intel_timeline.c revision 1.1.1.1 1 /* $NetBSD: intel_timeline.c,v 1.1.1.1 2021/12/18 20:15:33 riastradh Exp $ */
2
3 /*
4 * SPDX-License-Identifier: MIT
5 *
6 * Copyright 2016-2018 Intel Corporation
7 */
8
9 #include <sys/cdefs.h>
10 __KERNEL_RCSID(0, "$NetBSD: intel_timeline.c,v 1.1.1.1 2021/12/18 20:15:33 riastradh Exp $");
11
12 #include "i915_drv.h"
13
14 #include "i915_active.h"
15 #include "i915_syncmap.h"
16 #include "intel_gt.h"
17 #include "intel_ring.h"
18 #include "intel_timeline.h"
19
20 #define ptr_set_bit(ptr, bit) ((typeof(ptr))((unsigned long)(ptr) | BIT(bit)))
21 #define ptr_test_bit(ptr, bit) ((unsigned long)(ptr) & BIT(bit))
22
23 #define CACHELINE_BITS 6
24 #define CACHELINE_FREE CACHELINE_BITS
25
26 struct intel_timeline_hwsp {
27 struct intel_gt *gt;
28 struct intel_gt_timelines *gt_timelines;
29 struct list_head free_link;
30 struct i915_vma *vma;
31 u64 free_bitmap;
32 };
33
34 static struct i915_vma *__hwsp_alloc(struct intel_gt *gt)
35 {
36 struct drm_i915_private *i915 = gt->i915;
37 struct drm_i915_gem_object *obj;
38 struct i915_vma *vma;
39
40 obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
41 if (IS_ERR(obj))
42 return ERR_CAST(obj);
43
44 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
45
46 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
47 if (IS_ERR(vma))
48 i915_gem_object_put(obj);
49
50 return vma;
51 }
52
53 static struct i915_vma *
54 hwsp_alloc(struct intel_timeline *timeline, unsigned int *cacheline)
55 {
56 struct intel_gt_timelines *gt = &timeline->gt->timelines;
57 struct intel_timeline_hwsp *hwsp;
58
59 BUILD_BUG_ON(BITS_PER_TYPE(u64) * CACHELINE_BYTES > PAGE_SIZE);
60
61 spin_lock_irq(>->hwsp_lock);
62
63 /* hwsp_free_list only contains HWSP that have available cachelines */
64 hwsp = list_first_entry_or_null(>->hwsp_free_list,
65 typeof(*hwsp), free_link);
66 if (!hwsp) {
67 struct i915_vma *vma;
68
69 spin_unlock_irq(>->hwsp_lock);
70
71 hwsp = kmalloc(sizeof(*hwsp), GFP_KERNEL);
72 if (!hwsp)
73 return ERR_PTR(-ENOMEM);
74
75 vma = __hwsp_alloc(timeline->gt);
76 if (IS_ERR(vma)) {
77 kfree(hwsp);
78 return vma;
79 }
80
81 vma->private = hwsp;
82 hwsp->gt = timeline->gt;
83 hwsp->vma = vma;
84 hwsp->free_bitmap = ~0ull;
85 hwsp->gt_timelines = gt;
86
87 spin_lock_irq(>->hwsp_lock);
88 list_add(&hwsp->free_link, >->hwsp_free_list);
89 }
90
91 GEM_BUG_ON(!hwsp->free_bitmap);
92 *cacheline = __ffs64(hwsp->free_bitmap);
93 hwsp->free_bitmap &= ~BIT_ULL(*cacheline);
94 if (!hwsp->free_bitmap)
95 list_del(&hwsp->free_link);
96
97 spin_unlock_irq(>->hwsp_lock);
98
99 GEM_BUG_ON(hwsp->vma->private != hwsp);
100 return hwsp->vma;
101 }
102
103 static void __idle_hwsp_free(struct intel_timeline_hwsp *hwsp, int cacheline)
104 {
105 struct intel_gt_timelines *gt = hwsp->gt_timelines;
106 unsigned long flags;
107
108 spin_lock_irqsave(>->hwsp_lock, flags);
109
110 /* As a cacheline becomes available, publish the HWSP on the freelist */
111 if (!hwsp->free_bitmap)
112 list_add_tail(&hwsp->free_link, >->hwsp_free_list);
113
114 GEM_BUG_ON(cacheline >= BITS_PER_TYPE(hwsp->free_bitmap));
