intel_timeline.c revision 1.3 1 /* $NetBSD: intel_timeline.c,v 1.3 2021/12/19 11:49:11 riastradh Exp $ */
2
3 /*
4 * SPDX-License-Identifier: MIT
5 *
6 * Copyright 2016-2018 Intel Corporation
7 */
8
9 #include <sys/cdefs.h>
10 __KERNEL_RCSID(0, "$NetBSD: intel_timeline.c,v 1.3 2021/12/19 11:49:11 riastradh Exp $");
11
12 #include "i915_drv.h"
13
14 #include "i915_active.h"
15 #include "i915_syncmap.h"
16 #include "intel_gt.h"
17 #include "intel_ring.h"
18 #include "intel_timeline.h"
19
20 #include <linux/nbsd-namespace.h>
21
22 #define ptr_set_bit(ptr, bit) ((typeof(ptr))((unsigned long)(ptr) | BIT(bit)))
23 #define ptr_test_bit(ptr, bit) ((unsigned long)(ptr) & BIT(bit))
24
25 #define CACHELINE_BITS 6
26 #define CACHELINE_FREE CACHELINE_BITS
27
28 struct intel_timeline_hwsp {
29 struct intel_gt *gt;
30 struct intel_gt_timelines *gt_timelines;
31 struct list_head free_link;
32 struct i915_vma *vma;
33 u64 free_bitmap;
34 };
35
36 static struct i915_vma *__hwsp_alloc(struct intel_gt *gt)
37 {
38 struct drm_i915_private *i915 = gt->i915;
39 struct drm_i915_gem_object *obj;
40 struct i915_vma *vma;
41
42 obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
43 if (IS_ERR(obj))
44 return ERR_CAST(obj);
45
46 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
47
48 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
49 if (IS_ERR(vma))
50 i915_gem_object_put(obj);
51
52 return vma;
53 }
54
55 static struct i915_vma *
56 hwsp_alloc(struct intel_timeline *timeline, unsigned int *cacheline)
57 {
58 struct intel_gt_timelines *gt = &timeline->gt->timelines;
59 struct intel_timeline_hwsp *hwsp;
60
61 BUILD_BUG_ON(BITS_PER_TYPE(u64) * CACHELINE_BYTES > PAGE_SIZE);
62
63 spin_lock_irq(>->hwsp_lock);
64
65 /* hwsp_free_list only contains HWSP that have available cachelines */
66 hwsp = list_first_entry_or_null(>->hwsp_free_list,
67 typeof(*hwsp), free_link);
68 if (!hwsp) {
69 struct i915_vma *vma;
70
71 spin_unlock_irq(>->hwsp_lock);
72
73 hwsp = kmalloc(sizeof(*hwsp), GFP_KERNEL);
74 if (!hwsp)
75 return ERR_PTR(-ENOMEM);
76
77 vma = __hwsp_alloc(timeline->gt);
78 if (IS_ERR(vma)) {
79 kfree(hwsp);
80 return vma;
81 }
82
83 vma->private = hwsp;
84 hwsp->gt = timeline->gt;
85 hwsp->vma = vma;
86 hwsp->free_bitmap = ~0ull;
87 hwsp->gt_timelines = gt;
88
89 spin_lock_irq(>->hwsp_lock);
90 list_add(&hwsp->free_link, >->hwsp_free_list);
91 }
92
93 GEM_BUG_ON(!hwsp->free_bitmap);
94 *cacheline = __ffs64(hwsp->free_bitmap);
95 hwsp->free_bitmap &= ~BIT_ULL(*cacheline);
96 if (!hwsp->free_bitmap)
97 list_del(&hwsp->free_link);
98
99 spin_unlock_irq(>->hwsp_lock);
100
101 GEM_BUG_ON(hwsp->vma->private != hwsp);
102 return hwsp->vma;
103 }
104
105 static void __idle_hwsp_free(struct intel_timeline_hwsp *hwsp, int cacheline)
106 {
107 struct intel_gt_timelines *gt = hwsp->gt_timelines;
108 unsigned long flags;
109
110 spin_lock_irqsave(>->hwsp_lock, flags);
111
112 /* As a cacheline becomes available, publish the HWSP on the freelist */
113 if (!hwsp->free_bitmap)
114 list_add_tail(&hwsp->free_link, >->hwsp_free_list);
115
