm)
    176 {
    177 	struct i915_vma *vma, *vn;
    178 
    179 	mutex_lock(&vm->mutex);
    180 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
    181 		struct drm_i915_gem_object *obj = vma->obj;
    182 
    183 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
    184 		if (!kref_get_unless_zero(&obj->base.refcount))
    185 			continue;
    186 
    187 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
    188 		WARN_ON(__i915_vma_unbind(vma));
    189 		__i915_vma_put(vma);
    190 
    191 		i915_gem_object_put(obj);
    192 	}
    193 	GEM_BUG_ON(!list_empty(&vm->bound_list));
    194 	mutex_unlock(&vm->mutex);
    195 }
    196 
    197 void i915_address_space_fini(struct i915_address_space *vm)
    198 {
    199 	spin_lock(&vm->free_pages.lock);
    200 	if (pagevec_count(&vm->free_pages.pvec))
    201 		vm_free_pages_release(vm, true);
    202 	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
    203 	spin_unlock(&vm->free_pages.lock);
    204 
    205 	drm_mm_takedown(&vm->mm);
    206 
    207 	mutex_destroy(&vm->mutex);
    208 }
    209 
    210 static void __i915_vm_release(struct work_struct *work)
    211 {
    212 	struct i915_address_space *vm =
    213 		container_of(work, struct i915_address_space, rcu.work);
    214 
    215 	vm->cleanup(vm);
    216 	i915_address_space_fini(vm);
    217 
    218 	kfree(vm);
    219 }
    220 
    221 void i915_vm_release(struct kref *kref)
    222 {
    223 	struct i915_address_space *vm =
    224 		container_of(kref, struct i915_address_space, ref);
    225 
    226 	GEM_BUG_ON(i915_is_ggtt(vm));
    227 	trace_i915_ppgtt_release(vm);
    228 
    229 	queue_rcu_work(vm->i915->wq, &vm->rcu);
    230 }
    231 
    232 void i915_address_space_init(struct i915_address_space *vm, int subclass)
    233 {
    234 	kref_init(&vm->ref);
    235 	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
    236 	atomic_set(&vm->open, 1);
    237 
    238 	/*
    239 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
    240 	 * Do a dummy acquire now under fs_reclaim so that any allocation
    241 	 * attempt holding the lock is immediately reported by lockdep.
    242 	 */
    243 	mutex_init(&vm->mutex);
    244 	lockdep_set_subclass(&vm->mutex, subclass);
    245 	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
    246 
    247 	GEM_BUG_ON(!vm->total);
    248 	drm_mm_init(&vm->mm, 0, vm->total);
    249 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
    250 
    251 	stash_init(&vm->free_pages);
    252 
    253 	INIT_LIST_HEAD(&vm->bound_list);
    254 }
    255 
    256 void clear_pages(struct i915_vma *vma)
    257 {
    258 	GEM_BUG_ON(!vma->pages);
    259 
    260 	if (vma->pages != vma->obj->mm.pages) {
    261 		sg_free_table(vma->pages);
    262 		kfree(vma->pages);
    263 	}
    264 	vma->pages = NULL;
    265 
    266 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
    267 }
    268 
    269 static int __setup_page_dma(struct i915_address_space *vm,
    270 			    struct i915_page_dma *p,
    271 			    gfp_t gfp)
    272 {
    273 	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
    274 	if (unlikely(!p->page))
    275 		return -ENOMEM;
    276 
    277 	p->daddr = dma_map_page_attrs(vm->dma,
    278 				      p->page, 0, PAGE_SIZE,
    279 				      PCI_DMA_BIDIRECTIONAL,
    280 				      DMA_ATTR_SKIP_CPU_SYNC |
    281 				      DMA_ATTR_NO_WARN);
    282 	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
    283 		vm_free_page(vm, p->page);
    284 		return -ENOMEM;
    285 	}
    286 
    287 	return 0;
    288 }
    289 
    290 int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
    291 {
    292 	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
    293 }
    294 
    295 void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
    296 {
    297 	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
    298 	vm_free_page(vm, p->page);
    299 }
    300 
    301 void
    302 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
    303 {
    304 	kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
    305 }
    306 
    307 int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
    308 {
    309 	unsigned long size;
    310 
    311 	/*
    312 	 * In order to utilize 64K pages for an object with a size < 2M, we will
    313 	 * need to support a 64K scratch page, given that every 16th entry for a
    314 	 * page-table operating in 64K mode must point to a properly aligned 64K
    315 	 * region, including any PTEs which happen to point to scratch.
    316 	 *
    317 	 * This is only relevant for the 48b PPGTT where we support
    318 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
    319 	 * scratch (read-only) between all vm, we create one 64k scratch page
    320 	 * for all.