115 hwsp->free_bitmap |= BIT_ULL(cacheline);
116
117 /* And if no one is left using it, give the page back to the system */
118 if (hwsp->free_bitmap == ~0ull) {
119 i915_vma_put(hwsp->vma);
120 list_del(&hwsp->free_link);
121 kfree(hwsp);
122 }
123
124 spin_unlock_irqrestore(>->hwsp_lock, flags);
125 }
126
127 static void __idle_cacheline_free(struct intel_timeline_cacheline *cl)
128 {
129 GEM_BUG_ON(!i915_active_is_idle(&cl->active));
130
131 i915_gem_object_unpin_map(cl->hwsp->vma->obj);
132 i915_vma_put(cl->hwsp->vma);
133 __idle_hwsp_free(cl->hwsp, ptr_unmask_bits(cl->vaddr, CACHELINE_BITS));
134
135 i915_active_fini(&cl->active);
136 kfree_rcu(cl, rcu);
137 }
138
139 __i915_active_call
140 static void __cacheline_retire(struct i915_active *active)
141 {
142 struct intel_timeline_cacheline *cl =
143 container_of(active, typeof(*cl), active);
144
145 i915_vma_unpin(cl->hwsp->vma);
146 if (ptr_test_bit(cl->vaddr, CACHELINE_FREE))
147 __idle_cacheline_free(cl);
148 }
149
150 static int __cacheline_active(struct i915_active *active)
151 {
152 struct intel_timeline_cacheline *cl =
153 container_of(active, typeof(*cl), active);
154
155 __i915_vma_pin(cl->hwsp->vma);
156 return 0;
157 }
158
159 static struct intel_timeline_cacheline *
160 cacheline_alloc(struct intel_timeline_hwsp *hwsp, unsigned int cacheline)
161 {
162 struct intel_timeline_cacheline *cl;
163 void *vaddr;
164
165 GEM_BUG_ON(cacheline >= BIT(CACHELINE_BITS));
166
167 cl = kmalloc(sizeof(*cl), GFP_KERNEL);
168 if (!cl)
169 return ERR_PTR(-ENOMEM);
170
171 vaddr = i915_gem_object_pin_map(hwsp->vma->obj, I915_MAP_WB);
172 if (IS_ERR(vaddr)) {
173 kfree(cl);
174 return ERR_CAST(vaddr);
175 }
176
177 i915_vma_get(hwsp->vma);
178 cl->hwsp = hwsp;
179 cl->vaddr = page_pack_bits(vaddr, cacheline);
180
181 i915_active_init(&cl->active, __cacheline_active, __cacheline_retire);
182
183 return cl;
184 }
185
186 static void cacheline_acquire(struct intel_timeline_cacheline *cl)
187 {
188 if (cl)
189 i915_active_acquire(&cl->active);
190 }
191
192 static void cacheline_release(struct intel_timeline_cacheline *cl)
193 {
194 if (cl)
195 i915_active_release(&cl->active);
196 }
197
198 static void cacheline_free(struct intel_timeline_cacheline *cl)
199 {
200 GEM_BUG_ON(ptr_test_bit(cl->vaddr, CACHELINE_FREE));
201 cl->vaddr = ptr_set_bit(cl->vaddr, CACHELINE_FREE);
202
203 if (i915_active_is_idle(&cl->active))
204 __idle_cacheline_free(cl);
205 }
206
207 int intel_timeline_init(struct intel_timeline *timeline,
208 struct intel_gt *gt,
209 struct i915_vma *hwsp)
210 {
211 void *vaddr;
212
213 kref_init(&timeline->kref);
214 atomic_set(&timeline->pin_count, 0);
215
216 timeline->gt = gt;
217
218 timeline->has_initial_breadcrumb = !hwsp;
219 timeline->hwsp_cacheline = NULL;
220
221 if (!hwsp) {
222 struct intel_timeline_cacheline *cl;
223 unsigned int cacheline;
224
225 hwsp = hwsp_alloc(timeline, &cacheline);
226 if (IS_ERR(hwsp))
227 return PTR_ERR(hwsp);
228
229 cl = cacheline_alloc(hwsp->private, cacheline);
230 if (IS_ERR(cl)) {