116 GEM_BUG_ON(cacheline >= BITS_PER_TYPE(hwsp->free_bitmap));
117 hwsp->free_bitmap |= BIT_ULL(cacheline);
118
119 /* And if no one is left using it, give the page back to the system */
120 if (hwsp->free_bitmap == ~0ull) {
121 i915_vma_put(hwsp->vma);
122 list_del(&hwsp->free_link);
123 kfree(hwsp);
124 }
125
126 spin_unlock_irqrestore(>->hwsp_lock, flags);
127 }
128
129 static void __idle_cacheline_free(struct intel_timeline_cacheline *cl)
130 {
131 GEM_BUG_ON(!i915_active_is_idle(&cl->active));
132
133 i915_gem_object_unpin_map(cl->hwsp->vma->obj);
134 i915_vma_put(cl->hwsp->vma);
135 __idle_hwsp_free(cl->hwsp, ptr_unmask_bits(cl->vaddr, CACHELINE_BITS));
136
137 i915_active_fini(&cl->active);
138 kfree_rcu(cl, rcu);
139 }
140
141 __i915_active_call
142 static void __cacheline_retire(struct i915_active *active)
143 {
144 struct intel_timeline_cacheline *cl =
145 container_of(active, typeof(*cl), active);
146
147 i915_vma_unpin(cl->hwsp->vma);
148 if (ptr_test_bit(cl->vaddr, CACHELINE_FREE))
149 __idle_cacheline_free(cl);
150 }
151
152 static int __cacheline_active(struct i915_active *active)
153 {
154 struct intel_timeline_cacheline *cl =
155 container_of(active, typeof(*cl), active);
156
157 __i915_vma_pin(cl->hwsp->vma);
158 return 0;
159 }
160
161 static struct intel_timeline_cacheline *
162 cacheline_alloc(struct intel_timeline_hwsp *hwsp, unsigned int cacheline)
163 {
164 struct intel_timeline_cacheline *cl;
165 void *vaddr;
166
167 GEM_BUG_ON(cacheline >= BIT(CACHELINE_BITS));
168
169 cl = kmalloc(sizeof(*cl), GFP_KERNEL);
170 if (!cl)
171 return ERR_PTR(-ENOMEM);
172
173 vaddr = i915_gem_object_pin_map(hwsp->vma->obj, I915_MAP_WB);
174 if (IS_ERR(vaddr)) {
175 kfree(cl);
176 return ERR_CAST(vaddr);
177 }
178
179 i915_vma_get(hwsp->vma);
180 cl->hwsp = hwsp;
181 cl->vaddr = page_pack_bits(vaddr, cacheline);
182
183 i915_active_init(&cl->active, __cacheline_active, __cacheline_retire);
184
185 return cl;
186 }
187
188 static void cacheline_acquire(struct intel_timeline_cacheline *cl)
189 {
190 if (cl)
191 i915_active_acquire(&cl->active);
192 }
193
194 static void cacheline_release(struct intel_timeline_cacheline *cl)
195 {
196 if (cl)
197 i915_active_release(&cl->active);
198 }
199
200 static void cacheline_free(struct intel_timeline_cacheline *cl)
201 {
202 GEM_BUG_ON(ptr_test_bit(cl->vaddr, CACHELINE_FREE));
203 cl->vaddr = ptr_set_bit(cl->vaddr, CACHELINE_FREE);
204
205 if (i915_active_is_idle(&cl->active))
206 __idle_cacheline_free(cl);
207 }
208
209 int intel_timeline_init(struct intel_timeline *timeline,
210 struct intel_gt *gt,
211 struct i915_vma *hwsp)
212 {
213 void *vaddr;
214
215 kref_init(&timeline->kref);
216 atomic_set(&timeline->pin_count, 0);
217
218 timeline->gt = gt;
219
220 timeline->has_initial_breadcrumb = !hwsp;
221 timeline->hwsp_cacheline = NULL;
222
223 if (!hwsp) {
224 struct intel_timeline_cacheline *cl;
225 unsigned int cacheline;
226
227 hwsp = hwsp_alloc(timeline, &cacheline);
228 if (IS_ERR(hwsp))
229 return PTR_ERR(hwsp);
230
231 cl = cacheline_alloc(hwsp->private, cacheline);
232 if (IS_ERR(cl)) {