    321 	 */
    322 	size = I915_GTT_PAGE_SIZE_4K;
    323 	if (i915_vm_is_4lvl(vm) &&
    324 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
    325 		size = I915_GTT_PAGE_SIZE_64K;
    326 		gfp |= __GFP_NOWARN;
    327 	}
    328 	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
    329 
    330 	do {
    331 		unsigned int order = get_order(size);
    332 		struct page *page;
    333 		dma_addr_t addr;
    334 
    335 		page = alloc_pages(gfp, order);
    336 		if (unlikely(!page))
    337 			goto skip;
    338 
    339 		addr = dma_map_page_attrs(vm->dma,
    340 					  page, 0, size,
    341 					  PCI_DMA_BIDIRECTIONAL,
    342 					  DMA_ATTR_SKIP_CPU_SYNC |
    343 					  DMA_ATTR_NO_WARN);
    344 		if (unlikely(dma_mapping_error(vm->dma, addr)))
    345 			goto free_page;
    346 
    347 		if (unlikely(!IS_ALIGNED(addr, size)))
    348 			goto unmap_page;
    349 
    350 		vm->scratch[0].base.page = page;
    351 		vm->scratch[0].base.daddr = addr;
    352 		vm->scratch_order = order;
    353 		return 0;
    354 
    355 unmap_page:
    356 		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
    357 free_page:
    358 		__free_pages(page, order);
    359 skip:
    360 		if (size == I915_GTT_PAGE_SIZE_4K)
    361 			return -ENOMEM;
    362 
    363 		size = I915_GTT_PAGE_SIZE_4K;
    364 		gfp &= ~__GFP_NOWARN;
    365 	} while (1);
    366 }
    367 
    368 void cleanup_scratch_page(struct i915_address_space *vm)
    369 {
    370 	struct i915_page_dma *p = px_base(&vm->scratch[0]);
    371 	unsigned int order = vm->scratch_order;
    372 
    373 	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
    374 		       PCI_DMA_BIDIRECTIONAL);
    375 	__free_pages(p->page, order);
    376 }
    377 
    378 void free_scratch(struct i915_address_space *vm)
    379 {
    380 	int i;
    381 
    382 	if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
    383 		return;
    384 
    385 	for (i = 1; i <= vm->top; i++) {
    386 		if (!px_dma(&vm->scratch[i]))
    387 			break;
    388 		cleanup_page_dma(vm, px_base(&vm->scratch[i]));
    389 	}
    390 
    391 	cleanup_scratch_page(vm);
    392 }
    393 
    394 void gtt_write_workarounds(struct intel_gt *gt)
    395 {
    396 	struct drm_i915_private *i915 = gt->i915;
    397 	struct intel_uncore *uncore = gt->uncore;
    398 
    399 	/*
    400 	 * This function is for gtt related workarounds. This function is
    401 	 * called on driver load and after a GPU reset, so you can place
    402 	 * workarounds here even if they get overwritten by GPU reset.
    403 	 */
    404 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
    405 	if (IS_BROADWELL(i915))
    406 		intel_uncore_write(uncore,
    407 				   GEN8_L3_LRA_1_GPGPU,
    408 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
    409 	else if (IS_CHERRYVIEW(i915))
    410 		intel_uncore_write(uncore,
    411 				   GEN8_L3_LRA_1_GPGPU,
    412 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
    413 	else if (IS_GEN9_LP(i915))
    414 		intel_uncore_write(uncore,
    415 				   GEN8_L3_LRA_1_GPGPU,
    416 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
    417 	else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
    418 		intel_uncore_write(uncore,
    419 				   GEN8_L3_LRA_1_GPGPU,
    420 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
    421 
    422 	/*
    423 	 * To support 64K PTEs we need to first enable the use of the
    424 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
    425 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
    426 	 * shouldn't be needed after GEN10.
    427 	 *
    428 	 * 64K pages were first introduced from BDW+, although technically they
    429 	 * only *work* from gen9+. For pre-BDW we instead have the option for
    430 	 * 32K pages, but we don't currently have any support for it in our
    431 	 * driver.
    432 	 */
    433 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
    434 	    INTEL_GEN(i915) <= 10)
    435 		intel_uncore_rmw(uncore,
    436 				 GEN8_GAMW_ECO_DEV_RW_IA,
    437 				 0,
    438 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
    439 
    440 	if (IS_GEN_RANGE(i915, 8, 11)) {
    441 		bool can_use_gtt_cache = true;
    442 
    443 		/*
    444 		 * According to the BSpec if we use 2M/1G pages then we also
    445 		 * need to disable the GTT cache. At least on BDW we can see
    446 		 * visual corruption when using 2M pages, and not disabling the
    447 		 * GTT cache.