231 __idle_hwsp_free(hwsp->private, cacheline);
232 return PTR_ERR(cl);
233 }
234
235 timeline->hwsp_cacheline = cl;
236 timeline->hwsp_offset = cacheline * CACHELINE_BYTES;
237
238 vaddr = page_mask_bits(cl->vaddr);
239 } else {
240 timeline->hwsp_offset = I915_GEM_HWS_SEQNO_ADDR;
241
242 vaddr = i915_gem_object_pin_map(hwsp->obj, I915_MAP_WB);
243 if (IS_ERR(vaddr))
244 return PTR_ERR(vaddr);
245 }
246
247 timeline->hwsp_seqno =
248 memset(vaddr + timeline->hwsp_offset, 0, CACHELINE_BYTES);
249
250 timeline->hwsp_ggtt = i915_vma_get(hwsp);
251 GEM_BUG_ON(timeline->hwsp_offset >= hwsp->size);
252
253 timeline->fence_context = dma_fence_context_alloc(1);
254
255 mutex_init(&timeline->mutex);
256
257 INIT_ACTIVE_FENCE(&timeline->last_request);
258 INIT_LIST_HEAD(&timeline->requests);
259
260 i915_syncmap_init(&timeline->sync);
261
262 return 0;
263 }
264
265 void intel_gt_init_timelines(struct intel_gt *gt)
266 {
267 struct intel_gt_timelines *timelines = >->timelines;
268
269 spin_lock_init(&timelines->lock);
270 INIT_LIST_HEAD(&timelines->active_list);
271
272 spin_lock_init(&timelines->hwsp_lock);
273 INIT_LIST_HEAD(&timelines->hwsp_free_list);
274 }
275
276 void intel_timeline_fini(struct intel_timeline *timeline)
277 {
278 GEM_BUG_ON(atomic_read(&timeline->pin_count));
279 GEM_BUG_ON(!list_empty(&timeline->requests));
280 GEM_BUG_ON(timeline->retire);
281
282 if (timeline->hwsp_cacheline)
283 cacheline_free(timeline->hwsp_cacheline);
284 else
285 i915_gem_object_unpin_map(timeline->hwsp_ggtt->obj);
286
287 i915_vma_put(timeline->hwsp_ggtt);
288 }
289
290 struct intel_timeline *
291 intel_timeline_create(struct intel_gt *gt, struct i915_vma *global_hwsp)
292 {
293 struct intel_timeline *timeline;
294 int err;
295
296 timeline = kzalloc(sizeof(*timeline), GFP_KERNEL);
297 if (!timeline)
298 return ERR_PTR(-ENOMEM);
299
300 err = intel_timeline_init(timeline, gt, global_hwsp);
301 if (err) {
302 kfree(timeline);
303 return ERR_PTR(err);
304 }
305
306 return timeline;
307 }
308
309 int intel_timeline_pin(struct intel_timeline *tl)
310 {
311 int err;
312
313 if (atomic_add_unless(&tl->pin_count, 1, 0))
314 return 0;
315
316 err = i915_vma_pin(tl->hwsp_ggtt, 0, 0, PIN_GLOBAL | PIN_HIGH);
317 if (err)
318 return err;
319
320 tl->hwsp_offset =
321 i915_ggtt_offset(tl->hwsp_ggtt) +
322 offset_in_page(tl->hwsp_offset);
323
324 cacheline_acquire(tl->hwsp_cacheline);
325 if (atomic_fetch_inc(&tl->pin_count)) {
326 cacheline_release(tl->hwsp_cacheline);
327 __i915_vma_unpin(tl->hwsp_ggtt);
328 }
329
330 return 0;
331 }
332
333 void intel_timeline_enter(struct intel_timeline *tl)
334 {
335 struct intel_gt_timelines *timelines = &tl->gt->timelines;
336
337 /*
338 * Pretend we are serialised by the timeline->mutex.
339 *
340 * While generally true, there are a few exceptions to the rule
341 * for the engine->kernel_context being used to manage power
342 * transitions. As the engine_park may be called from under any
343 * timeline, it uses the power mutex as a global serialisation
344 * lock to prevent any other request entering its timeline.