233 __idle_hwsp_free(hwsp->private, cacheline);
234 return PTR_ERR(cl);
235 }
236
237 timeline->hwsp_cacheline = cl;
238 timeline->hwsp_offset = cacheline * CACHELINE_BYTES;
239
240 vaddr = page_mask_bits(cl->vaddr);
241 } else {
242 timeline->hwsp_offset = I915_GEM_HWS_SEQNO_ADDR;
243
244 vaddr = i915_gem_object_pin_map(hwsp->obj, I915_MAP_WB);
245 if (IS_ERR(vaddr))
246 return PTR_ERR(vaddr);
247 }
248
249 timeline->hwsp_seqno =
250 memset(vaddr + timeline->hwsp_offset, 0, CACHELINE_BYTES);
251
252 timeline->hwsp_ggtt = i915_vma_get(hwsp);
253 GEM_BUG_ON(timeline->hwsp_offset >= hwsp->size);
254
255 timeline->fence_context = dma_fence_context_alloc(1);
256
257 mutex_init(&timeline->mutex);
258
259 INIT_ACTIVE_FENCE(&timeline->last_request);
260 INIT_LIST_HEAD(&timeline->requests);
261
262 i915_syncmap_init(&timeline->sync);
263
264 return 0;
265 }
266
267 void intel_gt_init_timelines(struct intel_gt *gt)
268 {
269 struct intel_gt_timelines *timelines = >->timelines;
270
271 spin_lock_init(&timelines->lock);
272 INIT_LIST_HEAD(&timelines->active_list);
273
274 spin_lock_init(&timelines->hwsp_lock);
275 INIT_LIST_HEAD(&timelines->hwsp_free_list);
276 }
277
278 void intel_timeline_fini(struct intel_timeline *timeline)
279 {
280 GEM_BUG_ON(atomic_read(&timeline->pin_count));
281 GEM_BUG_ON(!list_empty(&timeline->requests));
282 GEM_BUG_ON(timeline->retire);
283
284 if (timeline->hwsp_cacheline)
285 cacheline_free(timeline->hwsp_cacheline);
286 else
287 i915_gem_object_unpin_map(timeline->hwsp_ggtt->obj);
288
289 i915_vma_put(timeline->hwsp_ggtt);
290 }
291
292 struct intel_timeline *
293 intel_timeline_create(struct intel_gt *gt, struct i915_vma *global_hwsp)
294 {
295 struct intel_timeline *timeline;
296 int err;
297
298 timeline = kzalloc(sizeof(*timeline), GFP_KERNEL);
299 if (!timeline)
300 return ERR_PTR(-ENOMEM);
301
302 err = intel_timeline_init(timeline, gt, global_hwsp);
303 if (err) {
304 kfree(timeline);
305 return ERR_PTR(err);
306 }
307
308 return timeline;
309 }
310
311 int intel_timeline_pin(struct intel_timeline *tl)
312 {
313 int err;
314
315 if (atomic_add_unless(&tl->pin_count, 1, 0))
316 return 0;
317
318 err = i915_vma_pin(tl->hwsp_ggtt, 0, 0, PIN_GLOBAL | PIN_HIGH);
319 if (err)
320 return err;
321
322 tl->hwsp_offset =
323 i915_ggtt_offset(tl->hwsp_ggtt) +
324 offset_in_page(tl->hwsp_offset);
325
326 cacheline_acquire(tl->hwsp_cacheline);
327 if (atomic_fetch_inc(&tl->pin_count)) {
328 cacheline_release(tl->hwsp_cacheline);
329 __i915_vma_unpin(tl->hwsp_ggtt);
330 }
331
332 return 0;
333 }
334
335 void intel_timeline_enter(struct intel_timeline *tl)
336 {
337 struct intel_gt_timelines *timelines = &tl->gt->timelines;
338
339 /*
340 * Pretend we are serialised by the timeline->mutex.
341 *
342 * While generally true, there are a few exceptions to the rule
343 * for the engine->kernel_context being used to manage power
344 * transitions. As the engine_park may be called from under any
345 * timeline, it uses the power mutex as a global serialisation
346 * lock to prevent any other request entering its timeline.