    448 		 */
    449 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
    450 			can_use_gtt_cache = false;
    451 
    452 		/* WaGttCachingOffByDefault */
    453 		intel_uncore_write(uncore,
    454 				   HSW_GTT_CACHE_EN,
    455 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
    456 		WARN_ON_ONCE(can_use_gtt_cache &&
    457 			     intel_uncore_read(uncore,
    458 					       HSW_GTT_CACHE_EN) == 0);
    459 	}
    460 }
    461 
    462 u64 gen8_pte_encode(dma_addr_t addr,
    463 		    enum i915_cache_level level,
    464 		    u32 flags)
    465 {
    466 	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
    467 
    468 	if (unlikely(flags & PTE_READ_ONLY))
    469 		pte &= ~_PAGE_RW;
    470 
    471 	switch (level) {
    472 	case I915_CACHE_NONE:
    473 		pte |= PPAT_UNCACHED;
    474 		break;
    475 	case I915_CACHE_WT:
    476 		pte |= PPAT_DISPLAY_ELLC;
    477 		break;
    478 	default:
    479 		pte |= PPAT_CACHED;
    480 		break;
    481 	}
    482 
    483 	return pte;
    484 }
    485 
    486 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
    487 {
    488 	/* TGL doesn't support LLC or AGE settings */
    489 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
    490 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
    491 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
    492 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
    493 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
    494 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
    495 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
    496 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
    497 }
    498 
    499 static void cnl_setup_private_ppat(struct intel_uncore *uncore)
    500 {
    501 	intel_uncore_write(uncore,
    502 			   GEN10_PAT_INDEX(0),
    503 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
    504 	intel_uncore_write(uncore,
    505 			   GEN10_PAT_INDEX(1),
    506 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
    507 	intel_uncore_write(uncore,
    508 			   GEN10_PAT_INDEX(2),
    509 			   GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
    510 	intel_uncore_write(uncore,
    511 			   GEN10_PAT_INDEX(3),
    512 			   GEN8_PPAT_UC);
    513 	intel_uncore_write(uncore,
    514 			   GEN10_PAT_INDEX(4),
    515 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
    516 	intel_uncore_write(uncore,
    517 			   GEN10_PAT_INDEX(5),
    518 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
    519 	intel_uncore_write(uncore,
    520 			   GEN10_PAT_INDEX(6),
    521 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
    522 	intel_uncore_write(uncore,
    523 			   GEN10_PAT_INDEX(7),
    524 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
    525 }
    526 
    527 /*
    528  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
    529  * bits. When using advanced contexts each context stores its own PAT, but
    530  * writing this data shouldn't be harmful even in those cases.
    531  */
    532 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
    533 {
    534 	u64 pat;
    535 
    536 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
    537 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
    538 	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |	/* for scanout with eLLC */
    539 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
    540 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
    541 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
    542 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
    543 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
    544 
    545 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
    546 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
    547 }
    548 
    549 static void chv_setup_private_ppat(struct intel_uncore *uncore)
    550 {
    551 	u64 pat;
    552 
    553 	/*
    554 	 * Map WB on BDW to snooped on CHV.
    555 	 *
    556 	 * Only the snoop bit has meaning for CHV, the rest is
    557 	 * ignored.
    558 	 *
    559 	 * The hardware will never snoop for certain types of accesses:
    560 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
    561 	 * - PPGTT page tables
    562 	 * - some other special cycles
    563 	 *
    564 	 * As with BDW, we also need to consider the following for GT accesses:
    565 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
    566 	 * so RTL will always use the value corresponding to
    567 	 * pat_sel = 000".
    568 	 * Which means we must set the snoop bit in PAT entry 0
    569 	 * in order to keep the global status page working.
    570 	 */
    571 
    572 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
    573 	      GEN8_PPAT(1, 0) |
    574 	      GEN8_PPAT(2, 0) |
    575 	      GEN8_PPAT(3, 0) |
    576 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
    577 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
    578 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
    579 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
    580 
    581 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
    582 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
    583 }
    584 
    585 void setup_private_pat(struct intel_uncore *uncore)
    586 {
    587 	struct drm_i915_private *i915 = uncore->i915;
    588 
    589 	GEM_BUG_ON(INTEL_GEN(i915) < 8);
    590 
    591 	if (INTEL_GEN(i915) >= 12)
    592 		tgl_setup_private_ppat(uncore);
    593 	else if (INTEL_GEN(i915) >= 10)
    594 		cnl_setup_private_ppat(uncore);
    595 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
    596 		chv_setup_private_ppat(uncore);
    597 	else
    598 		bdw_setup_private_ppat(uncore);
    599 }
    600 
    601 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
    602 #include "selftests/mock_gtt.c"
    603 #endif
    604