345 *
346 * The rule is generally tl->mutex, otherwise engine->wakeref.mutex.
347 *
348 * However, intel_gt_retire_request() does not know which engine
349 * it is retiring along and so cannot partake in the engine-pm
350 * barrier, and there we use the tl->active_count as a means to
351 * pin the timeline in the active_list while the locks are dropped.
352 * Ergo, as that is outside of the engine-pm barrier, we need to
353 * use atomic to manipulate tl->active_count.
354 */
355 lockdep_assert_held(&tl->mutex);
356
357 if (atomic_add_unless(&tl->active_count, 1, 0))
358 return;
359
360 spin_lock(&timelines->lock);
361 if (!atomic_fetch_inc(&tl->active_count))
362 list_add_tail(&tl->link, &timelines->active_list);
363 spin_unlock(&timelines->lock);
364 }
365
366 void intel_timeline_exit(struct intel_timeline *tl)
367 {
368 struct intel_gt_timelines *timelines = &tl->gt->timelines;
369
370 /* See intel_timeline_enter() */
371 lockdep_assert_held(&tl->mutex);
372
373 GEM_BUG_ON(!atomic_read(&tl->active_count));
374 if (atomic_add_unless(&tl->active_count, -1, 1))
375 return;
376
377 spin_lock(&timelines->lock);
378 if (atomic_dec_and_test(&tl->active_count))
379 list_del(&tl->link);
380 spin_unlock(&timelines->lock);
381
382 /*
383 * Since this timeline is idle, all bariers upon which we were waiting
384 * must also be complete and so we can discard the last used barriers
385 * without loss of information.
386 */
387 i915_syncmap_free(&tl->sync);
388 }
389
390 static u32 timeline_advance(struct intel_timeline *tl)
391 {
392 GEM_BUG_ON(!atomic_read(&tl->pin_count));
393 GEM_BUG_ON(tl->seqno & tl->has_initial_breadcrumb);
394
395 return tl->seqno += 1 + tl->has_initial_breadcrumb;
396 }
397
398 static void timeline_rollback(struct intel_timeline *tl)
399 {
400 tl->seqno -= 1 + tl->has_initial_breadcrumb;
401 }
402
403 static noinline int
404 __intel_timeline_get_seqno(struct intel_timeline *tl,
405 struct i915_request *rq,
406 u32 *seqno)
407 {
408 struct intel_timeline_cacheline *cl;
409 unsigned int cacheline;
410 struct i915_vma *vma;
411 void *vaddr;
412 int err;
413
414 /*
415 * If there is an outstanding GPU reference to this cacheline,
416 * such as it being sampled by a HW semaphore on another timeline,
417 * we cannot wraparound our seqno value (the HW semaphore does
418 * a strict greater-than-or-equals compare, not i915_seqno_passed).
419 * So if the cacheline is still busy, we must detach ourselves
420 * from it and leave it inflight alongside its users.
421 *
422 * However, if nobody is watching and we can guarantee that nobody
423 * will, we could simply reuse the same cacheline.
424 *
425 * if (i915_active_request_is_signaled(&tl->last_request) &&
426 * i915_active_is_signaled(&tl->hwsp_cacheline->active))
427 * return 0;
428 *
429 * That seems unlikely for a busy timeline that needed to wrap in
430 * the first place, so just replace the cacheline.
431 */
432
433 vma = hwsp_alloc(tl, &cacheline);
434 if (IS_ERR(vma)) {
435 err = PTR_ERR(vma);
436 goto err_rollback;
437 }
438
439 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
440 if (err) {
441 __idle_hwsp_free(vma->private, cacheline);
442 goto err_rollback;
443 }
444
445 cl = cacheline_alloc(vma->private, cacheline);
446 if (IS_ERR(cl)) {
447 err = PTR_ERR(cl);
448 __idle_hwsp_free(vma->private, cacheline);
449 goto err_unpin;
450 }
451 GEM_BUG_ON(cl->hwsp->vma != vma);
452
453 /*
454 * Attach the old cacheline to the current request, so that we only
455 * free it after the current request is retired, which ensures that
456 * all writes into the cacheline from previous requests are complete.