347 *
348 * The rule is generally tl->mutex, otherwise engine->wakeref.mutex.
349 *
350 * However, intel_gt_retire_request() does not know which engine
351 * it is retiring along and so cannot partake in the engine-pm
352 * barrier, and there we use the tl->active_count as a means to
353 * pin the timeline in the active_list while the locks are dropped.
354 * Ergo, as that is outside of the engine-pm barrier, we need to
355 * use atomic to manipulate tl->active_count.
356 */
357 lockdep_assert_held(&tl->mutex);
358
359 if (atomic_add_unless(&tl->active_count, 1, 0))
360 return;
361
362 spin_lock(&timelines->lock);
363 if (!atomic_fetch_inc(&tl->active_count))
364 list_add_tail(&tl->link, &timelines->active_list);
365 spin_unlock(&timelines->lock);
366 }
367
368 void intel_timeline_exit(struct intel_timeline *tl)
369 {
370 struct intel_gt_timelines *timelines = &tl->gt->timelines;
371
372 /* See intel_timeline_enter() */
373 lockdep_assert_held(&tl->mutex);
374
375 GEM_BUG_ON(!atomic_read(&tl->active_count));
376 if (atomic_add_unless(&tl->active_count, -1, 1))
377 return;
378
379 spin_lock(&timelines->lock);
380 if (atomic_dec_and_test(&tl->active_count))
381 list_del(&tl->link);
382 spin_unlock(&timelines->lock);
383
384 /*
385 * Since this timeline is idle, all bariers upon which we were waiting
386 * must also be complete and so we can discard the last used barriers
387 * without loss of information.
388 */
389 i915_syncmap_free(&tl->sync);
390 }
391
392 static u32 timeline_advance(struct intel_timeline *tl)
393 {
394 GEM_BUG_ON(!atomic_read(&tl->pin_count));
395 GEM_BUG_ON(tl->seqno & tl->has_initial_breadcrumb);
396
397 return tl->seqno += 1 + tl->has_initial_breadcrumb;
398 }
399
400 static void timeline_rollback(struct intel_timeline *tl)
401 {
402 tl->seqno -= 1 + tl->has_initial_breadcrumb;
403 }
404
405 static noinline int
406 __intel_timeline_get_seqno(struct intel_timeline *tl,
407 struct i915_request *rq,
408 u32 *seqno)
409 {
410 struct intel_timeline_cacheline *cl;
411 unsigned int cacheline;
412 struct i915_vma *vma;
413 void *vaddr;
414 int err;
415
416 /*
417 * If there is an outstanding GPU reference to this cacheline,
418 * such as it being sampled by a HW semaphore on another timeline,
419 * we cannot wraparound our seqno value (the HW semaphore does
420 * a strict greater-than-or-equals compare, not i915_seqno_passed).
421 * So if the cacheline is still busy, we must detach ourselves
422 * from it and leave it inflight alongside its users.
423 *
424 * However, if nobody is watching and we can guarantee that nobody
425 * will, we could simply reuse the same cacheline.
426 *
427 * if (i915_active_request_is_signaled(&tl->last_request) &&
428 * i915_active_is_signaled(&tl->hwsp_cacheline->active))
429 * return 0;
430 *
431 * That seems unlikely for a busy timeline that needed to wrap in
432 * the first place, so just replace the cacheline.
433 */
434
435 vma = hwsp_alloc(tl, &cacheline);
436 if (IS_ERR(vma)) {
437 err = PTR_ERR(vma);
438 goto err_rollback;
439 }
440
441 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
442 if (err) {
443 __idle_hwsp_free(vma->private, cacheline);
444 goto err_rollback;
445 }
446
447 cl = cacheline_alloc(vma->private, cacheline);
448 if (IS_ERR(cl)) {
449 err = PTR_ERR(cl);
450 __idle_hwsp_free(vma->private, cacheline);
451 goto err_unpin;
452 }
453 GEM_BUG_ON(cl->hwsp->vma != vma);
454
455 /*
456 * Attach the old cacheline to the current request, so that we only
457 * free it after the current request is retired, which ensures that
458 * all writes into the cacheline from previous requests are complete.