457 */
458 err = i915_active_ref(&tl->hwsp_cacheline->active, tl, &rq->fence);
459 if (err)
460 goto err_cacheline;
461
462 cacheline_release(tl->hwsp_cacheline); /* ownership now xfered to rq */
463 cacheline_free(tl->hwsp_cacheline);
464
465 i915_vma_unpin(tl->hwsp_ggtt); /* binding kept alive by old cacheline */
466 i915_vma_put(tl->hwsp_ggtt);
467
468 tl->hwsp_ggtt = i915_vma_get(vma);
469
470 vaddr = page_mask_bits(cl->vaddr);
471 tl->hwsp_offset = cacheline * CACHELINE_BYTES;
472 tl->hwsp_seqno =
473 memset(vaddr + tl->hwsp_offset, 0, CACHELINE_BYTES);
474
475 tl->hwsp_offset += i915_ggtt_offset(vma);
476
477 cacheline_acquire(cl);
478 tl->hwsp_cacheline = cl;
479
480 *seqno = timeline_advance(tl);
481 GEM_BUG_ON(i915_seqno_passed(*tl->hwsp_seqno, *seqno));
482 return 0;
483
484 err_cacheline:
485 cacheline_free(cl);
486 err_unpin:
487 i915_vma_unpin(vma);
488 err_rollback:
489 timeline_rollback(tl);
490 return err;
491 }
492
493 int intel_timeline_get_seqno(struct intel_timeline *tl,
494 struct i915_request *rq,
495 u32 *seqno)
496 {
497 *seqno = timeline_advance(tl);
498
499 /* Replace the HWSP on wraparound for HW semaphores */
500 if (unlikely(!*seqno && tl->hwsp_cacheline))
501 return __intel_timeline_get_seqno(tl, rq, seqno);
502
503 return 0;
504 }
505
506 static int cacheline_ref(struct intel_timeline_cacheline *cl,
507 struct i915_request *rq)
508 {
509 return i915_active_add_request(&cl->active, rq);
510 }
511
512 int intel_timeline_read_hwsp(struct i915_request *from,
513 struct i915_request *to,
514 u32 *hwsp)
515 {
516 struct intel_timeline_cacheline *cl;
517 int err;
518
519 GEM_BUG_ON(!rcu_access_pointer(from->hwsp_cacheline));
520
521 rcu_read_lock();
522 cl = rcu_dereference(from->hwsp_cacheline);
523 if (unlikely(!i915_active_acquire_if_busy(&cl->active)))
524 goto unlock; /* seqno wrapped and completed! */
525 if (unlikely(i915_request_completed(from)))
526 goto release;
527 rcu_read_unlock();
528
529 err = cacheline_ref(cl, to);
530 if (err)
531 goto out;
532
533 *hwsp = i915_ggtt_offset(cl->hwsp->vma) +
534 ptr_unmask_bits(cl->vaddr, CACHELINE_BITS) * CACHELINE_BYTES;
535
536 out:
537 i915_active_release(&cl->active);
538 return err;
539
540 release:
541 i915_active_release(&cl->active);
542 unlock:
543 rcu_read_unlock();
544 return 1;
545 }
546
547 void intel_timeline_unpin(struct intel_timeline *tl)
548 {
549 GEM_BUG_ON(!atomic_read(&tl->pin_count));
550 if (!atomic_dec_and_test(&tl->pin_count))
551 return;
552
553 cacheline_release(tl->hwsp_cacheline);
554
555 __i915_vma_unpin(tl->hwsp_ggtt);
556 }
557
558 void __intel_timeline_free(struct kref *kref)
559 {
560 struct intel_timeline *timeline =
561 container_of(kref, typeof(*timeline), kref);
562
563 intel_timeline_fini(timeline);
564 kfree_rcu(timeline, rcu);
565 }
566
567 void intel_gt_fini_timelines(struct intel_gt *gt)
568 {
569 struct intel_gt_timelines *timelines = >->timelines;
570
571 GEM_BUG_ON(!list_empty(&timelines->active_list));
572 GEM_BUG_ON(!list_empty(&timelines->hwsp_free_list));
573 }
574
575 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
576 #include "gt/selftests/mock_timeline.c"
577 #include "gt/selftest_timeline.c"
578 #endif
579