459 */
460 err = i915_active_ref(&tl->hwsp_cacheline->active, tl, &rq->fence);
461 if (err)
462 goto err_cacheline;
463
464 cacheline_release(tl->hwsp_cacheline); /* ownership now xfered to rq */
465 cacheline_free(tl->hwsp_cacheline);
466
467 i915_vma_unpin(tl->hwsp_ggtt); /* binding kept alive by old cacheline */
468 i915_vma_put(tl->hwsp_ggtt);
469
470 tl->hwsp_ggtt = i915_vma_get(vma);
471
472 vaddr = page_mask_bits(cl->vaddr);
473 tl->hwsp_offset = cacheline * CACHELINE_BYTES;
474 tl->hwsp_seqno =
475 memset(vaddr + tl->hwsp_offset, 0, CACHELINE_BYTES);
476
477 tl->hwsp_offset += i915_ggtt_offset(vma);
478
479 cacheline_acquire(cl);
480 tl->hwsp_cacheline = cl;
481
482 *seqno = timeline_advance(tl);
483 GEM_BUG_ON(i915_seqno_passed(*tl->hwsp_seqno, *seqno));
484 return 0;
485
486 err_cacheline:
487 cacheline_free(cl);
488 err_unpin:
489 i915_vma_unpin(vma);
490 err_rollback:
491 timeline_rollback(tl);
492 return err;
493 }
494
495 int intel_timeline_get_seqno(struct intel_timeline *tl,
496 struct i915_request *rq,
497 u32 *seqno)
498 {
499 *seqno = timeline_advance(tl);
500
501 /* Replace the HWSP on wraparound for HW semaphores */
502 if (unlikely(!*seqno && tl->hwsp_cacheline))
503 return __intel_timeline_get_seqno(tl, rq, seqno);
504
505 return 0;
506 }
507
508 static int cacheline_ref(struct intel_timeline_cacheline *cl,
509 struct i915_request *rq)
510 {
511 return i915_active_add_request(&cl->active, rq);
512 }
513
514 int intel_timeline_read_hwsp(struct i915_request *from,
515 struct i915_request *to,
516 u32 *hwsp)
517 {
518 struct intel_timeline_cacheline *cl;
519 int err;
520
521 GEM_BUG_ON(!rcu_access_pointer(from->hwsp_cacheline));
522
523 rcu_read_lock();
524 cl = rcu_dereference(from->hwsp_cacheline);
525 if (unlikely(!i915_active_acquire_if_busy(&cl->active)))
526 goto unlock; /* seqno wrapped and completed! */
527 if (unlikely(i915_request_completed(from)))
528 goto release;
529 rcu_read_unlock();
530
531 err = cacheline_ref(cl, to);
532 if (err)
533 goto out;
534
535 *hwsp = i915_ggtt_offset(cl->hwsp->vma) +
536 ptr_unmask_bits(cl->vaddr, CACHELINE_BITS) * CACHELINE_BYTES;
537
538 out:
539 i915_active_release(&cl->active);
540 return err;
541
542 release:
543 i915_active_release(&cl->active);
544 unlock:
545 rcu_read_unlock();
546 return 1;
547 }
548
549 void intel_timeline_unpin(struct intel_timeline *tl)
550 {
551 GEM_BUG_ON(!atomic_read(&tl->pin_count));
552 if (!atomic_dec_and_test(&tl->pin_count))
553 return;
554
555 cacheline_release(tl->hwsp_cacheline);
556
557 __i915_vma_unpin(tl->hwsp_ggtt);
558 }
559
560 void __intel_timeline_free(struct kref *kref)
561 {
562 struct intel_timeline *timeline =
563 container_of(kref, typeof(*timeline), kref);
564
565 intel_timeline_fini(timeline);
566 kfree_rcu(timeline, rcu);
567 }
568
569 void intel_gt_fini_timelines(struct intel_gt *gt)
570 {
571 struct intel_gt_timelines *timelines = >->timelines;
572
573 GEM_BUG_ON(!list_empty(&timelines->active_list));
574 GEM_BUG_ON(!list_empty(&timelines->hwsp_free_list));
575 }
576
577 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
578 #include "gt/selftests/mock_timeline.c"
579 #include "gt/selftest_timeline.c"
580 #endif
581